

GRAPHS AND TABLES OF THE SIGNIFICANCE LEVELS $F\left(v_{1}, v_{2}, p\right)$ FOR THE FISHER-SNEDECOR VARIANCE RATIO
by
Lewis E. Vogler and Kenneth A. Norton

U. S. DEPARTMENT OF COMMERCE NATIONAL BUREAU OF STANDARDS

THE NATIONAL BUREAU OF STANDARDS

Functions and Activities

The functions of the National Bureat of Standards are set forth in the Act of Congress, March 3, 1901, as amended by Congress in Public Law 619, 1950. These include the development and maintenance of the national standards of measurement and the provision of means and methods for making measurements consistent with these standards: the detemination of physical constants and properties of materials: the development of methods and instruments for testing materials, devices, and structures: advisory services to Government Agencies on scientific and technical problems; invention and development of devices to serve special needs of the Government; and the development of standard practices, codes and specifications. The work includes basic and applied research, development, engineering, instrumentation, testing, evaluation, calibration services, and various consultation and information services. A major portion of the Bureau's work is performed for other Government Agencies, particularly the Department of Defense and the Atomic Energy Commission. The scope of activities is suggested by the listing of divisions and sections on the inside back cover.

Reports and Publications

The results of the Burean's work take the form of either actual equipment and devices or published papers and reports. Reports are issued to the sponsoring agency of a particular project or program. Published papers appear either in the Bureau's ow'rn series of publications or in the journals of professional and scientific societies. The Bureau itself publishes three monthly periodicals, available from the Government Printing Office: The Journal of Research, which presents complete papers reporting technical investigations; the Technical New's Bulletin, which presents summary and preliminary reports on work in progress; and Basic Radio Propagation Predictions, which provides data for determining the best frequencies to use for radio communications throughout the world. There are also five series of nonperiodical publications: The Applied Mathematics Series, Circulars, Handbooks, Building Materials and Structures Reports, and Miscellaneous Publications.

NATIONAL BUREAU OF STANDARDS REPORT
 NBS PROJECT
 NBS REPORT
 8300-00-9083
 December 12, 1957
 5069

GRAPHS AND TABLES OF THE SIGNIFICANCE LEVELS $F\left(\nu_{1} ; v_{2}, p\right)$

 FOR THE FISHER-SNEDECOR VARIANCE RATIO
by

Lewis E. Vogler and Kenneth A. Norton

NATIONAL BUREAU OF STANI ments intended for use within tl is subjected to additional evalua tion, or open-literature listing o mission is obtained in writing frol 25, D. C. Such permission is nc been specifically prepared if tha

Approved for public release by the director of the National Institute of Standards and Technology (NIST) on October 9, 2015
gress accounting docus formally published it n, reprinting, reproducouthorized unless perStandards, Washington ir which the Report has for its own use.

GRAPHS AND TABLES OF THE SIGNIFICANCE LEVELS $F\left(v_{1}, v_{2}, p\right)$

 FOR THE FISHER-SNEDECOR VARIANCE RATIO
by

Lewis E. Vogler and Kenneth A. Norton

1. Definition of the Fisher-Snedecor Variance Ratio $F\left(v_{1}, v_{2}\right)$

The Fisher-Snedecor $1 / 2 /$ variance ratio is the ratio of two independent variables each distributed as χ^{2} and normalized by their corresponding numbers of degrees of freedom. Thus, let u be a random variable distributed as $\chi^{2}\left(\nu_{1}\right)$ with v_{1} degrees of freedom, while v is another random variable distributed independently of u as $x^{2}\left(v_{2}\right)$ with v_{2} degrees of freedom. The ratio

$$
\begin{equation*}
F\left(v_{1}, v_{2}\right) \equiv \frac{u / v_{1}}{v / v_{2}} \tag{1}
\end{equation*}
$$

is, by definition, the Fisher-Snedecor variance ratio.
As a first example suppose that the $\nu_{1}+v_{2}$ random variables $x_{1}, \ldots, x_{i}, \ldots, x_{\nu_{1}}, y_{1}, \ldots, y_{j}, \ldots, y_{\nu_{2}}$ are independent and normal with population means μ_{1} and μ_{2}, respectively, and with standard deviations σ_{1} and σ_{2}, respectively. Now define:

[^0]\[

$$
\begin{align*}
& u=\frac{1}{\sigma_{1}^{2}} \sum_{i=1}^{v_{1}}\left(x_{i}-\mu_{1}\right)^{2} \tag{2}\\
& v=\frac{1}{\sigma_{2}^{2}} \sum_{j=1}^{v_{2}}\left(y_{j}-\mu_{2}\right)^{2} \tag{3}
\end{align*}
$$
\]

Since the ν_{1} normalized deviations $\left(x_{i}-\mu_{1}\right) / \sigma_{1}$ are independent and normal with zero mean and unit standard deviation, it can be shown $3 /$ that u is distributed as $\chi^{2}\left(v_{1}\right)$ with v_{1} degrees of freedom; similarly it can be shown that v is distributed as $\chi^{2}\left(\nu_{2}\right)$ with ν_{2} degrees of freedom. Since the deviations $\left(x_{i}-\mu_{1}\right)$ and $\left(y_{j}-\mu_{2}\right)$ are independent, u and v will be independent and it follows that their normalized ratio

$$
F\left(v_{1}, v_{2}\right)=\frac{\frac{1}{v_{1} \sigma_{1}^{2}} \sum_{i=1}^{v_{1}}\left(x_{i}-\mu_{1}\right)^{2}}{\frac{1}{v_{2} \sigma_{2}^{2}} \sum_{j=1}^{v_{2}}\left(y_{j}-\mu_{2}\right)^{2}}
$$

will be distributed as the Fisher-Snedecor variance ratio.
As a second example, suppose that $m+n$ random variables $x_{1}, \ldots, x_{i}, \ldots, x_{m}, y_{l}, \ldots, y_{j}, \ldots, y_{n}$ are independent and normal with possibly different mean values μ_{1} and μ_{2} and possibly different

3/ Harold Cramèr, "Mathematical Methods of Statistics," Princeton University Press, 1946, Chapters 18, 29, 36.
standard deviations σ_{1} and σ_{2}. Now define:

$$
\begin{gather*}
u=\frac{1}{\sigma_{1}^{2}} \sum_{i=1}^{m}\left(x_{i}-\bar{x}\right)^{2} \tag{5}\\
v=\frac{1}{\sigma_{2}^{2}} \sum_{j=1}^{n}\left(y_{j}-\bar{y}\right)^{2} \tag{6}\\
\bar{x}=\frac{1}{m} \sum_{i=1}^{m} \dot{x}_{i} \tag{7}\\
\bar{y}=\frac{1}{n} \sum_{j=1}^{n} y_{j}
\end{gather*}
$$

It can be shown $3 /$ that u is distributed as $\chi^{2}\left(v_{1}\right)$ with $v_{1}=(m-1)$ degrees of freedom, while v is distributed as $\chi^{2}\left(v_{2}\right)$ with $v_{2}=(n-1)$ degrees of freedom. Since the deviations $\left(x_{i}-\bar{x}\right)$ and $\left(y_{j}-\bar{y}\right)$ are independent, it follows that u and v are independent and thus their normalized ratio

$$
\begin{equation*}
F\left(v_{1}, v_{2}\right)=\frac{\frac{1}{(m-1) \sigma_{1}^{2}} \sum_{i=1}^{m}\left(x_{i}-\bar{x}\right)^{2}}{\frac{1}{(n-1) \sigma_{2}^{2}} \sum_{j=1}^{n}\left(y_{j}-\bar{y}\right)^{2}} \equiv \frac{s_{1}^{2} / \sigma_{1}^{2}}{s_{2}^{2} / \sigma_{2}^{2}} \tag{9}
\end{equation*}
$$

will be distributed as the Fisher-Snedecor variance ratio. In most applications the x_{i} and y_{j} are assumed to be from normal populations with the same standard deviation so that $\sigma_{1}=\sigma_{2}$. In this case we see
by (9) that $F\left(v_{1}, v_{2}\right)$ is free of the population parameters; in any other applications the ratio σ_{1} / σ_{2} must be assumed to be known.

Random variables u and v as defined above have the following x^{2} frequency distribution:
$f\left(x^{2}\right) d\left(x^{2}\right)=\frac{1}{2 \Gamma(v / 2)}\left(x^{2} / 2\right)^{(v / 2)-1} \exp \left(-x^{2} / 2\right) d\left(x^{2}\right) \quad\left(0 \leq x^{2}<\infty\right)$

The simultaneous or joint distribution of the two independent χ^{2} variables u and v is then:
$f(u, v) d u d v=\frac{1}{4 \Gamma\left(v_{1} / 2\right) \Gamma\left(v_{2} / 2\right)}(u / 2)^{\left(v_{1} / 2\right)-1}(v / 2)^{(v 2 / 2)-1} \exp \{-(u+v) / 2\} d u d v$

If we substitute $u=v_{1} F v / v_{2}$ and $v=v$ in (11), we obtain:
$f(F, v) d F d v=\frac{\left(v_{1} / v_{2}\right)^{v_{1} / 2} F^{\left(\nu_{1} / 2\right)-1}}{2 \Gamma\left(v_{1} / 2\right) \Gamma\left(v_{2} / 2\right)}(v / 2) \frac{v_{1}+v_{2}-2}{2} \exp \left\{-\frac{v\left(1+\frac{v_{1}}{v_{2}} F\right)}{2}\right\} d F d v$

The frequency distribution of $F\left(v_{1}, v_{2}\right)$ may now be determined by integration of (12) with respect to v from 0 to ∞ :
$f(F) d F=\frac{\left(v_{1} / \nu_{2}\right)^{\nu_{1} / 2}}{B\left(v_{1} / 2, v_{2} / 2\right)} F^{\left(v_{1} / 2\right)-1}\left(1+\frac{\nu_{1}}{v_{2}} F\right)^{-\left(\nu_{1}+\nu_{2}\right) / 2} d F$
The significance levels $F\left(v_{1}, v_{2}, p\right)$ are here defined as

$$
\begin{equation*}
p=\int_{F\left(v_{1}, v_{2}, p\right)}^{\infty} f(F) d F \tag{14}
\end{equation*}
$$

It is the purpose of this paper to present graphs and tables of these significance levels $F\left(v_{1}, v_{2}, \mathrm{p}\right)$ of the random variable $F\left(v_{1}, v_{2}\right)$ for several values of v_{1} and v_{2} ranging from 1 to ∞ and for probabilities p from 0.0001 to $0.9999 ; p$ is the probability of observing, in random sampling from normal populations with ν_{1} and ν_{2} degrees of freedom, a value of $F\left(v_{1}, v_{2}\right)>F\left(v_{1}, v_{2}, p\right)$.

The mean μ_{F} and variance σ_{F}^{2} of $F\left(v_{1}, v_{2}\right)$ are:

$$
\begin{array}{ll}
\mu_{F}=\frac{v_{2}}{v_{2}-2} & \left(v_{2}>2\right) \\
\sigma_{F}^{2}=\frac{2 v_{2}^{2}\left(v_{1}+v_{2}-2\right)}{v_{1}\left(v_{2}-2\right)^{2}\left(v_{2}-4\right)} & \left(v_{2}>4\right) \tag{16}
\end{array}
$$

The tables and graphs give the significance levels $F\left(v_{1}, v_{2}, p\right)$ for a wide range of v_{1}, v_{2}, and p; the tabulated values are believed to be correct to four significant figures throughout, and to five significant figures in most cases. In view of the relation $F\left(v_{2}, v_{1}, 1-p\right)=1 / F\left(\nu_{1}, v_{2}, p\right)$ the tables and graphs need only have been extended from 0.0001 to 0.5 , but are extended instead to 0.9999 for greater convenience to the reader. Our tables and graphs are based on the values published by Merrington and Thompson 4 for $p=0.005,0.01,0.025,0.05,0.1,0.25$, and 0.5 ; new values were computed for $p=0.0001$ and 0.001 . Our values for $p=0.001$ were compared with those published by Fisher and Yates $\frac{5}{\sqrt{\prime}}$ and by Pearson

[^1]and Hartley 6/ and those values which were significantly different are listed in Appendix I. Since the relation $F\left(v_{2}, v_{1}, 1-p\right)=1 / F\left(v_{1}, v_{2}, p\right)$ was used in conjunction with the five significant figure tables of Merrington and Thompson $\sqrt[4]{ }$ to obtain the values for $p=0.75,0.9$, $0.95,0.975,0.99,0.995$, some of these values may be accurate, because of rounding, to only four significant figures.

