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GRAPHS AND TABLES OF THE SIGNIFICANCE LEVELS F(v , v^, p)

FOR THE FISHER-SNEDECOR VARIANCE RATIO

by

Lewis E. Vogler and Kenneth A. Norton

1. Definition of the Fisher-Snedecor Variance Ratio F(v ,
v

)
1 z

The Fisher-Snedecor IJZJ variance ratio is the ratio of two

independent variables each distributed as x 3-nd normalized by their

corresponding numbers of degrees of freedom. Thus, let u be a
2

random variable distributed as x with degrees of freedom,

while V is another random variable distributed independently of u as
2

X (v ) with V degrees of freedom. The ratio

u/v
''

2
> " 7JV (1 )

is, by definition, the Fisher-Snedecor variance ratio.

As a first example suppose that the v + v random variables
X

, . • • , X
V ' ^1
1

, y.j o • • f y are independent and

normal with population means |jl and |x
, respectively, and with stand-

X M

ard deviations cr and (r , respectively. Now define:
X M

R. A. Fisher, "On a distribution yielding the error functions
of several well-known statistics, ” Proceedings of the International

Mathematical Conference, p. 805, Toronto, 1924.

u
variance, "

George W. Snedecor,
Collegiate Press, Inc.

"Analysis of Variance and Co
, Ames, Iowa, 1934.
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u = (x. - (»,)
1 1

(
2 )

1 i = l

V =

or
I'V ( 3 )

2 j =1

Since the v normalized deviations (x, - |x )/cr are independent and
1 ill

}jnormal with zero mean and unit standard deviation, it can be shown
2

that u is distributed as x (^-i) with v degrees of freedom; similarly

it can be shown that v is distributed as x with v degrees of
C* Cd

freedom. Since the deviations (x - |Jl
) and (y . - p ) are independent,

i 1 J 2

u and V will be independent and it follows that their normalized ratio

F(v^. v^) =

V (T11 i = l

''-I - I22 j = 1

^ (y» - H-,)'
'j "z

(4)

will be distributed as the Fisher -Snedecor variance ratio.

As a second example, suppose that m + n random variables

x^, . , x ,y,, ...,y. , e..»y are independent and normalml J n
x^j « .

with possibly different mean values fx and p and possibly different
X Ca

3/ \~ Harold Cramer, "Mathematical Methods of Statistics, "

Princeton University Press, 1946, Chapters 18, 29, 36.

2



standard deviations o' and o' . Now define:
X c»

m
u = — ; (x. - x)

O'

1 i = l

( 5 )

n

^ = ~2 Z
•"z j = l

- 1 ) ( 6 )

X =

m
-
TS\ L, \

i = 1

(7)

n

j = l

(8)

3/ 2
It can be shown-* that u is distributed as x with = (m - 1)

degrees of freedom, while v is distributed as x with v = (n - 1)
M Ct

degrees of freedom. Since the deviations (x. - x ) and (y - y ) are
^ j

independent, it follows that u and v are independent and thus their

normalized ratio

(m ~ 1) O'

F(v^. v^) =

(n-1) (T.

m

1 i=l
2/ 2
Si/Ti

n 2,2

Y _ 2 ®2^”'2

i =1

(9)

will be distributed as the Fisher -Snedecor variance ratio. In most

applications the x^ and
y^

are assumed to be from normal populations

with the same standard deviation so that o' = o' . In this case we see
X ^

3



by (9) that F(v ,
v

) is free of the population parameters; in any other
L «

applications the ratio o'- /o' must be assumed to be known.
X ^

Random variables u and v as defined above have the fol-

lowing frequency distribution:

2. 1 ,
2_,(v/2)-1

, 2, 2 ,

f(x )d(x ) = (x /2) exp(-x /2)d(x ) (0 < x < »)
2r(v/2)

(10 )

The simultaneous or joint distribution of the two independent
2

X variables u and v is then:

f(u, v)dudv=
4r(v 72 jVcv "

/2)
(^/^)^^^^^^~V/2/''^^^^~^exp{-(u + v)/2}dudv

1 2

(11)

If we substitute u = v^Fv/v^ and v = v in (11), we obtain:

V
1
+V2-2

V.

v(l+—F)(V /V )’'!/"'
V

f(F, v)dFdv= r./.
'

,

—
jj\ ('v/2) ^ expj-

^
j-dF dv

zr{v^lz)r{v^lz)

(12)

The frequency distribution of F(v , v ) may now be determined by
X M

integration of (12) with respect to v from 0 to 00 ;

n/2
'••l'”2' „(vi/2)-l/,

.

