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ABSTRACT

The techniques developed in recent years to deal with

stationary processes are presented in a manner suited to the

purposes of those who use Fourier analysis or its variations

for the analysis of their data. Necessary probability background

is provided and the spectral analysis of discrete-time and

continuous -time processes is carried out in detail with a number

of examples to illustrate the applications of the theory.
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STATISTICAL ANALYSIS OF A STATIONARY PROCESS

by

M. M. Siddiqui

I. INTRODUCTION AND SUMMARY

In recent years the approach to time series has undergone some

important changes, and the methods of analysis have been modified

accordingly.

The classical approach to time series may be summarized as

follows . We have observations, x^, . . , on a time variable and

we represent

where m^ is the deterministic and the random component of

at time t. t= 1, , , , ,n, are independent and identically distributed

x^ = m^ + t = 1, 2 , • • • , n

2random variables, each with mean zero and variance cr . The distri-

2
bution of is usually assumed to be normal and the variance cr to

be unknown, m^ is represented either as a polynomial in t

p(t) = Cq + cit +

where the degree of the polynomial, k, and the coefficients

^o » e • • , cj^, are assumed to be unknown constants; or m^ is

represented as the sum of trigonometric terms

1



s(t) = cos X^t + sin + • . • + «ip cosV + S sin V’

where p, a^s, b*s and X*s are assumed to be unknown constants;

or, more generally, m^ is assumed to be the sum of p(t) and s(t).

The method of least- squares is then employed to estimate the co-

efficients in any of these representations and the periodogram, i, e,

(a? + b^) multiplied by a constant, is used to test the significance of
J J

periods 2ir/
Xj

.

For a summary treatment of these methods the reader may

refer to [10, Chapters 29> 30],

In more recent years, the concept of stationarity of time

series has been playing an important role. We may still try to

decompose a time series into a deterministic component, m^, and

a random component, if there are reasons to believe that some

of the factors underlying our observations have been changing deter-

ministically during the course of our observation. However, there

are reasons to believe that in many physical experiments these factors

are in statistical equilibrium, i. e, changing randomly with a fixed

distribution function, during the course of our observation, or, even

if they change more violently, this change is random rather than

deterministic. In any case the deterministic component, m^, is

dropped, and a completely stochastic model takes its place. Several

stochastic models have been developed to deal with non- stationary

2



processes which represent certain phenomena, e.g. population

growth, Brownian motion, epidemics, traffic on telephones and high-

ways, servicing etc, , under specified conditions. We will not

describe them here.

In this report we will confine attention to the techniques

developed in recent years to deal with stationary processes, i. e,

time series under statistical equilibrium. These techniques are

specially suited to analyse radio propagation data, taken over a short

interval of time under more or less constant conditions. The material

presented herein, excepting one or two original results, is explicitly

or implicitly available elsewhere. However, it seemed desirable to

present it here in a manner suited to the purposes of those who use

Fourier analysis or its variations in dealing with time series data.

It is interesting to note that the classical representation, s(t), of a

time series, still occupies a prominent place in the analysis, although

the coefficients, a‘s and b*s, are not considered constants any more

but random variables.

In section 2 necessary probability background will be provided.

In sections 3 and 4 the spectral analysis of discrete-time and

continuous -time processes, respectively, will be dealt with. In

section 5 the case of a discrete sample from a continuous-time

process will be considered. Linear filters, the estimation of spectral

3



densities, and some examples of stationary processes will be pre-

sented in sections 6, 7 and 8, respectively. The references at the

end of the report include only such publications which are directly

connected with the subject matter of this report. For a more complete

bibliography the reader may consult the Bibliography at the end of [9].

2. SOME CONCEPTS IN PROBABILITY THEORY

The basic idea in statistical analysis is that of a sample space.

A sample space , may be defined as the set of all possible distinct

observations, w, on a physical experiment, actual or hypothetical,

repeated under essentially similar conditions. Any subset, S, of

is called the event S. An additively closed family, B, of subsets of

n is constructed and a probability measure , P, is defined on B.

These concepts are introduced as a theoretical foundation of proba-

bility theory. From a practical point of view, the usual frequency

concept of the probability of an event will be sufficient for proceeding

further.

It may be that the observation on an experiment is a real number

or a set of real numbers, e.g. observing the pressure and temperature

of a given volume of a gas, in which case Q may be taken an Euclidean

space of proper dimensions, each characteristic being a coordinate.