The distribution of F is one of the most useful now available in the literature for testing statistical hypotheses concerning data from normal populations.* The only other requirement for the application of the F distribution, aside from the assumption that the observations are from normal populations, is that the individual squared deviations in the χ^{2} variables u and v be statistically independent and that the numbers, v_{1} and ν_{2}, of independent deviations in u and v , respectively, be known. Some other distributions derivable from that of $F\left(v_{1}, v_{2}\right)$ are described briefly in following sections of this paper and these illustrate a few of the applications of the $F\left(v_{1}, v_{2}\right)$ distribution.

2. Methods of Interpolation

Interpolation within the tables, either v_{1}-wise or v_{2}-wise may be accomplished by use of the function $120 / \nu$. Thus if F^{\prime} and $F^{\prime \prime}$ are the tabulated values between which the required value F lies, then

$$
\begin{equation*}
F=\delta F^{\prime}+(1-\delta) F^{\prime \prime} \tag{17}
\end{equation*}
$$

6
E. S. Pearson and H. O. Hartley, "Biometrika Tables for Statisticians, " vol. I, Cambridge University Press, 1954.

* The F distribution is also useful for testing non-normal data, but in such cases the conclusions reached are only approximate.
where

$$
\begin{equation*}
\delta=\frac{\frac{120}{v^{\prime \prime}}-\frac{120}{v}}{\frac{120}{v^{\prime \prime}}-\frac{120}{v^{\prime}}}=\frac{v^{\prime}\left(v^{\prime \prime}-v\right)}{v\left(v^{\prime \prime}-v^{\prime}\right)} \tag{18}
\end{equation*}
$$

For $p<0.5, p-w i s e ~ i n t e r p o l a t i o n ~ b y ~ t h e ~ f o l l o w i n g ~ f o r m u l a ~ s h o u l d ~$ give at least three figure accuracy:

$$
\begin{equation*}
F=\frac{v_{2}}{v_{1}}\left\{(p)^{-2 / v_{2}}\left[a_{0}\left(p^{\prime}\right)^{2 / v_{2}}\left(1+\frac{v_{1}}{v_{2}} F^{\prime}\right)+a_{1}\left(p^{\prime \prime}\right)^{2 / v_{2}}\left(1+\frac{v_{1}}{v_{2}} F^{\prime \prime}\right)\right]-1\right\} . \tag{19}
\end{equation*}
$$

$$
\begin{equation*}
a_{o}=\frac{p^{2 / v_{2}}-p^{n^{2 / v}} 2}{p^{\prime 2 / v_{2}}-p^{\prime \prime 2 / v_{2}}}, a_{1}=\left(1-a_{o}\right) \tag{20}
\end{equation*}
$$

For interpolation formulas giving greater accuracy, reference may be made to a discussion by Hartley in a paper by Thompson. 7/ When v_{1} and v_{2} are both very large, say greater than 120 , the following approximation is useful:
$F\left(v_{1}, v_{2}, \mathrm{p}\right) \cong\left\{1-\frac{2}{9 v_{1}}+\frac{2}{9 v_{2}}+\mathrm{X}(\mathrm{p}) \sqrt{\frac{2}{9 v_{1}}+\frac{2}{9 v_{2}}+\frac{8}{v_{1} v_{2}}}\right\}^{3}$
In the above $\mathrm{X}(\mathrm{p})$ is the standardized normal deviate, i.e. $X(p)=+\sqrt{F(1, \infty, 2 p)}=t(\infty, 2 p)$ for $p<0.5$ and $X(p)=-\sqrt{F(1, \infty, 2-2 p)}$ $=-t(\infty, 2-2 p)$ for $p>0.5$. The significance levels $t(\infty, p)$ are given later in tables and graphs. The above formula reduces to the WilsonHilferty approximation $\frac{8 /}{}$ to $x^{2}(\nu, p) / v$ when v_{2} is allowed to increase without limit. Appendix II gives a more accurate formula for large v_{1} and v_{2}.

7/ Catherine M. Thompson, "Tables of Percentage Points of the Incomplete Beta-Function, " Biometrika, vol. 32, pp. 151-181; 19411942; see especially the discussion by H. O. Hartley on "Methods of Interpolation, " pp. 161-167.

8 E. B. Wilson and M. M. Hilferty, "The distribution of chi-square," Proc. Nat. Acad., vol. 17, p. 694, 1931.
3. The χ^{2} Distribution

The frequency distribution of a x^{2} variable is given by (10). The significance levels $\chi^{2}(v, p)$ are here defined as

$$
\begin{equation*}
p=\int_{x^{2}(v, p)}^{\infty} f\left(x^{2}\right) d x^{2} \tag{22}
\end{equation*}
$$

These significance levels may be obtained from the significance levels $F\left(\nu_{1}, \infty, p\right)$ as follows. If we let ν_{2} increase without limit in (3), then v / ν_{2} approaches the constant value 1 and (1) may be expressed $u=v_{1} F\left(v_{1}, \infty\right)$; thus we see that the variable $u \equiv \chi^{2}(v)$ is distributed exactly the same as $v F(\nu, \infty)$ with $v_{1}=v$ and $v_{2}=\infty$ degrees of freedom. Tables and graphs are given of the significance levels $\chi^{2}(\nu, p)$ for several values of v and for probabilities p from 0.0001 to 0.9999 ; p is the probability of observing a value of $\chi^{2}(v)>\chi^{2}(\nu, p)$ in random sampling from normal populations. For $v>120$ we may determine χ^{2} by means of (21).

4. Student's t Distribution

If we let $u=n\left(\bar{y}-\mu_{2}\right)^{2} / \sigma_{2}^{2}$ and $v=\sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)^{2} / \sigma_{2}^{2}$, then it may be shown that u is distributed independently of v as χ^{2} with one degree of freedom and (1) becomes

$$
\begin{equation*}
F(1, n-1)=\frac{n\left(\bar{y}-\mu_{2}\right)^{2}}{\frac{1}{n-1} \sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)^{2}} \equiv t^{2} \equiv \frac{n\left(\bar{y}-\mu_{2}\right)^{2}}{s_{2}^{2}} \tag{23}
\end{equation*}
$$

If we assume that $\sigma_{1}=\sigma_{2}=\sigma$ and let $u=m\left(\bar{x}-\mu_{1}\right)^{2} / \sigma^{2}$, then u is distributed independently of v as χ^{2} with one degree of freedom and (1) becomes:

$$
\begin{equation*}
F(1, n-1)=\frac{m\left(\bar{x}-\mu_{1}\right)^{2}}{\frac{1}{n-1} \sum_{\left(y_{i}-\bar{y}\right)^{2}}^{n} \equiv t^{2} \equiv \frac{m\left(\bar{x}-\mu_{1}\right)^{2}}{s_{2}^{2}}} \tag{24}
\end{equation*}
$$

Thus we see that the variable t^{2} in (23) or in (24) is distributed exactly like $F(1, n-1)$. Tables and graphs are also given of the significance levels $t(\nu, p) \equiv+\sqrt{F(1, v, p)}$ for several values of v and for probabilities p from 0.0001 to $0.9999 ; \mathrm{p}$ is the probability of observing a value of $|t|>t(\nu, p)$ in random sampling from normal populations. Note that \bar{x} in (24) is the mean of m observations ($m \geq 1$), independent of the n observations y_{i} used for obtaining the estimate, s_{2}^{2}, of σ^{2} and

$$
\begin{equation*}
t \equiv \frac{\sqrt{m}\left(\bar{x}-\mu_{1}\right)}{s_{2}} \tag{25}
\end{equation*}
$$

Note that t may range from $-\infty$ to $+\infty$, positive and negative values exceeding a given magnitude being equally likely. It follows that

$$
\begin{align*}
& \mathrm{p}^{\prime}[\mathrm{t}>\mathrm{t}(v, \mathrm{p})]=0.5 \mathrm{p}[|\mathrm{t}|>\mathrm{t}(v, \mathrm{p})] \\
& \mathrm{p}^{\prime}[\mathrm{t}>-\mathrm{t}(v, \mathrm{p})]=1-0.5 \mathrm{p}[|\mathrm{t}|>\mathrm{t}(v, \mathrm{p})] \tag{26}\\
& \mathrm{p}^{\prime}[\mathrm{t}<-\mathrm{t}(v, \mathrm{p})]=0.5 \mathrm{p}[|\mathrm{t}|>\mathrm{t}(v, \mathrm{p})]
\end{align*}
$$

If we let $m=1$, then $\bar{x}=x_{1}$, i. e., a single observation, independent of the n observations y_{i} used for obtaining the estimate s_{2}^{2}. Note that (23) represents Student's definition of t which provides a test for the significance of a mean value while the definition (24) makes possible the prediction of a confidence band for the expected mean \bar{x} (measured relative to a proposed mean μ_{1}) of a future set of m observations ($m \geq 1$) based on the prior knowledge of the variance obtained from a set of n earlier observations from this population.

The t distribution may also be used for testing the significance of the difference between two sample mean values on the assumption that the population variances of the samples of m and n, respectively, have the same value σ^{2}. The argument leading to this application is as follows. Since $\left(\bar{x}-\mu_{1}\right)$ is a random variable normally distributed about zero with variance σ^{2} / m and $\left(\bar{y}-\mu_{2}\right)$ is a random variable normally distributed about zero with variance σ^{2} / n, it follows that the difference ($\bar{x}-\bar{y}-\mu_{1}+\mu_{2}$) is a random variable normally distributed about zero with variance $\left(\frac{1}{m}+\frac{1}{n}\right) \sigma^{2}$. Thus it follows that

$$
\begin{equation*}
u^{\prime}=\frac{\left(\bar{x}-\bar{y}-\mu_{1}+\mu_{2}\right)^{2}}{\sigma^{2}\left(\frac{1}{m}+\frac{1}{n}\right)} \tag{27}
\end{equation*}
$$

is distributed as x^{2} with one degree of freedom. Since the sum of two independent χ^{2} variables is a χ^{2} variable with digrees of freedom equal to the sum of the degrees of freedom of the two variables, it follows that

$$
\begin{equation*}
v^{\prime}=\left[(m-1) s_{1}^{2}+(n-1) s_{2}^{2}\right] / \sigma^{2} \tag{28}
\end{equation*}
$$

is distributed as χ^{2} with ($m+n-2$) degrees of freedom. It can be shown $3 /$ that v^{\prime} is statistically independent of u^{\prime}; thus we conclude that:

$$
\begin{equation*}
F(1, m+n-2)=t^{2}=\frac{\left(\bar{x}-\bar{y}-\mu_{1}+\mu_{2}\right)^{2}(m+n-2)}{\left[(m-1) s_{1}^{2}+(n-1) s_{2}^{2}\right]\left(\frac{1}{m}+\frac{1}{n}\right)} \tag{29}
\end{equation*}
$$

is distributed as t^{2} with $(m+n-2)$ degrees of freedom.
The above may be used for testing the significance of the difference between two mean values on the assumption that the
population variances of the samples of m and n, respectively, are the same. When the population variances may not be assumed to be equal, reference may be made to papers by Welch and Aspin. $9 / 10 / 11 /$

Finally, with $v^{\prime}=(n-1) s_{2}^{2} / \sigma^{2}$ and $\mu_{1}=\mu_{2}$ in (27), we obtain the following expression for predicting a confidence band for the expected mean \bar{x} of m future observations ($m \geq 1$) measured relative to the observed mean \bar{y} of n prior observations on the assumption that the future and prior observations are from the same population:

$$
\begin{equation*}
F(1, n-1)=t^{2}=\frac{(\bar{x}-\bar{y})^{2}}{s_{2}^{2}\left(\frac{1}{m}+\frac{1}{n}\right)} \tag{30}
\end{equation*}
$$

5. Thompson's T Distribution

Consider the random variable T

$$
\begin{equation*}
T=\frac{\bar{x}_{k}-\bar{x}}{\left\{\frac{1}{m} \sum_{i=1}^{m}\left(x_{i}-\bar{x}\right)^{2}\right\}^{1 / 2}} \tag{31}
\end{equation*}
$$

$$
\begin{equation*}
\bar{x}_{k}=\frac{1}{k} \sum_{i=1}^{k} x_{i} \tag{32}
\end{equation*}
$$

$$
(1 \leq \mathrm{k}<\mathrm{m})
$$

9 B. L. Welch, "Further Note on Mrs. Aspin's Tables and on Certain Approximations to the Tabled Function, " Biometrika, vol. 36, 1949, pp. 293-296.

