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EFFECT OF VARIATION OF EMISSIVITY OF INTERNAL SURFACES 
OF HEATED BOX BEAMS ON TEMPERATURE DISTRIBUTION, 

THERMAL STRESS AND DEFLECTION1 

by 

S. Goodman, S. B. Russell and C. E. Noble 

1. ABSTRACT 

Transient temperature distribution histories, 
thermal stresses, and deflections were computed for 
13 box beams uniformly heated along one cover. 
Various heating rates, geometries of beam cross- 
section, and thermal properties were considered. 
Heat transfer was by radiation and conduction. Gas¬ 
eous heat transfer and possible effects of yielding, 
creep, and buckling were neglected. 

For maximum beam temperatures above 700 - 900° F, 
change in emissivity of the interior surfaces of the 
beam had an appreciable effect on the cover (but not 
the web) temperatures and, to an even greater extent, 
on the beam deflection. At maximum beam temperatures 
of 1200° F, an increase in interior surface emissivity 
caused an appreciable decrease of the maximum thermal 
stress . 

A rough experimental check of temperature distri¬ 
bution and beam deflection was made for one case. 

2. INTRODUCTION 

The subjection of aircraft and other structures to increasingly 
high temperatures gives rise to a need for predicting transient tem¬ 
perature distribution in the structures, and the resulting thermal 
stress and deformations. This knowledge will make possible the rational 
design of the structure, and the devising of methods of alleviating of 
thermal stresses and deflections. With increasing structure temperature, 

1 This work was conducted at the National Bureau of Standards under the 
sponsorship and with the financial assistance of the Office of Naval 
Research. 
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influence of radiant heat transfer on the temperature distribution of 
the structure is affected by structural geometry, heating rate, and ther¬ 
mal properties of the beam material. It was the purpose of this investi¬ 
gation to determine the effect of variation of emissivity of the interior 
surfaces of a box beam on temperature distribution, maximum thermal stress, 
and beam deflection in heated box beams for a variety of conditions. 

3. STRUCTURES AND MATERIAL 

The structures considered were three box beams 30 in. long--two 
relatively thick-walled and one relatively thin-walled. The beam cross- 
section is shown in the figure at the top of table 1; wall thicknesses 
are indicated by the ratios listed in columns 2 and 3 of the table. One 
beam (cases 1, 2 and 3) is a thick-walled beam, similar to a beam used 
in the experimental work. The other beams are typical of beams used in 
aircraft structures; one relatively thick-walled (cases 4-8) and the 
other relatively thin-walled (cases 9-13). 

Thermal and elastic properties were taken as those of the type 302 
stainless steel test beam. Thermal conductivity and specific heat were 
approximated by the linear relationships: 

(1) k = 7.08 + 0.0043T 

(2) c = 0,106 + 0.0000257T 

where 

k is thermal conductivity (Btu/hr ft °F) 

c is specific heat (Btu/lb °F) 

T is absolute temperature (°R) 

Emissivity was taken as 0, 0.35 (emissivity of the test beam, cases 
1-3) and 1, as indicated in columns 4 and 5 of table 1. 

p 
Figures in brackets indicate the literature references at the end of 
this paper. 
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Young's modulus and the coefficient of linear thermal expansion were 
represented by 

E = 31.0 x 106 - 0.0064T x 106 (3) 

a = 8.29 x 10"6 + 0.00137T x 10"6 (4) 

where 

E is Young's modulus (lb/in?) 

a is coefficient of linear thermal expansion (in/in. °F) 

T is absolute temperature (°R) 

4. BOUNDARY CONDITIONS 

The beams were considered to be subjected to a uniform heat input 
along one cover in a rarefied atmosphere. The heating rates are listed 
in columns 6 and 7 of table 1. The initial beam temperature was 78° F. 
For the test beam (cases 1, 2, 3), the boundary condition was taken as 
the heated cover temperature (figures 2 and 7). For all other cases, 
the boundary condition was taken as the heat input to the cover. All 
elements of the heated cover were considered to remain constant at 
1200° F after reaching that temperature. 

5. METHOD OF ANALYSIS 

5.1 Calculation of Temperature Distribution 

Analysis was made by a numerical method similar to that described 
by Dusinberre (ref. 2). One half of the cross-section of the symmetrical 
beam was divided into 12 analysis elements. Since the external heat 
transfer was symmetrical with respect to the left and right halves of 
the beam cross-section, the right half of the beam was represented by a 
reflector. The reflector was divided into four regions. The element 
configuration for cases 1, 2 and 3, shown in fig. 1, is typical of all 
cases. 

