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HOURLY CORRELATION OF RADIO 

PATH LENGTHS AND SURFACE REFRACTIVITY INDEX 

FROM MAUI, T. H. , PHASE STABILITY PROGRAM 

by 

M. C. Thompson, Jr. and Frank E. Freethey 

I. Introduction: 

This report describes refractive index measurements made 

1-Z / 
during the NBS phase stability experiments -7 conducted on the island 

of Maui, T. H. , during November 1956 and their correlation with the 

phase measurements. The object of these measurements was to 

determine to what extent it might be feasible to predict phase variability 

from ordinary meteorological observations. 

II. Terrain: 

A map of the island of Maui, T. H. , is shown in Figure 1. The 

lower station of the propagation path was located at the old naval air¬ 

port at Puunene at an elevation above mean sea level of 110 feet, and 

the upper station on the top of Haleakala peak, 10, 025 feet above mean 

sea level and approximately 81, 608 feet distant by line of sight from 

the Puunene location. The surface profile beneath the propagation path 

is shown in Figure 2. The radio path elevation angle was 6.8 . Mete¬ 

orological instrument stations were maintained at three intermediate 

points on the slope of Haleakala. No. 1, at an elevation of about 3000 

feet, was situated about 3 miles NE of the propagation path and was 

generally under the influence of the NE trade wind. Station No. 2 was 

about 7000 feet above sea level and 3 miles NE of the path. This 

location was sometimes influenced by an upslope condition deriving 



2 

from the trade winds, but more often was swept by a return, or SW 

wind, resulting from the circulation of the trade winds about Haleakala 

from the west Maui mountains. Station No. 3 was about 2 miles NE 

of the path at an elevation of 8, 600 feet and was usually influenced by 

the SW circulation wind. 

We feel that the most serious weaknesses in this analysis are: 

1. The discontinuities in the phase recordings 

due to interruptions in radio signals and 

equipment performance. 

2. The fact that, except for the end points, the 

surface meteorological stations could not be 

located closer to the radio path, especially 

in an area having such unusual wind circu¬ 

lation characteristics. 3 / 

III. Airborne Index Measurements: 

The airborne measurements were made using an NBS Model 2 

microwave refractometer built for the Arizona Electronic Proving 

Grounds, Ft. Huachuca, Arizona, 4 / and on loan from that organi¬ 

zation. The refractometer was installed in an L-20 aircraft rented 

from the U. S. Army installation at Wheeler AFB, Oahu, T. H. 

The normal flight patterns were to climb to about 11, 000 feet 

in the vicinity of Puunene, proceed to the upper site at Haleakala Sum- 

o 
mit, turn 180 and descend along a line approximately parallel to and 

1000 feet above the actual radio path. The indicated air speed during 

this descent usually varied between 90 and 120 mph with the rate of 

descent approximately 1, 500 ft/min. Since the region near the path 

included the local commercial airlanes, radio path descents were feasible 
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only during the few hours of each day when clouds were not present in 

the area. 

Figures 3 and 4 represent the type of data obtained from these 

flights. The variations in index roughness (as indicated by RMS values 

of the fluctuations in a band width of approximately .05 to 3 0 cps. ) 

with altitude are shown in Figure 3, The power density spectrum of a 

sample of data obtained in level flight at approximately 3, 800 altitude 

is shown in Figure 4. This level was normally found to be character¬ 

ized by larger index variations. The flight pattern was again along the 

line between the terminals of the radio path but at constant altitude. 

Because of the rising terrain this flight path extended along only about 

half of the extent of the radio path. 

IV. Ground Measurements: 

Surface observations of meterological data were taken at five 

ground stations. These recordings are summarized in the following 

Station Altitude (MSL) Instruments 

Puunene 110 ft. Microbarograph 

Hygr othermograph 

Aerovane wind recorder 

1 3000 Microbarograph 

Hy g r otne rm og r aph 

2 7000 Microbarograph 

Hygr othermograph 

3 8, 600 Microbarograph 

Hygr othermograph 

Haleakala 10,000 Mercury barometer 

Hygr othermograph 

Aerovane wind recorder 
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The station at Haleakala was in operation from 1000, November 

5 to 1800, November 9. All others were operated from 1000, November 

5 to 0800, November 10. The pressure record at Haleakala consists 

of barometer readings at 30 minute intervals. All other records were 

continuous. The radio phase records were made at 9*414 MC between 

Puunene and Haleakala and the analysis of these records covers the 

period from 0200, November 6 to 1800, November 9. 