10
Alice A. Aspin, "Tables for Use in Comparisons Whose Accuracy Involves Two Variances, Separately Estimated, " Biometrika, vol. 36, 1949, pp. 290-296.
11. B. L. Welch, "Note on some criticisms made by Sir Ronald Fisher, " Jour. Royal Statistical Society," B, vol. 18, 297-302, 1956.

It may be shown $3 / 12 /$ that the random variable

$$
\begin{equation*}
F(1, m-2)=\frac{T^{2} k(m-2)}{\left(m-k-k r^{2}\right)} \quad(m>2) \tag{33}
\end{equation*}
$$

is distributed as the Fisher-Snedecor variance ratio F with $v_{1}=1$ and $v_{2}=m-2$ degrees of freedom. This result may be used when $k>1$ for testing the significance of the difference between a mean of a random sub-group and the general mean. When $k=1$, the T distribution may be used for the rejection of outlying observations; other suitable methods for this purpose are given in reference 6, paragraphs $11,12,13$ and 14.

Solving (33) for T^{2}, we obtain:

$$
\begin{equation*}
T^{2}=\frac{(m-k) F(1, m-2)}{k\{m-2+F(1, m-2)\}}=\frac{(m-k)}{k\{1+(m-2) / F(1, m-2)\}} \tag{34}
\end{equation*}
$$

Note that T is distributed about a mean of zero over the finite range from $-\sqrt{(m-k) / k}$ to $+\sqrt{(m-k) / k}$. Since positive and negative values of τ exceeding a given magnitude are equally likely, it follows that the probability p^{p} of observing a value of T greater than $\pm\{(m-k) F(1, m-2, p) / k(m-2+F(1, m-2, p))\}^{1 / 2}$ is

$$
p^{\prime}=\begin{align*}
& 0.5 p \tag{35}\\
& 1-0.5 p
\end{align*}
$$

6. Hotelling's Generalized T Distribution

Consider a k dimensional normal distribution and let $y_{j i}{ }^{\circ}$ $j=1$ to k and $i=1$ to n denote a sample of n independent points in

12 W. R. Thompson, "On a criterion for the rejection of observations and the distribution of the ratio of deviation to sample standard deviation, " Annals of Math. Stat., vol. 6, Dec., 1935, pp. 214-219.
the k dimensional space. Let $L=\left|m_{j h}\right|$ denote the value of the determinant of the moment matrix describing the sample of n points.

$$
\begin{equation*}
m_{j h}=r_{j h} s_{j} s_{h} \equiv \frac{1}{(n-1)} \sum_{i=1}^{n}\left(y_{j i}-\bar{y}_{j}\right)\left(y_{h i}-\bar{y}_{h}\right) . \tag{36}
\end{equation*}
$$

Now let $\mathrm{m}^{\text {jh }}$ denote the corresponding elements of the reciprocal matrix. Hotelling's invariant form T^{2} may now be expressed:

$$
\begin{equation*}
T^{2}=n \sum_{j=1}^{k} \sum_{h=1}^{k} m^{j h}\left(\bar{y}_{j}-\mu_{j}\right)\left(\bar{y}_{h}-\mu_{h}\right) \tag{37}
\end{equation*}
$$

where $\mu_{j}(\mathrm{j}=1$ to k$)$ denotes the population mean of the distribution.
It may be shown $\sqrt[3]{ }$ that the variable

$$
\begin{equation*}
F(k, n-k)=T^{2}(n-k) / k(n-1) \quad(n>k) \tag{38}
\end{equation*}
$$

is distributed as the Fisher-Snedecor variance ratio $F(k, n-k)$ with $v_{1}=k$ and $v_{2}=(n-k)$ degrees of freedom. For $k=1$ this yields Student's t distribution. For $k=2$ we have

$$
\begin{equation*}
T^{2}=\frac{n}{1-r_{12}^{2}}\left\{\frac{\left(\bar{y}_{1}-\mu_{1}\right)^{2}}{s_{1}^{2}}-\frac{2 r_{12}\left(\bar{y}_{1}-\mu_{1}\right)\left(\bar{y}_{2}-\mu_{2}\right)}{s_{1} s_{2}}+\frac{\left(\bar{y}_{2}-\mu_{2}\right)^{2}}{s_{2}^{2}}\right\} \tag{39}
\end{equation*}
$$

$$
\begin{equation*}
p=\left\{1+\frac{T^{2}(2, n-2, p)}{n-1}\right\}^{-(n-2) / 2} \tag{40}
\end{equation*}
$$

and in the limit as n approaches infinity:

$$
\begin{equation*}
p=\exp \left\{-T^{2}(2, \infty, p) / 2\right\} \tag{41}
\end{equation*}
$$

Here p is the probability, in random sampling from bivariate normal distributions, of observing a value of $T^{2}>T^{2}(2, n-2, p)$.

In view of the relation (38) it follows that:

$$
\begin{align*}
& p=\left\{1+\frac{2 F\left(2, v_{2}, p\right)}{v_{2}}\right\}^{-v_{2} / 2} \tag{42}\\
& F\left(2, v_{2}, p\right)=\frac{v_{2}}{2}\left\{(1 / p)^{2 / v_{2}}-1\right\} \tag{43}
\end{align*}
$$

or 2 approaches infinity:

$$
\begin{equation*}
F(2, \infty, p)=\ln (1 / p) \tag{44}
\end{equation*}
$$

Finally we note that the random variable $F(2, \infty)$ is Rayleigh distributed $13 / 14 /$ such distributions have played a prominent role in many physical investigations. Thus, we may identify $F(2, \infty)$ with the ratio, $E_{s}^{2} /\left(E_{s}^{2}\right)$, of the square of the instantaneous Rayleigh distributed vector amplitude, E_{s}, to the mean square amplitude, $\left(E_{s}\right)_{\text {, }}$ and find by (44) that

$$
\begin{equation*}
p\left(E_{s}>z\right)=\exp \left[-z^{2} / \overline{\left(E_{s}^{2}\right)}\right] \tag{45}
\end{equation*}
$$

13/ Lord Rayleigh, (a) "On the resultant of a large number of vibrations of the same pitch and of arbitrary phase," Phil. Mag., vol. 10, pp. 73-78; August, 1880; and vol. 27, pp. 460-469; June, 1889. (b) "Theory of Sound," 2nd ed., par. 42a; MacMillan and Co., Ltd., London; 1896. Same edition republished by Dover Publications, Inc.: 1945. (c) "On the problem of random vibrations and of random flights in 1, 2, or 3 dimensions, " Scientific Papers, Cambridge Univ. Press, Cambridge, England, vol. 1, p. 491; 1899. (d) Phil. Mag., vol. 37. pp. 321-347; April., 1919.

14 K. A. Norton, L. E. Vogler, W. V. Mansfield and P. J. Short, "The Probability Distribution of the Amplitude of a Constant Vector Plus a Rayleigh-Distributed Vector," Proc. IRE, vol. 43, no. 10, pp. 1354-1361, October, 1955.

Acknowledgements: E. L. Crow and M. M. Siddiqui of the Boulder Laboratories staff made many helpful comments relative to the method of presentation. Since we did not always accept their advice, they should not be held responsible for any remaining errors or obscurities in the presentation.

Appendix I

Comparison of the values of $F\left(v_{1}, v_{2}, 0.001\right)$ which differ from those in the tables of Fisher and Yates $5 /$ and of Pearson and Hartley. 6/

$F\left(v_{1}, v_{2}, 0.001\right)$	F. and Y.	P. and H.	V. and N.
$F(2,60,0.001)$	7.76	7.76	7.7678
$F(3,40,0.001)$	6.60	6.60	6.5945
$F(3,120,0.001)$	5.79	5.79	5.7814
$F(4,7,0.001)$	17.19	17.19	17.198
$F(5,6,0.001)$	20.81	20.81	20.803
$F(6,5,0.001)$	28.84	28.84	28.834
$\mathrm{F}(6,10,0.001)$	9.92	9.92	9.9256
$F(8,5,0.001)$	27.64	27.64	27.649
$F(8,8,0.001)$	12.04	12.04	12.046
$F(8,60,0.001)$	3.87	3.87	3.8648
F(12, 60, 0.001)	3.31	3.31	3.3153
F(24, 5, 0.001)	25.14	25.14	25.133
F(24, 6, 0.001)	16.89	16.89	16.897
$F(120,6,0.001)$	- -	15.99	15.981
$\mathrm{F}(120,120,0.001)$	- -	1.76	1.7667

Formulas for $F\left(v_{1}, v_{2}, p\right)$ for Large v_{1} and v_{2}

Equation (21) may be used when v_{1} and v_{2} are both large; it is principally useful, however, only for calculating $\chi^{2}(\nu, p) / v$ in the limiting case of $\nu_{2}=\infty$ which is the Wilson-Hilferty approximation. 8/
Table II- 2 shows how the values obtained from (21) compare with our tabulated values for $p=0.0001,0.05$, and 0.5 .

A much more dependable formula for large v_{1} and v_{2} has been developed by Carter; 13/ thus $^{\text {/ }}$ then

$$
\begin{equation*}
F\left(v_{1}, v_{2}, p\right)=\exp (2 z) \tag{45}
\end{equation*}
$$

where

$$
\begin{gathered}
z=X(p) \sqrt{h+\lambda} / h+\left[\frac{1}{v_{2}-1}-\frac{1}{v_{1}-1}\right]\left[\frac{5}{6}+\lambda-\frac{1}{3}\left(\frac{1}{v_{2}-1}+\frac{1}{v_{1}-1}\right)\right], \\
h=\frac{2}{\frac{1}{v_{2}-1}+\frac{1}{v_{1}-1}}, \\
X=\frac{1}{6}\left[X^{2}(p)-3\right], \\
X(p)= \begin{cases}+t(\infty, 2 p) & , \quad p<0.5 \\
-t(\infty .2-2 p) & , \quad p>0.5\end{cases}
\end{gathered}
$$

The values of the standard normal deviate $X(p)$ and of λ are given for several values of p in Table II-1.
13)
A. H. Carter, "Approximation to Percentage Points of the z-Distribution", Biometrika, vol. 34, pp. 352-358, 1947.