’'1

f(F)dF = 7= p' 1'
'

( 1 + p )
dF

' B(Vj/2, v^/Z) ^ ”2 /
a3)

The significance levels F(v , v
, p) are here defined as

1 2

00

p = C f(F) dF

F(''j, v^, p)

(14)

4



It is the purpose of this paper to present graphs and tables

of these significance levels F(v . v , p) of the random variable
X u

F(Vi, v^) for several values of and ranging from 1 to oo and for

probabilities p from 0. 0001 to 0.9999; p is the probability of observ-»

ing, in random sampling from normal populations with v and v
X u

degrees of freedom, a value of F(v , v )
> F(v , v

, p).
X 4^ X ^

2
The mean fx and variance (t of F(v , v

) are;
F F 1 2

Vi<V2 - 2)^ (v^ - 4)

(v^ > 2) (15)

(v^ > 4) (16)

The tables and graphs give the significance levels F(v ,
v

,
p)’

X u

for a wide range of v , v , and p; the tabulated values are believed
X ^

to be correct to four significant figures throughout, and to five sig-

nificant figures in most cases. In view of the relation

F(v , V , 1 - p) = 1/F(v ,
V

, p) the tables and graphs need only have
u X X ^

been extended from 0. 0001 to 0. 5, but are extended instead to 0.9999

for greater convenience to the reader. Our tables and graphs are

based on the values published by Merrington and Thompson^ for

p = 0. 005, 0. 01, 0. 025, 0. 05, 0.1, 0.25, and 0. 5; new values were

computed for p = 0. 0001 and 0. 001. Our values for p = 0. 001 were

compared with those published by Fisher and Yates and by Pearson

4/— M. Merrington and C. M. Thompson, "Tables of

Percentage Points of the Inverted Beta (F) Distribution, " Biometrika,
vol. 33, pp. 73-88, 1943.

^ R. A. Fisher and F. Yates, "Statistical Tables for Use in

Biological, Agricultural and Medical Research, " 1942, Oliver and
Boyd, Edinburgh.
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and Hartley—* and those values which were significantly different

are listed in Appendix I, Since the relation F(v^, l-p) = l/F(v_, v_, p)
Z 1 1 Z

was used in conjunction with the five significant figure tables of

4/
Merrington and Thompson—* to obtain the values for p = 0. 75, 0. 9,

0.95, 0.975, 0.99, 0.995, some of these values may be accurate,

because of rounding, to only four significant figures.

The distribution of F is one of the most useful now available

in the literature for testing statistical hypotheses concerning data

from normal populations.^^ The only other requirement for the applica-

tion of the F distribution, aside from the assumption that the observa-

tions are from normal populations, is that the individual squared
Z

deviations in the x variables u and v be statistically independent

and that the numbers, and v^, of independent deviations in u and

V, respectively, be known. Some other distributions derivable from

that of F(v ,
V

) are described briefly in following sections of this
X Cd

paper and these illustrate a few of the applications of the F(v , v
)

1 Z

distribution.

Z. Methods of Interpolation

Interpolation within the tables, either v -wise or v -wise
X Cd

may be accomplished by use of the function IZO/v. Thus if F* and F”

are the tabulated values between which the required value F lies, then

F = 5F» + (1 - 6)F” (17)

6/—
' E. S. Pearson and H. O. Hartley, ”Biometrika Tables

for Statisticians, ” vol. I, Cambridge University Press, 1954.

