NATIONAL BUREAU OF STANDARDS REPORT

5685

A STATISTICAL CHAIN RATIO METHOD FOR

 DETERMINING THE DISTRIBUTION OF MAIL BY DESTINATIONBy

Norman C. Severo
Arthur E. Newman

Report to Post Office Department Office of Research and Engineering

U. S. DEPARTMENT OF COMMERCE NATIONAL BUREAU OF STANDARDS

THE NATIONAL BUREAU OF STANDARDS

Functions and Activities

The functions of the Natiomal Burean of Standards are set forth in the Act of Congress, March 3, 1901, as amended by Congress in Public Law 619, 1950. These include the development and maintenance of the national standards of measurement and the provision of means and methods for making measurements consistent with these standards; the determination of physical constants and properties of materials; the development of methods and instruments for testing materials, devices, and structures; advisory services to Government Agencies on scientific and technical problems; invention and development of devices to serve special needs of the Government; and the development of standard practices, codes, and specifications. The work includes basic and applied research, developinent, engineering, instrumentation, testing, evaluation, calibration services, and various consultation and information services. A major portion of the Bureau's work is performed for other Government Agencies, particularly the Department of Defense and the Atomic Energy Conmmission. The soope of activities is suggested by the listing of divisions and sections on the inside of the back cover.

Reports and Publications

The results of the Bureau's work take the form of either actual equipment and devices or publisher papers and reports. Reports are issued to the sponsoring agency of a particular project or program. Published papers appear either in the Bureau's own series of publications or in the journals of professional and scientific societies. The Bureau itself publishes three monthly periodiculs, available from the Govermment Printing ()ffice: The Journal of Research, which presents complete papers reporting technical investigations: the 'Technical News Bulletin. which presents summary and preliminary reports on work in progress: and Basir Radio Propagation Predictions, which provides data for determining the best frequencies to use for radio communications throughout the world. There are also five series of nonperiodical publications: The Applied Mathematies Series, Circulars, IIandboohs, Building Materials and Structures Reports, and ${ }^{\circ}$ Miscellaneous Publications.

Information on the Bureau's publications can be found in NHS Circular 460, Publications of the Nintional Bureau of Standards ($\$ 1.25$) and its Supplement ($\$ 0.75$), available from the Superintendent of Documents, Government Printing Office, Washington 25, D). C.

Inquiries regarding the Burean's reports should be addressed to the Office of Technical Information. National Bureau of Standards, Washingtun 25, D. C.

A STATISTICAL CHA IN RATIO METHOD FOR DETERMINING THE DISTRIBUTION OF MAIL BY DESTINATION

By

Norman C. Severo
Statistical Engineering Laboratory Applied Mathematics Division
and
Arthur E. Newman
Applications Engineering Section Data Processing Systems

To
Post Office Department Office of Research and Engineering

IMPORTANT NOTICE

NATIONAL BUREAU OF STAI intended for use within the Gc to additional evaluatlon and res listing of this Report, elther in the Office of the Director, Nath however, by the Government al to reproduce additlonal coples.

Approved for public release by the director of the National Institute of Standards and Technology (NIST) on October 9, 2015
ogress accounting documents nally published it is subjected eproductlon, or open-literature on is obtained in writing from iuch permission is not needed, repared If that agency wishes

U. S. DEPARTMENT OF COMMERCE

NATIONAL BUREAU OF STANDARDS
-

PREFACE

The National Bureau of S tandards is developing equipments and systems for improved letter sorting by automation. Therefore it is necessary to determine the nature and distribution of mail in post offices.

Since the volume of mail is much too large for complete piece counts to be feasible, sampling methods of known and adequate accuracy must be used. The present paper is the first step in the effort to develop such methods as applied to mail distribution.

ISRAEL ROTKIN
Coordinator, Post Office Project

ACKNOWLEDGEMENT

A work of this magnitude could not have been carried out without the splendid cooperation of many other people. The authors particularly wish to express their deepest appreciation to Dr. Marvin Zelen, N.B.S., for his enthusiastic encouragement and many helpful suggestions throughout the course of this study; to Mrs. Jeanne Auber, N.B.S., for her untiring assistance and perserverance in performing almost all of the arduous computations and tabulations; to Mrs. Lola S. Deming, N.B.S., for a detailed statistical review of the original manuscript; to Inspector John Falconer, Post Office Department, and Messrs. Martin Stark and John Lloyd, both of N.B.S., for their assistance in supervising the collection of data involved in the sampling procedures. Finally, gratitude is expressed to the Postmasters and staffs of the San Francisco, Los Angeles, and Baltimore Post Offices for their cordial cooperation.
Page

1. Summary and Conclusions 1
2. Introduction 3
3. Definitions, The Model and Notations 6
3.1 Definitions 6
3.2 The Model 8
3.3 Notations 8
4. Fundamental Sampling Procedures and Related Formulae 11
4.1 Volume Count Data 11
4.2 Sampling Procedures 12
4.2.1 Primary 12
4.2.2 Secondary 14
4.2.3 Tertiary 14
4.3 Related Formulae 15
4.3.1 Case where there is no By-pass mail that enters the system at the Sec- ondary 15
4.3.2 Case where the percentage of By-pass mail that enters the system at the Secondary is small, say, less than 2% 16
4.3.3 Case where the percentage of By-pass mail that enters the system at the Secondary is large, say, greater than 2\% 17
5. Type of mail studied at San Francisco, Los Angeles, and Baltimore 17
6. San Francisco Study 18
6.1 Volume Count Data 18
6.2 Sampling Procedure 19
6.3 Computational Formulae 23
6.3.1 Primary 27
6.3.2 Secondary 27
6.3.3 Tertiary 29
6.4 Examples 30
6.5 Tabulation of Estimated Distribution and Observations 31
7. Los Angeles Study 42
7.1 Volume Count Data 42
7.2 Sampling Procedure 47
7.3 Computational Formulae 47
7.3.1 Primary 47
7.3.2 Secondary 48
7.3.3 Tertiary 50
7.4 Tabulation of Estimated Distribution and Observations 63
8. Baltimore Study 63
8.1 Volume Count Data 64
8.2 Sampling Procedure 64
8.3 Computational Formulae 77
8.3.1 Primary 77
8.3.2 Secondary 77
8.3.3 Tertiary 79
8.4 Tabulation of Estimated Distribution and Observations 80
References 93
Appendix - San Francisco Special Primary Study 94
9. Flow Chart Model For The Distributions of Out- going mail 9
10. Graphs of Daily Volume Ratios for San Francisco 21
11. San Francisco Flow Chart 22
12. Sample Data for San Francisco Primary 24
13. Sample Data for California A-B Secondary for San Francisco 25
14. Sample Data for California $A-B$ Tertiary for San Francisco 26
15. Graph of Largest 200 Destinations for San Francisco 32
16. Graphs of Daily Volume Ratios for Los Angeles 45
17. Los Angeles Flow Chart 46
18. Graph of Largest 200 Destinations for Los Angeles 51
19. Graphs of Daily Volume Ratios for Baltimore 67
20. Graphs of Daily Volume Ratios for each Secon- dary for Baltimore 71
21. Baltimore Flow Chart 76
22. Graph of Largest 200 Destinations for Baltimore 81
A. 1 Sample Data for San Francisco Special Primary Study 95
A. 2 Summary of Sample Data for San Francisco Special Primary Study 96

Page
23. San Francisco Volume Count Data 20
24. Number of Pieces in Sample and Constants Used in Computational Formula for Destinations off the Secondaries for San Francisco 28
25. Number of Pieces in Sample and Constants Used in Computational Formula for Destinations off the Tertiaries for San Francisco 29
26. Tabulation of Estimated Percentages of the Total Volume to Each Destination for San Francisco 33
27. Los Angeles Volume Count Data 43
28. Number of Pieces in Sample and Constants Used in Computational Formula for Destinations off the Secondaries for Los Angeles 49
29. Number of Pieces in Sample and Constants Used in Computational Formula for Destinations off the Tertiaries for Los Angeles 50
30. Tabulation of Estimated Percentages of the Total Volume to Each Destination for Los Angeles 52
31. Baltimore Volume Count Data 65
32. Volume Data for Determining Percentage of Total Volume to Each Secondary for Baltimore 68
33. Number of Pieces in Sample and Constants Used in Computational Formula for Destinations off the Secondaries for Baltimore 78
34. Number of Pieces in Sample and Constants Used in Computational Formula for Destinations off the Tertiaries for Baltimore 79
35. Tabulation of Estimated Percentages of the Total Volume to Each Destination for Baltimore 82

36. Summary and Conclusions.

This report outlines the methods, techniques and procedure of a statistical sampling plan designed to determine, for any post office, the percentages of mail destined for all final separations. This method was applied to outgoing first class letter-mail at the San Francisco, Los Angeles and Baltimore Post Offices. The results for each of these post offices are included here. Some of the principal conclusions of this study are:

San Francisco:

1. The largest 200 Destinations received 80% of the Total Volume.
2. Seventy-six percent of the Total Volume remained in the state of California (not including Air-mail and Go-backs).
3. Thirty-nine percent of the Total Volume remained in San Francisco.
4. Only seven Destinations received more than 1% of the Total Volume, respectively.

Los Angeles:

1. The largest 200 Destinations received 81% of the Total Volume.
2. Seventy-eight percent of the Total Volume remained in the state of California (not including Air-mail and Go-backs).

Los Angeles (Continued):

3. Forty-two percent of the Total Volume remained in Los Angeles.
4. Only six Destinations received more than 1% of the Total Volume, respectively.

Baltimore:

1. The largest 200 Destinations received 78% of the Total Volume.
2. Sixty-six percent of the Total Volume remained in the state of Maryland (not including Air-mail and Go-backs) .
3. Fifty-one percent of the Total Volume remained in Baltimore.
4. Only four cities received more than 1% of the Total Volume, respectively.

In General:

1. The sampling methods presented here are relatively simple to apply.
2. The final percentages given in the Tables 4,8 , and 13 may be used to determine the expected number of letters per Destination on a daily or weekly basis. This may be done by multiplying the percentage, expressed in decimals, corresponding to the Destination by the average daily or weekly Total Volume of letters.

Formulae for determining the reliability of the estimates given in this report will follow in a supplement.

When additional data of this type are needed for other post offices it is strongly recommended that a statistical sampling plan similar to that described in this report be used. The use of such a plan will result in:
a. accurate results,
b. no delay in moving the mail
through the post office,
c. relatively small cost.

In the past such data have been gathered by complete enumeration. It is our recommendation that such methods be discarded for the more scientific statistical sampling procedures.

2. Introduction.

This report discusses the methods, techniques, and analyses of a sampling procedure designed to estimate the distribution of mail by destination (i.e., the proportion of mail going to each Destination). In the course of this study the method has often been referred to as the "Chain ratio" method because the nature of the formulae involved in the analyses resembles a chain of ratios. The method is applied to outgoing first class letter-mail at the San Francisco, Los Angeles and Baltimore Post Offices.
lall

It was intended, initially, to study five cities: Baltimore, Washington, Philadelphia, Chicago and Los Angeles. Philadelphia, Baltimore, and Washington were chosen because they would tend to give a pattern of postal operations on the East Coast. Chicago was chosen to show Mid-west influence, and Los Angeles was selected to show the West Coast influence. San Francisco was added to the list in an effort to find out whether or not Los Angeles was atypical, because, Los Angeles services an unusually large area, as compared with other Post Offices.

The Post Office Department made special studies in Philadelphia, Chicago and New York, where in each case a complete count was made of the Total Volume of mail to each destination for either a 24 or 48 hour period of time. The NBS also made a modified version of the complete count on November 5 th, 1956, in Baltimore. In this count, only the total volume entering the system between 4:00 P.M. and 7:00 P.M. was included.

However, any complete count of large volumes of mail, even for short periods of time such as three hours, involves a considerable number of man hours and invariably tends to delay the normal function of sorting mail. Furthermore, any such complete counts are open to criticisms that may be leveled against complete enumeration methods. (The literature contains many examples $[1],[2],[3],[4]^{1}$ comparing complete

[^0]
enumeration methods with statistically designed sampling procedures, and shows the desirability, from the economics and reliability point of view, of the sampling techniques). A complete count of mail, properly done, say, for 24 hours, gives a good indication of what happens during a particular 1/365 part of a year. If one wishes to enlarge this fraction then additional complete counts can be made. Thus to represent a particular $5 / 365$ part of a year one might take five consecutive days - e.g., Monday through Friday or Thursday through Monday depending upon whether or not the weekend is to be included. This is expensive and time consuming. Furthermore tremendous effort is needed on the part of all concerned to keep tract of all the mail to each Destination. Thus errors are bound to occur. Finally, the mail itself will tend to be delayed during such exhausting counts. A sampling study, however, enables one to check the behavior of mail from time to time during any interval of time and with far less effort than needed in a complete enumeration. Thus, for example, to obtain information about mail for some given week, samples may be taken several times each day throughout the week. (Actually in the applications discussed here, two samples a day were taken during five-day periods excluding the weekends). Or if one wanted to check
the behavior of mail for any other given time period, say some particular month or during the Christmas rush, then samples could be taken from time to time during that particular time period.

Section 3 gives the definitions and notations as used in this report and the model of the flow of mail that is studied. Section 4 discusses in detail the sampling procedures, analysis and necessary volume counts of the statistical chain ratio method. Section 5 defines precisely the types of mail that were studied at San Francisco, Los Angeles and Baltimore. Sections 6, 7 and 8 present the details of the San Francisco, Los Angeles and Baltimore studies, respectively.

3. Definitions, The Model and Notations

3.1 Definitions. A list of definitions of terms, as used in this report, is given here for reference ${ }^{l}$ / These definitions are given in order to avoid misinterpretation and ambiguity because of postal language differences between post offices.