Table II-1

p	$\mathrm{X}(\mathrm{p})$	λ
0.0001	3.719016	1.805181
0.001	3.090232	1.091589
0.005	2.575829	0.605816
0.01	2.326348	0.401982
0.025	1.959964	0.140243
0.05	1.644854	-0.049076
0.1	1.281552	-0.226271
0.25	0.674490	-0.424177
0.5	0	-0.500000
0.75	-0.674490	-0.424177
0.9	-1.281552	-0.226271
0.95	-1.644854	-0.049076
0.975	-2.326348	0.140243
0.99	-2.575829	0.401982
0.995	-3.090232	0.605816
0.999		1.091589
0.9999		1.805181

We see by Table II-2 that (45) gives at least four significant figure accuracy when ν_{1} and ν_{2} are both greater than 120 , and it is recommended for use in this case.

Table ㅍ-2

$\mathrm{F}\left(\nu_{1}, v_{2}, \mathrm{p}\right)$	Tabulated	Carter		Equation (21)	
	Value	F	Δ	F	\triangle
$F(\infty, 120,0.0001)$	1.6966	1.6960	-0.0006	1.5686	-0.1280
$F(\infty, 60,0.0001)$	2.1821	2.1797	-0.0024	1.8610	-0.3211
$F(\infty, 30,0.0001)$	3.2404	3.2314	-0.0090	2. 3393	-0.9011
F(120, ∞. 0.0001)	1. 5527	1.5522	-0.0005	1.5536\%	+0.0009
$\mathrm{F}(120,120,0.0001)$	1.9877	1.9877	0.0000	1.9192	-0.0685
F(120, 60, 0.0001)	2. 4405	2.4398	-0.0007	2.2250	-0.2155
$\mathrm{F}(120,30,0.0001)$	3.4852	3.4797	-0.0055	2. 7679	-0.7173
F(60, 0.0 .0001$)$	1. 8250	1.8234	-0.0016	1.8276*	$+0.0026$
$F(60,120,0.0001)$	2.2301	2.2300	-0.0001	2. 2062	-0.0239
$F(60,60,0.0001)$	2.6723	2.6726	+0.0003	2. 5430	-0.1293
$F(60,30,0.0001)$	3.7163	3.7139	-0.0024	3.1606	-0.5557
$F(30, \infty .0 .0001)$	2.2544	2.2492	-0.0052	2.2619*	$+0.0075$
$\mathrm{F}(30,120,0.0001)$	2.6480	2.6464	-0.0016	2.7027	+0.0547
$F(30,60,0.0001)$	3.0894	3.0902	+0.0008	3.1130	+0.0236
$F(30,30,0.0001)$	4.1492	4.1518	+0.0026	3.1722	-0.9770
$F(\infty, 120,0.05)$	1.2539	1.2540	+0.0001	1.2341	-0.0198
$F(\infty, 60,0.05)$	1.3893	1.3898	$+0.0005$	1.3449	-0.0444
$F(\infty, 30,0.05)$	1.6223	1.6243	+0.0020	1.5168	-0.1055
F(120, ∞, 0.05)	1.2214	1.2215	+0.0001	1.2214*	0.0000
$F(120,120,0.05)$	1. 3519	1.3519	0.0000	1.3579	$+0.0060$
$F(120,60,0.05)$	1.4673	1. 4675	+0.0002	1.4666	-0.0007
F(120, 30, 0.05)	1.6835	1.6848	$+0.0013$	1. 6506	-0.0329
$\mathrm{F}(60, \infty, 0.05)$	1. 3180	1.3184	$+0.0004$	1. 3180%	0.0000
$\mathrm{F}(60,120,0.05)$	1. 4290	1.4291	+0.0001	1.4523	$+0.0233$
$F(60,60,0.05)$	1. 5343	1.5343	0.0000	1. 5666	+0.0323
$F(60,30,0.05)$	1.7396	1. 7404	$+0.0008$	1. 7665	+0.0269
$F(30, \infty, 0.05)$	1.4591	1.4601	+0.0010	1.4589*	-0.0002
$F(30,120,0.05)$	1. 5543	1.5547	+0.0004	1.6045	+0.0502
$F(30,60,0.05)$	1.6491	1.6492	$+0.0001$	1.7343	$+0.0852$
$F(30,30,0.05)$	1. 8409	1.8411	$+0.0002$	1. 7609	-0.0800
F($0,120,0.5$)	1.0056	1.0056	0.0000	1.0056	0.0000
$\mathrm{F}(\infty, 60,0.5)$	1.0112	1.0112	0.0000	1.0112	0.0000
F(00, 30, 0.5)	1.0226	1.0224	-0.0002	1.0224	-0.0002
$F(120, \infty, 0.5)$	0.99445	0.99446	+0.00001	0.99445	0.00000
F(120, 120, 0.5)	1.0000	1.0000	0.00000	1.0000	0.00000
$\mathrm{F}(120,60,0.5)$	1.0056	1.0056	0.0000	1.0056	0.0000
F(120, 30, 0.5)	1.0170	1.0168	-0.0002	1.0168	-0.0002
$\mathrm{F}(60,00,0.5)$	0.98891	0.98895	$+0.00004$	0.98893	+ +0.00002
$F(60,120,0.5)$	0.99443	0.99446	+0.00003	0.99445	+0.00002
$F(60,60,0.5)$	1.0000	1.0000	0.00000	1.0000	0.00000
$F(60,30,0.5)$	1.0113	1.0111	-0.0002	1.0112	-0.0001
$F(30, \infty, 0.5)$	0.97787	0.97805	+0.00018	0.97794	+0.00007
$F(30,120,0.5)$	0.98333	0.98350	+0.00017	0.98343	+0.00010
$F(30,60,0.5)$	0.98884	0.98897	+0.00013	0.98893	+0.00009
F(30, 30, 0.5)	1. 0000	1.0000	0.00000	1.0000	0.00000

* These values also represent the Wilson-Hilferty 8 / approximation to $\chi^{2}(v, p) / v$.

$\nu_{1}=1$																		
v_{2}	$\mathrm{p}=0.0001$	$\mathrm{p}=0.001$	$\mathrm{p}=0.005$	$\mathrm{p}=0.01$	$p=0.025$	$p=0.05$	$\mathrm{p}=0.1$	$\mathrm{p}=0.25$	$\mathrm{p}=0.5$	$p=0.75$	$p=0.9$	$\mathrm{p}=0.95$	$\mathrm{P}=0.975$	$\mathrm{p}=0.99$	$p=0.995$	$p=0.999$	$\mathrm{p}=0.9999$	ν_{2}
1	(+7) 4.0528	(+5) 4.0528	(+4) 1.6211	(+3) 4.0522	(+2) 6.4779	(+2) 1.6145	(+1) 3.9864	5.8285	1.0000	(-1) 1.7157	(-2) 2.5085	(-3) 6.1939	(-3) 1.5437	(-4) 2.4678	(-5) 6.1687	(-6) 2.4674	(-8) 2.4674	1
1.2	(6) 2.3821	(4) 5.1319	(3) 3.5094	(3) 1.1048	(2) 2.3927	(1) 7.4802	(1) 2.3000	4.3669	(-1) 8.7158	(-1) 1.5815	(-2) 2.3424	(-3) 5.7938	(-3) 1.4446	(-4) 2.3097	(-5) 5.7736	(-6) 2.3094	(-8) 2.3094	1.2
15	(5) 1.4790	(3) 6.8637	(2) 8.0184	(2) 3.1756	(1) 9.2839	(1) 3.6200	(1) 1.3728	3. 3235	(-1) 7.6142	(-1) 1.4540	(-2) 2.1794	(-3) 5.3994	(-3) 1.3468	(-4) 2.1536	(-5) 5.3834	(-6) 2.1533	(-8) 2.1533	1.5
2	(t+3) 9.9985	(+2) 9.9850	(+2) 1.9850	(+1) 9.8503	(+1) 3.8506	(+1) 1.8513	8. 5263	2. 5714	(-1) 6.6667	(-1) 1.3333	(-2) 2.0202	(-3) 5.0125	(-3) 1.2508	(-4) 2.0002	(-5) 5.0000	(-6) 2.0000	(-8) 2.0000	2
3	(+2) 7.8401	(+2) 1.6703	(+1) 5. 5552	(+1) 3.4116	(+1) 1.7443	(+1) 1.0128	5. 5383	2.0239	(-1) 5.8506	(-1) 1.2195	(-2) 1.8659	(-3) 4.6359	(-3) 1.1572	(-4) 1.8507	(-5) 4.6264	(-6) 1.8506	(-8) 1.8505	3
4	(+2) 2.4162	(+1) 7.4137	(+1) 3.1333	(+1) 2.1198	(+1) 1.2218	7.7086	4.5448	1.8074	(-1) 5.4863	(-1) 1.1654	(-2) 1.7911	(-3) 4.4528	(-3) 1.1116	(-4) 1.7779	(-5) 4.4444	(-6) 1.7778	(-8) 1.7778	4
5	(+2) 1.2494	(+1) 4.7181	(+1) 2.2785	(+1) 1.6258	(+1) 1.0007	6.6079	4.0604	1.6925	(-1) 5.2807	(-1) 1.1338	(-2) 1.7470	(-3) 4.3448	(-3) 1.0848	(-4) 1.7350	(-5) 4.3373	(-6) 1.7349	(-8) 1.7349	5
6	(+1) 8.2489 ((+1) 3.5507	(+1) 1.8635	(+1) 1.3745	8.8131	5. 9874	3.7760	1.6214	(-1) 5.1489	(-1) 1.1132	(-2) 1.7181	(-3) 4.2737	(-3) 1.0671	(-4) 1.7068	(-5) 4.2668	(-6) 1.7067	(-8) 1.7067	6
7	(+1) 6.2167	(+1) 2.9245	(+1) 1.6236	(+1) 1.2246	8.0727	5. 5914	3. 5894	1. 5732	(-1) 5.0572	(-1) 1.0986	(-2) 1.6976	(-3) 4.2235	(-3) 1.0546	(-4) 1.6868	(-5) 4.2167	(-6) 1.6867	(-8) 1.6867	7
8	(+1) 5.0694	(+1) 2.5415	(+1) 1.4688	(+1) 1.1259	7. 5709	5. 3177	3.4579	1. 5384	(-1) 4.9898	(-1) 1.0879	(-2) 1.6824	(-3) 4.1862	(-3) 1.0453	(-4) 1.6718	(-5) 4.1797	(-6) 1.6718	$(-8) 1.6718$	8
9	(+1) 4.3477	(+1) 2.2857	(+1) 1.3614	(+1) 1.0561	7. 2093	5.1174	3.3603	1.5121	(-1) 4.9382	(-1) 1.0796	(-2) 1.6706	(-3) 4.1573	(-3) 1.0381	(-4) 1.6604	(-5) 4.1509	(-6) 1.6603	(-8) 1.6603	9
10	(+1) 3.8577	(+1) 2.1040	(+1) 1.2826	(+1) 1.0044	6.9367	4.9646	3. 2850	1.4915	(-1) 4.8973	(-1) 1.0729	(-2) 1.6613	(-3) 4.1343	(-3) 1.0324	(-4) 1.6513	(-5) 4.1281	(-6) 1.6512	$(-8) 1.6512$	10
12	(+1) 3.2427	(+1) 1.8643	(+1) 1.1754	9.3302	6. 5538	. 7472	3.1765	1. 4613	(-1) 4.8369	(-1) 1.0631	(-2) 1.6473	(-3) 4.0999	(-3) 1.0238	(-4) 1.6377	(-5) 4.0940	(-6) 1.6376	(-8) 1.6376	12
15	(+1) 2.7448	(+1) 1.6587	(+1) 1.0798	8.6831	6.1995	4. 5431	3.0732	1.4321	(-1) 4.7775	(-1) 1.0534	(-2) 1.6335	(-3) 4.0659	(-3) 1.0154	(-4) 1.6241	(-5) 4.0601	(-6) 1.6240	(-8) 1.6240	15
20	(+1) 2.3399	(+1) 1.4819	9. 9439	8. 0960	5. 8715	4.3513	2.9747	1.4037	(-1) 4.7192	(-1) 1.0437	(-2) 1.6197	(-3) 4.0321	(-3) 1.0069	(-4) 1.6106	(-5) 4.0264	(-6) 1.6105	(-8) 1.6105	20
24	(+1) 2.1663	(+1) 1.4028	9. 5513	7.8229	5. 7167	4.2597	2. 9271	1.3898	(-1) 4.6902	(-1) 1.0389	(-2) 1.6129	(-3) 4.0153	(-3) 1.0028	(-4) 1.6040	(-5) 4.0096	(-6) 1.6039	(-8) 1.6039	24
30	(+1) 2.0092	(+1) 1.3293	9.1797	7. 5625	5. 5675	4.1709	2.8807	1. 3761	(-1) 4.6616	(-1) 1.0341	(-2) 1.6060	(-3) 3.9986	(-4) 9.9860	(-4) 1.5973	(-5) 3.9930	(-6) 1.5972	(-8) 1.5972	30
40	(+1) 1.8668	$(+1) 1.2609$	8.8278	7.3141	5. 4239	4.0848	2.8354	1.3626	(-1) 4.6330	(-1) 1.0294	(-2) 1.5993	(-3) 3.9818	(-4) 9.9443	(-4) 1.5906	(-5) 3.9765	(-6) 1.5906	(-8) 1.5906	40
60	(+1) 1.7377	$(+1) 1.1973$	8.4946	7.0771	5. 2857	4.0012	2.7914	1.3493	(-1) 4.6053	(-1) 1.0247	(-2) 1.5925	(-3) 3.9651	(-4) 9.9030	(-4) 1.5840	(-5) 3.9599	(-6) 1.5839	$(-8) 1.5839$	60
120	(+1) 1.6204	$(+1) 1.1380$	8.1790	6.8510	5.1524	3.9201	2.7478	1. 3362	(-1) 4.5774	(-1) 1.0200	(-2) 1.5858	(-3) 3.9487	(-4) 9.8619	(-4) 1.5774	(-5) 3.9434	(-6) 1.5774	(-8) 1.5774	120
∞	(+1) 1.5137	(+1) 1.0828	7.8794	6.6349	5.0239	3.8415	2.7055	1.3233	(-1) 4.5494	(-1) 1.0153	(-2) 1.5791	(-3) 3.9321	(-4) 9.8203	(-4) 1.5708	(-5) 3.9270	(-6) 1.5708	(-8) 1.5708	∞