* The F distribution is also useful for testing non-normal data, but

in such cases the conclusions reached are only approximate.
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where

IZO IZO

V « V V ’(v” - v)

Ho IZO v(v« - v»)

v» "
V*

(18)

For p < 0. 5, p-wise interpolation by the following formula should

give at least three figure accuracy:

^ ^ |(p)"^''’'2[a^(p>)^''''^(l + ^F') + a^(p")^^''2(l+ ^ F")] - l| ,

a = -E

2/v2 „„2/v2
—

~y ! > / • ~ (1 "" 3- )•
o „,2 /v2 „,,2/v2 1 o

p> i . p"

(19)

(20 )

For interpolation formulas giving greater accuracy, reference may

be made to a discussion by Hartley in a paper by Thompson.-^ When

V and V are both very large, say greater than IZO, the following
X

approximation is useful:

+ X(p)

3

(21)

In the above X(p) is the standardized normal deviate, i. e.

X(p) = + n/ F(1, 00 , Zp) = t (oo, Zp) for p < 0. 5 and X(p) = - n/F(1, oo, Z

= -t (oo, Z - Zp) for p > 0. 5. The significance levels t(oo, p) are given

later in tables and graphs. The above formula reduces to the Wilson-

Hilferty approximation-^ to p)/v when is allowed to increase

without limit. Appendix II gives a more accurate formula for large

^ Catherine M. Thompson, "Tables of Percentage Points of

the Incomplete Beta -Function, ” Biometrika, vol. 3Z, pp. 151-181j 1941

194Z; see especially the discussion by H. O. Hartley on "Methods of

Interpolation, " pp. 161-167.

^ E. B. Wilson and M. M. Hilferty, "The distribution of
chi-square, ” Proc. Nat. Acad. , vol. 17, p. 694, 1931.

- Zp7

and
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3. The X Distribution

2
The frequency distribution of a x variable is given by (10),

2
The significance levels x p) ^.re here defined as

oo

( 22 )

X (v, p)

These significance levels may be obtained from the significance levels

F(v , CO, p) as follows. If we let v increase without limit in (3), then
1 Z

v/v approaches the constant value 1 and (1) may be expressed
^

. 2
u = v^F(v^, oo); thus we see that the variable u = x ('') is distributed

exactly the same as vF(v, oo) with v = v and v = oo degrees of
jL m

freedom. Tables and graphs are given of the significance levels

2
X (v, p) for several values of v and for probabilities p from 0. 0001

2 2
to 0,9999; P is the probability of observing a value of x ('') ^ X p)

in random sampling from normal populations. For v > 120 we may

determine x^ by means of (21).

4. Student* s t Distribution

_ 2 2 n _ 2 2
If we let u = n(y - fx ) /(r and v = S (y. - y ) /(r , then it

2 2 1 =: 1 1 2
2may be shown that u is distributed independently of v as x with one

degree of freedom and (1) becomes

F(l, n - 1) =

n(y - 1^2^

n

2
n(y -

1^,)
= t = i- (23)

n 1 '^1

i = l

2 , 2_ “ 1
^

If we assume that o', = (t^ = o' and let u = m(x - U, ) /o' , then
1 2

2
' ^1 '

u is distributed independently of v as x with one degree of freedom

and (1) becomes:



F{1, n - 1) = (24)

m( X - (i, )

n

IV, -,2
rrr

i = l

2
Thus we see that the variable t in (23) or in (24) is distributed

exactly like F(l, n - 1). Tables and graphs are also given of the

significance levels t(v, p) = + ^/F (1, v, p) for several values of v

and for probabilities p from 0.0001 to 0.9999; p is the probability

of observing a value of |t
|

> t(v, p) in random sampling from normal

populations. Note that x in (24) is the mean of m observations

(m > 1), independent of the n observations y. used for obtaining the

2 2 ^

estimate, s , of cr and
is

(25 )

Note that t may range from - oo to + oo, positive and negative values

exceeding a given magnitude being equally likely. It follows that

p* [t > t(v, p)] = 0. 5p[ |t| > t(v, p)]

p*[t > -t (v, p)] = 1- 0.5p[ |t| >t(v, p)] (26)

p* [t< -t(v, p)] = 0. 5p[ |t| > t(v, p)]