In certain other experiments the observation may not be expressed as

a set of real numbers, e.g. observing the sex and color of hair of an

4



individual, in which case we may associate real numbers to these

characteristics under some conventional system, e.g. 0 for female

and 1 for male, A random variable , X(w), is, then, defined as a

real-valued function of w, i. e, , a function which associates a real

number to every element g) of A complex-valued function of o)

will be called a complex-valued random variable. The subsets of Q

are associated through X(o)) with the subsets of the real line, Rj^,

and hence a probability measure is induced on Rj. If S is a subset
\

of Rj, we may speak of the probability that X(g)) belongs to S and

write Pr(X(cj)€S), In particular

P(y) = Pr(X(o)) <y).

where y is a real number, is called the distribution function of X(co),

P(y) is a non- deereasing function of its argument with P(-oo) = 0 and

P(oo) = 1. It can be a step function or an absolutely continuous function

or a mixture of both. In case P(y) is absolutely continuous its deriva-

tive P'(y) = p(y) is called the probability density function or the

frequency function of the random variable X(o)). Obviously

y
p(y) — 0, Pr(X(w) :< y) = P(y) = ^

p(x)dx,

-oo -CO

The idea of a vector random variable presents no conceptual

difficulty. In case of more than one random variable we speak of the

joint distribution and the joint probability density functions.

I
p(y)dy = 1

,

5



A random process, {x(t,u>)}, besides being a function of u) is

also a function of t. We will speak of t as a time variable though

it may be an arbitrary variable. For every value of t, x(t,w) is a

random variable. Thus a random process is a collection of random

variables. For every fixed o), x(t,a>) is a sample function or

realization of the process. Thus

x(t,o)) = A(a>) cos ^\(a))t + <j)(w)

where (A, 4>) is a vector random variable, is a random process,

A random process may be visualized as a large number of

simultaneous independent measurements of the same experiment

over a long period of time. Theoretically the number of measure-

ments is to be indefinitely large and the time of observation infinite

in both directions. In practice we shall be dealing with a single

realization of the process over a finite interval of time.

The time variable t may vary continuously or may take only

discrete values for a given random process. In the former case we

shall call the process a continuous-time process and in the latter

case, a discrete-time process . A continuous-time process may be

made discrete by considering it at discrete time points.

There is no conceptual difficulty in talking about a vector

random process nor in considering t as a vector variable. In the

6



following discussions, however, we will confine ourselves to a one-

dimensional random process and t will always represent time.

Furthermore, the letter w will not occur explicitly and we will write

{x(t)} for a continuous-time process with x(t) as a sample function

and {x^} for a discrete-time process with x^ as a sample function.

If u is a random variable, Eu will be used to denote its mean value

over the sample space Q,

A real random process, {x(t)} , will be called weakly

stationary or stationary if, for all t and s,

(i) Ex^(t) < oo

(ii) Ex(t) = Ex(0)

(iii) Ex(t)x(t+s) = Ex(0)x(s).

It will be called strictly stationary if the joint distribution of

x(tj+h), . , , ,x(tj^+h) is identical with the joint distribution of

x(tj^), , . , ,x(tj^) for every n, tj, . . . , t^^ and every h,

A process is called Gaussian if x(ti), . • . ,x(t ) have a joint

normal distribution for every n,tp . , . , t^^. A Gaussian process is

completely specified by Ex(t) and Ex(t)x(s) given for all t and s.

Hence a weakly stationary Gaussian process is strictly stationary.

7



3. FOURIER ANALYSIS OF A DISCRETE-TIME PROCESS

Let {x^} be a stationary discrete-time process with Ex^=m

and E(xj.-m)(x^^g-m) = Cg. Cg will be called the autocovariance

function and pg = C^/Cq, the autocorrelation function of the process.

Obviously, C^g = Cg, p«g = pg. If sCg 0 as s oo, then, the

series

oo o x oo
^ « TTl S \ ^S CgO = Cq+ 2 Z CgCOsZTTsX

s=-oo s=l

is a Fourier series of its sum f(X), so that

(1)

(2)

f(X)= S + 2

s=-oo

= d\=

“Vz -Vz

oo

Z CgCOSZTTSX
S=1

cos ZttsX dX.