Interpolation should be carried out using the reciprocals of the degrees of freedom; the function $120 / v$ is convenient for this purpose. Fisher's variance ratio $F\left(v_{1}, v_{2}\right)>F\left(v_{1}, v_{2}, P\right)$
with probability p. $F\left(v_{1}, v_{2}\right)=\left\{u / v_{1}\right\} /\left\{v / v_{2}\right\}$ where u and v are random variables independently distributed as x^{2} with v_{1} and v_{2} degrees of freedom, respectively. In particular s_{1}^{2} / s_{2}^{2} is distributed as $F\left(v_{1}, v_{2}\right)$ where s_{1}^{2} and s_{2}^{2} are independent mean squares from normally distributed populations estimating a common variance σ^{2} and based on ν_{1} and v_{2} degrees of freedom, respectively. The numbers in parentheses indicate the power of ten by which the number following is to be multiplied, e.g., (-1) $1.2345=0.12345$.
$\nu_{1}=2$

[^2] tively. The numbers in parentheses indicate the power of ten by which the number following is to be multiplied, e.g., (-1) $1.2345=0.12345$.
The Probabllity Distribution of Fisker's Variance Ratio \bar{F}

ν_{2}	$\mathrm{p}=0.0001$	$\mathrm{p}=0.001$	$\mathrm{p}=0.005$	$\mathrm{p}=0.0 \mathrm{i}$	$p=0.025$	$\mathrm{p}=0.05$	$p=0.1$	$p=0.25$	$\mathrm{p}=0.5$	$\mathrm{p}=0.75$	$\mathrm{p}=0.9$	$\mathrm{p}=0.95$	$\mathrm{p}=0.975$	$\mathrm{p}=0.99$	$\mathrm{p}=0.995$	$\mathrm{p}=0.999$	$\mathrm{p}=0.9999$	v_{2}
1	(+7) 5.4038	(+5) 5.4038	(+4) 2.1615	(+3) 5.4033	(+2) 8.6416	(+2) 2.1571	(+1) 5.3593	8.1999	1.3092	(-1) 4.9410	(-1) 1.8056	(-2) 9.8736	(-2) 5.7330	(-2) 2.9312	(-2) 1.8001	(-3) 5.9868	1.2755	1
1.2	(6) 2.9549	(4) 6.3660	(3) 4.3538	(3) 1.3710	(2) 2.9731	(1) 9.3286	(1) 2.9023	5.8883	1.4842	52	-1) 1.8079	(-1) 1.0030	(-2) 5.8709	(-2) 3.0192	(-2) 1.8586	(-3) 6.1978	(-3) 1.3218	1.2
1.5	(5) 1.6727	(3) 7.7635	(2) 9.0745	(2) 3.5973	(2) 1.0557	(1) 4.1506	(1) 1.6083	4.2806	1.2947	(-1) 4.5502	(-1) 1.8158	(-1) 1.0225	(-2) 6.0349	(-2) 3.1222	(-2) 1.9269	(-3) 6. 4432	$\left(\begin{array}{ll}(-3) & 1.3755\end{array}\right.$	1.5
2	(+3) 9.9992	(+2) 9	(+2) 1.9917	(+1) 9.9166	(+1) 3.9165	(+1) 1.9164	9.1618	3.1534	1.1349	(-1) 4.3863	(-1) 1.8307	(-1) 1.0469	(-2) 6.2329	(-2) 3.2450	(-2) 2.008 i	(-3) 6.7340	$(-3) 1.4394$	2
3	(+2) 6	(+2) 1.4111	(+1) 4.7467	(+1) 2.9457	(+1) 1.5439	9.2766	5. 3908	3555	.000	(-1)	(-1) 1.8550	(-1) 1.0780	(-2) 6.4771	(-2) 3.3948	(-2) 2.1067	(-3) 7.0868	(-3) 1.5167	3
4	(+2) 1.8102	(+1) 5.6177	(+1) 2.4259	(+1) 1.6694	9.9792	6.5914	4.1908	2.0467	(-1) 9.4054	(-1) 4.1839	(-1) 1.8717	(-1) 1.0968	(-2) 6.6221	(-2) 3.4831	(-2) 2.1647	(-3) 7.2939	(-3) 1.5620	4
5	(+1) 8.6292	(+1) 3.3202	(+1) 1.6530	(+1) 1.2060	7.7636	5.4095	3.6195	1.8843	(-1) 9.0715	(-1) 4.1502	(-1) 1.8835	(-1) 1.1094	(-2) 6.7182	(-2) 3.5415	(-2) 2.2030	(-3) 7.4305	(-3) 1.5919	5
6	(+1) 5.3680	(+1) 2.3703	(+1) 1.2917	9. 7795	6.5988	4.7571	3.2888	1.7844	(-1) 8.8578	(-1) 4.1292	(-1) 1.8923	(-1) 1.1185	(-2) 6.7866	(-2) 3.5828	(-2) 2.2303	(-3) 7.5275	(-3) 1.6132	6
7	(+1) 3.8676	(+1) 1.8772	(+1) 1.0882	8.4513	5. 8898	4.3468	3.0741	1.7169	$(-1) 8.7095$	(-1) 4.1149	(-1) 1.8989	(-1) 1.1253	(-2) 6.8381	(-2) 3.6138	(-2) 2.2505	(-3) 7.5998	(-3) 1.6290	7
8	(+1) 3.0456	(+1) 1.582	9. 5965	7. 5910	5. 4160	4.0662	2.923	1.6683	(-1) 8.6004	(-1) 4.1044		$(-1) 1.1306$	$(-2) 6.8776$	(-2) 3.6378	(-2) 2.2662	(-3) 7.6559	$(-3) 1.6413$	8
9	(+1) 2.5404	(+1) 1.3902	8.7171	6.9919	5.0781	3.8626	2.8129	1.6315	(-1) 8.5168	(-1) 4.0967	(-1) 1.9084	(-1) 1.1348	(-2) 6.9094	(-2) 3.6570	(-2) 2.2788	(-3) 7.7006	(-3) 1.6511	9
10	(+1) 2.2038	$(+1) 1.2553$. 0807	6. 5523	8255	3.7	2.7277	1.6028	(-1) 8.4508	(-1) 4.0905		(-i) 1.1382	$(-2) 6.9353$	(-2) 3.6726	(-2) 2.2891	$(-3) 7.7371$	(-3) 1.6590	10
12	(+1) 1.7899	(+1) 1.0804	7. 2258	5.9526	4. 4742	3.49031	2.6055	1. 5609	$(-1) 8.3530$	(-1) 4.0816	$(-1) 1.9173$	(-1) 1.1436	(-2) 6.9750	(-2) 3.6966	(-2) 2.3048	(-3) 7.7933	(-3) 1.6713	12
15	(+1) 1.4635	9.3353	6. 4760	5.4170	4.1528	3. 287	2.4898	1.5202	(-1) 8.2569	(-1) 4.0730	(-1) 1.9230	(-1) 1.1490	(-2) 7.0161	(-2) 3.7213	(-2) 2.3210	(-3) 7.8509	(-3) 1.6839	15
20	(+1) 1.2050	8. 0984	5. 8177	4.9382	3.8587	3.09	2. 3801	1.4808	(-	7	(-1) 1.9288	(-1) 1.1547	(-2) 7.0587	$(-2) 3.7467$	(-2) 2.3377	(-3) 7.9103	(-3) 1.6969	20
24	(+1) 1.0964	7.5545	5. 5190	4.7181	3.7211	3.0088	2. 3274	1.4615	(-1) 8.1153	(-1) 4.0607	(-1) 1.9318	(-1) 1.1576	(-2) 7.0801	(-2) 3.7597	(-2) 2.3462	(-3) 7.9406	(-3) 1.7036	24
30	9.9942	7.0545	5. 2388	4. 5097	3. 5894	2. 9223	276	1. 4426	(-1) 8.0689	(-1) 4.0568	(-1) 1.9349	(-1) 1.1606	(-2) 7.10:8	(-2) 3.7729	(-2) 2.3548	(-3) 7.9714	(-3) 1.7103	30
40	9.1278	6.5945	4.9759	4.3126	3.4633	2.8387	2. 2261	1.4239	(-1) 8.0228	(-1) 4.0528	(-1) 1.9381	(-1) 1.1635	(-2) 7.1240	(-2) 3.7863	(-2) 2.3636	(-3) 8.0026	(-3) 1.7171	40
60	8. 3526	6.1712	4.7290	4.1259	3. 3425	2.7581	2. 1774	1. 4055	(-1) 7.9770	(-1) 4.0491	(-1) 1.9413	(-1) 1.1666	(-2) 7.1469	(-2) 3.8000	(-2) 2.3725	(-3) 8.0343	(-3) 1.7241	60
120	7.6584	5. 7814	4.4973	3. 9493	3.2270	2.6802	2.1300	1. 3873	(-1) 7.9314	(-i) 4.0453	(-1) 1.9446	(-i) 1.1697	(-2) 7.1700	(-2) 3.8137	(-2) 2.3816	(-3) 8.0665	(-3) 1.7311	120
∞	7.0359	5. 4221	4. 2794	3.7816	3.1161	2.6049	2.0838	1. 3694	(-1) 7.8866	(-1) 4.0417	(-i) 1.9479	(-1) 1.1728	(-2) 7.1932	(-2) 3.8278	(-2) 2.3907	(-3) 8.0992	(-3) 1.7383	∞