If we let m = 1, then x = x-, i. e. , a single obseiwation, independent
^ 2

of the n observations y. used for obtaining the estimate s_. Note
1 2

that (23) represents Student's definition of t which provides a test

for the significance of a mean value while the definition (24) makes

possible the prediction of a confidence band for the expected mean

X (measured relative to a proposed mean |i^) of a future set of m
observations (m > 1) based on the prior knowledge of the variance

obtained from a set of n earlier observations from this population.

9



The t distribution may also be used for testing the signifi-

cance of the difference between two sample mean values on the

assurnption that the population variances of the samples of m and n,

2
respectively, have the same value <r « The argument leading to this

application is as follows. Since (x - p ) is a random variable normally
1

2 —
distributed about zero with variance c /m and

( y - p^) is a random
2

variable normally distributed about zero with variance cr /n, it follows

that the difference (x - y - p + p ) is a random variable normally
1 c.

/I 1 \ 2
distributed about zero with variance — + —

)
(t . Thus it follows\m n J

that

u^ =

(x - y -
p^ + p^)

"TTXTXr
V m n y

(27)

2
is distributed as x with one degree of freedom. Since the sum of two

2 2
independent x variables is a x variable with degrees of freedom

equal to the sum of the degrees of freedom of the two variables, it

follows that

v‘ = (m - s
^
+ (n - 1) s^]/o-

is distributed as x with (m + n - 2) degrees of freedom. It can be

shown that vMs statistically independent of u®; thus we conclude

that:

2
F(l, m + n

( X - y -
p^ + p^) (m + n - 2)

[(m -l)s^l + (n -l)s^](^+l)
(29)

is distributed as t with (m + n - 2) degrees of freedom.

The above may be used for testing the significance of the

difference between two mean values on the assumption that the

10



population variances of the samples of m and n, respectively, are the

same. When the population variances may not be assumed to be equal,

reference may be made to papers by Welch and Aspin. ^

Finally, with v* = (n - 1)
~
^2 obtain

the following expression for predicting a confidence band for the

expected mean x of m future observations (m > 1) measured relative

to the observed mean y of n prior observations on the assumption that

the future and prior observations are from the same population:

F(l, n - 1) = t^

s
2 m +

(30)

5. Thompson’s t Distribution

Consider the random variable t

i = l

9/—
' B. L. Welch, "Further Note on Mrs. Aspin's Tables and

on Certain Approximations to the Tabled Function, " Biometrika,
vol. 36, 1949 , pp. 293-296.

^ Alice A. Aspin, "Tables for Use in Comparisons Whose
Accuracy Involves Two Variances, Separately Estimated, " Biometrika,
vol. 36, 1949, pp. 290 -296 .

— B. L. Welch, "Note on some criticisms made by Sir

Ronald Fisher, " Jour, Royal Statistical Society, " B, vol. 18, 297-302,
1956.

11



It may be shownHIB that the random variable

F(l, m - 2) =

Ct

T k(m - 2)

2
,(m - k “ k T )

(m >2) (33)

is distributed as the Fisher -Snedecor variance ratio F with v = 1
1

and V = m - 2 degrees of freedom. This result may be used when

k > 1 for testing the significance of the difference between a mean of

a random sub-group and the general mean. When k = 1, the t distri-

bution may be used for the rejection of outlying observations; other

suitable methods for this purpose are given in reference 6, paragraphs

11, 12, 13 and 14.