A heat balance equation was set up for each analysis element and 
solved for the element temperature after a short time interval, A0- 
The process was repeated for successive short time intervals using the 



' 
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new element temperature as the starting point of the next computation. 
It was assumed that surface emissivity remained constant and that beam 
surfaces were gray, i.e.s thermal reflection is diffuse and emissivity 
and absorptivity are equal even when the temperatures of the incident 
radiation and of the receiver are different. The heat balance equation 
is as follows: 

^m^ ~ ■Lm + j (km - 1, m) (^m) (^m - 1 ~ Tm) 
vmPlm I 

+ (km, m + 1) (^m) (^m + 1 ” Tm) + em & ^m (^-A^ " ^-m^) 

+ ® [F^ ! (T^ - Tm4) + Fm> g (Tg4 - Tm4) + ... 

••• + Fm, 12(t124 - Tm4)l + wm] (5) 

where 

i 
Tm is the temperature at the center of element m after 

time interval A© (°R) 

Vm is the volume of element m (ft^) 

Tm is the initial temperature at the center of element m 

(°R) 

p is the density of the material (Ib/ft ) 

Cjjj is the specific heat of element m (Btu/lb °F), repre¬ 
sented by a linear function of Tm. 

km, m + lj, km „ ^ m are the averaged thermal conductance of 
element m and adjacent element 
(Btu/hr ft °F) 

^m» Jm are ratios of element contact areas to distances 
between element centers for element m and adjacent 
elements m - 1s m + 1 respectively (ft). 

em is emissivity of element surface m 
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a is the Stefan-Boltzmann constant 

= 1.713 x l(T9(Btu/ft2 hr °r4) 

Ajjj is exterior surface area of element m (ft2) 

is ambient temperature (°R) 

is interior surface area of element m (ft2) 

Fm, n is an overall radiant heat interchange factor for 

net radiant heat exchange between a surface of 

element m and a surface of element n. It 

includes the effect of direct and all reflected 

radiation. 

Wm is the external heat input (Btu/hr). 

The first two terms inside the brackets on the right hand side of 

eq. 5 represent conductive heat transfer between element m and adjacent 

elements; the third term represents radiant heat transfer with the out¬ 

side environment, the fourth term represents internal radiant heat ex¬ 

change between element m and the rest of the beam interior, the fifth 

term represents the boundary condition of a (variable) heat input. For 

cases 1, 2 and 3, in which the boundary condition was taken as the 

heated cover temperature history, the temperature of each heated cover 

element was expressed as a series of four linear functions of time cover¬ 

ing successive time intervals. 

To compute the gray body radiant heat exchange factors, F, first 

black body radiant heat exchange factors were computed for all two ele¬ 

ment combinations of the 16 internal surfaces of the analysis elements 

and (fictitious) reflector using the methods of reference 3, and radia¬ 

tion geometry. Values of the 256 F's were then obtained from the 

matrix relationships of reference 4. The computations were performed on 

SEAC using an existing code for inverting the matrices. 

The temperature-distribution computations were computed on SEAC. 

Temperatures at the mid-points of the 12 analysis elements were printed 

out at regular time intervals which were whole number multiples of A©- 

In order to minimize computing machine running time, it was desirable 

to use the largest value of the time interval. A©, consistent with ade¬ 

quate accuracy of solution. The time interval must be sufficiently short 

that during the interval (1) the initial element temperatures can be used 

with negligible error and (2) for conductive heat transfer, the effect of 

any non-adjacent element on a given element is negligible. Satisfactory 

values of A© were obtained by trial. A portion of the temperature 
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distribution history was computed several times using successively larger 
values of A®- The largest value of A® which gave a temperature dis¬ 
tribution history negligibly different from that obtained when the small¬ 
est value of A® tried was used to compute the complete temperature 
distribution history. Values of A® found satisfactory by this method 
ranged from 0.72 second for rapidly heated beams to 1.8 seconds for 
slowly heated beams. 