1. Separation. - A Separation is a classification characterized by a labeled pigeon-hole on a sorting case.

1/ Terms not defined in this section are used as given in
the "Glossary of Postal Terms in Common Use".

$$
\begin{aligned}
& \text { - - + } \\
& \text {-. } \\
& n=-\infty \\
& --4+2-2+-2=1
\end{aligned}
$$

2. Destination. - A Destination for a given post office is a final Separation made at that post office. All directs and residues are included in this classification. 1
3. Direct. - A Direct is a Destination to a single given post office.
4. Distribution. - A Distribution is the function of physically sorting letters into their respective separation boxes.
5. Primary. - The term Primary, (of ten referred to as Mailing Primary), is the first stage of Distribution of outgoing mail.
6. Secondary. - The term Secondary (of ten referred to as State Primary), is the second stage of Distribution of outgoing mail. Secondary mail can not be distributed to final Destination on the Primary.
7. Tertiary. - The term Tertiary, (often referred to as State Secondary), is the third stage of Distribution of outgoing mail. Tertiary mail can not be distributed to final Destination on the Secondary.
8. By-pass mail. - The term By-pass mail refers to mail which receives its first Distribution in the Secondary or Tertiary cases. Also the term refers to mail which goes directly to the city section.
9. Residue. - The term Residue refers to mail destined for post offices for which no direct Separation is nrovided in case or rack.
10. Total Volume. - The term Total Volume refers to the defined classes of mail studied. (Total Volume is defined more explicitly as used in this study in Section 5)。

Nixies, Go-backs, Misfiles, Air Mail and Foreign off
Primary are also considered Destinations in this study.
3.2 The Model. The model for the operation of outgoing mail that is discussed in this report consists of a three stage sorting scheme which can be represented by a flow chart as given in Figure 1. The Total Volume in the top box consists of those types of mail indicated in Section 5 . This volume then divides into two parts, that which goes into the Primary and that which by-passes the Primary. The By-pass mail is sent either to the city section or into the Secondary. Mail leaving the Primary may go either to its Destinations or into the Secondary. Mail leaving the Secondary goes either to its Destinations or into the Tertiary. Mail leaving the Tertiary goes directly to its Destinations.
3.3 Notations. The list of notations used in this report are summarized here. Ratios without parentheses indicate that those ratios are obtained from sample figures. Ratios in parentheses () indicate that those ratios are obtained from volume counts. Ratios in starred parentheses ()* indicate that those ratios are obtained from the appropriate formulae of Section 4.3.
$\left(\frac{T_{p}}{T}\right)=$ Ratio of Primary mail to the Total Volume.

```
                <m
    <,
```



```
    * .
```



```
        <,
        <2,
        *)
```



```
        l.
```



```
                            Na
```


Figure 1
Flow Chart Model for the Distribution of Outgoing Mail

$\frac{D_{P}}{T_{P}}=$| Ratio of mail to a Primary Destination to the |
| :--- |
| Primary Volume (Obtained from Primary samples) |

$S_{i}=$ Ratio of mail to an i-th Secondary to the Total Primary Volume (Obtained from Primary Samples)
$\Gamma \frac{S_{i}}{}=$ Sum of Ratios of mail to all Secondaries to Total Primary Volume (Obtained from Primary Samples)
$\mathrm{D}_{\mathrm{S}_{\mathrm{i}}} \quad$ Ratio of mail to an i-th Secondary Destination to the i-th Secondary (Obtained from i-th Secondary samples)
$t_{i j}=$ Ratio of mail to a j-th Tertiary (off i-th Secondary) to i-th Secondary (Obtained from i-th Secondary Samples)
$\mathrm{D}_{\mathrm{tj}} \quad$ Ratio of mail to a j-th Tertiary Destination (off $\frac{t_{i j}}{t_{i j}}=\frac{i-t h}{}$ Secondary) to the $j-t h$ Tertiary (Obtained from the i,j-th Tertiary Samples)
$\left(\frac{D_{p}}{\mathrm{~T}}\right)^{*}=\quad \begin{aligned} & \text { Ratio of mail to a Primary Destination to the Total } \\ & \text { Volume }\end{aligned}$
$\binom{\mathrm{D}_{\mathrm{S}_{i}}}{\mathrm{~T}}^{*} \quad \begin{aligned} & \text { Ratio of mail to an } i-\text { th Secondary Destination to } \\ & \text { the Total Volume }\end{aligned}$
$\left({ }^{D_{t}}{ }_{i j}\right)^{*} \quad$ Ratio of mail to a $j-t h$ Tertiary Destination (off i-th Secondary) to the Total Volume
$\left(\frac{S_{i}}{T}\right)=\begin{aligned} & \text { Ratio of mail to an } i-\text { th Secondary to the Total }\end{aligned}$
$\left(\frac{{ }^{B} S}{T}\right)=\quad \begin{aligned} & \text { Ratio of By-pass mail entering at the Secondary to } \\ & \text { the Total Volume }\end{aligned}$
(
$\left(\frac{{ }^{B} C}{T}\right)=$ Ratio of City By-pass mail to the Total Volume $\left(\frac{\Sigma D_{p}}{T}\right)=\quad \begin{aligned} & \text { Sum of ratios of mail to all Destinations off } \\ & \text { the Primary to the Total Volume }\end{aligned}$ $\mathrm{D}_{\mathbf{P}}$
$\overline{\Sigma D_{P}}=\quad \begin{aligned} & \text { Ratio of mail to a Destination off the Primary } \\ & \text { to the sum of all Destinations off the Primary } \\ & \text { (Obtained from the Primary samples) }\end{aligned}$ 4. Fundamental Sampling Procedures and Related Formulae
4.1 Volume Count Data. Certain ratios must be established in order to relate the pieces of mail counted in each separation of the sample to the Total Volume of mail. It is therefore necessary to acquire from volume counts in the post office the following data:

Daily volume information expressed in footage for:
a. All mail into the Primary.
b. All mail by-passing the Primary and entering the Secondary.
c. All By-pass mail to the city.
d. All mail into each individual type Secondary case. (This count may not be necessary, see Section 6.1).

From the data listed above it is possible to determine the ratio of each class and type processed to the Total Volume of mail. Several of these ratios are then utilized in the formulae of Section 4.3 to estimate the percentage of the
(2

Total Volume going to each Destination. It is advisable to obtain these volume figures at least one day prior to drawing the sample so that decisions regarding the type of analysis that will be used can be made early. Very of ten the analysis will not make use of certain volume ratios, such as those of d above, and therefore the particular volume counts may be discontinued. (See Sections 6.1, 7.1 and 8.1 for examples). 4.2 Sampling Procedures.
4.2.1 Primary. Two feet of mail is selected as it flows into the Primary cases from the canceling machines. It is placed on the ledge of the "test" case and distributed by a clerk. Special care is taken to see to it that no mail is added to or subtracted from the sample. After Distribution has been made, the contents of each separation box are counted by the distributor and recorded by the supervising clerk. (e.g., see Figure 4 on page 24).

Special care must be given to the choice of the sample. The randomness of the selection of the two foot tray was assured by choosing the first two feet flowing into the Primary from the cancelling machine at the predetermined time for drawing the sample. The mail accumulating in the stackers of the cancellation machines is fed from a moving conveyor belt that passes seven or eight persons, each of whom faces and places on

the belt letters selected from those within his reach. Thus the letters undergo a fairly thorough mixing as they are being stacked so that the letters in any tray of mail sampled at this point would tend to have the property of randomness which is necessary in sampling studies. This method of sampling was selected in order to help eliminate the possibility of personal bias, conscious or unconscious, or personal responsibility for actual allocations. Metered mail and Patron Segregated Stamped mail which do not "run" are sampled in the same way described for Machine Cancellation mail.

However, Metered mail and Patron Segregated mail which do tend to "run" must be sampled differently. Any "bite" or "bunch" of this kind of mail may be addressed to the same Destination and therefore would not have the required property of randomness. In this case successive letters are selected every few inches apart from each tier of mail until the required two feet is obtained. The distance between successive letters should be predetermined and constant.

Two samples, each of which consists of about 580 letters, may be drawn during the morning peak period and two during the evening peak period. It is recommended that samples be taken for five successive days, exclusive of Saturday and Sunday, in order to obtain a fairly representative picture of the mail throughout the week.

4.2.2 Secondary. Mail flowing into the Secondary comes either from the Primary or from By-pass mail. Secondary cases do not simultaneously generate enough mail to be sampled at any given moment. Each sample is drawn when enough mail has generated. In each case the sample used in the study is the first two feet of mail (regardless of type) that accumulates after a case has been selected for sampling. After Distribution has been made, the contents of each separation box is counted by the distributor and recorded by the supervising clerk. One sample may be taken in the morning peak and one in the evening peak periods throughout the week.
4.2.3 Tertiary. Mail flowing into the Tertiary cases usually comes from the Secondary. Therefore, it is possible to make counts on these cases only when enough mail is generated.

However, in cases where the required two feet does not generate, then smaller samples (i.e., whatever is available) may be counted. Here again, after Distribution has been made the contents of each separation box is counted by the distributor and recorded by the supervising clerk. Samples may be taken once in the morning and once in the evening at peak periods throughout the week.

Care must be taken to record any mail dispatched during the sample period prior to the final count of each Destination on Primary, Secondary, and Tertiary cases.
4.3 Related Formulae. Three essentially different sets of formulae may be used. 1/ These depend upon the percentage of By-pass mail that enters the system at the Secondary. In all cases the aim is to estimate the ratio of mail going to a given Destination to the sum of Primary and all By-pass mail.

4.3.1. The case where there is no By-pass mail

that enters the system at the Secondary.
a. For a Destination off the Primary:

$$
\left(\frac{D_{p}}{T}\right)^{*}=\frac{D_{p}}{T_{p}} \times\left(\frac{T_{p}}{T}\right)
$$

b. For a Destination off the Secondary:

$$
\left(\frac{D_{S_{i}}}{T}\right)^{*}=\frac{D_{S_{i}}}{S_{i}} \times \frac{S_{i}}{T_{p}} \times\left(\frac{T_{p}}{T}\right)
$$

c. For a Destination off the Tertiary:

$$
\left(\frac{D_{t_{i j}}}{T}\right)^{*}=\frac{D_{t_{i j}}}{t_{i j}} \times \frac{t_{i j}}{S_{i}} \times \frac{S_{i}}{T_{p}} \times\left(\frac{T_{p}}{T}\right)
$$

[^1]
$\square=1=-10=5$
15 <-18

(1) ?

4.3.2. The case where the percentage of Bypass mail that enters the system at the Secondary is small, say, less than 2%.
a. For a Destination off the Primary:
$$
\left(\frac{D_{p}}{T}\right)^{*}=\frac{D_{p}}{T_{P}} \times\left(\frac{T_{p}}{T}\right)
$$
b. For a Destination off the Secondary:
$$
\left.\left(\frac{{ }^{D_{S}}}{T}\right)^{*}=\frac{D_{S_{i}}}{S_{i}} \times \frac{S_{i}}{T_{P}} \times\left(\frac{T_{p}}{T}\right) \times \frac{\left(\frac{T_{p}}{T}\right) \sum \frac{S_{i}}{T_{p}}+\left(\frac{{ }_{B}}{T}\right.}{T}\right)
$$
c. For a Destination off the Tertiary:
$$
\left(\frac{D_{t_{i j}}}{T}\right)^{*}=\frac{D_{t_{i j}}}{t_{i j}} \times \frac{t_{i j}}{S_{i}} \times \frac{S_{i}}{T_{p}} \times\left(\frac{T_{p}}{T}\right) \times \frac{\left(\frac{T_{p}}{T}\right) \sum \frac{S_{i}}{T_{p}}+\left(\frac{B_{S}}{T}\right)}{\left(\frac{T_{p}}{T}\right) \sum \frac{S_{i}}{T_{p}}}
$$

Implicit in the use of these formulae is the assumption that either:
a. the ratio of the i-th Secondary mail including By-pass mail to the i-th Secondary mail excluding Bypass mail is the same for all i (in which case the formulae always hold regardless of the amount of By-pass mail into the Secondary),
b. the volume of By-pass mail that flows into the Secondary is small relative to the total Secondary mail (in which case the formulae are approximations to optimum formulae).
侱
4.3.3. The case where the percentage of By-pass mail
that enters the system at the Secondary is large, say, greater than 2%.
a. For a Destination of f the Primary:

$$
\left(\frac{\mathrm{D}_{\mathrm{P}}}{\mathrm{~T}}\right)^{*}=\frac{\mathrm{D}_{\mathrm{P}}}{\Sigma \mathrm{D}_{\mathrm{P}}} \times\left(\frac{\Sigma \mathrm{D}_{\mathrm{P}}}{\mathrm{~T}}\right)
$$

b. For a Destination off the Secondary:

$$
\left(\frac{\mathrm{D}_{S_{i}}}{\mathrm{~T}}\right)^{*}=\frac{\mathrm{D}_{\mathrm{S}_{i}}}{\mathrm{~S}_{i}} \times\left(\frac{\mathrm{S}_{i}}{\mathrm{~T}}\right)
$$

c. For a Destination off the Tertiary:

$$
\left(\frac{D_{t_{i j}}}{T}\right)^{*}=\frac{D_{t_{i j}}}{t_{i j}} \times \frac{t_{i j}}{S_{i}} \times\left(\frac{S_{i}}{T}\right)
$$

It is to be noted that formulae b and c of this section depend upon special volume count data that give $\left(\frac{S_{i}}{T}\right)$.

For examples worked out in detail see the San Francisco study, Section 6 .
5. Type of Mail Studied at San Francisco, Los Angeles, and Baltimore.