Interpolation should be carried out using the reciprocals of the degrees of freedom; the function $120 / v$ is convenient for this purpose. Fisher's variance ratio $F\left(v_{1}, v_{2}\right)>F\left(\nu_{1}, v_{2}, p\right)$ with probability p. $F\left(\nu_{1}, v_{2}\right)=\left\{u / v_{1}\right\} /\left\{v / v_{2}\right\}$ where u and v are random variables independently distributed as x with v_{1} and v_{2} degrees of freedom, respectively. In particular sis s_{2}^{2} is dis ributed as $F\left(\nu_{1}, \nu_{2}\right)$ where s_{1}^{2} and s_{2}^{2} are independent mean squares from normaliy distributed populations estimating a common variance σ^{2} and based on ν_{1} and ν_{2} degrees of freedom, respectively. The numbers in parentheses indicate the power of ten by which the number following is to be multiplied, e.g., (-1) $1.2345=0.12345$.
The Probability Distribution of Fisher's Variance Ratio F

ν_{2}	$\mathrm{p}=0.0001$		0.001	$\mathrm{p}=0$	0.005	$\mathrm{p}=0$	0.01	$\mathrm{p}=0.025$	$\mathrm{p}=0.05$	$\mathrm{p}=0.1$	$\mathrm{p}=0.25$	$\mathrm{P}=0.5$	$\mathrm{p}=0.75$	$\mathrm{p}=0.9$	$\mathrm{p}=0.95$	$\mathrm{p}=0.975$	$\mathrm{p}=0.99$	$\mathrm{p}=0.995$	$\mathrm{p}=0.999$	$\mathrm{p}=0.9999$	${ }^{2}$
1	(+7) 5.6250	(1.5)	5.6250	(+4)	2. 2500	(+3)	5.6246	(+2) 8.9958	(+2) 2.2458	(+1) 5.5833	8. 5810	1.8227	(-1) 5.5328	(-1) 2.2003	(-1) 1.2973	(-2) 8.1846	(-2) 4.7174	(-2) 3.1915	(-2) 1.3488	(-3) 4.1387	1
1.2	(6) 3.0478	(4)	6.5663	(3)	4.4908	(3)	1.4142	(2) 3.0671	(1) 9.6274	(1) 2.9990	6.1265	1.5810	(-1) 5.3271	(-1) 2.2249	$(-1) 1.3347$	(-2) 8.5083	(-2) 4.9438	(-2) 3.3572	(-2) 1.4256	(-3) 4.3849	1.2
1.5	(5) 1.7038	(3)	7.9077	(2)	9.2437	(2)	3.6648	(2) 1.0759	(1) 4.2343	(1) 1.6446	4.4235	1.3780	(-1) 5.1487	(-1) 2.2608	(-1) 1.3811	(-2) 8.9012	(-2) 5.2170	(-2) 3.5571	(-2) 1.5181	(-3) 4.6821	1.5
2	(t3) 9.9992	(+2)	9.9925	(+2)	1. 9925	(+1)	9. 9249	(+1) 3.9248	(+1) 1.9247	9. 2434	3.2320	1. 2071	(-1) 5.0000	(-1) 2.3124	(-1) 1.4400	$(-2) 9.3906$	(-2) 5.5555	(-2) 3.8046	(-2) 1.6328	(-3) 5.0505	2
3	(+2) 6.4019	(+2)	1.3710		4.6195	(+1)	2. 8710	(+1) 1.5101	9.1172	5. 3427	2. 3901	1.0632	(-1) 4.8859	(-1) 2.3862	(-1) 1.5171	(-1) 1.0021	(-2) 5.9902	(-2) 4.1222	(-2) 1.7801	(-3) 5.52 .43	3
4	(+2) 1.7187	(+1)	5.3436	(+1)	2. 3155	(+1)	1. 5977	9.6045	6.3883	4.1073	2.0642	1.0000	(-1) 4.8445	(-1) 2.4347	(-1) 1.5654	(-1) 1.0412	(-2) 6.2590	(-2) 4.3187	(-2) 1.8714	(-3) 5.8183	4
5	(+1) 8.0527	(+1)	3.1085	(+1)	1.5556	(+1)	1.1392	7. 3879	5. 1922	3.5202	1.8927	(-1) 9.6456	(-1) 4.8256	(-1) 2.4688	(-1) 1.5985	(-1) 1.0679	(-2) 6.4425	(-2) 4.4532	(-2) 1.9338	(-3) 6.0193	5
6	(+1) 4.9419	(+1)	2.1924		1. 2028		9. 1483	6. 2272	4. 5337	3. 1808	1.7872	(-1) 9.4191	$(-1) 4.8156$	(-1) 2.4939	(-1) 1.6226	(-1) 1.0873	(-2) 6.5759	(-2) 4.5506	$(-2) 1.9792$	(-3) 6.1657	6
7	(+1) 3.5222	(+1)	. 7198	(+1)	1.0050		7. 8467	5. 5226	4.1203	2. 9605	1.7157	(-1) 9.2619	(-1) 4.8100	(-1) 2.5132	(-1) 1.6409	(-1) 1.1020	(-2) 6.6774	(-2) 4.6249	(-2) 2.0138	(-3) 6.2771	7
8	(+1) 2.7493		1.4392		8. 8051		7.0060	5. 0526	3.8378	2. 8064	1.6642	(-1) 9.1464	(-1)	(-1) 2.5285	(-1) 1.6554	(-1) 1.1136	(-2) 6.7572	(-2) 4.6834	(-2) 2.0410	(-3) 6.3648	8
9	(+1) 2.2756	(+1)	1.2560		7.9559		6.4221	4.7181	3.6331	2.6927	1.6253	(-1) 9.0580	(-1) 4.8045	(-1) 2.5408	(-1) 1.6670	(-1) 1.1230	(-2) 6.8217	(-2) 4.7306	(-2) 2.0629	(-3) 6.4357	9
10	(+1) 1.9630	(+1)	1.1283		7. 3428		5. 9943	4.4683	3. 4780	2. 6053	1. 5949	(-1) 8.9882	(-1) 4.8031	(-1) 2.5511	(-1) 1.6766	(-1) 1.1307	(-2) 6.8747	(-2) 4.7694	(-2) 2.0811	(-3) 6.4941	10
12	(+1) 1.5793		9.6327		6. 5211		5.4119	4.1212	3.2592	2. 4801	1.5503	(-1) 8.8848	(-1) 4.8017	(-1) 2.5671	(-i) 1.6916	(-1) 1.1427	(-2) 6.9570	(-2) 4.8298	(-2) 2.1092	(-3) 6.5849	12
15	(i+1) 1.2783		8.2527		5.8029		4.8932	3.8043	3.055	2. 3614	1. 5071	(-1) 8.7830	(-1) 4.8010	(-1) 2.5847	(-1) 1.7071	(-1) 1.1552	(-2) 7.0432	(-2) 4.8928	(-2) 2.1385	(-3) 6.6796	15
20	(+1) 1.0415		7.0960		5. 1743		4.4307	3. 5147	2. 8661	2. 2489	4652	(-1) 8.6830	(-1) 4.8012	(-1) 2.6013	$(-1) 1.7234$	(-1) 1.1682	(-2) 7.1327	(-2) 4.9586	(-2) 2.1692	(-3) 6.7786	20
24	9.4246		6.5892		4.8898		4. 2184	3. 3794	2.7763	2.1949	1.4447	(-1) 8.6335	(-1) 4.8015	(-1) 2.6103	(-1) 1.7318	(-1) 1.1750	(-2) 7.1793	(-2) 4.9925	(-2) 2.1850	(-3) 6.8298	24
30	8.5437		6. 1245		4.6233		4.0179	3. 2499	2.6896	2.1422	1.4244	(-1) 8.5844	(-1) 4.8019	(-1) 2.6196	(-1) 1.7404	(-1) 1.1819	(-2) 7.2265	(-2) 5.0271	(-2) 2.2013	(-3) 6.8822	30
40	7. 7592		5.6981		4.3738		3.8283	3.1261	2.6060	2.0909	1.4045	(-1) 8.5357	(-1) 4.8028	(-1) 2.6291	(-1) 1.7492	(-1) 1.1889	(-2) 7.2754	$(-2) 5.0628$	(-2) 2.2179	$(-3) 6.9358$	40
60	7.0599		5. 3067		4.1399		3.6491	3.0077	2. 5252	2.0410	1. 3848	(-1) 8.4873	(-1) 4.8038	(-1) 2.6388	(-1) 1.7581	(-1) 1.1961	(-2) 7.3249	(-2) 5.0992	(-2) 2.2349	(-3) 6.9907	60
120	6.4357		4.9472		3.9207		3.4796	2.8943	2. 4472	1.9923	1.3654	(-1) 8.4392	(-1) 4.8049	$(-1) 2.6488$	(-1) 1.7674	(-1) 1.2035	(-2) 7.3757	(-2) 5.1366	(-2) 2.2523	(-3) 7.0470	120
∞	5.8782		4.6167		3.7151		3. 3192	2.7858	2.3719	1. 9449	1.3463	(-1) 8.3918	(-1) 4.8063	(-1) 2.6591	(-1) 1.7768	(-1) 1.2110	(-2) 7.4278	(-2) 5.1746	(-2) 2.2701	(-3) 7.1046	∞