We readily see from (1) that f(-X) = f(X) and from (2) that

^Vz
\ f(X) dX = C^. f(X) is called the power spectral density fimction

-*Vz

of the process {x^} ,

Consider the periodogram

n

(3) In(p.) =
n

t=l

.ij
^ k=l t=l

Z (x^-m)(xj^-m) ,

8



We have Ij^(- |jl) = arid

n n

S(4)EI„(^)=^ S
k=l t=l

k-t
27ri(t"k)|jL _

n-1

S il-
8=-(n-l)

n

-iZTTSjJL

OD

If ZJ sCg < CD, we have
1

oo

(5) lim E]^(n) = S Cg = f(ji)

.

n-*“CO -CD

Since Ij^(|x) ^ 0 , f(|i,) > 0.

Thus we may summarize the properties of f(X.) in the

following manner:

(i) f(-\) = f(X)

(ii) f(M ^ 0

(iii) dk =

i. e, f(k) is symmetric,

i. e. f(k) is non-negative.

so that f(X)/CQ is a symmetrical frequency function over (~Yz» Vz)

We will set f(X) = 0 outside the interval (-Va* Vz) •

W riting

(6 )

X

f(jJL) dfx. - Vz — — Vz 9

9



we will call F(\) the (power) spectral distribution function of {x^} ,

f*(X) = f(X)/CQ and F*(\) = £{\)/C^ will be called the normalized

spectral density and the normalized spectral distribution functions ,

respectively. Since f(X) is the Fourier series transformation of

Cg, f*(\) is the Fourier series transformation of p^. Thus we have

proved the following theorem.

Theorem 1, If the Fourier series transformation, f*(X), of

the autocorrelation function, Pg, of a discrete-time real stationary

process exists, then it is a symmetrical frequency function over the

inte rval (-]4, ) •

It can also be shown that given a symmetrical frequency

function, f*(X), over (-V^, ) , we can find a real discr ete -time

stationary process, such that the Fourier coefficients of f*(X)

are the autocorrelations of the process {x^} .

Returning to the equation (5) we observe that if we have a sample

. ,Xj^ then the periodogram Ij^(X) is an asymptotically unbiased

estimator of f(X). However, if we insert the value of from (2)

into (4), we obtain

n-1

s=-(n-l)

‘/a
2Tris(X-|j.)

f(X) dX

10



Now, using the identities

P p+1
s _ z-z^S z =

s=l
1-z

V = z-(p+l) + pgP'*'^
Z) sz =

s=l

with p = n-l, and z=e^^^^^^ we can sum the series in the

brackets and, using certain trigonometrical identities, we finally

obtain

^2 .n(|j.-H4) . 2'r* y sin 7TV

(71 t>l f HO) --

r

" J n sin"^Tr(X-|jL) n^ J “ sin^(7rv/n)

-/a

Hence In<P) i® an unbiased estimate of a 'filtered' spectral density

fn(p) for finite n. Only when n—*-oo, fj^(jjL) f(p).

For convenience we suppose that n= 2N+1 and represent the

sample Xp . . . ,Xj^ by the trigonometric series

(8) = a^ + S ^aj cos + bj sin ^ » t - 1, 2, . . . , n.

The coefficients a's and b's are determined by the usual method of

harmonic analysis, i. e. , by the relations

(9) a_ = — S x^ = X
n

27rjt
f j~l,8*» , N ,

n

27rjt
»

n
j“*l,»»«,N,

11



where the summations axe with respect to t from 1 to n and where

c is an arbitrary constant. Thus, setting c = m, we have

(.0 )

2 2

- i (^S(x. - m) cos + — (^S(x. - m) sinn\t n/n\ t n/
i Zxrjt 2

= —
I
S(x. -m) e

^
n ^

= In (-) . j
= 1. . . . * N“ n

1
,

,2 2
However, Ij^(O) = ”

|

S(x^-m)
|

= n(aQ-m) , and depends on the

knowledge of the process mean m. If we replace m by x every-

where, Ij^ (^) will not change for j=l, ...,N, but 1^(0) s 0 and
\

no estimate at zero frequency will be available. It seems desirable,

therefore, to estimate the process mean, m, by a much longer

sample preferably from the observations which do not include

Xji^ , . . . ,

Thus the representation (8) provides the periodogram estimate

of the spectral density function at the frequencies j/n, j
= 1, . , , , N,

in terms of the coefficients aj and bj .