The Total Volume of mail studied in the San Francisco, Los Angeles, and Baltimore Post Offices may be classified as outgoing first class letter mail of the following types:

1. Cancellation Mail (Machine and Hand)
a. Stamped Mail into Mailing Primary
b. Air Mail to Mailing Primary

c. Specials to Mailing Primary
d. Stamped Mail into Secondary by-passing Primary
e. Stamped By-pass mail to city.
2. Non-Cancellation Mail
a. Metered into Primary
b. Metered into Secondary by-passing Primary
c. Air Mail into Mailing Primary
d. Specials into Mailing Primary
e. Permit into Primary
f. Permit into Secondary By-passing Primary
g. Penalty to Primary
h. Metered and Permit By-Pass to City
3. Dis Mail
a. Transit and Red line 1 into Secondary
b. Transit and Red line into Tertiary
c. Transit and Red line to city

Not included in this study is any type of incoming letter mail nor outgoing first class letter mail of the following types:

1. All mail to Air Mail and Special Delivery Sections by-passing mailing Primary
2. Dis mail to dispatch without separation
3. Large special mailings which would tend to bias the sample

6. San Francisco Study

6.1 Volume Count Data. Special volume counts were made in San Francisco to determine what percentage of the Total Volume flowed into the Primary, how much by-passed the Primary

[^2]

14

10

 -
 $--\frac{1-2}{-2}=$
111. - 4
2 2 \square

(2)

uat an an -1
175:
Hownoly -

$$
=-2-2-1+
$$

and flowed either into the City section for local distribution or into the Secondary. These counts were made on six days, June $21,24,25,26,27$, and 28,1957 , between the hours of 10:00 A.M. and 10:00 P.M. These control figures were begun one day prior to drawing samples, so that decisions regarding sample size and optimum sampling periods and areas could be made. Volume control counts of mail flowing into the Secondary that by-passed the Primary wereless than 1%. Thus San Francisco is analyzed according to Section 4.3.2. Therefore, it was established early that a footage count of mail flowing into the Secondary could be discontinued.

The Total volume figures and the corresponding percentages are summarized in Table 1. Figure 2 shows the consistency of these percentage figures during the entire sample period, based on a day by day comparison. The flow chart given in Figure 3 contains the basic proportion figures which are then applied in the appropriate formula, as well as certain other summary figures that are a result of the sampling study.
6.2 Sampling Procedure. The sampling procedure adopted for San Francisco is the same as that described in Sections 4.2 with the added modification that, wherever possible, the samples are made to consist of equal parts of the following: stamped long, stamped short, metered long, and metered short letters. This was done because San Francisco makes a

 $2=$
0
0
1
0
0
10
0
10
10 6-28-57

$6^{\prime \prime}$
$6^{\prime \prime}$
$11^{\prime \prime}$

is
N
0
0
0
N
N
N
-6 ・ワ86L
$6-27-57$
San Francisco Volume Count Data
10:00 AM Through 10:00 PM
(in feet)
6-26-57
$2136^{\prime} 7^{7 \prime}$ $=$
$-\infty$
$-\infty$
$-\infty$
\cdots $193^{\prime} 10^{\prime \prime}$ 5^{\prime}
$5^{\prime \prime}$
$6^{\prime \prime}$ $5^{\prime} 9^{\prime \prime}$ $\begin{array}{ll}\infty & 0 \\ m & 0 \\ \text { m } & 1 \\ 0 & \infty \\ \text { N }\end{array}$.66
is
 $\begin{array}{ll}0 & \text { Nm } \\ \text { in } & \infty \\ \text { H } & \infty \\ \text { in } & 0 \\ 0 & 1\end{array}$ $148^{\prime} 17^{\prime \prime}$
$345^{\prime} 0$
$13^{\prime} 11^{\prime \prime}$
508.33^{\prime}
9.97 $\begin{array}{ll}\text { no } & \text { is } \\ \text { in } \\ \text { No } \\ \cdots & \text { N. } \\ \text { N. }\end{array}$

6^{\prime}	0
10	0
5^{\prime}	$5^{\prime \prime}$
21.	42^{\prime}
.41	

$\stackrel{+}{\circ}$ 1/ If the proper weighting factor is used for post cards (1200 let./ft. as compared

290 let./ft. or 4 to 1), then the proportion of primary mail to total is 86.80%. $\overline{4907.00^{\prime}}$ | - |
| :--- |
| 0 |
| 0 |
| |
| |
| 0 |
| 0 |

 $\begin{array}{cc}83^{\prime} & 4^{\prime \prime} \\ 452^{\prime} & 0 \\ & 7^{\prime \prime} \\ 535.92^{\prime} \\ 10.42 \\ \\ 1^{\prime} & \\ 6^{\prime} & 3^{\prime \prime} \\ 0 & \\ 7.25^{\prime} \\ . & 14\end{array}$ $5544.66^{\prime} \quad 5145.34^{\prime}$ $460^{\prime} 12^{\prime \prime}$
$418^{\prime} 13^{\prime \prime}$
0
880.08^{\prime}

15.87 | Mail to: |
| :--- |
| Primary |
| Stamp |
| Meter |
| Penalty |
| City Go Backs |
| Post Cards $1 /$ |
| Total |
| Percent | City ByPass

City By-Pass Stamp

Toll
Total
Percent
Secondary
Secondary Stamp Meter Dis

Total Percent Grand Total 00

Figure 2
Graphs of Daily Volume Ratios for San Francisco

OBTAINED FROM SAMDLES
O obtaineo from volume counts

Figure 3
San Francisco Flow Chart

separation between long and short letters which is maintained throughout the Primary and Secondary cases but not, however, in the Tertiary cases. Furthermore, metered and non-metered mail are worked separately throughout the Primary and Secondary cases. Special samples were taken on the San Francisco Primary in order to determine whether or not differences exist among the distributions of the various types of mail. (See the Appendix for the data and a preliminary analysis). The volume of mail generated in the Tertiary cases was very small during the morning sampling period. Therefore, no Tertiary samples were taken during this period.

Figures 4, 5, and 6 are copies of field sheets that show the sample data for the Primary, a typical Secondary, and a typical Tertiary at the San Francisco post office. Each column represents samples taken on each of the five consecutive sampling days. Application of the formulae to an example from each stage is shown in Section 6.4.
6.3 Computational formulae. In this Section the computational formulae used to estimate the percentage of the Total Volume of mail going to any given Destination are given. As indicated above the formulae of Section 4.3 .2 are appropriate to the San Francisco study.

	-			
Q-i				
\#171:				

[^3]

保

6.3.1 Primary. From Figure 3 the value of $\left(\frac{T_{p}}{T}\right)=.8674$ and therefore the appropriate formula becomes:
$$
\left(\frac{D_{P}}{T}\right)^{*}=\frac{D_{p}}{T_{P}} \times\left(\frac{T_{p}}{T}\right)=\frac{D_{p}}{T_{P}} \times .8674
$$
(The total number of letters in the samples off the Primary was 11,196).
6.3.2 Secondary. The computational formula for Destinations off the Secondary depends upon the ratios obtained at the Primary as well as the volume counts. Using such ratios gives the formula:
\[

$$
\begin{aligned}
\left(\frac{D_{S_{i}}}{T}\right)^{*} & =\frac{D_{S_{i}}}{S_{i}} \times\left\{\frac{S_{i}}{T_{P}} \times\left(\frac{T_{P}}{T}\right) \times \frac{\left(\frac{T_{p}}{T}\right) \sum \frac{S_{i}}{T_{P}}+\left(\frac{B_{S}}{T}\right)}{\left(\frac{T_{p}}{T}\right) \sum \frac{S_{i}}{T_{P}}}\right\} \\
& =\frac{D_{S_{i}}}{S_{i}} \times c_{i},
\end{aligned}
$$
\]

where the c_{i} are the quantities in brackets which depend upon the particular Secondary. Values of c_{i} corresponding to particular Secondaries are listed in Table 2.

Number of Pieces in Sample and
Constants used in Computational Formula for Destinations off the Secondaries for San Francisco

i	S $_{\text {i }}$	No. Pcs.	$\mathbf{c}_{\mathbf{i}}$
1	Ariz-New Mexico-Texas	5,519	.01290
2	Ill.-Ind.-Iowa-Mass.-	5,739	.01774
3	Mich.-Minn.		
4	Southern States	5,865	.01468
5	Rocky Mountain States	5,252	.02266
6	N.Y.-N.J.-Ohio-Penn.	6,286	.02289
7	Canada-Eastern	5,535	.01797
8	California A-B	4,676	.02180
9	California C-D	4,945	.02367
10	California E-G	4,499	.01351
11	California M-O	4,989	.02383
12	California P-R	4,994	.02702
13	California S	5,049	.03024
14	California San Santa	4,759	.02031
15	California T-Z	4,893	.03446
	Total	4,596	.02203

These constants actually represent the ratio, as estimated by using volume and Primary sample counts, of a Secondary volume of mail to the Total Volume.

6.3.3 Tertiary. The computational formula for Destinations off the Tertiary depends upon ratios obtained at the Primary and Secondary, as well as the volume counts. Using such ratios gives the formula:

$$
\begin{aligned}
\left(\frac{D_{t_{i j}}}{T}\right)^{*} & =\frac{D_{t_{i j}}}{t_{i j}} \times\left\{\frac{t_{i j}}{S_{i}} \times \frac{S_{i}}{T_{p}} \times\left(\frac{T_{p}}{T}\right) \times \frac{\left(\frac{T_{p}}{T}\right) \sum \frac{S_{i}}{T_{p}}+\left(\frac{B_{S}}{T}\right)}{\left(\frac{T_{p}}{T}\right) \sum \frac{S_{i}}{T_{p}}}\right. \\
& =D_{t_{i j}} \times
\end{aligned}
$$

where the $k_{i j}$ are the quantities in brackets which depend upon the particular Tertiary. Values of $\mathbf{k}_{\mathbf{i j}}$ corresponding to particular Tertiaries are listed in Table 3.

TABLE 3

Number of Pieces in Sample and
Constants used in Computational Formula for Destinations off the Tertiaries for San Francisco

i, j	t_{ij}	No. Pcs.	\mathbf{k}_{ij}
7,1	California A-B	1,665	.00145
8,1	California C-D	2,507	.00277
9,1	California E-G	1,727	.00081
10,1	California H-L	2,648	.00229
11,1	California M-O	2,086	.00185
12,1	California P-R	2,262	.00135
$13+14,1$	California S	1,118	.00107
15,1	California T-Z	2,152	.00202
	Total		16,165

$-\cdots$
保

These constants actually represent the ratio, as astimated by using volume and Primary and Secondary sample counts, of a Tertiary volume of mail to the Total Volume.
6.4 Examples. Applications of the formulae for each stage are given here:

Primary: (Seattle, Washington)

$$
\begin{array}{lll}
D_{P}=111 \text { pieces } & - & \text { Seattle, Washington } \\
T_{P}=11,196 \text { pieces } & - & \text { Total Primary }
\end{array}
$$

where the numbers are taken from Figure 4.
Thus,

$$
\left(\frac{D_{p}}{T}\right)^{*}=\frac{D_{P}}{T_{P}} \times .8674=\frac{111}{11,196} \times .8674=.0085996
$$

Secondary: (Bell, California)

$$
\mathrm{D}_{\mathrm{S}_{7}}=31 \text { pieces } \quad-\quad \text { Bell, California }
$$

$$
S_{7}=4,676 \text { pieces }-\quad \text { Total Calif. A-B Secondary }
$$

where the numbers are taken from Figure 5.
Thus,

$$
\left(\frac{\mathrm{D}_{S_{7}}}{\mathrm{~T}}\right)^{*}=\frac{\mathrm{D}_{S_{7}}}{\mathrm{~S}_{7}} \quad \times \quad c_{7}=\frac{31}{4676} \quad \times .02180=.0001445
$$

where the constant c_{7} is taken from Table 2.
Tertiary: (Albion, California)

$$
\begin{array}{ll}
\mathrm{D}_{\mathrm{t}_{7,1}}=20 \text { pieces }- & \text { Albion, California } \\
\mathrm{t}_{7,1}=1665 \text { pieces }- & \text { Total Calif. A-B Tertiary }
\end{array}
$$

where the numbers are taken from Figure 6.
Thus,

$$
\left(\frac{\mathrm{D}_{\mathrm{t}_{7,1}}}{\mathrm{~T}}\right)^{*}=\frac{\mathrm{D}_{7,1}}{\mathrm{t}_{7,1}} \times \mathrm{k}_{7,1}=\frac{20}{1665} \times .00145=.0000174
$$

where $k_{7,1}$ is taken from Table 3.
6.5 Tabulation of Estimated Distribution and Observations.