Some error was generated in the beam temperature history computations 
by representing one-half of the beam cross-section by a gray, rather than 
a specular reflector. As a check on the magnitude of this error, radiant 
heat transfer rates were computed for a simple symmetrical case using 
first the entire beam cross-section in the computations, and then an 
equivalent beam consisting of one-half of the beam cross-section and a 
gray reflector. An infinitely long box beam of rectangular cross-section 
divided into six analysis elements was used. The beam was two inches 
deep, eight inches wide, and emissivity was 0.35. The vertical (two inch) 
walls of the beam were at temperature T^ and the horizontal walls at 
absolute zero. The rate of radiant heat transfer to the left half of the 
upper horizontal wall was 

q = 0.1354oT14 

q = 0.1389OTJ4 

for original beam 

(6) 
for equivalent beam 
with reflector 

where 

q is rate of radiant heat transfer (Btu/hr ft2) 

a is the Stefan-Boltzmann constant 

(0.1713 x 10"8 Btu/(ft2 hr °R4)) 

Ti is vertical wall temperature (°R). 

It was concluded that the error due to use of a gray rather than a specu¬ 
lar reflector was small. 

5.2 Computation of Thermal Stress and Deflection 

Thermal stresses and deflections in the beam were computed by a 
method similar to that described in reference 5. Integrations over the 
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beam cross-section were performed numerically using finite elements iden¬ 
tical with those used in the temperature distribution computations (fig. 

1). 

6. TEST OF BEAM 

The test specimen, corresponding to case 2, table 1, was a box beam 
constructed of 0.128 inch 18-8 type 302 stainless steel sheet (figure 1). 
Two pieces of sheet were each bent into identical channel shapes and butt 
welded together lengthwise to form the 2 in. x 5 in. x 30 in. beam. 

The beam was heated in a vacuum chamber whose pressure was maintained 
at 4mm of mercury, a pressure low enough to eliminate convective heat 
transfer. Only one side of the beam was subjected to heating. It was 
heated with twelve quartz tube, tungsten filament heating elements uni¬ 
formly spaced in a reflector. Total output of the heaters was 5.7 Btu/ 
second. The reflector was a rectangular box enclosing the heating ele¬ 
ments and fitted to the heated wall of the beam. It was constructed of 
stainless steel and silver plated to reflect a maximum of the heat output 
to the beam. Reflectivity of the reflector surface was about 0.97. 

Temperatures were measured at the center cross-section on the heated 
cover of the beam, at the center cross-section on the unheated cover, at 
two points on the heated cover one in. from one end, and at one point on 
the heated cover one in. from the other end. The temperatures were mea¬ 
sured with iron-constantan thermocouples whose outputs were indicated by 
galvanometers. The thermocouples were calibrated before and after the 
test. Temperatures of the heated cover at the beam ends were approxi¬ 
mately 12 percent lower than the temperatures of the heated cover at the 
center cross-section. The experimentally determined heated cover temper¬ 
atures, used as the boundary condition in case 2, are shown in fig. 2 and, 
together with observed temperatures for two points on the opposite cover, 
in fig. 7. 

The total normal emissivity of the 18-8 (type 302) stainless steel 
was determined by comparing its rate of radiation at a given temperature 
with that of a Globar at the same temperature. The radiation rates were 
determined by focusing the images of equal areas of the Globar and of 
the stainless steel successively on a thermopile, using a flourite lens. 
The emissivity of the stainless steel obtained was constant in the tem¬ 
perature range 400° F to 1000° F and equal to 0.35. 

Beam deflection at the center cross-section was measured by means 
of SR-4 type AB-5 electrical strain gages mounted back-to-back on a 
shielded cantilever beam which was deflected by displacement of the center 
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of the beam relative to its ends. Contact of the center of the beam with 
the cantilever was made by a Vycor rod. Calibration was accomplished by 
deflecting the cantilever by known amounts at the point of contact with 
a micrometer screw. 

The maximum deflection observed was 0.415 in. after 240 seconds of 
heating. After 378 seconds of heating the center deflection was 0.37 in. 

7. RESULTS 

7.1 Beam Temperature Distribution 

Computed temperature histories at point, A, in the center of the 
heated cover and at point, B, in the center of the opposite cover (see 
sketch on table 1) are shown in figures 2 to 6 for the 13 cases consid¬ 
ered. Fig. 7 shows the computed temperature distribution in a thick- 
walled beam (cases 1, 2, 3) of the same dimensions as the test beam after 
148, 189 and 297 seconds of heating. Fig. 8 shows the temperature dis¬ 
tribution in a thin-walled beam after 45 seconds of slow heating, and 
after 13.7 seconds of fast heating. Values of A and B are listed in 
columns 9 and 10 of table 1. Comparison was made of geometrically similar 
beams, heated at the same rate for the same length of time but having the 
following different values of interior or exterior emissivities: 0, 0.35 
and 1.0. 