We have

(11) Ea^ =m,
2 2

var = E(ao-m) = ^ E
|
S(xj-m)

|

= i £1^(0)

n ^

12



Also, for j / 0,

E a.
J

var a.
J

Eb, = 0
J

2 4
n n

Ea!" = E S S (x -m)(x -m) cos cos
n t=l s=l n n

n n
— S sc. [cos
7 t- S

t=l s=l

2TTj(t+s)
+ cos

n n

2 l^l 2Trjr
, 2 ^ ^ 47rjs— E I - -—

-

cos —^ S cos—s?—

n _ / i.\ n
r=-(n-l)^

n 2 o
n s=l

n

n-1 n-r

+4 S S c, cos islis+li

r=l s=l

The first summation is seen to be eqiial to 2/n EIj^(j/n) = 2/n fjj(j/n).

Using the trigonometrical identity

P
S cos (a+2sp) = cosec p sin (pp) cos {a+(p+l)p}

s=l

with p= 27rj/n, a= 2‘irjr/n, we find

n-r

s cos 2li(2s+r) _ ^ 3i„ML
s=l

n n n

Hence for j f 0,

(12 ) ,=£f (l)-Acot2’U
n-1 .

S C siniai.
n ,

r n
r=l

= 2f (i) + o(4). since S C_—
n n n ^ ^

oo

n‘ r=l

sin—-— < CD
n

13



It can be shown similarly that

(12a) var b. = — f (^) + cot
'j

' n nV ^

n-1 - .

_ Zirir
S C sin —

—

n ,
r n

r=l

= ^f (h + o(i).
n n n n^

Ea^aj = 0(Jj). Eb^bj = OC-lj), j.

Ea.b. = 0(-!-), alii, j.
^ J n^

Thus the correlation between any two coefficients is of order l/n •

Now, if {xj.} is a Gaussian process, aj and bj will be

normally distributed and since different coefficients are approximately

uncorrelated, they may be assumed to be independent of each other.

Thus the Ij^(j/n) are also approximately independent of each other and

2InO/n) / fnOA)

is approximately a variate with 2 degrees of freedom. We,

therefore, have

(13) var Ij^(j/n) ^ fj^^(j/n), j = 1, , , , , N

.

Even if the process is not Gaussian, the result (13) can be

proved to be valid, (13) shows that the periodogram, has

standard error equal to (in fact a little greater than) EI^(X), which

makes it an undesirable estimate.

14



We will discuss some proposed modifications of in

section 7,

4. FOURIER ANALYSIS OF A CONTINUOUS-TIME PROCESS

Let {x(t)} be a continuous -time real stationary process with

Ex(t) = m and E [x(t)-m] [x(t+s)-m] = C(s), p(s) = C(s)/C(0), If p(s)

is continuous at s = 0 then it can be shown that it is continuous for all

s and also that

lim E
I

x(t+s) - x(t) 1^=0,
s-*o

Consider the periodogram

(14) =
j J

[x(t)-m]e
ZTritX.

dt

T T

^ [ x(t)-m][ x(k)-m]e^^^^^ ^^\ikdt.

o o

We have

(15) gT(M=EIx(\)= j*
=^ (^"^)

C(8)e^^’'®^is.

o o -T

Since I,p{X)> 0, it follows that

(16) J J
p(k-t)e^^’'^*”^^^dkdt > 0.

o o

Since jp(s)|< 1, p(0) = l, p(s) is continuous and symmetric and the

integral in (16) is non-negative, therefore [5,p. 91] we have the

following theorem.

15



Theorem 2, If the autocorrelation function p(s) of a continuous-

time real stationary process is continuous at s = 0, it is the char-

acteristic function of a symmetric distribution, i. e.

where G*(X.) is a distribution function of a symmetric distribution

over (- 00 , 00 )

.

Conversely, it can be shown that for a symmetric distribution

dG*(X) there exists a real continuous-time stationary process such

that the characteristic function of dG*(X) is identical with the auto-

correlation function of the process.

If G*(X) is absolutely continuous and has a frequency function

g*(X) = dG*/dX, then it follows that

and that g*(X) is continuous. Writing g(X) = C(0)g*(\), we have the

transform pair

(17)

(18)

CO

(19)

00

(20)

00

16



Since C(-s) = C(s), we have g(-X) = g(X); also g(X) > 0 as

g*(X) is a frequency function, and

\
g(X)dX=C(0).

“OO

g(X) is called the power spectral density function of the process {x(t)},

pOO

If \ sC(s)ds exists, then from (15) it follows that

lim g-T.(X)=g(X)
T—oo

However, if we insert the value of C(s) from (19) into (15), we

obtain

(21) gx(ix)
= - M)g(X)e'2’^<^-^^>^dXds

-T -GO

= j* g(X)dX j" (l - ei2TT(X-M.)s

-OO

-OO

”g(X)
^in^^T(X-jx)

ir2T(X-|jt)2

=rr<-ogifi ) + g( ^

. 2
Sin TTV

TT^V^
dv.