The tabulation of the estimated proportions of the Total Volume mail going to each Destination is given in Table 4. These are listed in order of descending value. The largest 200 are listed by name and the remainder grouped by percentages. Figure 7 graphically portrays the largest 200 Destinations by percentage. Several observations, based on the tabulation, are given here:

1. The largest 200 Destinations received 80% of the Total Volume
2. Seventy-six percent of the Total Volume remained in the State of California (Not including Air Mail and Go backs)
3. Thirty-nine percent of the Total Volume remained in San Francisco.
4. Seven Destinations: San Francisco, Oakland, Los Angeles, Washington State, Berkeley, New York City, and Sacramento were the only Destinations to receive more than one percent of the Total Volume.
5. Eighty percent of the Total Volume remained on the West Coast (Not including Air Mail and Go backs)

[^4]
Graph of Largest 200 Destinations for San Francisco

TABULATION OF ESTIMATED PERCENTAGES OF THE TOTAL VOLUME TO EACH DESTINATION FOR SAN FRANCISCO
 Largest 200 Destinations Listed by Name

			Cumulative Percent
1. San Francisco Inc. City By Pass	38.501	38.501	
2. Oakland, California	8.158	46.659	
3. Los Angeles, California	2.789	49.448	
4. Washington State	1.155	50.603	
5. Berkeley, California	1.147	51.750	
6. New York City, New York	1.116	52.866	
7. Sacramento, California	1.364	54.230	
8. San Jose, California	.961	55.191	
9. Seattle, Washington	.860	56.051	
10. Oregon State	.775	56.826	
11. San Mateo, California	.759	57.585	
12. Redwood City, California	.679	58.264	
13. Daly City, California	.670	58.934	
14. Palo Alto, California	.654	59.588	
15. Fresno, California	.612	60.200	
16. Portland, Oregon	.605	60.805	
17. South San Francisco	.574	61.379	
18. Chicago, Illinois	.566	61.945	
19. San Rafael, California	.521	62.466	
20. Stockton, California	.504	62.970	
21. Burlingame, California	.396	63.366	
22. Menlo Park,California	.394	63.760	
23. Santa Rosa, California	.352	64.112	
24. San Diego, California	.349	64.461	
25. Vallejo, California	.295	64.756	

26. Reno, Nevada
27. Hayward, California
28. Richmond, California
29. San Leandro, California
30. Long Beach, California
31. Alameda, California . 264
32. San Bruno, California . 261
33. Mill-Valley, California . 252
34. San Carlos, California . 244
35. Walnut Creek, California . 234
36. Washington, D. C. (off. and unoff) . 232
37. Salt Lake City, Utah . 229
38. Santa Cruz, California . 210
39. Sunnyvale, California . 207
40. Denver, Colorado . 205
41. Watsonville, California . 195
42. Los Altos, California . 192
43. Salinas, California . 189
44. Vet. Adm., (Denver, Colo.) . 187
45. Concord, California . 185
46. Phoenix, Arizona . 183
47. Mountain View, California . 167
48. San Anselmo, California . 167
49. Millbrae, California . 164
50. Santa Clara, California . 164
51. Napa, California . 162
52. Modesta, California . 159
53. Los Gatos, California . 158
54. Bakersfield, California . 152
55. Belmont, California . 138
65.048
65.335
65.616
65.893
66.165
66.429
66.690
66.942
67.186
67.420
67.652
67.881
68.091
68.298
68.503
68.698
68.890
69.079
69.266
69.451
69.634
69.801
69.968
70.132
70.296
70.458
70.617
70.775
70.927
71.065

2

56. Eureka, California
57. Sausalito, California
58. Santa Barbara, California
59. Monterey, California
60. Philadelphia, Pennsylvania
61. La Fayette, California
62. Ukiah, California
63. Minneapolis, Minnesota
64. Emeryville, California
65. Pasadena, California
66. Petaluma, California
67. Chico, California
68. St. Louis, Missouri
69. Brooklyn, New York
70. Redding, California
71. Sharp Park,California
72. San Lorenzo, California
73. Long Isl. Cities, New York
74. Elcerrito,California
75. Detroit, Michigan
76. Garden City, New York
77. Merced, California
78. Dallas, Texas
79. Carmel, California
80. Castro Valley, California
81. Las Vegas, Nevada
82. San Pedro, California
83. Sonoma, Califomia
84. Houston, Texas
85. Boston, Massachusetts
.135
.134
.129
.127
.121
.116
.114
.112
.110
.110
.108
.107
.106
.106
.104
.100
.098
.097
.095
.094
.094
.094
$.093 \quad 73.569$
$.093 \quad 73.662$
$.092 \quad 73.754$
$.088 \quad 73.842$
$.087 \quad 73.929$
$.086 \quad 74.015$
$.085 \quad 74.100$
$.085 \quad 74.185$
71.200
71.334
71.463
71.590
71.711
71.827
71.941
72.053
72.163
72.273
72.381
72.488
72.594
72.700
72.804
72.904
73.002
73.099
73.194
73.288
73.382
73.476
?

86.	Tuscon, Arizona	. 083	74.268
87.	Glendale, California	. 082	74.350
88.	Cleveland, Ohio	. 080	74.430
89.	Sebastapol, California	. 079	74.509
90.	Lodi, California	. 079	74.588
91.	Atherton, California	. 078	74.666
92.	Hawaii	. 077	74.743
93.	Cincinnati, Ohio	. 076	74.819
94.	San Antonio, Texas	. 075	74.894
95.	Beverly Hills, California	. 073	74.967
96.	Martinez, California	. 072	75.039
97.	Visalia, California	. 071	75.110
98.	Whittier, California	. 069	75.179
99.	Pittsburg, California	. 069	75.248
100.	North Hollywood, California	. 068	75.316
101.	Riverside, California	. 068	75.384
102.	Novato, California	. 068	75.452
103.	Turlack, California	. 068	75.520
104.	Paso Robles, California	. 068	75.588
105.	Van Nuys, California	. 067	75.655
106.	Kansas City, Missouri	. 067	75.722
107.	Saratoga, California	. 067	75.789
108.	Baltimore, Maryland	. 067	75.856
109.	Albany, Califoxnia	. 067	75.923
110.	Kentfield, California	. 067	75.990
111.	Boise, Idaho	. 066	76.056
112.	Cupercino, California	. 066	76.122
113.	New Orleans, Louisiana	. 065	76.187
114.	Orinda, California	. 063	76.250
115.	Woodland, California	. 063	76.313

116.	Burbank, California	. 062	76.375
117.	Santa Monica, California	. 061	76.436
118.	Santa Ana, California	. 061	76.497
119.	Inglewood, California	. 061	76.558
120.	San Bernadino, California	. 060	76.618
121.	Stanford, California	. 060	76.678
122.	Milwaukee, Wisconsin	. 060	76.738
123.	Healdsburg, California	. 060	76.798
124.	Campbell, California	. 059	76.857
125.	Sonora, California	. 058	76.915
126.	Fairfax, California	. 057	76.972
127.	San Luis Obispo, California	. 056	77.028
128.	Marysville, California	. 055	77.083
129.	Corte Madera, California	. 055	77.138
130.	Oroville, California	. 055	77.193
131.	St. Paul, Minnesota	. 055	77.248
132.	Ogden, Utah	. 055	77.303
133.	Ontario, Canada	. 054	77.357
134.	San Fernando, California	. 054	77.411
135.	Pittsburg, Pennsylvania	. 053	77.464
136.	Gilroy, California	. 052	77.516
137.	Woodside, California	. 052	77.568
138.	Fort Ord, California	. 051	77.619
139.	Livermore, California	. 050	77.669
140.	Terre Haute, Indiana	. 049	77.718
141.	Ross, California	. 049	77.767
142.	Monterey Park, California	. 048	77.815
143.	San Pablo, California	. 048	77.863
144.	Auburn, California	.048	77.911
145.	Alhambra, California	. 047	77.958

146. Tracy, California
147. Yuba City, California
148. Larkspur, California
149. Antioch, California
150. E1 Paso, Texas
151. Hanford, California
152. Ventura, California
153. Vancouver, B.C.
154. Brisbane, California
155. Pacific Grove, California
156. Omaha, Nebraska
157. Indianapolis, Indiana
158. Dayton, Ohio
159. Hollister, California
160. Madera, California
161. Fort Bragg, California
162. Guernerville, California
163. Montreal, Quebec
164. Calistoga, California
165. Arcata, California
166. Albuquerque, New Mexico
167. Santa Maria, California
168. Ft. Worth, Texas
169. Toronto, Ontario
170. Grass Valley, California
171. Anaheim, California
172. St. Helena, California
173. South Gate, California
174. Pleasantville, New York
175. Seaside, California

Percent
.047
.047
.047
.047
.046
.046
.045
.045
.045
. 044
.044
.043
.043
.043
. 041
. 041
.041
.041
. 041
.041
.040
.040
.040
.040
. 039
. 039
. 038
.038
.037
. 037
78.005
78.052
78.099
78.146
78.192
78.238
78.283
78.328
78.373
78.417
78.461
78.504
78.547
78.590
78.631
78.672
78.713
78.754
78.795
78.836
78.876
78.916
78.956
78.996
79.035
79.074
79.112
79.150
79.187
79.224

| 176. Belvedere, California | .036 | 79.260 |
| :--- | :--- | :--- | :--- |
| 177. Torrance, California | .035 | 79.295 |
| 178. Newark, New Jersey | .035 | 79.330 |
| 179. Vacaville, California | .034 | 79.364 |
| 180. Tulare, California | .033 | 79.397 |
| 181. Louisville, Kentucky | .033 | 79.430 |
| 182. Atlanta, Georgia | .033 | 79.463 |
| 183. San Gabriel, California | .033 | 79.496 |
| 184. Oklahoma City, Oklahoma | .032 | 79.528 |
| 185. Paradise, California | .032 | 79.560 |
| 186. Pomona, California | .032 | 79.592 |
| 187. Roseville, California | .032 | 79.624 |
| 188. Fullerton, California | .032 | 79.656 |
| 189. Miami, Florida | .032 | 79.688 |
| 190. Buffalo, New York | .032 | 79.720 |
| 191. Des Moines, Iowa | .032 | 79.752 |
| 192. Arcadia, California | .032 | 79.784 |
| 193. Fairfield, California | .031 | 79.815 |
| $194 . ~ D a n v i l l e, ~ C a l i f o r n i a ~$ | .031 | 79.846 |
| $195 . ~ P l e a s a n t ~ H i l l, ~ C a l i f o r n i a ~$ | .031 | 79.877 |
| $196 . ~ W i l m i n g t o n, ~ C a l i f o r n i a ~$ | .030 | 79.907 |
| 197. Lakeport, California | .030 | 79.937 |
| 198. Willits, California | .029 | 79.966 |
| 199. Porterville, California | 79.995 | |
| 200. Placerville, California | .029 | 70.024 |

Rank	No. in Group	Individual Percent	Group Percent	Cumulative Percent
201-204	4	. 029	. 116	80.140
205-207	3	. 028	. 084	80.224
208-214	7	. 027	. 189	80.413
215-220	6	. 026	. 156	80.569
221-225	5	. 025	. 125	80.694
226-231	6	. 024	. 144	80.838
232-239	8	. 023	. 184	81.022
240-249	10	. 022	. 220	81.242
250-256	7	. 021	. 147	81.389
257-264	8	. 020	. 160	81.549
265-281	17	. 019	. 323	81.872
282-292	11	. 018	. 198	82.070
293-304	12	. 017	. 204	82.274
305-321	17	. 016	. 272	82.546
322-335	14	. 015	. 210	82.756
336-360	25	. 014	. 350	83.106
361-380	20	. 013	. 260	83.366
381-401	21	. 012	. 252	83.618
402-429	28	. 011	. 308	83.926
430-467	38	. 010	. 380	84.306
468-505	38	. 009	. 342	84.648
506-550	45	. 008	. 360	85.008
551-604	54	. 007	. 378	85.386
605-667	63	. 006	. 378	85.764
668-729	62	. 005	. 310	86.074
730-798	69	. 004	. 276	86.350
799-919	121	. 003	. 363	86.713
920-1087	168	. 002	. 336	87.049
1088-1271	184	. 001	. 184	87.233
1272-1296	25	<. 001	. 006	87.239

Go Backs	.753	87.992
Skips	3.564	91.556
Air Mail	3.200	94.756
Nixies	.426	95.182
Foreign	.201	95.383
Residues	4.617	100.000

Breakdown on Residue

Illinois	. 253	Colorado	121
Indiana	. 108	Nevada	. 060
Iowa	. 103	Utah	. 114
Massachusetts	. 194	Wyoming	. 041
Michigan	. 162	South Dakota	. 030
Wisconsin	. 103	North Dakota	. 035
Maryland	. 076	Arizona	. 058
Delaware	. 007	New Mexico	. 037
Nebraska	. 051	Mississippi	. 046
Kansas	. 106	Alabama	. 034
Maine	. 029	Florida	. 102
Vermont	. 014	Kentucky	. 057
New Hampshire	. 020	Tennessee	. 050
Connecticut	. 074	North Carolina	. 084
Missouri	. 106	Virginia	. 073
Texas	. 252	Arkansas	. 066
Minnesota	. 101	Georgia	. 070
New Jersey	. 249	Louisiana	. 082
New York	.257	Oklahoma	. 078
Ohio	. 189	South Carolina	. 019
Pennsylvania	. 373	West Virginia	. 034
Montana	. 074	California	. 307
Idaho	. 101	All other Canadas	. 017
		TOTAL	4.617

7. Los Angeles Study
7.1 Volume Count Data. Special volume counts were made in Los Angeles to determine what percentage of the Total Volume flowed into the Primary, how much by-passed the Primary and flowed either into the City section for local Distribution or into the Secondary. These counts were made on six days, June 11, 12, 13, 14, 17, and 18, 1957, between the hours of $10: 00 \mathrm{~A} . \mathrm{M}^{2}$ and $10: 00$ P.M. These control figures were begun one day prior to drawing samples, so that decisions regarding sample size and optimum sampling periods and areas could be made. Volume control counts of mail flowing into the Secondary that by-passed the Primary were less than 1%. Thus, Los Angeles is analyzed according to Section 4.3.2. Therefore, it was established early that a footage count of mail flowing into the Secondary could be discontinued. The Total Volume figures and the corresponding percentages are summarized in Table 5. Figure 8 shows the consistency of these percentage figures during the entire sample period, based on a day by day comparison. The flow chart given in Figure 9, contains the basic percentage figures which are then applied in the appropriate formula, as well as certain other summary figures that are a result of the sampling study. It is to be noticed that the Primary mail

[^5]

∞
∞
0
0
∞
∞
∞

1/ Appropriate conversion factor is used.

Figure 8
Graphs of Daily Volume Ratios for Los Angeles

\checkmark obtained from sample
OBTAINED FROM VOLUME COUNTS

Figure 9
Los Angeles Flow Chart
is divided into three parts because Los Angeles made use of three Primary cases of different sizes, notably 36 hole, 49 hole, and 63 hole cases.
7.2 Sampling Procedure. The sampling procedure adopted in Los Angeles is the same as that described in Section 4.2 with the modification that additional samples were taken from the two special Primary cases (49 and 63 hole cases) that handle only metered mail and are used solely during the evening peak periods. Samples were taken on June 12, 13, 14, 17, and 18, 1957.