2
Solving (33) for t

, we obtain:

2 _ (m - k) F(l, m - 2) _ (m - k)
^ k{m -2 + F(l, m -2)} k{l + (m - 2)/F(l, m - 2)}

(34)

Note that t is distributed about a mean of zero over the finite range

from - <s/(m - k) /k to + ^/(m - k) /k . Since positive and negative

values of t exceeding a given magnitude are equally likely, it follows

that the probability p® of observing a value of t greater than
1/2

± {(m - k) F(l, m - 2, p)/k(m - 2 + F(l, m - 2, p))} is

,
0.5p

P =
1 - 0.5p (35 )

6. Hotelling's Generalized T Distribution

Consider a k dimensional normal distribution and let y ,

= 1 to k and i = 1 to n denote a sample of n independent points in

—^ W. R. Thompson, "On a criterion for the rejection of

observations and the distribution of the ratio of deviation to sample
standard deviation, ” Annals of Math. Stat. , vol. 6, Dec. , 1935,

pp. 214-219.

12



the k dimensional space. Let L = denote the value of the

determinant of the moment matrix describing the sample of n points,

n

^jh ®
j ®h (n - 1) ^(Yji -

yj)(y^i
- y^).

i = l

(36)

ih
Now let m*^ denote the corresponding elements of the reciprocal

2
matrix. Hotelling's invariant form T may now be expressed;

k k

T^ = n ^ ^ (37)

j
= l h=l

where M-.(j = 1 to k) denotes the population mean of the distribution.
J

It may be shown that the variable

F(k, n - k) = T (n - k)/k(n - 1) (n :> k) (38)

is distributed as the Fisher -Snedecor variance ratio F(k, n - k) with

= k and = (n - k) degrees of freedom. For k = 1 this yields

Student's t distribution. For k = 2 we have

T =
n (yi-^)'

1 - r
12

s s
1 2 s.

}

p = |l+
-(n-2)/2

(39)

(40)

and in the limit as n approaches infinity;

p = exp {-T (2, 00 , p)/2} (41 )

Here p is the probability, in random sampling from bivariate
2 2

normal distributions, of observing a value of T > T (2, n - 2, p).

13



In view of the relation (38) it follows that:

p = j 1 +

2F(2, v^, p)

(42 )

or F(2, p) = — {(1/p)

2 /v

1}

and in the limit as v approaches infinity:
Lit

F(2, GO, p) -in(l/p)

Finally we note that the random variable F(2, oo) is Rayleigh

distributed^^ such distributions have played a prominent role in

many physical investigations. Thus, we may identify F(2, oo) with
2 2

the ratio, E /(E ), of the square of the instantaneous Rayleigh distri'
s s

2
buted vector amplitude, E , to the mean square amplitude, (E ), and

s s

find by (44) that

p(E > z) = exp [- / (E^)]
o S

(45)

13/—
' Lord Rayleigh, (a) ’*On the resultant of a large number of

vibrations of the same pitch and of arbitrary phase, ” Phil. Mag.

,

vol. 10, pp. 73-78; August, 1880; and vol. 27, pp. 460-469; June, 1889.

(b) ^Theory of Sound, ” 2nd ed. , par. 42a; MacMillan and Co., Ltd.,

London; 1896. Same edition republished by Dover Publications, Inc. ;

1945. (c) *’On the problem of random vibrations and of random flights

in 1, 2, or 3 dimensions, ” Scientific Papers, Cambridge Univ. Press,
Cambridge, England, vol. 1, p. 491; 1899. (d) Phil. Mag. , vol. 37,

pp. 321-347; April, 1919.

^ K. A. Norton, E. E. Vogler, W. V. Mansfield and P. J.

Short, "The Probability Distribution of the Amplitude of a Constant
Vector Plus a Rayleigh-Distributed Vector, " Proc. IRE, vol. 43,

no. 10, pp. 1354-1361, October, 1955.