It was found that, in all cases considered, change in emissivity of 
the surfaces had an appreciable effect on the cover temperatures and 
comparatively little on the web temperatures when the maximum heated 
cover temperature was above 700 to 900° F. For beams of the same geom¬ 
etry and heating boundary condition and with heated cover at a temperature 
of about 1200° F, the temperature difference, d, between points A and 
B, is from 18 percent to 48 percent greater for cases having zero internal 
emissivity than for the corresponding cases having black body interior 
surfaces. Greatest difference is for a thin-walled beam with one cover 
heated at about 30° F/second; least difference is for a thin-walled beam 
with one cover heated at about 91° F/second. 

A change in exterior surface emissivity had less effect on d than 
a change in interior surface emissivity. Comparison of cases 7 and 8 with 
corresponding cases 4 and 6 indicates that, for the particular conditions 
specified in table 1, increasing the interior surface emissivity from 0 
to 1.0 causes a decrease in d of 19 percent; increasing the exterior 
surface emissivity from 0 to 1.0 causes a decrease in d of only 8 per¬ 
cent . 



>?':r 

• ■ ■ ■ . ' 
• ft ? t « S & :» b'n' "? ' fv "I. [I ■ *'i • ; 1 

•< s 

.'o. ■ i»o£ r 8' ' ■. B .’B','-- 

' 

1 t i 

■ ' 

* 
' 

. 

■ 

■ 



NBS Lab. No. 6.4/268, PR 5 page 9 

7.2 Thermal Stress and Deflection 

In order to evaluate the effect of a change in emissivity on the 
thermal stress distribution and deflection, thermal stress distributions 
and deflections were computed for the 13 cases under the conditions listed 
in table 1. Maximum tensile stress, compressive stress and deflection 
are listed in columns 11, 12 and 13 respectively in the table. The pos¬ 
sible effects of yielding, creep and buckling were neglected. Values of 
the thermal stress and deflection are therefore valid only for comparison 
purposes. It was found that for a thick-walled, slowly-heated beam with 
heated cover at 958° F (cases 1, 2, 3), a change in the interior wall 
emissivity had little effect on the magnitude of the maximum thermal 
stress. An increase in the interior wall emissivity from 0 to 1.0 however, 
resulted in a decrease of 34 percent in the maximum beam deflection. For 
the beams with the same geometry and the same heating conditions and in 
which the heated cover temperature was about 1200° F, a change of the 
interior wall emissivity from 0 to 1.0 reduced the absolute maximum stress 
from 9 percent (cases 4 and 6) to 16 percent (cases 9 and 11, 12 and 13), 
and deflection from 16 percent (cases 4 and 6) to 52 percent (cases 9 
and 11). In the latter beam, reduction in maximum tensile stress was 36 
percent. For a change of the exterior wall emissivity from 0 to 1.0 
(cases 7 and 8), reduction in absolute maximum stress was 8 percent, and 
reduction in maximum deflection was 7 percent. 

Generally, a change in the thermal gradient produced by a change in 
the interior beam emissivity from 0.35 to 1 is about 75 percent of the 
thermal gradient due to a change in the interior beam emissivity from 0 
to 1. Corresponding ratios for maximum thermal stress and deflection are 
about 68 and 75 percent, respectively. 

7.3 Comparison of Experimental and Theoretical Results 

A partial check of the temperature distribution and deflection was 
made for case 2. Computed and observed temperatures for two points on 
the unheated cover after 148, 189 and 297 seconds of heating are shown 
in fig. 7. Agreement is fair. Some of the discrepancy may be attributed 
to gas heat conduction within the beam. For the conditions listed under 
case 2 in table 1, observed beam deflection was 0.37 in. and beam deflec¬ 
tion computed from the theoretical temperature distribution was 0.38 in. 

8. CONCLUSIONS 

A change in the interior surface emissivity of a box beam heated 
along one cover has an appreciable effect on the temperature distribution. 
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and consequently on the maximum thermal stress and the deflection. For 
a variety of beam geometries and heating conditions, a change of the 
interior surface emissivity from 0.35 to 1 for a stainless steel beam 
reduces considerably the temperature gradient in the temperature range 
above 700° - 900° F and the maximum thermal stress and the deflections 
in the temperature range above 900° - 1200° F. The effect is particularly 
marked for a thin-walled slowly-heated beam. 

For the Director, 

B. L. Wilson, Chief, 
Engineering Mechanics Section 
Division of Mechanics. 

Washington, D. C. 

June 1958 
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