7.3 Computational Formulae.

7.3.1 Primary. Let the 36,49 , and 63 hole cases be designated by P_{1}, P_{2}, and P_{3} respectively. The following ratios are obtained from Figure 9:

$$
\begin{aligned}
& \left(\frac{{ }^{T} \mathrm{P}_{1}}{\mathrm{~T}}\right)=.8084 \\
& \left(\frac{{ }^{T} \mathrm{P}_{2}}{\mathrm{~T}}\right)=.0361 \\
& \left(\frac{\mathrm{~T}_{\mathrm{P}_{3}}}{\mathrm{~T}}\right)=.1030
\end{aligned}
$$

Therefore, the following formulae were used to determine the proportion of the Total Volume of mail going to:
a. Destination on the 36 hole Primary:

$$
\left(\frac{{ }^{\mathrm{D}_{1}}}{\mathrm{~T}}\right)^{*}=\frac{{ }^{\mathrm{D}_{\mathrm{P}_{1}}}}{{ }^{\mathrm{T}_{\mathrm{P}_{1}}}} \times\left(\frac{{ }^{\mathrm{T}} \mathrm{P}_{1}}{\mathrm{~T}}\right)=\frac{{ }^{\mathrm{D}_{\mathrm{P}_{1}}}}{{ }^{\mathrm{T}_{\mathrm{P}_{1}}}} \times .8084
$$

(The total number of letters in the samples off the 36 hole Primary was 12,162).
b. Destination on the 49 hole Primary:

$$
\left(\frac{\mathrm{D}_{\mathrm{P}_{2}}}{\mathrm{~T}}\right)^{*}=\frac{\mathrm{D}_{\mathrm{P}_{2}}}{\mathrm{~T}_{\mathrm{P}_{2}}} \times\left(\frac{{ }^{\mathrm{T}} \mathrm{P}_{2}}{\mathrm{~T}}\right)=\frac{\mathrm{D}_{\mathrm{P}_{2}}}{\mathrm{~T}_{\mathrm{P}_{2}}} \times .0361
$$

(The total number of letters in the samples off the 49 hole Primary was 2,162).
c. Destination on the 63 hole Primary:

$$
\left(\frac{{ }^{D_{P}}{ }_{3}}{T}\right)^{*}=\frac{{ }^{D} P_{3}}{{ }_{T} P_{3}} \times\left(\frac{{ }^{T} P_{3}}{T}\right)=\frac{{ }^{D_{P}}}{T_{3}}{ }^{T_{P_{3}}} \times .1030
$$

(The total number of letters in the samples off the 63 hole Primary was 2,783).
7.3.2 Secondary. The formula for Destinations off the Secondary depends upon the ratios obtained at the Primary and Secondary, as well as the volume counts. Using such ratios gives the formula:

$$
\begin{aligned}
& \left(\frac{{ }^{D_{S}}}{T}\right) *=\frac{{ }^{D_{S}} S_{i}}{S_{i}} \times\left\{\frac{S_{i}}{T_{P}} \times\left(\frac{T_{p}}{T}\right) \times \frac{\left(\frac{T_{p}}{T}\right) \sum_{i} \frac{S_{i}}{T_{P}}+\left(\frac{B_{S}}{T}\right)}{\left(\frac{T_{p}}{T}\right) \sum \frac{S_{i}}{T_{P}}}\right\} \\
& =\frac{D_{i}}{S_{i}} \times c_{i},
\end{aligned}
$$

where the c_{i} are the quantities in brackets which depend upon the particular Secondary. Values of c_{i} corresponding to the particular Secondaries are listed in Table 6.

TABLE 6
Number of Pieces in Sample and
Constants used in Computational Formula for Destinations off the Secondaries for Los Angeles

i	S $_{\text {i }}$	No. Pcs.	c_{i}
1	Ariz.-Colo.-New Mexico	3,847	.01364
2	Ind.-Mass.-Pennsylvania	6,377	.01556
3	Illinois-Ohio	5,847	.01414
4	Central States	5,403	.00972
5	North States	5,811	.01258
6	Northwest States	4,780	.00775
7	South States	5,699	.00815
8	New Jersey-New York	7,302	.01492
9	Oklahoma	4,446	.00233
10	East States	5,844	.01104
11	Texas	4,809	.01014
12	California A-B	5,303	.02445
13	California C	5,296	.02178
14	California D-G	5,014	.02392
15	California H-L	4,951	.03462
16	California M-N	5,120	.01905
17	California O-P-Q-Nevada	5,310	.02461
18	California R-San	5,575	.02932
19	California S-Santa	5,320	.04248
20	California T-Z	5,578	.03146
	Total	107,632	.37166

7.3.3 Tertiary. The formula for Destinations off the Tertiary depends upon ratios obtained at the Primary, Secondary, and Tertiary, as well as the volume counts. Using such ratios

$$
\left.\begin{array}{l}
\text { gives the formula: } \\
\qquad\left(\frac{D_{t_{i j}}}{T}\right)^{*}=\frac{D_{t_{i j}}}{t_{i j}} \times\left\{\frac{t_{i j}}{S_{i}} \times\left(\frac{T_{p}}{T}\right) \times \frac{\left(\frac{T_{p}}{T}\right) \sum \frac{S_{i}}{T_{p}}+\left(\frac{B_{S}}{T}\right)}{\left(\frac{T_{p}}{T}\right) \sum \frac{S_{i}}{T_{p}}}\right.
\end{array}\right\}
$$

where the $k_{i j}$ are the quantities in brackets which depend upon the particular Tertiary. Values of $k_{i j}$ corresponding to the particular Tertiaries are listed in Table 7.

TABLE 7

Number of Pieces in Sample and
Constants used in Computational Formula for Destinations off the Tertiaries for Los Angeles

i, ${ }^{\text {j }}$	$t_{i j}$	No. Pcs.	k_{ij}
1,1	Arizona Scheme	4,581	. 00050
1,2	Colorado-New Scheme	5,627	. 00074
		10,208	. 00124

Although percentages were computed for each Destination on these two cases, these Destinations were found to be duplicates of the Destinations on the Arizona - Colorado - New Mexico Secondary cases. Therefore, duplicates were added together to give one combined percentage for the final tabulation.

TABULATION OF ESTIMATED PERCENTAGES OF THE TOTAL VOLUME TO EACH DESTINATION FOR LOS ANGELES

Largest 200 Destinations Listed by Name

	Percent	Cumulative Percent
1. Los Angeles, Inc. City By-pass	42.403	42.403
2. Beverly Hills, California	1.816	44.219
3. Pasadena, California	1.377	45.596
4. Long Beach, California	1.343	46.939
5. New York City, New York	1.219	48.158
6. San Francisco, California	1.151	49.309
7. Glendale, California	. 989	50.298
8. North Hollywood, California	. 955	51.253
9. Santa Monica, California	. 949	52.202
10. San Diego, California	. 814	53.016
11. Burbank, California	. 765	53.781
12. Chicago, Illinois	. 759	54.540
13. Inglewood, California	. 753	55.293
14. Van Nuys, California	. 698	55.991
15. Sacramento, California	. 681	56.672
16. Washington State	. 640	57.312
17. Whittier, California	. 583	57.895
18. Compton, California	. 540	58.435
19. Culver City, California	. 498	58.933
20. Alhambra, California	. 489	59.422
21. Huntington Park, California	. 456	59.878
22. Phoenix, Arizona	. 384	60.262
23. Oregon State	. 378	60.640
24. South Gate, California	. 359	60.999
25. Santa Ana, California	. 341	61.340

26. Montebello, California
27. Oakland, California
28. San Bernardino, California
29. Sherman Oaks, California
30. Gardena, California
31. Denver, Colorado
32. Torrance, California
33. Newark, New Jersey
34. San Gabriel, California
35. Santa Barbara, California
36. S. Pasadena, California
37. Fresno, California
38. Arcadia, California
39. Anaheim, California
40. Hawthorne, California
41. El Monte, California
42. Downey, California
43. Bakersfield, California
44. Riverside, California
45. Monrovia, California
46. Norwalk, California
47. San Fernando, California
48. Pomona, California
49. Washington, D. C.
50. Philadelphia, Pennsylvania
51. Venice, California
52. Detroit, Michigan
53. San Jose, California
54. Redondo Beach, California
55. Dallas, Texas
.331
. 328
.326
.303
. 299
. 289
. 285
. 280
.269
.265
. 256
.250
.248
.248
.248
.236
.236
.235
. 233
. 228
. 228
.224
.216
.214
.212
.206
.189
.186
.183
.181
61.671
61.999
62.325
62.628
62.927
63.216
63.501
63.781
64.050
64.315
64.571
64.821
65.069
65.317
65.565
65.801
66.037
66.272
66.505
66.733
66.961
67.185
67.401
67.615
67.827
68.033
68.222
68.408
68.591
68.772

	Percent	Cumulative Percent
56. Monterey Park, California	. 176	68.948
57. Bell, California	. 174	69.122
58. Cleveland, Ohio	. 172	69.294
59. Boston, Mass.	. 170	69.464
60. Reseda, California	. 170	69.634
61. San Marino, California	. 164	69.798
62. Covina, California	. 160	69.958
63. San Pedro, California	. 160	70.118
64. Tuscon, Arizona	. 159	70.277
65. Lancaster, California	. 148	70.425
66. Lakewood, California	. 148	70.573
67. Salt Lake City, Utah	. 148	70.721
68. Berkeley, California	. 148	70.869
69. Brooklyn, New York	. 147	71.016
70. Fullerton, California	. 146	71.162
71. Minneapolis, Minnesota	. 145	71.307
72. Temple City, California	. 143	71.450
73. Garden City, New York	. 140	71.590
74. St. Louis, Missouri	. 138	71.728
75. Manhattan Beach, California	. 134	71.862
76. Stockton, California	. 133	71.995
77. Pacoima, California	. 129	72.124
78. Lynwood, California	. 127	72.251
79. Pacific Palisade, California	. 126	72.377
80. Canoga, Park, California	. 124	72.501
81. Pittsburgh, Pennsylvania	. 123	72.624
82. Houston, Texas	. 123	72.747
83. Garden Grove, California	. 121	72.868
84. Wilmington, California	. 121	72.989
85. Cincinnati, Ohio	. 118	73.107

86. Encino, California
87. West Covina, California
88. Oxnard, California
89. Palm Desert, California
90. Altadena, California
91. La Cresenta, California
92. Rivera, : California
93. Ventura, California
94. Azusa, California
95. Las Vegas, Nevada
96. La Canada, California
97. Bellflower, California
98. Kansas City, Missouri
99. Ontario, California
100. Studio City, California
101. Palo Alto, California
102. Hermosa Beach, California
103. La Puente, California
104. El Segundo, California
105. Baldwin Park, California
106. Northridge, California
107. Sun Valley, California
108. Woodland Hills, California
109. Maywood, California
110. Palm Springs, California
111. Milwaukee, Wisconsin
112. Baltimore, Maryland
113. Laguna, California
114. Puente, California
115. La Habra, California
.117
.114
. 114
. 111
. 108
. 108
. 104
. 104
. 102
. 101
.099
. 098
. 098
.097
. 094
.093
. 092
. 092
.091
.091
. 089
. 087
. 087
. 086
. 082
. 081
.080
.080
. 079
. 079
73.224
73.338
73.452
73.563
73.671
73.779
73.883
73.987
74.089
74.190
74.289
74.387
74.485
74.582
74.676
74.769
74.861
74.953
75.044
75.135
75.224
75.311
75.398
75.484
75.566
75.647
75.727
75.807
75.886
75.965

116.	Newport Beach, California	. 077	76.042
117.	San Luis Obispo, California	. 077	76.119
118.	Rosemead, California	. 077	76.196
119.	Indianapolis, Indiana	. 077	76.273
120.	Albuquerque, New Mexico	. 076	76.349
121.	Dayton, Ohio	. 073	76.422
122.	Lawndale, California	. 072	76.494
123.	Chula Vista, California	. 072	76.566
124.	La Jolla, California	. 072	76.638
125.	Fontana, California	. 071	76.709
126.	Orange, California	. 071	76.780
127.	Palos Verdes Estate, California	. 071	76.851
128.	Costa Mesa, California	. 070	76.921
129.	Redlands, California	. 070	76.991
130.	Oceanside, California	. 070	77.061
131.	St. Paul, Minnesota	. 069	77.130
132.	El Paso, Texas	. 068	77.198
133.	Tujunga, California	. 068	77.266
134.	Paramount, California	. 066	77.332
135.	Louisville, Kentucky	. 066	77.398
136.	Fort Worth, Texas	. 066	77.464
137.	El Centro, California	. 065	77.529
138.	Santa Maria, California	. 065	77.594
139.	Sierra Madre, California	. 065	77.659
140.	San Antonio, Texas	. 065	77.724
141.	Pico, California	. 064	77.788
142.	South San Gabriel	. 064	77.852
143.	New Orleans, Louisiana	. 064	77.916
144.	Terre Haute, Indiana	. 064	77.980