14
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Appendix I

Comparison of the values of F(v , v , 0. 001) which differ
X £4

5/from those in the tables of Fisher and Yates— and of Pearson and

Hartley.^

v^, 0.001) F. and Y. P. and H. V. and N

F(2, 60, 0.001) 7. 76 7. 76 7.7678

F{3, 40, 0.001) 6. 60 6. 60 6, 5945

F(3, 120, 0.001) 5.79 5.79 5.7814

F(4, 7, 0.001) 17.19 17. 19 17. 198

F{5, 6, 0.001) 20.81 20.81 20.803

F(6, 5, 0.001) 28.84 28.84 28.834

F(6, 10, 0.001) 9.92 9.92 9.9256

F(8, 5, 0.001) 27.64 27. 64 27. 649

F(8, 8, 0.001) 12.04 12. 04 12.046

F(8, 60, 0.001) 3.87 3.87 3. 8648

F(12, 60, 0.001) 3.31 3.31 3.3153

F(24, 5, 0. 001) 25. 14 25. 14 25. 133

F(24, 6, 0.001) 16.89 16.89 16.897

F(120, 6, 0.001) - - 15.99 15.981

F(120, 120, 0. 001) - .. 1.76 1.7667

15



Appendix II

Formulas for F(v ,
v

, p) for Large v and v

Equation (21) may be used when v and v are both large; it is
^ .2

principally useful, however, only for calculating x p)/'' ii^ the

limiting case of v = oo which is the Wilson-Hilferty approximation.

Table II-2 shows how the values obtained from (21) compare with

our tabulated values for p = 0. 0001, 0. 05, and 0. 5.

8
/

A much more dependable formula for large v and v has
X £4

13/
been developed by Carter;— thus

F(Vi, v^, p) = exp (2z) (45)

where

z = X(p) »s/h + X/h +
- 1 - 1

2 1

’ 5
. ^ 1/1 1

6
‘

3 ( - 1 - l)_

h =
1 1 ’

+
V - 1 V -
2 1

\ = I [x^(p) - 3],

X(p) =
+ t(oo, 2p) ,

- t(oo. 2 - 2p) ,

p < 0. 5

p > 0. 5

The values of the standard normal deviate X(p) and of X are given

for several values of p in Table II-l,

13/—
' A. H. Carter, "Approximation to Percentage Points of

the z-Distribution”, Biometrika, vol. 34, pp. 352-358, 1947®

16



Table n-1

p X(p) X

0. 0001 3. 719016 1.805181

0. 001 3. 090232 1. 091589

0. 005 2. 575829 0.605816

0. 01 2. 326348 0.401982

0. 025 1. 959964 0. 140243

0. 05 1. 644854 -0. 049076

0. 1 1.281552 -0.226271

0.25 0. 674490 -0.424177

0.5 0 -0. 500000

0. 75 -0.674490 -0.424177

0.9 -1. 281552 -0.226271

0.95 -1. 644854 -0. 049076

0.975 -1.959964 0. 140243

0.99 -2. 326348 0.401982

0.995 -2. 575829 0.605816

0.999 -3. 090232 1. 091589

0.9999 -3. 719016 1.805181

We see by Table II-2 that (45) gives at least four significant figure

accuracy when v and v are both greater than 120, and it is

recommended for use in this case.
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Table H-2

F(Vj, v^, p) Tabulated Carter Equation (2 1)