Thus, if we have a continuous sample over (0,T), then the periodogram,

unbiased estimate of g'p(p) which is a 'filtered' spectral

density.
17



Now, the sample function over (0,T) can be represented by a

Fourier series, i. e. ,

(22 )

oo / . . \
x(t) = + S I aj cos + bj sin

J
, 0 < t < T .

j=lV /

We then have

(23) a^ = dt = X ,

a =
j

” ^ J
x(t) cos dt = |; J

[x(t)-c] cos dt, j 0,

b. =
J \ ^

x(t) sin dt =
|; y

[x(t)-c] sin dt,

where c is an arbitrary constant. Setting c = m, we have

T i2.Tr}t 2

Thus the representation (22) provides the periodogram estimate

of g»p(M at the frequencies X = j/T, j
= l,2,.,., in terms of the

Fourier coefficients aj and bj and from (23) we see that these esti-

mates are independent of the process mean m. However,

T
(0) = ^

j
J

[x(t)-m]dt = T(aQ-m) ,

18



and depends on the knowledge of m. If we replace m by x then

I-p(O) = 0; hence, for an estimate at X= 0, we require the knowledge

of m independent of the sample mean.

With calculations similar to those carried out for the discrete-

time case [see also 12 pp. 157-160] we can verify that

(25) Ea^ = m, Ea^ = Ebj = 0, j ^ 0,

var a^j= i (0),

var a. = ^
(i) + 0(-L)

Ea.a. = O(i-). Eb.b, = O(-i-), i / j,‘J J-J rj, ^

Ea>b^ “ O
( y ) » all i»j.

^ j •j’

Also

(26) var I^(\)^ g^(X), X = j/X, j / 0.

5. FOURIER AJMALYSIS OF A CONTINUOUS-TIME PROCESS
OBSERVED AT DISCRETE TIMES

The most interesting case is one in which we have a continuous

record over (0, T) as in section 4 but select a systematic sample

x(a), x(a+6), x(a+26), x(a+n-15), where 0< a<a + n-16^T,

19



We may then consider two processes {x(t)} and {x^} where

x^ = x(a + 1-1 6), t = 0, +1, 4^2, .... We therefore have C^=C(t6).

If f{\) and g(X.) are the spectral densities of {x^} and {x(t)}

respectively, we have

}/z pOO

=
j

g(X)
iZTTtSX

e dX

-CD

oo

r= -oo J
g(V/6)

-v^

Vz
iZirtX

OO

6 f 8
r=-oo (¥)

d\

for every integer t. From the uniqueness of Fourier coefficients

it follows that

(27)

The frequencies

X + 1 X + 2

are called aliases to X/6 as they become indistinguishable from x/S

when we consider the discrete -time process {x^} instead of the con-

tinuous time process {x(t)}.
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If we set a = 6 and n6 = T , we have

oo

( 28 ) f (i) = i s gn n
r=-oo

j+nr

T

oo

^ g(^) s
r =1
gi^)+g(^ n

.
n— 1 < —

9 — J — 9

c°°Since V g(x+jji) djx exists for every x, we have

o

^
g(x+|j,) d|jL -*• 0 as n oo .

n/T

oo
/ +k \Now 1/t Z) g f x+ j

is an approximating Riemann sum to

k=o ^ ^

the integral with A|jl= 1/T and hence tends to zero as n-*- oo .

Therefore, if n is large, we have for small values of j

(28a) -f(^) =
n n T T

In practice, when we are analysing a record with superposed

undesired ’noise' such as due to recording or reading instrument we

^n-r
will select 6 or n in such a way that g 2T

is dominated by the

noise spectral density at the frequency (n-l)/2T. Here, we are

assuming that the noise spectral density is negligible as compared to

the spectral density of our data in low frequency ranges. We are

then not interested in the value of g(X) for X.>(n-1)/2T, or, perhaps.
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the values of g(X) for X>(n-1)/2T are considered negligible. In this

situation the effect of aliasing will be negligible except at the point

X = (n-1)/2T, where it will make our estimate twice as large as it

actually should be.

6. LINEAR FILTERS

If we write a*(X) for the Fourier transform of a function

a(t) and if

pOO

a(t) = \ b(t-u) c(u) du ,

-CD

then it is easy to show that

a*(X) = b*(X)c*(X).

a(t) is called the convolution of b(t) and c(t)

.