145. La Mesa, California
146. Claremont, California
147. Columbus, Ohio
148. Omaha, Nebraska
149. Vet. Adm. Denver, Colorado
150. San Mateo, California
151. Granada Hills, California
152. Sunland, California
153. Vista, California
154. Salinas, California
155. Buena Park, California
156. Sepulveda, California
157. San Clemente, California
158. Saugus, California
159. La Mirada, California
160. Camarillo, California
161. Tarzana, California
162. Richmond, California
163. San Ysidro, California
164. Modesto, California
165. Chino, California
166. Carona, California
167. Bronx, New York
168. Pleasantville, New York
169. Glendory, California
170. El Cajon, California
171. Escondido, California
172. Indio, California
173. Lomita, California
. 063
. 063
. 062
. 062
. 061
. 060
. 058
. 058
. 058
. 057
. 055
.055
. 055
. 054
. 054
. 054
.054
. 054
.054
.053
. 053
. 052
. 052
. 052
. 051
. 051
. 050
. 050
. 050
78.043
78.106
78.168
78.230
78.291
78.351
78.409
78.467
78.525
78.582
78.637
78.692
78.747
78.801
78.855
78.909
78.963
79.017
79.071
79.124
79.177
79.229
79.281
79.333
79.384
79.435
79.485
79.535
79.585
174. Toledo, Ohio
175. Tulsa, Oklahoma
176. Upland, California
177. Palmdale, California
178. Santa Rosa, California
179. Duarte, California
180. Des Moines, Iowa
181. Hayward, California
182. Malibu, California
183. Montrose, California
184. Taft, California
185. Santa Cruz, California
186. Memphis, Tennessee
187. Colton, California
188. Los Altos, California
189. Camp Pendleton, California
190. Universal City, California
191. Victorville, California
192. Vallejo, California
193. Visalia, California
194. Rolling Hills, California
195. Reno, Nevada
196. National City, California
197. Buffalo, New York

Cumulative Percent
.050
.049
.048

Percent | Cumulative |
| :--- |
| Percent |

79.635
79.684
79.732
79.780
79.828
79.875
79.921
79.967
80.012
80.057
80.102
80.147
80.192
80.237
80.281
80.324
80.367
80.409
80.451
80.493
80.535
80.577
80.619
80.661
80.702
80.743
80.783
1

Rank	No. in Group	Individual Percent	Group Percent	Cumulative Percent
201-	1	. 039	. 039	80.822
202-203	2	. 038	. 076	80.898
204-205	2	. 037	. 074	80.972
206-209	4	. 036	. 144	81.116
210-214	5	. 035	. 175	81.291
215-217	3	. 034	. 102	81.393
218-219	2	. 033	. 066	81.459
220-224	5	. 032	. 160	81.619
225-227	3	. 031	. 093	81.712
228-233	6	. 030	. 180	81.892
234-236	3	. 029	. 087	81.979
237-238	2	. 028	. 056	82.035
239-247	9	. 027	. 243	82.278
248-253	6	. 026	. 156	82.434
254-256	3	. 025	. 075	82.509
257-265	9	. 024	. 216	82.725
266-276	11	. 023	. 253	82.978
277-281	5	. 022	. 110	83.088
282-286	5	. 021	. 105	83.193
287-300	14	. 020	. 280	83.473
301-311	11	. 019	. 209	83.682
312-316	5	. 018	. 090	83.772
315-327	11	. 017	. 187	83.959
328-343	16	. 016	. 256	84.215
344-356	13	. 015	. 195	84.410
357-373	17	. 014	. 238	84.648
374-388	15	. 013	. 195	84.843
389-408	20	. 012	. 240	85.083
409-428	20	. 011	. 220	85.303
429-455	27	. 010	. 270	85.573

Rank	No. in Group	Individual Percent	Group Percent	Cumulative Percent
457-489	33	. 009	. 297	85.870
490-528	39	. 008	. 312	86.182
529-584	56	. 007	. 392	86.574
585-646	62	. 006	. 372	86.946
647-716	70	. 005	. 350	87.296
717-839	123	. 004	. 492	87.788
840-980	141	. 003	. 423	88.211
981-1178	198	. 002	. 396	88.607
1179-1413	235	. 001	. 235	88.842
1414-1587	174	$<.001$. 030	88.872
Air Mail			. 485	89.357
Postage Due			. 375	89.732
Uncanceled			5.483	95.215
Foreign			. 529	95.744
Go Backs			. 392	96.136
Residue			3.864	100.000

Breakdown of Residue:

Illinois	.267
Ohio	.161
Michigan	.158
Minnesota	.098
North Dakota	.025
South Dakota	.063
Wisconsin	.092
Arizona	.050
Colorado, New Mexico	.074
North Carolina	.055
Kentucky	.057

Maryland	. 030
Texas	. 200
Idaho	. 033
Montana	. 033
Nebraska	. 061
Utah	. 069
Wyoming	. 023
Iowa	. 091
Kansas	. 073
Missouri	. 094
Tennessee	. 048
Indiana	. 122
Massachusetts	. 110
Pennsylvania	. 218
Nevada Scheme	. 025
California Scheme	. 087
Arkansas	. 083
Alabama	. 043
Florida	. 062
Georgia	. 044
Louisiana	. 074
Mississippi	. 051
South Carolina	. 022
Delaware	. 010
Connecticut	. 051
Maine	. 019
New Hampshire	. 021
Rhode Island	. 013
Virginia	. 050
West Virginia	. 030
New Jersey	. 125

New York State	.206
Oklahoma	.056
California A-B	.057
California C	.056
California H-L	.141
California M-N	.058
California T-Z	.071
She Scheme	.039
California R. San	.043
Colorado, N. Mex. Res.	.008
Elp and La. No. 4	.001
Alb. and La. 18-20	.001
Res. to Arizona	.007
Alb. to La., N.M.	.001
Alb. and La., Colo.	.001
Gr. Jct. and Ogd.	.002
Om. and Ogd., Colo.	.001

7.4 Tabulation of Estimated Distribution and Observations.

The tabulation of the estimated percentages of the Total Volume of mail going to each Destination is given in Table 8. These are listed in order of descending value. The largest 200 are listed by name and the remainder grouped by percentages. Figure 10 graphically portrays the largest 200 Destinations by percentage. Several observations, based on the tabulation, are given here:

1. The largest 200 Destinations received 81% of the Total Volume
2. Seventy-eight percent of the Total Volume remained in the state of California (not including Air Mail and Go backs).
3. Forty-two percent of the Total Volume remained in Los Angeles.
4. Six Destinations: Los Angeles, Beverly Hills, Pasadena, Long Beach, New York City, and San Francisco, were the only cities that received more than one percent of the Total Volume.
5. Seventy-nine percent remained on the West Coast (not including Air Mail and Go backs).
6. Baltimore Study.

Baltimore represents the initial attempt to develop a method of sampling for estimating the distribution of mail by Destination. Baltimore was a conveniently located post office that gave an opportunity to try a new procedure in an office where a previous complete count study was made.

8.1 Volume Count Data. Special volume counts were made in Baltimore to determine what percentage of the Total Volume flowed into the Primary, how much by-passed the Primary and flowed either into the Secondary or into the city section for local Distribution. These counts were made on January 17, 18, $21,22,23,24,25,28,29,30,1957$, between 11:00 A.M. and 11:00 P.M. Volume control counts of mail flowing into the Secondary that by-passed the Primary was about 10.5% of the Total Volume. Therefore, Baltimore is analyzed according to Section 4.3.3., and therefore footage counts of mail into each Secondary had to be obtained. These figures were kept for the entire sampling period.

The Total Volume figures and corresponding percentages are summarized in Table 9. Figure 11 shows the consistency of these percentage figures during the entire sample period, based on a day by day comparison. Table 10 gives the basic volume data used to determine ratios of Secondary mail to Total Volume and Figure 12 shows the consistency of these ratios for each Secondary, based on a day by day comparison. The flow chart given in Figure 13 contains the basic percentage figures which are then applied in the appropriate formula.
8.2 Sampling Procedure. The sampling procedure adopted for Baltimore is the same as that described in Section 4.2.

$1-24-57$
811,490
65.49
44,500
22,571
58,774
29,190
155,035
12.51
53,800
218,774
272,574
22.00
$1,239,099$

$$
\begin{aligned}
& \text { Mail to: } \\
& \text { Primary } \\
& \text { Potal } \\
& \text { Sec-By-Pass } \\
& \text { Bundle Dis. } \\
& \text { From City Sec. } \\
& \text { By-Pass Dis. } \\
& \text { By-Pass Mtrd. } \\
& \% \quad \text { Total } \\
& \text { Percent } \\
& \text { City-By-Pass } \\
& \\
& \\
& \text { Bundle-To City } \\
& \text { Mtrd to City } \\
& \\
& \text { Total } \\
& \text { Percent } \\
& \text { ToTAL }
\end{aligned}
$$

∞

$$
\begin{array}{r}
1-28-57 \\
\hline 700,158 \\
64.99
\end{array}
$$

$\left|\begin{array}{c}10 \\ \\ \\ \text { N } \\ 0 \\ 0 \\ \cdots\end{array}\right|$
$1-25-57$
828,923
62.80

1,319,909
TABLE 9 (Continued)
ABL 9
Mail to:
Total
Percent
Sec-By-Pass
Bundle Dis.
From City Sec
By-Pass Dis.
By-Pass Mtrd.
Total
Percent
City-By-Pass
Bundle-To City Mtrd. to City Total Percent

TOTAL

CITY BY-PASS

SECONDARY BY-PAS5

Figure 11
Graphs of Daily Volume Ratios for Baltimore

TABLE 10
for Baltimore
Volume Data for Determining Percentage of Total Volume to Each Secondary
to 11:00 P.M)
11:00 A.M.

Date	Maryland, S_{1}		Delaware, S_{2}		New York, S_{3}	
	No. Pcs.	Percent	No. Pcs.	Percent	No. Pcs.	Percent
1/17	145,459	33.56	7,102	1.64	27,235	6.28
1/23	126,730	30.15	7,395	1.76	23,224	5.52
1/24	132,627	32.16	6,284	1.52	21,774	5.28
1/25	125,762	31.35	6,670	1.66	15,954	3.98
1/29	138,498	29.64	5,123	1.10	30,908	6.62
1/30	152,370	34.49	6,791	1.54	26,582	6.02
Total	821,446	31.89	39,365	1.53	145,677	5.65
Date	Massachu No. Pcs.	ts, S_{4} Percent	New Je No. Pcs.	y, s_{5} Percent	Conn., Me., Vermont, No. Pcs.	${ }_{\text {,R.I. }}$ Percent
1/17	8,723	2.01	20,977	4.84	12,171	2.81
1/23	9,304	2.21	21,122	5.02	9,811	2.33
1/24	11,865	2.88	17,714	4.30	10,658	2.58
1/25	9,811	2.45	15,200	3.79	9,062	2.26
1/29	11,359	2.43	19,164	4.10	15,514	3.32
1/30	9,691	2.19	20,058	4.54	10,440	2.36
Total	60,753	2.36	114,235	4.43	67,656	2.63

TABLE 10 (Continued)

Date	Pennsylvania, S_{7}		Virginia, S_{8}		Florida, S_{9}	
	No. Pcs.	Percent	No. Pcs.	Percent	No. Pcs.	Percent
1/17	36,250	8.36	37,869	8.74	8,749	2.02
1/23	38,449	9.15	34,485	8.20	16,335	3.89
1/24	37,868	9.19	35,694	8.66	8,821	2.14
1/25	34,653	8.64	40,406	10.07	10,850	2.71
1/29	44,636	9.55	30,764	6.58	10,851	${ }_{2.32}$
1/30	35,041	7.93	41,349	9.36	15,563	3.52
Total	226,897	8.81	220,567	8.56	71,169	2.76
Date	Georgia, S.C., S_{10}		Miss, Tenn,.Ala., La., S_{11}		North Carolina, S_{12}	
	$\overline{\text { No. Pcs. }}$	Percent	No. Pcs.	Percent	$\overline{\text { No. Pcs. }}$	Percent
1/17	12,253	2.83	7,806	1.80	20,590	4.75
1/23	12,396	2.95	11,236	2.67	19,189	4.56
1/24	11,431	2.77	9,569	2.32	15,152	3.67
1/25	8,942	2.23	9,738	2.43	17,519	4.37
1/29	10,271	2.20	12,542	2.68	22,016	4.71
1/30	11,382	2.58	11,165	2.53	13,340	3.02
Total	66,675	2.59	62,05	2.41	107,806	4.18
Date	Texas, S_{13}		Ind. -Ky., S_{14}		California, S_{15}	
	$\overline{\text { No. Pcs. }}$	Percent	No. Pcs.	Percent	$\overline{\text { No. Pcs. }}$	Percent
1/17	5,997	1.38	5,678	1.31	8,797	2.03
1/23	10,005	2.38	6,597	1.57	7,467	1.78
1/24	6,524	1.58	8,845	2.14	9,521	2.31
1/25	7,660	1.91	8,482	2.11	9,449	2.36
1/29	6,307	1.35	7,999	1.71	15,877	3.40
1/30	5,365	1.21	4,326	0.98	10,779	2.44
Total	41,858	1.62	41,927	1.63	61,890	2.40

TABLE 10 (Continued)

Date	West States, S_{16}		Mo.-Mich., S_{17}		Ia-Ill-Wisc., S_{18}	
	No. Pcs.	Percent	No. Pcs.	Percent	No. Pcs.	Percent
1/17	13,560	3.13	11,551	2.67	10,875	2.51
1/23	12,518	2.98	10,512	2.50	8,965	2.13
1/24	14,355	3.48	10,440	2.53	12,010	2.91
1/25	14,065	3.51	11,914	2.97	10,923	2.72
1/29	21,338	4.57	18,269	3.91	7,830	1.68
1/30	13,436	3.04	12,712	2.88	11,068	2.51
Total	89,272	3.47	75,398	2.93	61,671	2.39
Date	West Virginia, S_{19}		Ohio, S_{20}		Star Route, S_{21}	
	No. Pcs.	Percent	No. Pcs.	Percent	No. Pcs.	Percent
1/17	10,610	2.45	17,593	4.06	3,552	. 82
1/23	10,850	2.58	16,650	3.96	7,153	1.70
1/24	11,745	2.85	13,775	3.34	5,703	1.38
1/25	10,561	2.63	16,118	4.02	7,347	1.83
1/29	12,083	2.59	23,103	4.94	2,755	. 59
1/30	11,382	2.58	15,612	3.53	3,285	. 74
Total	67,231	2.61	102,851	3.99	29,795	1.16
Date	TOTALS					
1/17	433,397					
1/23	420,393					
1/24	412,375					
1/25	401,086					
1/29	467,207					
1/30	441,737					
Grand Total	,576,195					

DELAWARE

NEW YORK

Figure 12
Graphs of Daily Volume Ratios for Each Secondary for Baltimore

MASSACHUSETTS

CONN.-MAINE-N.H.-R-I. -VT.