Value F A F A
F(oo, 120, 0. 0001) 1 . 6966 1. 6960 -0. 0006 1. 5686 -0. 1280

F(oo-, 60, 0. 0001) 2. 1821 2. 1797 -0. 0024 1. 8610 -0. 3211

F(oo, 30, 0. 0001) 3.2404 3.2314 -0. 0090 2. 3393 -0. 9011
F(120, 00. 0. 0001) 1. 5527 1. 5522 -0, 0005 1. 5536* +0. 0009
F(120, 120, 0. 0001) 1. 9877 1.9877 0. 0000 1.9192 -0. 0685
F(120, 60, 0. 0001) 2.4405 2.4398 -0. 0007 2. 2250 -0.2155
F(120, 30, 0. 0001) 3.4852 3.4797 -0. 0055 2. 7679 -0. 7173
F(60, oo. 0. 0001) 1. 8250 1. 8234 -0. 0016 1. 8276* +0. 0026
F(60, 120, 0. 0001) 2.2301 2. 2300 -0. 0001 2. 2062 -0. 0239
F(60, 60, 0.0001) 2. 6723 2. 6726 +0. 0003 2. 5430 -0. 1293
F(60, 30, 0. 0001) 3. 7163 3. 7139 -0. 0024 3. 1606 -0. 5557
F(30, 00. 0.0001) 2.2544 2. 2492 -0. 0052 2.2619* 40. 0075
F(30, 120, 0. 0001) 2. 6480 2. 6464 -0. 0016 2. 7027 40. 0547
F(30, 60, 0. 0001) 3. 0894 3. 0902 +0. 0008 3. 1130 40. 0236
F(30, 30, 0. 0001) 4. 1492 4. 1518 40. 0026 3. 1722 -0.9770
F(oo, 120, 0. 05) 1.2539 1.2540 +0. 0001 1. 2341 -0. 0198
F(oo, 60, 0. 05) 1. 3893 1. 3898 +0. 0005 1. 3449 -0. 0444
F(oo, 30, 0. 05) 1. 6223 1. 6243 +0. 0020 1. 5168 -0. 1055
F(120, CO, 0. 05) 1.2214 1.2215 +0. 0001 1. 2214* 0. 0000
F(120, 120, 0.05) 1. 3519 1.3519 0. 0000 1. 3579 40. 0060
F(120, 60, 0. 05) 1.4673 1.4675 +0. 0002 1.4666 -0. 0007
F(120, 30, 0. 05) 1. 6835 1. 6848 TO. 0013 1. 6506 -0. 0329
F(60, 00, 0. 05) 1. 3180 1. 3184 +0. 0004 1. 3180* 0. 0000
F(60, 120, 0. 05) 1.4290 1.4291 +0. 0001 1,4523 40. 0233
F(60, 60, 0. 05) 1. 5343 1. 5343 0. 0000 1 . 5666 40. 0323

F(60, 30, 0. 05) 1. 7396 1. 7404 +0. 0008 1. 7665 40. 0269

F(30, CO, 0. 05) 1.4591 1.4601 +0. 0010 1.4589* -0. 0002

F(30, 120, 0. 05) 1. 5543 1. 5547 +0. 0004 1. 6045 40. 0502
F(30, 60, 0. 05) 1. 6491 1. 6492 -fO. 0001 1. 7343 40. 0852
F(30, 30, 0. 05) 1. 8409 1. 8411 +0. 0002 1. 7609 -0. 0800
F(oo, 120, 0. 5) 1. 0056 1. 0056 0. 0000 1. 0056 0. 0000
F(oo, 60, 0. 5) 1. 0112 1. 0112 0. 0000 1. 0112 0. 0000
F(oo, 30, 0. 5) 1. 0226 1. 0224 -0. 0002 1. 0224 -0. 0002
F(120, 00, 0. 5) 0,99445 0.99446 +0. 00001 0.99445* 0.00000
F(120, 120, 0. 5) 1. 0000 1. 0000 0. 00000' 1. 0000 0. 00000
F(120, 60, 0. 5) 1. 0056 1. 0056 0. 0000 1. 0056 0. 0000
F(120, 30, 0. 5) 1. 0170 1. 0168 -0. 0002 1. 0168 -0. 0002

F(60, CO, 0. 5) 0.98891 0. 98895 fO. 00004 0.98893'"40. 00002
F(60, 120, 0. 5) 0.99443 0.99446 +0. 00003 0.99445 40. 00002
F(60, 60, 0, 5) 1. 0000 1. 0000 0. 00000 1. 0000 0. 00000
F(60, 30, 0. 5) 1. 0113 1. 0111 -0. 0002 1. 0112 -0. 0001

F(30, 00, 0. 5) 0.97787 0.97805 +0. 00018 0.97794'"40. 00007
F(30, 120, 0. 5) 0.98333 0.98350 +0. 00017 0.98343 40. 00010
F(30, 60, 0. 5) 0.98884 0.98897 +0. 00013 0.98893 40. 00009
F(30, 30, 0. 5) 1 . 0000 1. 0000 0. 00000 1. 0000 0, 00000

These values also represent the Wilson-Hilferty^ approximation
2
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Interpolation

should

be

carried

out

using

the

reciprocals

of

the

degrees

of

freedom;

the

function

120/v

is

convenient

for

this

purpose.