Let {x(t)} and {z(t)} be two continuous-time real stationary

processes such that

(29)
r°°

x(t) = \ W(t-u)z(u)du

-oo

pOO

V W(u) z(t-u) du ,

where W(t) is a real function integrable over (- 00 , 00 ). W(t) is

called the linear filter ^ z(t) the input and x(t) the output of the

filter W(t)o if denote the autocovariance and g^{\)

and g^(\) the spectral densities of the processes {x(t)} and {z(t)}
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respectively, and W*(X;) is the Fourier transform of W(t), then we

have

.00 ^00

C^(s) =Ex(t)x(t+s) =En
-00 -00

W (u)W(v)z(t-u)z(t+s-v)dudv

00 _oo

I
-00 -00

W(u)W(v) C (s+u-v)dudv
z

g^(M

(

-00

00
2 TTl S X / \ j

e C^(s)ds =

00 ^.00 ^00

-00-00 -00

i-ZTrisX W(u)W(v)C (s-u-v)dudvds.
z

Making the transformation s' = s+u-v, u=u, v = v, we have

J

oo 00 00

^ C^(s')ds' ( e^’^^W(u)dur W(v)dv

-00 -00 -00

= gJM |W*(X)|^. -00 < X < 00 .

z

Now, if the filter is known and the spectral density of one of the

processes is known, then the relation ( 30 )
gives the spectral density

of the other process. It is sometimes possible to adjust the filter

in such a way that the output x(t) is approximately a white noise,

i. e. , has a constant spectral density over a wide frequency range.

The use of such a filter on z(t) is called the prewhitening of z(t)

and is a powerful method in obtaining a reliable estimate of its

spectral density.
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If in (29) we replace x(t) by etc* and integrals by summations,

we obtain

-i/a ^ X < .

where, now,
CD

W*(X) = S Wj^
g-i2irkX

^

k=-oo

For further study on this subject see [12, Ch, 5],

7. ESTIMATION OF SPECTRAL DENSITY

The purpose of Fourier analysis of a stationary process is to

construct an estimator of the true spectral density function which has

at least two desirable properties of being unbiased and consistent.

It turns out that no estimator of g(\) or f(X) exists which is unbiased

for finite sample size, although asymptotically unbiased estimators

are available. The periodogram is one such estimator. Unfortunately,

the variance of the periodogram remains bounded from below no matter

how large a sample we take, i. e. , it is an inconsistent estimator of

g(X.) or f(X). We therefore try to construct some other estimators

which, besides being asymptotically unbiased, are consistent. In

fact, several such estimators have been proposed and a general

method of 'filtering* the periodogram is available which produces such

estimators. We will only mention two such modified periodogram

estimators, one suggested by Bartlett and the other by Tukey.
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As Burning Ex^ = 0 • and writing

n-k
S

(32) , k= 0,1, . . . ,n-l, c_j^= Cj^ ,

n-k

we observe that

(33) L(M= S fl- J^VkCOsZTi-kX, X=i, j
=

k=-(n-l)^
^ 2

Here, ln(0) can only be obtained when the process mean is known to

be zero. Otherwise, Ijj(O) will remain arbitrary depending on our

estimate of the process mean.

Bartlett suggests [1, also 9» p. 146]

m
(34) I„^^Nx)= S (l-

k=-m m ci^ cos ZirkX, X.= — , j
= 0,l,^ m m-1.

where m=0(n) but m —^ oo as n—^co. Here, the sample covariances

of large order have been avoided as they are subject to great sampling

fluctuations. It is easy to see that lim EI^^^^(X) = f(\).

n—oo

The variance is given by

(35) var (X) rsj

r ^f^(X). X;^ 0

|^f2(0). X=0.
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Tukey has proposed [ 9, p. 149; also 2]

m-1 V

(36) ^ (k) = Cq + 2 S 46 cos ^ + . 54^ Cj^ cos irkX

k”l

+ (, 46 cos TT + . 54) cos TrmX.,

X = -i-,
j
= 0,1, . . . ,m-l,m

as an estimate of f(X), where m=0(n) but m-^oo as n-^oo.

is also an asymptotically unbiased estimator of f(X), and

its variance is

(37) var (X)^

^f^(V)[(.46)^ + 2(.54)^], \J^0

I^ f^(0)[ (.46)^ + 2(. 54)^], \= 0.