PENNSYLVANIA

Figure 12
(Continued)

VIRGINIA

MISS.-TENN -ALA.LA

Figure 12
(Continuea)

TEXAS

INDIANA-KY.

CALIFORNIA

Figure 12
(Continued)

WEST STATES

IA- ill - WISC.

WEST VIRGINIA

OBTAINED FROM SAMPLES
OBTAINED FROM VOLUME COUNTS

Figure 13
Baltimore Flow Chart

However, samples were taken once a day and consisted of four feet, rather than two feet, of letters each.
8.3 Computational formulae.
8.3.1 Primary. From Figure 13 the value of
$\left(\frac{\Sigma D_{p}}{T}\right)=, 3499$ and therefore the appropriate formula becomes:
$\left(\frac{\mathrm{D}_{\mathrm{p}}}{\mathrm{T}}\right)^{*}=\frac{\mathrm{D}_{\mathrm{p}}}{\Sigma \mathrm{D}_{\mathrm{p}}} \times\left(\frac{\Sigma \mathrm{D}_{\mathrm{p}}}{\mathrm{T}}\right)=\frac{\mathrm{D}_{\mathrm{p}}}{\Sigma \mathrm{D}_{\mathrm{p}}} \times .3499$
(The total number of letters in the samples off the Primary was 10,978$)$. .
8.3.2 Secondary. The formula for Destinations off the Secondary depends upon the ratios obtained at the Secondary and the volume counts. Using such ratios gives the formula:

$$
\left(\frac{D_{S_{i}}}{T}\right)^{*}=\frac{D_{S_{i}}}{S_{i}} \times\left(\frac{S_{i}}{T}\right)=\frac{D_{S_{i}}}{S_{i}} \times c_{i}
$$

where the c_{i} are constants that depend upon the particular Secondary and are listed in Table 11.

Number of Pieces in Sample and Constants used in Computational Formula for Destinations off the Secondaries for Baltimore

i	S_{i}	No. Pcs.	c_{i}
1	Maryland	3,293	. 13966
2	Delaware	1,719	. 00669
3	New York	5,631	. 02477
4	Massachusetts	4,410	. 01033
5	New Jersey	3,129	. 01942
6	New England (Conn. Maine,N.H.,R.I., Vermont)	2,956	. 01150
7	Pennsylvania	1,890	. 03858
8	Virginia	2,057	. 03750
9	Florida	2,776	. 01210
10	Georgia-S.C.	2,751	. 01134
11	Ala.-La.-Miss.-Tenn.	2,290	. 01055
12	North Carolina	2,875	. 01833
13	Texas	1,130	. 00712
14	Ind., -Kentucky	1,356	. 00713
15	California	3,137	. 01053
16	West States	1,865	. 01518
17	Mo.-Michigan	2,701	. 01282
18	Ia. -Ill.-Wisc.	1,142	. 01049
19	West Virginia	3,676	. 01143
20	Ohio	5,055	. 01749
21	Star Route	1,958	. 00507
	Total	57,797	. 43803

8.3.3 Tertiary. The formula for Destinations off the Tertiary depends upon ratios obtained at the Secondary and Tertiary, as well as the volume counts. Using such ratios gives the formula:

$$
\left(\frac{D_{t_{i j}}}{T}\right)^{*}=\frac{D_{t_{i j}}}{t_{i j}} \times\left\{\frac{t_{i j}}{s_{i}} \times\left(\frac{s_{i}}{T}\right)\right\}=\frac{{ }^{t_{i j}}}{t_{i j}} \times k_{i j},
$$

where the $k_{i j}$ are the quantities in brackets that depend upon the particular Tertiary. Values of $k_{i j}$ corresponding to the particular Tertiaries are listed in Table 12.

TABLE 12
Number of Pieces in Sample and Constants used in Computational Formula for Destinations off the Tertiary for Baltimore

i, j	$t_{i j}$	No. Pcs.	$k_{i j}$
1,1	Md. DEF, GH	3,821	.00123
1,2	Md. OPQR, T-Z	5,721	.00967
1,3	Md. AB, C	3,109	.00827
1,4	Md. S	2,695	.00619
1,5	Maryland	4,912	.00119
7,1	Penna. QRS-T-Z	1,305	.00359
7,2	Penna. EFG	525	.00161
7,3	Penna. HIJKL	565	.00184
7,4	Penna. MNOP	1,030	.00247

TABLE 12 (Continued)

i, j	$t_{i j}$	No. PCS.	$k_{i j}$
7,5	Penna. AB, CD	977	.00247
8,1	Virginia A-C, D-K	1,643	.00277
8,2	Virginia L-Z	2,108	.00243
12,1	North Carolina A-Z	626	.00131
	Total	$\frac{29,037}{.04504}$	

8.4 Tabulation of Estimated Distribution and Observations.

The tabulation of the estimated percentages to each Destination is given in Table 13. These are listed in order of descending value. The largest 200 are listed by name and the remainder grouped by percentages. Figure 14 graphically portrays the largest 200 Destinations by percentages. Several observations, based on the tabulation, are given here:

1. The largest 200 Destinations received 78% of the Total Volume
2. Sixty-six percent of the Total Volume remained in the state of Maryland (not including Air Mail and Go backs).
3. Fifty-one percent of the Total Volume remained in Baltimore.
4. Four Destinations: Baltimore, Washington, New York, and Philadelphia were the only cities to receive more than one percent of Total Volume.

TABULATION OF ESTIMATED PERCENTAGES OF THE TOTAL VOLUME TO EACH DESTINATION FOR BALTIMORE

Largest 200 Destinations
 Listed by Name

	Percent	Cumulativ Percent
1. Baltimore Incl. Int. Rev. Incl. City By-pass	50.908	50.908
2. New York, New York	1.979	52.887
3. Wash., D. C. (Incl. official)	1.283	54.170
4. Philadelphia, Pennsylvania	1.094	55.264
5. Chicago, Illinois	. 678	55.942
6. Glen Burnie, Maryland	. 547	55.489
7. Reisterstown, Maryland	. 522	57.011
8. Richmond, Virginia	. 498	57.509
9. Annapolis, Maryland	. 462	57.971
10. Norfolk, Virginia	. 357	58.328
11. Cincinnati, Ohio	. 351	58.679
12. Silver Spring, Maryland	. 339	59.018
13. Pasadena, Maryland	. 327	59.345
14. Brooklyn, New York	. 315	59.660
15. Cleveland, Ohio	. 313	59.973
16. Wilmington, Delaware	. 298	60.271
17. Hagerstown, Maryland	. 297	60.568
18. Westminster, Maryland	. 293	60.861
19. Kansas City, Missouri	. 284	61.145
20. Pittsburgh, Pennsylvania	. 278	61.423
21. Sykesville, Maryland	. 267	61.690
22. Frederick, Maryland	. 267	61.957
23. Lutherville, Maryland	. 258	62.215
24. Ellicott City, Maryland	. 256	62.471
25. Bainbridge, Maryland	. 256	62.727

			Cumulative Percent
26. Linthicum Heights, Maryland		Percent	.237
27. Pleasantville, New York	.227	63.191	
28. Newark, New Jersey	.217	63.408	
29. Hyattsville, Maryland	.225	63.633	
30. Cumberland, Maryland	.225	63.858	
31. St. Louis, Missouri	.209	64.067	
32. Bel Air, Maryland	.208	64.275	
33. Roanoke, Virginia	.204	64.479	
34. Long Island, New York	.195	64.674	
35. Arlington, Virginia	.184	64.858	
36. Miami, Florida	.182	65.040	
37. Severna Park, Maryland	.179	65.219	
38. Randallstown, Maryland	.179	65.398	
39. Bethesda, Maryland	.179	65.577	
40. Minneapolis, Minnesota	.176	65.753	
41. Univ. of Md. (College Park), Maryland	.175	65.928	
42. Rockville, Maryland	.175	66.103	
43. Owings Mills, Maryland	.175	66.278	
44. Garden City, New York	.173	66.451	
45. Harrisburg, Pennsylvania	.169	66.620	
46. Salisbury, Maryland	.165	66.785	
47. Timonium, Maryland.	.161	66.946	
48. Ft. George G. Meade, Maryland	.161	67.107	
49. Cockeysville, Maryland	.161	67.268	
50. Naval Academy, Maryland	.152	67.420	
51. Charlottesville, Virginia	.151	67.571	
52. Boston Station, Mass.	.145	67.716	
53. Cambridge, Maryland	.144	67.860	
54. Columbus, Ohio	.143	68.003	
55. Alexandria, Virginia	.142	68.145	

56. Hampstead, Maryland
57. College Park, Maryland
58. Arnold, Maryland
59. Detroit, Michigan
60. York, Pennsylvania
61. Los Angeles, California
62. Flushing, New York
63. Westbury, New York
64. Glenarm, Maryland
65. Havre de Grace, Maryland
66. Charlotte, North Carolina
67. Dallas, Texas
68. Bridgeport, Connecticut
69. Easton, Maryland
70. Greensboro, North Carolina
71. Milwaukee, Wisconsin
72. Dayton, Ohio
73. Stevenson, Maryland
74. Denver, Colorado
75. Louisville, Kentucky
76. Odenton, Maryland
77. Atlanta, Georgia
78. Hartford, Connecticut
79. St. Petersburg, Florida
80. Camden, New Jersey
81. Buffalo, New York
82. Parkton, Maryland
83. Newport News, Virginia
84. New Haven, Connecticut
85. Winston Salem, North Carolina
86. Rochester, New York
.140
.140
.140
.135
.125
.124
.123
.121
.119
.115
.109
.109
.109
.106
.106
.105
.104
.103
.103
.102
.102
.099
.099
.096
.094
.092
.089
.089
.088
.088
.087

Percent
68.285
68.425
68.565
68.700
68.825
68.949
69.072
69.193
69.312
69.427
69.536
69.645
69.754
69.860
69.966
70.071
70.175
70.278
70.381
70.483
70.585
70.684
70.783
70.879
70.973
71.065
71.154
71.243
71.331
71.419
71.506

87.	Aberdeen, Maryland	. 085	71.591
88.	Scranton, Pennsylvania	. 084	71.675
89.	Elkton, Maryland	. 081	71.756
90.	Trenton, New Jersey	. 081	71.837
91.	Miami Beach, Florida	. 080	71.917
92.	Lancaster, Pennsylvania	. 079	71.996
93.	Boston (zones l-18), Mass.	. 079	72.075
94.	Detroit (unzoned), Michigan	. 079	72.154
95.	Reading, Pennsylvania	. 076	72.230
96.	Upper Darby, Pennsylvania	. 076	72.306
97.	Memphis, Tennessee	. 075	72.381
98.	Lynchburg, Virginia	. 075	72.456
99.	Houston, Texas	. 073	72.529
100.	Laurel, Maryland	. 073	72.602
101.	Emmitsburg, Maryland	. 073	72.675
102.	Jamaica, New York	. 070	72.745
103.	Jexsey City, New Jersey	. 070	72.815
104.	Jacksonville, Florida	. 070	72.885
105.	Nashville, Tennessee	. 069	72.954
106.	Chevy Chase, Maryland	. 069	73.023
107.	Durham, North Carolina	. 069	73.092
108.	Atlantic City, New Jersey	. 068	73.160
109.	Akron, Ohio	. 068	73.228
110.	Raleigh, North Carolina	. 068	73.296
111.	Birmingham, Alabama	. 066	73.362
112.	Altoona, Pennsylvania	. 065	73.427
113.	Brooklandville, Maryland	. 064	73.491
114.	Portsmouth, Virginia	. 064	73.555
115.	Orlando, Florida	. 064	73.619
116.	Providence, Rhode Island	. 063	73.682
117.	Cambridge 38, Mass.	. 063	73.745

118. Parkersburg, West Virginia
.062
73.807
119. Falls Church, Virginia
.062
73.869
120. Staunton, Virginia
121. Indianapolis, Indiana
122. Mt. Vernon, New York
123. White Hall, Maryland
124. Tampa, Florida
125. Dover, Delaware
126. Newark, Delaware
127. Ft. Knox, Kentucky
128. Bethlehem, Pennsylvania
129. Ft. Lauderdale, Florida
130. Ft. Jackson, South Carolina
131. Columbia, South Carolina
.062
73.931
.061
73.992
74.053
74.113
74.173
74.233
74.292
74.351
74.410
74.468
74.525
74.581
74.636
74.691
74.745
74.799
74.851
74.902
74.953
75.004
75.055
75.105
75.155
75.205
75.255
75.305
75.355
75.404
75.453
75.502
132. Fairmont, West Virginia
133. Madison, Wisconsin
134. Chambersburg, Pennsylvania
135. Johnstown, Pennsylvania
136. Ft. Worth, Texas
137. Portland, Oregon
138. Severn, Maryland
139. Ft. Benning, Georgia
140. Martinsburg, West Virginia
141. Greenville, South Carolina
142. Princess Ann, Maryland
143. Gettysburg, Pennsylvania
144. Knoxville, Tennessee
145. Princeton, New. Jersey
146. Camden Term. 2, New Jersey
147. Des Moines, Iowa
148. San Antonio, Texas
149. New Brunswick, New Jersey
150. Crownsville, Maryland
151. Great Neck, New York
152. Danville, Virginia
153. Charleston, West Virginia
154. Fallston, Maryland
155. Aberdeen Proving Grounds, Maryland
156. Street, Maryland
157. Battle Creek, Michigan
158. Carlisle, Pennsylvania
159. Phoenix, Maryland
160. New Orleans, Louisiana
161. Springfield, Mass.
162. Sparks, Maryland
.049
.047
.047
.047
.047
.047
.047
.047
.046
.046
.046
.045
.044
.044
.044
.044
.044
.043
.043
.043
.042
.042
.042
.042
.042
.041
.041
.041
.041
.041
.040