V. Data Reduction and Presentation: 

a. Hourly N values at each station throughout operating period 
1 s 

were computed from records of pressure, temperature and relative 

humidity. 

b. These hourly N values were plotted as ordinates against 
■ s 

time of day and date for the entire operating period, as a family of 

curves representing each station, simple average of hourly N for all 
s 

stations, and simple average of hourly N for upper and lower stations 
s 

only (see Figure 5). 

c. For daily comparison of hourly N variations at each station, 

the curves of b, above were replotted as a series of families repre¬ 

senting each day's fluctuations at each of the five stations. (See Fig¬ 

ures 6a, 6b, 6c, 6d, and 6e). 

d. Average values of hourly N for the entire path, weighted 
1 s 

for altitude differences (Ah) between the recording stations were com¬ 

puted and plotted versus time of day in a family of curves representing 

each day's fluctuations (See Figure 7)„ 

e. Equal N^ contours at 5N intervals were plotted as a family 

of curves on a graph having altitude as ordinate versus time for the 

entire period of the run as abscissa. Since only five determinations of 

N for any one hour were actually made at the respective altitudes of 
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the five recording stations, the spacing of the 5N intervals between 

stations was done by linear interpolation. Each 5N change, therefore, 

was assumed to occur at equally spaced altitude intervals between any 

two stations (See Figure 8). 

f. From the records of variations in the phase of the signal 

over the round trip path between Puunene and Haleakala, the phase 

changes were read off for the time interval from 013 0, November 6 to 

1815, November 9, at intervals of approximately 15 minutes. Using 

only those cumulative shifts corresponding to the full hour intervals, 

these phase changes in terms of equivalent ANcj), were plotted against 

the known N value for the respective hour and day as a point array 
s 

for: 

1. Puunene ( Figure 9) 

2. Station # 1 (Figure 10) 

3. Station #2 (Figure 11) 

4. Station #3 (Figure 12) 

5. Haleakala (Figure 13) 

6. Weighted average N for entire path (Figure 14) 

7. Simple average N for five stations (Figure 15) 
s 

8. Simple average N for upper and lower stations 

(Figure 16) 

The scales on these graphs were so chosen as to make the theoretical 

line determined by the point array have a slope of unity. 

g. Each single composite graph described in paragraph f above, 

was replotted as six separate graphs, each covering a four hour period 

of the day, e.g. 0100 - 0400 inclusive, 0500 - 0800 inclusive, etc. 

(See Figures 9a, 9b, 9c, 9d, 9e, 9f, etc. through Figures 16a, 16b, 

16c, l6d, l6e, l6f). 

For each of the point arrays plotted as described in paragraphs 

f^and jj, a regression line (indicated by a broken line on the graphs) 

was calculated and drawn and the following information computed and 



6 

noted on the graph concerned: 

n = number of points 

b = slope of regression line 

•y = correlation coefficient of points 

about regression line 

%>tQ = A percentage figure which is 

a measure of how well the observed 

slope b agrees with the expected 

value of unity. Specifically, this 

number answers the question: What 

is the percent probability that in 

repeated samplings the quantity 1-b 

will be larger than that obtained in 

the sample plotted? 

h. The relative phase variation versus time of day and date 

was plotted at 15 minute intervals for the period from 0130, November 

7 to 1800, November 9 with gross weather conditions as noted in the 

Haleakala log, chronologically indicated (See Figure 17). 

VI. General Weather: 

From 2000 to about 0900 daily weather in the path was clear. 

During the middle of the day, from 0900 to 1700 clouds or fog was the 

rule, sometimes in the path, sometimes above it. It usually began to 

break up to light scattered clouds by 1800. The sun at this season 

rose about 0600 on the peak and about an hour later on Puunene in the 

valley, when it first illuminated the path. Sunset occurred about 1730. 

Summary: 

Because of the limited period covered by the records described 

above, as well as discontinuities that exist in some of them, it is diff¬ 

icult, if not impossible, to analyze conclusively the information they 

may contain. Well established diurnal variations in refractive index 
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appeared consistently, but the equable weather which prevailed during 

most of the run provided no dramatic front phenomena to be studied, 

nor, of necessity, any seasonal variations. The main analytic effort, 

therefore, of this study was aimed at (1) determining the simplest 

reliable way to average the index over the propagation path from records 

taken at five stations covering a vertical distance of 10, 000 feet; and 

(2) to learn if any particular period of the day appeared most favorable 

for correlating phase measurements with surface index variations. A 

comparison of the plots of Figures 9 through 16 seems to indicate that 

either the weighted or the simple average index of all five stations give 

the best average N for the path at any particular time; and those of 

Figures 9a, b, c, etc. through l6a,b, c, etc., (though of doubtful 

validity because of the small number of points in each array) suggest 

that the daily period from 2100 to 0400 is the time when the atmosphere 

is normally most stable, in this sense, and measurements of this 

nature most reliably made. 
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