The Frobability Distribution of Fisher's Variance Ratio F

ν_{2}	$\mathrm{p}=0.0001$	$\mathrm{p}=0.001$	$p=0.005$	$\mathrm{P}=0.01$	$\mathrm{p}=0.025$	$\mathrm{p}=0.05$	$\mathrm{p}=0.1$	$\mathrm{F}=0.25$	$p=0.5$	$\mathrm{p}=0.75$	$\mathrm{p}=0.9$	$p=0.95$	$\mathrm{p}=0.975$	$\mathrm{p}=0.99$	$p=0.995$	$\mathrm{p}=0.999$	$\mathrm{p}=0.9999$	ν_{2}
1	(+7) 5.7640	(+5) 5.7640	(+4) 2.3056	(1+3) 5.7637	(+2) 9.2185	(+2) 2.3016	(i+1) 5.7241	8.8198	1.8937	(-1) 5.9034	$(-1) 2.4628$	(-1) 1.5133	$(-2) 9.9930$	(-2) 6.1508	(-2) 4.3839	$(-2) 2.1195$	(-3) 8.0038	1
1.2	(6) 3.1062	(4) 6.6921	(3) 4.5769	(3) 1.4413	(2) 3.1262	(1) 9.8152	(1) 3.0596	6.2753	1.6415	1) 5.7046	(-1) 2.5048	(-1) 1.5689	(-1) 1.0483	(-2) 6.5149	(-2) 4.6708	$(-2) 2.2701$	$(-3) 8.6059$	1.2
1.5	(5) 1.7233	(3) 7.9984	(2) 9.3500	(2) 3.7072	(2) 1.0887	(1) 4.2867	(1) 1.6673	4.5121	1.4298	(-1) 5.532 ?	(-i) 2.5636	(-1) 1.6385	(-1) 1.1087	(-2) 6.9633	(-2) 5.0181	(-2) 2.4561	(-3) 9.3515	1.5
2	(+3) 9.9993	(+2) 9.9930	(+2) 1.9930	(+1) 9.9299	(+1) 3.9298	(+1) 1.9295	9.2926	3.2799	1.2519	(-1) 5.3972	(-1) 2.6457	(-1) 1.7283	(-1) 1.1857	(-2) 7.5335	(-2) 5.4603	$(-2) 2.6938$	(-2) 1.0306	2
3	(+2) 6.2817	(+2) 1.3458	(+1) 4.5392	(+1) 2.8237	(+1) 1.4885	9.0135	5. 3092	2. 4095	1.1024	(-1) 5.3070	(-1) 2.7628	(-1) 1.8486	(-1) 1.2881	(-2) 8.2919	(-2) 6.0495	(-2) 3.0118	(-2) 1.1589	3
4	(+2) 1.6613	(+1) 5.1712	(+1) 2.2456	(+1) 1.5522	9. 3645	6.2560	4.0506	2.0723	1.0367	(-1) 5.2835	(-1) 2.8407	(-1) 1.9260	(-1) 1.3536	(-2) 8.7781	(-2) 6.4284	(-2) 3.2170	(-2) 1.2418	4
5	(+1) 7.6911	(+1) 2.9752	(+1) 1.4940	(+1) 1.0967	. 1464	5.0503	3. 4530	1.8947	1.0000	(-1) 5.2779	(-1) 2.8960	(-1) 1.9801	(-1) 1.3993	$(-2) 9.1183$	(-2) 6.6934	(-2) 3.3611	(-2) 1.3002	5
6	(+1) 4.6747	(+1) 2.0803	(+1) 1.1464	8.7459	5.9876	4.3874	3. 1075	1.7852	(-1) 9.7654	$(-1) 5.2734$	(-1) 2.9373	(-1) 2.0201	(-1) 1.4331	(-2) 9.3703	(-2) 6.8904	(-2) 3.4681	$(-2) 1.3436$	6
7	(+1) 3.3056	(+1) 1.6206	9. 5221	7. 4604	5. 2852	3.9715	2.8333	1.7111	(-1) 9.6026	(-1) 5.2812	(-1) 2.9692	(-1) 2.0509	(-1) 1.4592	$(-2) 9.5639$	(-2) 7.0423	$(-2) 3.5508$	(-2) 1.3772	7
8	(+1) 2.5635	(+1) 1.3485	8. 3018	6.6318	4.8173	3.6875	2.7265	1.6575	(-1) 9.4331	(-1) 5.2846	(-1) 2.9946	(-1) 2.0754	(-1) 1.4799	(-2) 9.7191	(-2) 7.:628	(-2) 3.6167	(-2) 1.4040	8
9	(+1) 2.1112	(+1) 1.1714	7.4711	6.0569	4. 4844	3.4817	2.6106	1.6170	(-1) 9.3916	$(-1) 5.2879$	(-1) 3.0154	(-1) 2.0953	(-1) 1.4968	(-2) 9.8445	(-2) 7.2611	(-2) 3.6705	(-2) 1.4259	9
10	(+1) 1.8120	(+1) 1.0481	6.8723	5.6363	4.2361	3.3258	2. 5216	1. 5853	(-1) 9.3193	(-1) 5.2913	(-1) 3.0327	(-1) 2.1119	$(-1) 1.5108$	(-2) 9.9493	(-2) 7.3432	(-2) 3.7152	(-2) 1.4440	10
12	(+1) 1.4471	8.8921	6.0711	5.0643	3.8911	3. 1059	2.3940	1. 5389	(-1) 9.21	$(-1) 5.2975$	(-1) 3.0598	(-1) 2.1378	$(-1) 1.5327$	(-1) 1.0113	(-2) 7.4716	(-2) 3.7853	(-2) 1.4726	12
15	(+1) 1.1621	7. 5674	5. 3721	4. 5556	3. 5764	2.9013	2.2730	1.4938	(-1) 9.1073	(-1) 5.3048	(-1) 3.0383	(-1) 2.1651	(-1) 1.5558	$(-1) 1.0286$	(-2) 7.6069	(-2) 3.8594	(-2) 1.5028	15
20	9.3880	6. 4606	4.761	102	3.2891	2.7109	2.1582	1.4500	(-1) 9.0038	(-1) 5.3135	(-1) 3.1185	(-1) 2.1939	(-1) 1.5802	(-1) 1.0468	(-2) 7.7501	(-2) 3.9378	(-2) 1.5348	20
24	8. 4578	5.9768	4.4857	3.8951	3.1548	2.6207	2. 1030	1.4285	(-1) 8.9527	(-1) 5.3186	(-1) 3.1343	(-1) 2.2089	(-1) 1.5929	(-1) 1.0564	(-2) 7.8247	(-2) 3.9788	(-2) 1.5515	24
30	7.6322	5.5339	4.2276	3.6990	3.0265	2. 533	2.0492	1.4073	(-1) 8.9019	(-1) 5.3237	(-1) 3.1505	$(-1) 2.2243$	(-1) 1.6059	(-1) 1.0662	(-2) 7.9014	(-2) 4.0211	(-2) 1.5687	30
40	6.8987	5.1283	3.9860	3. 5138	2.9037	2.4495	1.9968	1. 3863	(-1) 8.8516	(-1) 5.3296	(-1) 3.1673	(-1) 2.2402	(-1) 1.6194	(-1) 1.0763	(-2) 7.9808	(-2) 4.0647	(-2) 1.5865	40
60	6.2465	4.7565	3.7600	3. 3389	2.7863	2. 3683	1.9457	1. 3657	(-1) 8.8017	(-1) 5.3356	(-1) 3.1845	(-1) 2.2566	(-1) 1.6333	(-i) 1.0867	(-2) 8.0632	(-2) 4. 1097	(-2) 1.6049	60
120	5.6661	4. 4157	3. 5482	3.1735	2.6740	2.2900	1. 8959	1. 3453	(-1) 8.7521	(-1) 5.3422	(-1) 3.2023	(-1) 2.2736	(-1) 1.6476	(-1) 1.0975	(-2) 8.1473	(-2) 4.1562	(-2) 1.6239	120
∞	5.1490	4.1030	3. 3499	3.0173	2. 5665	2.2141	1.8473	1.3251	(-1) 8.7029	(-1) 5.3493	(-1) 3.2206	(-1) 2.2910	(-1) 1.6624	(-1) 1.1086	(02) 8.2345	(-2) 4.2043	(-2) 1.6435	∞

Finer's variance =atio $F\left(\nu_{1}, \nu_{2}\right)>F\left(\nu_{2}, \nu_{2}, p\right)$
dis-
 tively. The numbers in pazentheses indicate the power of ten by which the number following is to be multiplied, e.g., $(-1) 1,2345=0.12345$.
The Probability Distribution of Fisher's Variance Ratio F

ν_{2}	$p=0.0001$	$\mathrm{p}=0.001$	$\mathrm{p}=0.005$	$\mathrm{p}=0.01$	$\mathrm{p}=0.025$	$\mathrm{p}=0.05$	$\mathrm{p}=0.1$	$\mathrm{p}=0.25$	$\mathrm{p}=0.5$	$p=0.75$	$p=0.9$	$p=0.95$	$\mathrm{p}=0.975$	$\mathrm{p}=0.99$	$\mathrm{p}=0.995$	$\mathrm{p}=0.999$	$\mathrm{p}=0.9997$	ν_{2}
1	(+7) 5.9287	(+5) 5.9287	(+4) 2.3715	(+3) 5.9283	(+2) 9.4822	(+2) 2.3677	(+1) 5.8906	9.1021	1. 9774	(-1) 6.3565	(-1) 2.7860	(-1) 1.7885	(-1) 1.2387	(-2) 8.1659	(-2) 6.1592	(-2) 3.4194	(-2) 1.6086	1
1.2	(6) 3.1755	(4) 6.8413	(3) 4.6790	(3) 1.4735	(2) 3.1963	(2) 1.0038	(1) 3.1314	6.4509	1.7128	(-1) 6.1560	$(-1) 2.8523$	(-1) 1.8702	(-1) 1.3130	(-2) 8.7554	(-2) 6.6435	(-2) 3.7203	(-2) 1.7609	1.2
1.5	(5) 1.7465	(3) 8.1059	(2) 9.4761	(2) 3.7574	(2) 1.1037	(1) 4.3487	(1) 1.6941	4.6161	1.4908	(-1) 5.9944	$(-1) 2.9432$	(-1) 1.9741	(-1) 1.4064	(-2) 9.4990	(-2) 7.2556	(-2) 4.1029	(-2) 1.9557	1.5
2	$(+3) 9.9994$	(+2) 9.9936	(+2) 1.9936	(+1) 9.9356	(+1) 3.9355	(+1) 1.9353	9. 3491	3. 3352	30	$(-1) 5.8789$	$(-1) 3.0699$	(-1) 2.1109	(-1) 1.5287	(-1) 1.0475	(-2) 8.0619	$(-2) 4.6106$	$(-2) 2.2157$	2
3	(+2) 6.1388	(+2) 1.3158	(+1) 4.4434	(+1) 2.7672	(+1) 1.4624	8. 8868	5. 2662	2.4302	1.1482	(-1) 5.8245	(-1) 3.2530	$(-1) 2.3005$	(-1) 1.6979	$(-1) 1.1832$	(-2) 9.1895	(-2) 5.3270	$(-2) 2.5856$	3
4	$(+2) 1.5931$	(+1) 4.9658	(+1) 2.1622	(+1) 1.4976	9.0741	6.0942	3. 9790	2.0790	1.0797	(-1) 5.8285	(-1) 3.3778	(-1) 2.4270	(-1) 1.8107	(-1) 1.2744	(-2) 9.9502	(-2) 5.8146	(-2) 2.8391	4
5	(t1) 7.2611	(+1) 2.8163	(+1) 1.4200	(+1) 1.0456	6.8531	4.8759	3. 3679	1. 8935	0414	(-1) 5.8442	(-1) 3.4682	$(-1) 2.5179$	(-1) 1.8921	(-1) 1.3404	(-1) 1.0502	(-2) 6.1706	(-2) 3.0251	5
6	(+1) 4.3566	(+1) 1.9463	(+1) 1.0786	8. 2600	5.6955	4. 2066	3.0145	1.7789	1.0169	(-1) 5.8620	(-1) 3.5368	(-1) 2.5867	(-1) 1.9537	(-1) 1.3905	(-1) 1.0923	(-2) 6.4430	(-2) 3.1679	6
7	(+1) 3.0477	(+1) 1.5019	8. 8854	6. 9928	4.9949	3.7870	2.7849	1.7011	1.0000	(-1) 5.8785	(-1) 3.5908	(-1) 2.6406	(-1) 2.0020	(-1) 1.4300	(-1) 1.1254	(-2) 6.6584	(-2) 3.2812	7
8	(+1) 2.3421	(+1) 1.2398	7.6942	6.1776	4.5286	3. 5005	2.6241	1.6448	(-1) 9.8757	(-1) 5.8931	(-1) 3.6342	(-1) 2.6841	(-1) 2.0411	(-1) 1.4620	(-1) 1.1523	(-2) 6.8334	(-2) 3.3733	8
9	(+1) 1.9140	(+1) 1.0698	6.8849	5.6129	4.1971	3.2927	2. 5053	1.6022	(-1) 9.7805	(-1) 5.9063	(-i) 3.6701	(-1) 2.7198	(-1) 2.0733	(-1) 1.4884	(-1) 1.1746	(-2) 6.9784	(-2) 3.4498	9
10	(+1) 1.6319	9.5175	6.3025	5. 2001	3. 9498	3.135	2. 4140	1. 5688	(-	(-1) 5.9179	(-1) 3.7003	(-1) 2.7499	(-1) 2.1004	(-1) 1.5106	(-1) 1.1933	(-2) 7.1006	(-2) 3.5143	10
12	(+1) 1.2892	8.0009	5. 5245	4.6395	3.6065	2. 9134	2. 2828	1. 5197	(-1) 9.5943	(-1) 5.9372	(-1) 3.7480	(-1) 2.7974	(-1) 2.1433	(-1) 1.5458	(-1) 1.2230	(-2) 7.2954	(-2) 3.6174	12
15	(+1) 1.0231	6. 7408	4.8473	4.1415	293	2. 706	2.1582	1.4718	(-1) 9.4850	(-1) 5.9591	(-1) 3.7991	(-1) 2.8484	(-1) 2.1892	(-1) 1.5837	(-1) 1.2551	(-2) 7.5054	(-2) 3.7287	15
20	8.1577	5.6920	4. 2569	3.6987	3.0074	2. 514	2.0397	1.4252	(-1) 9.3776	(-1) 5.9837	(-1) 3.8540	(-1) 2.9032	(-1) 2.2388	(-1) 1.6246	(-1) 1.2897	(-2) 7.7330	(-2) 3.8495	20
24	7.2980	5.2349	3. 9905	3.4959	2. 8738	2.4226	1. 9826	1. 4022	(-1) 9.3245	(-1) 5.9970	$(-1) 3.8830$	(-1) 2.9321	(-1) 2.2650	(-1) 1.6463	(-1) 1. 3080	(-2) 7.8541	(-2) 3.9139	24
30	6.5375	4.8173	3.7416	3. 3045	2.7460	2.3343	1.9269	1.3795	(-1)	(-h) 6.0114	(-1) 3.9131	(-1) 2.9623	(-1) 2.2923	(-1) 1.6689	(-1) 1.3272	(-2) 7.9806	(-2) 3.9813	30
40	5.8640	4.4355	3. 5088	3. 1238	2.6238	2. 2490	1. 8725	1.3571	(-1) 9.2197	(-1) 6.0266	(-1) 3.9446	(-1) 2.9937	(-1) 2.3208	(-1) 1.6925	(-1) 1.3473	(-2) 8.1129	(-2) 4.0518	40
60	5.2672	4.0864	3.2911	2. 9530	2. 5068	2. 166	1. 819	1.3349	$1-$	(-1) 6.0430	(-1) 3.9774	(-1) 3.0264	(-1)	(-1) 1.7172	(-1) 1.3682	(-2) 8.2516	(-2) 4.1258	60
120	4.7380	3. 7670	3.0874	2.7918	2. 3948	2.0867	1.7675	1.3128	(-1)	(-1) 6.0599	$(-1) 4.0116$	(-1) 3.0605	(-1) 2.3816	(-1) 1.7430	(-1) 1.3902	(-2) 8.3970	(-2) 4.2035	120
∞	4.2682	3. 4746	2.8968	2.6393	2. 2875	2. 0096	1.7167	1. 2910	(-1) 9.0654	(-1) 6.0783	(-1) 4.0473	(-1) 3.0962	(-1) 2.4141	(-1) 1.7701	(-1) 1.4132	(-2) 8.5499	(-2) 4.2852	∞