	Percent	Percent
181. Oakland, California	. 039	76.906
182. Berlin, Maryland	. 039	76.945
183. Elizabeth, New Jersey	. 039	76.984
184. Backbay (zones 15-16-17), Mass.	. 038	77.022
185. Worcester, Mass.	. 038	77.060
186. San Diego, California	. 038	77.098
187. Youngstown, Ohio	. 038	77.136
188. Taneytown, Maryland	. 038	77.174
189. Warren, Pennsylvania	. 037	77.211
190. Allentown, Pennsylvania	. 037	77.248
191. Poconoke City, Maryland	. 037	77.285
192. Fayetteville, North Carolina	. 036	77.321
193. Canton, Ohio	. 036	77.357
194. Paterson, New Jersey	. 036	77.393
195. Rockhall, Maryland	. 036	77.429
196. White Marsh, Maryland	. 036	77.465
197. Morgantown, West Virginia	. 036	77.501
198. Smithsburg, Maryland	. 035	77.536
199. Tucson, Arizona	. 035	77.571
200. Chattanooga, Tennessee	. 035	77.606

Rank	No. in Group	Individual Percent	Group Percent	Cumulative Percent
201-202	2	. 035	. 070	77.676
203-205	3	. 034	. 102	77.778
206-212	7	. 033	. 231	78.009
213-221	9	. 032	. 288	78.297
222-230	9	. 031	. 279	$78.576{ }^{\text {' }}$
231-234	4	. 030	. 120	78.696
235-242	8	. 029	. 232	78.928
243-245	3	. 028	. 084	79.012
246-252	7	. 027	. 189	79.201
253-260	8	. 026	. 208	79.409
261-269	9	. 025	. 225	79.634
270-280	11	. 024	. 264	79.898
281-287	7	. 023	. 161	80.059
288-302	15	. 022	. 330	80.389
303-316	14	. 021	. 294	80.683
317-331	15	. 020	. 300	80.983
332-345	14	. 019	. 266	81.249
346-357	12	. 018	. 216	81.465
358-373	16	. 017	. 272	81.737
374-399	26	. 016	. 416	82.153
400-415	16	. 015	. 240	82.393
416-445	30	. 014	. 420	82.813
446-477	32	. 013	. 416	83.229
478-515	38	. 012	. 456	83.685
516-544	29	. 011	. 319	84.004
545-587	43	. 010	. 430	84.434
588-642	55	. 009	. 495	84.929
643-699	57	. 008	. 456	85.385
700-767	68	. 007	. 476	85.861
768-859	92	. 006	. 552	86.413
860-982	123	. 005	. 615	87.028
983-1125	143	. 004	. 572	87.600
1126-1295	170	. 003	. 510	88.110
1296-1544	249	. 002	. 498	88.608
1545-1780	236	. 001	. 236	88.844
1781-1887	107	less than . 001	. 046	88.890
Residue			11.110	100.000

Percent

Uncanceled	2.879	91.769
Special Delivery	.011	91.780
APO Foreign	.148	91.928
Star Route	.507	92.435
Nixies	.216	92.651
Go Backs	.030	92.681
Air Mail	.172	92.853
Misfiles	.073	92.926
Residues	7.074	100.000
TOTAL	11.110	

Breakdown on Residue

Alaska	.004
Idaho	.023
Montana	.030
New Mexico	.082
Nebraska	.070
Oregon	.046
Nevada	.011
Arizona	.022
Utah	.024
Arkansas	.059
Colorado	.046
Kansas	.080
Minnesota	.069
Oklahoma	.044
Washington State	.062
Wyoming	.005
New Jersey	.509

Virginia RPO 414
Wash. D.C., Mtr. Route 004
Maryland 107
Wash. D.C., Mtr. Route 001
Wash. D.C., Mtr. Route 015
Maryland RPO 029
Louisiana 058
Tennessee 178
Mississippi 093
New York 395
Maine 081
Vermont 042
Connecticut 176
Rhode Island 074
North Carolina RPO 427
California RPO 531
Delaware RPO 010
Iowa 085
Alabama 175
Illinois $\mathrm{A}-\mathrm{K} \mathrm{L}-\mathrm{Z}$ 274
Wisconsin 113
Ohio RPO 370
Indiana RPO 034
Kentucky RPO 063
N. Y. and Pitts., Ind. 046
Wash. and Grafton, Kentucky 057
Wash. and Cinn., Kentucky 023
Georgia RPO 028
South Carolina RPO 068
Wash. and Bristol, Georgia 039
Wash. and Hamlet, South Carolina 036
Wash. and Flor, Georgia 012
Wash. and Flor., South Carolina 056
Wash. and Charl., Georgia 045
Wash. and Charl., South Carolina 068
West Virginia 048
Texas RPO 178
N.Y. and Pitts., Texas 078
Massachusetts 229
Florida 1 and 2 282
Michigan A-K L-Z 207
Missouri 082
Pennsylvania 494
New Hampshire 058
'TOTAL 7.074

REFERENCES

[1] W. A. Wallis and H. V. Roberts, Statistics, A New Approach, The Free Press, Glencoe, Illinois, 1956, p. 112 .
[2] H. A. Freeman, M. Friedman, F. Mosteller, and W. A. Wallis, Sampling Inspection, McGraw-Hill Book Co., New York, 1948, p. 10 .
[3] W. E. Deming, Some Theory of Sampling, John Wiley and Sons, Inc., New York, 1950, p. 40, and Chapters 2 and 7.
[4] B. Epstein, R. Bacon, C. Prittham, L. Lewis, F. Grossman, and G. Miller, Jr., No. 561 Memorandum for Record, Eng. Branch, S.A.A. Division, Frankford Arsenal, August 1943.
R. E. Heiland, W. J. Richardson, Work Sampling, McGraw Hill Book Company, New York, 1957. (Sampling methods and procedures put forth in this book are closely related to the recommendations made by the authors in the Summary and Conclusions of this report).

APPENDIX A

San Francisco Special Primary Study

The question of ten arises as to just how much difference, if any at all, exists among the distributions (by Destinations) of various types of mail, namely: metered long, metered short, stamped long, and stamped short letters. Special data were taken in San Francisco in an effort to help answer this question and these are included in Figure A.1. Figure A. 2 gives summary percentages of the raw data. Judging from a rough comparison of these percentages there are apparently very little differences among these different types of mail for the given separations (with the possible exception of Nixies and San Francisco which seem to be different for metered and stamped mail).

$=$

				T			T	－																		
									\％．9					is												
								O－3	O－		15		लm	\％		－－										
							Hom	W＇0＇9	${ }^{-1}$		81：000000	\％olu	जैंज	ç	जन	केत										
								－mo．	Cig		$\bigcirc \bigcirc 0^{\circ}$			citic	7π											
								Cos ${ }^{-1}$	－10																	
							90%	\bigcirc	－	वरत	－			（1）					0							
						\％	－			꾸굴		mep	न－		9 ${ }^{\circ}$				5			－				
						－0	4 min		¢0\％	Nom	n ${ }^{\circ}$	no	－$=1$	\％	क్ర్ర	훙			60\％							
						\％	\cdots		0	rem	\cdots				mmo											
						\％	O－								유웅											
						c^{2}	त्वंक्तो	mo	mop		フ10				\％in	No웅	尔									
							0	m																		
								－		r－ris					rer	\cdots		grim	N0							
							oob	以入c	ço	M m					NO	∞		－								
								－	－						－											
							\％	－${ }^{\text {g che }}$	cics				Tris		Oon	mo										
							号い	8）．	－${ }^{\circ}$	Mrี\％					जैM゙心	认ై		$0^{60}{ }^{\circ}$								
								＞m3		mom		স্তm			\％			mox	${ }^{\circ} \mathrm{O}$							
								क力 जैं	c				$1{ }^{\circ}$		Tr			\bigcirc								
						9	$\mathfrak{g l}$	－	－${ }^{\text {a }}$						n以											
						${ }_{\sim}^{\infty} \sim$	इलत	पनic	a	mN0					80											
							जिले	बें ${ }^{3}$	3 คें	ina		－ro	Find		0\％	ช8\％		－								
																		＋	r							
										Vै		认ँ	－${ }^{2}$		mi	勺ै		m								
										－		30	100	？	m			，								
																		－								
							70	00		7 ？			$0 \times$		－	m		rom								
							\bigcirc	00	雨	3 m		शore	000	\％	గ\％	，${ }^{2}$		－m								
										1\％		Nন্ন	${ }^{2}$	${ }_{0}^{0}{ }^{\circ}$	¢ 정	0×0			3－							
							न－बत्व	a－		a 0	－	M	M	\bigcirc	रतें											
												\cdots														
							त्वç	00			－${ }^{\text {OH }}$	ब्बुज	0^{2}			m		0	0							
							लेने०	0 O	Cु?	N＊	तom	min	फ1／		पे			0	6mix							
						18	～20		O	\bigcirc	\cdots	त－		द $\sqrt{ }$	To	0			T 7							
						（	cigm	00	\cdots	\cdots	入¢	\cdots	त्र०		$\pm \sim$	लें		－तु0	－2							
							व	－${ }^{\circ}$	\sim					त्य												
							conm	$\cdots=-1$	－1	\checkmark	$\cdots 3$	जल．		\bigcirc												
						－		$\mathrm{St}^{\text {a }}$	『	87	$\dot{\lambda}^{\text {－}}$	ช0．	-2		00°		in	100 श	ंiर							
								－																		

[^6]
TIE NATIONAL BUREAU OF STANDARDS

The scope of activities of the National Bureau of Standards at its headquarters in Washington, D. C., and its major field laboratories in Boulder, Colorado, is suggested in the following listing of the divisions and sections engaged in technical work. In general, each eection carries out specialized research, development, and engineering in the field indicated by its title. A brief description of the activities, and of the resultant reports and publications, appears on the inside front cover of this report.

WASHINGTON, D. C.
Electricity and Electronics. Resistance and Reactance. Electron Tubes. Electrical Instruments. Magnetic Measurements. Dielectrics. Engineering Electronics. Electronic Instrumentation. Electrochemistry.
Optics and Metrology. Photometry and Colorimetry. Optical Instruments. Photographic Technology. Length. Engineering Metrology.
Heat and Power. Temperature Physics. Thermodynamics. Cryogenic Physics. Rheology and Lubrication. Engine Fuels.
Atomic and Radiation Physics. Spectroscopy. Radiometry. Mass Spectrometry. Solid State Physics. Electron Physics. Atomic Physics. Nuclear Physics. Radioactivity. X-rays. Betatron. Nucleonic Instrumentation. Radiological Equipment. AEC Radiation Instruments.
Chemistry. Organic Coatings. Surface Chenistry. Organic Chemistry, Analytical Chemistry. Inorganic Chemistry. Electrodeposition. Gas Chemistry. Physical Chemistry. Thermochemistry. Spectrochemistry. Pure Substances.
Mechanics. Sound. Mechanical Instruments." Fluid Mechanics. Engineering Mechanics. Mass and Scale. Capacity, Density, and Fluid Meters. Combustion Controls.
Organic and Fibrous Materials. Rubber. Textiles. Paper. Leather. Testing and Specifications. Polymer Structure. Organic Plastics. Dental Research.
Metallurgy. Thermal Metallurgy. Chemical Metaliurgy. Mechanical Metallurgy. Corrosion. Metal Physics.
Mineral Products. Engineering Ceramics. Glass. Reiractories. Enameled Metals, Concreting Materials. Constitution and Microstructure.
Building Technology. Structurai Engineering. Fire Protection. Heating and Air Conditioning. Floor, Roof, and Wall Coverings. Codes and Specifications.
Applied Mathematics. Numerical Analysis. Computation. Statisticai Engineering. Mathematical Physics.
Data Processing Systems. SEAC Engineering Group. Components and Techniques. Digital Circuitry. Digital Systems. Aralogue Systems. Application Engineering.

- Office of Basic Instramentation Office of Weights and Measures

BOULDER, COLORADO

Cryogenic Engineering. Cryagenic Equipment. Eryogonic Processes. Properties of Materials. Gas Liquefaction.
Radio Propaquion Physics. Upper Atmosphere Rescarcf:. Ionospheric Research. Regular Propagation Services. Suri-Earth Relationships.
Radio Propagation Engineering. Data Reduction Irsirumentation. Modulation Systems. Navigation Systems. Radio Noise. Tropospheric Measurements. Tropospheric Analysis. Radio Systems Application Engineering,
Radio Standards, Radio Frequencies. Microwave Frequencies. High Frequency Electrical Standards. Radin Broaricast Service. High Freotency Impedance Standards. Calibration Center. Microwave Whysics. Minowave Circuit Siendards.

[^0]: 1 Figures in brackets refer to the list of references given at the end of the report.

[^1]: 1/ No proofs are given in this report. A forthcoming report by the first author will discuss the derivations and statistical properties of these estimates.

[^2]: 1/ Regular first class mail carried by air.

[^3]: Figure 4 - Sample Data for San Francisco Primary (Worksheet)

[^4]: - m

[^5]: 1/ Appropriate conversion factor is used.

[^6]: Figure A． 2 －Summary of Sample Data for San Francisco Special Primary Study