Tukey has also suggested a method of setting confidence bands on f(X),

(2) 7by showing that '(X) is approximately a distribution with

approximately 2n/m degrees of freedom, [2], However, 1^^' '(Xj)

17.\
and In '(X2 ) are not independent if

|
X
2
-X2 I

— 3/m, so that the total

degrees of freedom do not exceed the available degrees of freedom n.

If the sample mean is subtracted from data before any further

analysis, then as we have seen In(®) = difficult to give any

meaning to Ij^^^^O) and Ij^^^^(O) in such a situation.
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8. EXAMPLES

(i) White noise . Let be a stationary process such that

E^t^t+s — ^s “ ® s ^ 0, Then, from (1), we have

f(\) = = (Tg^,

A process which has a constant spectral density is called a

white noise « Conversely, if f(X) = C, -V2 — V2 > we have from (2),

= C, Cg = 0, s / o.

If, besides being uncorrelated, and are independent

for all s^O, the discrete time process called a pure white

noise [9, p. 42],

From equation (19) we observe that we cannot set g(\) =

constant in a continuous time process as this would imply that C(0)

was unbounded. However, by allowing the existence of Dirac's

delta function and its Fourier transform, some authors have extended

the concept of white noise to continuous time processes. We may,

however, set g(X.) = constant over a wide frequency band in some

cases without making C(0) infinite.

(ii) Moving average and autoregressive processes . Consider

P
(38) + . . . + ipy^.p = S a,^yt-k '

k=o

27



where and are stationary processes and a^^ are real constants.

Since is the convolution of and y^, where

= a^ if 0 < t < p

= 0 otherwise,

we obtain

(39) f (M =
X

S aj^e

k=o

-iZirkX tyW

If y^ is a white noise, x^ is called a moving average process. On

P
the other hand if is a white noise and S = 0 has all the

k=o

roots within the unit circle |z| =1 in complex plane, y^ is called an

autoregressive process of order p . In this case x^ is independent

of Yt- 1 * Vt-2’ ••• [9. p. 38].

Special cases , (a) Simple moving average. If we set

aj^ = l/(p+l), k= 0, 1, , . . , p, in (38) we obtain

(40) ^t
* 1

p

J=o

If
y^

is a white noise, the above scheme is called a simple moving

average scheme. Since

p
1 - e"^^P'''^*“

g*i(p+l)/2
sin(p+l)o)/2 sin (p+1) 0)/

2

^ &

i=o
^-io)/2

gj_j^ ^^2 sin u)/2

we have from (39)



1
. 2

^ (p+1)^ sin'^ irX '

However, since is a white noise, fy(M = cr^ and from (40)

and hence

(41)

fy(X) = 0-y^ = (p+l) <r^, ,

yM (P+^ cr^2
. X < 1/3 .

(p+1) sin^ ttX.
2„a X

In estimating f (\), then, we only estimate (r by the usual method

of estimating a variance,

(b) Markov scheme. We consider the first-order autoregressive

scheme (Markov scheme) in the form

(42) yt = pyt-i + ^

,

where
| p |

< 1, and is a white noise. From (39)

fy(X) = fx(X.)/|l- (1- 2p cos 27t\+ p^) , k ^ Va ,

since • Since x^ is independent of y^.]^ » we obtain from (42)

(T =
2 2 2

p (T + (T
^ y X

or

(TX Oy (1 - P )
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Thus

(43) fy(\) = <ry^(l-p^)a -2pcos2irX+ p^)"\ \ ^ .

oy and p are estimated by the sample variance and first serial

correlation coefficient respectively.

(c) Yule scheme . Consider the second-order autoregressive

scheme (Yule scheme) in the form

(44) ^t
=

“^t-l Pn-2 +
="t

'

2where is a white noise and the roots ofz -oz + 6=0 lie within
t

the unit circle |z| =1 in the complex plane. From (39) we have

fy(M =
fx(M

2 2
1 + a + p ~ 2a(l+p) cos 2irX + 2p cos 4ttX

» “ Vz — X- — V2 •

Now, since x^ is independent of
^
and

y^
multiplying the

equation (44) by and y^ ^
respectively and taking expectations,

we obtain

^1 “ ^^0 " P^l» C
2 ““ ctCj^ — pc

or
PX

= a - PPi* P2 = apj - p ,

so that

(45)
Pl(l - pz)

2
PI - P2

2
’ P

1
2

'

1- Pi 1 - Pi
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If p denotes the multiple correlation coefficient between and

(Yt-1* Yt-2^» given by

(46) (1- p^) = (1 -pj^)
-1 1 Pi Pz

Pi 1 Pi •

Pz Pi ^

With simple evaluation we then obtain

2 2/1 2 .~ * P ) •

Since f^iM = ^ » -Vz ^ \ ^ Vz , we finally have

2 2.
0- (1-p )

(47) f (X) = y
. ->/4< X < 1/2 .