Fisher's

variance

ratio

F(Vj,

v^)

>

F{v^,

v^,

p)

with

probabiUty

p.

F(v^,

v^)

=

{u/v^}/

{v/v^}

where

u

and

v

are

random

variables

independently

distributed

as

with

and

degrees

of

freedom,

respectively.

In

particular

s^

/s^

is

dis-

tributed

as

F(v^,

v^)

where

s^

and

s|

are

independent

mean

squares

from

normally

distributed

populations

estimating

a

common

variance

<r

and

based

on

and

degrees

of

freedom,

respec-

tively.

The

numbers

in

parentheses

indicate

the

power

of

ten

by

which

the

number

following

is

to

be

multiplied,

e.g.

,

(-1)

1.

2345

=

0.12345.
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=
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and
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of
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respec-

tively.

The

numbers

in

parentheses

indicate

the
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of
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by

which
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following

is

to

be

multiplied,

e.

g.

,

(
-1)

1.

2345

=

0.

12345.
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rhe scope of the scientific program of the National Bureau of Standards at laboratory

centers in Washington, D. C., and Boulder, Colorado, is given in the following outline:

Washington, D.C.

Electricity and Electronics. Resistance and Reactance. Electron Tubes. Electrical Instruments.

Magnetic Measurements. Dielectrics. Engineering Electronics. Electronic Instrumentation.

Electrochemistry.

Optics and Metrology. Photometry and Colorimetry. Optical Instruments. Photographic

Fechnology. Length. Engineering Metrology.

Heat and Power. Temperature Physics. Thermodynamics. Cryogenic Physics. Rheology and

Lubrication. Engine Fuels.

Atomic and Radiation Physics. Spectroscopy. Radiometry. Mass Spectrometry. Solid State

Physics. Electron Physics. Atomic Physics. Nuclear Physics. Radioactivity. X-rays. Betatron.

Nucleonic Instrumentation. Radiological Equipment. AEC Radiation Instruments.

Chemistry. Organic Coatings. Surface Chemistry. Organic Chemistry. Analytical Chemistry.

Inorganic Chemistry. Electrodeposition. Gas Chemistry. Physical Chemistry. Thermo-

chemistry. Spectrochemistry. Pure Substances.

Mechanics. Sound. Mechanical Instruments. Fluid Mechanics. Engineering Mechanics.

Mass and Scale. Capacity, Density, and Fluid Meters. Combustion Controls.

Organic and Fibrous Materials. Rubber. Textiles. Paper. Leather. Testing and Specifica-

tions. Polymer Structure. Organic Plastics. Dental Research.

Metallurgy. Thermal Metallurgy. Chemical Metallurgy. Mechanical Metallurgy. Corrosion.

Metal Physics.

Mineral Products. Engineering Ceramics. Glass. Refractories. Enameled Metals. Concreting

Materials. Constitution and Microstructure.

Building Technology. Structural Engineering. Fire Protection. Air Conditioning. Heating, and

Refrigeration. Floor, Roof, and Wall Coverings. Codes and Specifications. Heat Transfer.

Applied Mathematics. Numerical Analysis. Computation. Statistical Engineering. Mathemat-

ical Physics.

Data Processing Systems. SEAC Engineering Group; Components and Techniques. Digital

Circuitry. Digital Systems. Analogue Systems. Application Engineering.
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Cryogenic Engineering. Cryogenic Equipment. Cryogenic Processes. Properties of Materials.

Gas Liquefaction.

Radio Propagation Physics. Upper Atmosphere Research. Ionospheric Research. Regular

Propagation Services. Sun-Earth Relationships.

Radio Propagation Engineering. Data Reduction Instrumentation. Modulation Systems. Navi-

gation Systems. Radio Noise. Tropospheric Measurements. Tropospheric Analysis. Radio

Systems Application Engineering.

Radio Standards. High Frequency Electrical Standards. Radio Broadcast Service. High Fre-

quency Impedance Standards. Calibration Center. Microwave Physics. Microwave Circuit

Standards.