1 + a +p - 2a(l+p) cos 2ttX+ 2p cos 4Tr\

To estimate p, a, and p, we need estimates of ay , p]^
and p2 «

These estimates are provided by the sample variance and the first

and second serial correlation coefficients respectively.

(iii) Processes related through a differential equation . For

continuous -time processes we may consider the differential equation

(48) a + a , f + . . . + a y = x(t) .

P dtP dtP-1
°

To obtain a relationship between the spectral densities g^(X.) sind

gy(X.) in this and similar cases, we outline a technique suggested by

Cramer [3,4] of representing the process as a Fourier transform of

an orthogonal set function.
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If and are two disjoint sets on a real line, a set function

z(I) is called orthogonal if

Ez(Ij^) = 0 .

Here z denotes the complex conjugate of z. Writing

dz(|x) = z(djji) ,

Cramdr shows that every stationary continuous -time process, {x(t)},

may be represented as

(49)
e^27TtX.^^(^j

-oo

where is orthogonal set function with E|dz^(X)| = dG^(X),

and G^(X.) is the spectral distribution function. If x(t) is real, then,

also

pOO

x(t) = J
dz^(|x) .

-oo

Thus

C^(s) = Ex(t)x(t+s) = E ^+12Tr(t+s)^

-OO

which is the same as (19) in the case G^(X) is absolutely continuous.
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Returning to (48) let us represent

r°° izirtx.
y(t) = \ e dZy(\)

-oo

x(t) = (
gi^TTtX.

.

-CX)

Then, from (48)

dZy(X) = J
dz^(M .

-oo
I

.00
iZirtX p

1

S aj^(27riX)

k=o

From the uniqueness of the Fourier transform, we have

S aj^(2Tri\)

k=o
dZy(X) = dz^(M .

Multiplying by the complex conjugates and taking expectations,

we obtain

^ k
S aj^(2iriX)

k=o

2

dGy{X) = dG^(X)

or

(50) gJM =
^ k
S aj^(2iriX)

k=o

2

gy(M •

A representation similar to (49) for a discrete-time process,

{x^}, is
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1
/^

(51) x^ = J
e^"*^dz^(X),

where, now, E|dz^(\)| - dF^(\), Edz^(\) dz^((j,) = 0, X / n, and

F (X) is the spectral distribution function of {x, } .X t

(iv) Shot noise . Let us consider instants, tj^, distributed at

random on the time axis according to a Poisson process of density

p > 0. Let n(t
2 - tj) be the number of these instants belonging to the

interval (t|, t^) . Writing dn(t) = n(dt), it is then known that

Edn(t) = pdt, E[dn(t)]^ = pdt, E [dn(t)dn(s)] =0, t / s,

so that n(* ) is an orthogonal set function.

Consider the process

(52) x(t) = S a(t-t.) ,

tj<t ^

where a(t) is a real function with a(t) =0 if t < 0, and a(t) is

integrable over (0, oo)

.

Equation (52) may also be written

pCX>

x(t) = \ a(t-s)dn(s), dn(s) = n(ds)

.

-00
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We have
pOO pOO

Ex(t) = P \ a(t-s)ds = p \ a(s)ds=m, say.

-00 0

Also,
^00
C

C(u) = E [x(t)-m] [x(t+u)-m] = V a(t-s) a(t+u- s) var dn(s)

-cx>

pOO

= p \ a(t' ) a (t'+u) dt* .

-CD

The right hand side, except for the factor p, is the convolution of

a(u) and a(-u). Hence, if a*(X.) is the Fourier transform of a(t),

we obtain

(43) g^(M = p|a*(X)|^.

.CD

Thus x(t) is composed of a 'direct current'
p ^

a(t)dt and a 'shot

o

2
noise' with continuous spectral density p|a*(X)|

Special case, a(t) = -<

fie-^/T t-0
T

0 t < 0 .

|a*(X)|^ = 7—

gA\) = %
X, o P

, Ex= p, var X =

2T

For further examples see [12, chs. 3,4,5],
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