[^3] reedom, respectively. In particular s_{1}^{2} / s_{2}^{2} is disand based on v_{1} and v_{2} degrees of freedom, respec tively. The numbers in parentheses indicate the power of ten by which the number following is to be multiplied, e.g., (-1) $1.2345=0.12345$.

ν_{2}	$\mathrm{p}=0.0001$	$\mathrm{p}=0.001$	$\mathrm{p}=0.005$	$p=0.01$	$\mathrm{p}=0.025$	$p=0.05$	$\mathrm{p}=0.1$	$\mathrm{p}=0.25$	$\mathrm{p}=0.5$	$\mathrm{p}=0.75$	$p=0.9$	$\mathrm{p}=0.95$	$\mathrm{p}=0.975$	$\mathrm{p}=0.99$	$\mathrm{p}=0.995$	$\mathrm{p}=0.999$	$\mathrm{p}=0.9999$	2
1	(+7) 5.9814 :	(+5) 5.9814	(+4) 2.3925	(1+3) 5.9816	(+2) 9.5666	(+2) 2.3888	(+1) 5.9439	9.1922	2.0041	(1) 6.5003	(-1) 2.8919	((-1) 1.3208	(-2) 8.8818	(-2) 6.8083	(-2) 3	(2) 1.	1
1.2	(6) 3.1977	(4) 6.8891	(3) 4.7117	(3) 1.4838	(2) 3.2187	(2) 1.0109	(1) 3.1544	6. 5069	1.7355	,) 2.9668	(-1) 1.9717	(-1) 1.4045	-2) 9.559	(-2)	(-2) 4.302	(-2) 2.1719	1.2
1.5	(5) 1.7539	(3) 8.1403	(2) 9.5165	(2) 3.7736	(2) 1.1086	(1) 4.3685	(1) 1.7027	4.6492	1.5103	-1) 6.1436	3.0693	(-1) 2.0882	((-1) 1.0420	(-2) 8.0954	(-2) 4.7737	(-2) 2.4293	1.5
2	(1+3) 9.9994	(+2) 9.9937	(+2) 1.9937	(+1) 9.9374	(+1) 3.9373	(+1) 1.9371	9. 3668	3526	213	(-1) 6.0	(1) 3.2122	(-1) 2.2427	(-1) 1.6503	(-1) 1.1562	(-	(-2) 5.4072	(-2) 2.7778	2
3	2) 6.0929 ((+2) 1.3062	(+1) 4.4126	(+1) 2.7489	(+1) 1.4540	345	5.25	2. 4364	27	(-1)	20	4593	(-1) 1.8464	(-1) 1.3173	(-1) 1.042	(-2) 6.3173	(-2) 3.2834	3
4	(+2) 1.5711 ((+1) 4.8996	(t+1) 2.1352	(+1) 1.4799	8.9796	6.0410	3. 9549	2.0805	1.0933	(-1) 6.0089	(-1)	(-1) 2.6057	(-1) 1.9792	(-1) 1.4273	(-1) 1.1357	(-2) 6.9485	(-2) 3.6375	4
5	(+1) 7.1226	(+1) 2.7649	(+1) 1.3961	(+1) 1.0289	6.7572	4.8	3.3393	1.8923	1.0545	(-1) 6.0332	(-1) 3.6672	(-1) 2.7119	(-1) 2.0759	(-1) 1.5079	$(-1) 1.20$	(-2) 7.4158	(-2) 3.9009	5
6) 4.2541	(+1) 1.9030	(1+1) 1.0566	8. 1016	5. 5996	4.1468	2. 9830	1.7760	1.0298	(-1) 6.0577	(-1) 3.7477	(-1) 2.7928	(-1) 2.1498	(-1) 1.5697	(-1) 1.25	-2) 7.7773	(-2) 4.1057	6
7	(+1) 2.9644	4	8.6781	6.3401	4.8994	3.7257	2.7516	1.6969	1.0126	(-1) 6.07	(-1) 3.8108	2.8567	(-1) 2.2082	(-1) 1.618	(-)	(-2) 8.0658	(-2) 4.2697	7
8	1) 2	1) 1.2046	7.4960	6.0289	4.4332	3.4381	2. 5893	1.6396	00	(-1) 6.0970	(-1) 3.862) 2.9086	(-1) 2.2557	(-1) 1.658	(-1) 1.3340	(-2) 8.3019	(-2) 4.4042	8
9	(+1) 1.8503 ((+1) 1.0368	6.6933	5. 4671	4. 1020	3.2296	2. 4694	1.5961	(-1) 9.9037	(-1) 6.1162	(-1) 3.9044	(-1) 2.9515	(-1) 2.2951	$(-1) 1.691$	$(-1) 1.362$	(-2) 8.4987	(-2) 4.5166	9
10	(+1) 1.5736	9.2042	6.1159	5.0567	3.8549	3.0717	2. 37	1. 5621	(-1) 9.8276	(-1) 6.131	-1) 3.940	1) 2.9876	(-1) 2.32 .82	(-1) 1.7199	(-1)	(-2) 8.6654	(-2) 4.6120	10
12	(+1) 1.2381	7.7104	5. 3451	4. 4994	3. 5118	8486	2.2446	. 5120	(-1) 9.7152	(-1)	(1)	(-1) 3.0451	(-1) 2.3811	(-1) 1.7647	(-1) 1.425	(-2) 8.9330	(-2) 4.7653	12
15	9.7796	6.4707	4.6743	4.0045	3.1987	2.6408	2.1185	1.4631	(-1) 9.6046	-1)	05	3.1071	(-1) 2.4383	(-1) 1.8132	(-1) 1.4675	-2) 9.2240	(-2) 4.932	15
20	7.7573	5.4400	4.0900	3. 5644	2.9128	2. 4471	1. 9985	1.4153	(-1) 9.4959			(. 500	(-1) 1.866	(-1) 1.513	(-2) 9.5423	(-2) 5.1159	20
24	6.9201	4.9912	3.8264	3. 3629	2.7791	2. 3551	1. 9407	1. 3918	(-1) 9.4422	(-1) 6.23	6	(-1) 3.2101	(-1) 2.5334	(-1) 1.8942	(-1) 1.53	(-2) 9.7131	(-2) 5.2145	24
30	6. 1802	4.5814	3. 5801	3.1726	2.6513	2. 2662	1. 8841	1. 3685	(-1) 9.3889	(-1) 6.25	196	3. 2474	(-1) 2.5681	(-1) 1.9238	(-1) 1.563	(-2) 9.8925	(-2) 5.3182	30
40	5. 5257	4.2070	3. 3498	2. 9930	2. 5289	2.1802	1.8289	1.3455	(-1) 9.3361	. 27	-1) 4.238	(-1) 3.28	(-1) 2.6043	(-1) 1.9548	(-1) 1.59	(-1) 1.0081	(-2) 5.4275	40
60	4.9465	3.8648	3. 1344	2.8233	2.4117	2.0970	1.7748	1.3226	(-1) 9.2838	(-1) 6.29	(-1) 4.2751	(1)	(-1) 2.6424 \|	(-1) 1.987	(-1)	(-1) 1.0280	(-2) 5.5430	60
120	4.4333	3. 5519	2.9330	2.6629	2. 2994	2.0154	1.7220	1.2999	(-1) 9.2318	(-1)	4.3174	(-1) 3.37051	(-1) 2.6825	(-1) 2.0218	(-1) 1.648	(-1) 1.0491	(-2) 5.6652	120
∞	3.9785	3.2656	2.7444	2.5113	2.1918	1.9384	1.6702	1. 2774	(-1) 9.1802	(-1) 6.3383	(-1) 4.3619	(-1) 3.4158	(-1) 2.7246	(-1) 2.0581	(-1) 1.6805	(-1) 1.0714	(-2) 5.7947	∞

Interpolation should be carried out using the reciprocals of the degrees of freedom; the function $120 / v$ is convenient for this purpose. Fisher's variance ratio $F\left(v_{1}, v_{2}\right)>F\left(v_{1}, v_{2}, p\right)$ with probability p. $F\left(v_{1}, v_{2}\right)=\left\{u / v_{1}\right\} /\left\{v / v_{2}\right\}$ where u and v are random variables independently distributed as x^{2} with ν_{1} and v_{2} degrees of freedom, respectively. In particular s_{1}^{2} / s_{2}^{2} is distributed as $F\left(\nu_{1}, v_{2}\right)$ where s_{1}^{2} and s_{2}^{2} are independent mean squares from normally distributed populations estimating a common variance σ^{2} and based on ν_{1} and ν_{2} degrees of freedom, respectively. The numbers in parentheses indicate the power of ten by which the number following is to be multiplied, e.g., $(-1) 1.2345=0.12345$.
The Probability Distribution of Fisher's Variance Ratio F

ν_{2}	$p=0.0001$	$\mathrm{p}=0.001$	$\mathrm{p}=0.005$	$\mathrm{p}=0.01$	$\mathrm{p}=0.025$	$\mathrm{p}=0.05$	$\mathrm{p}=0.1$	$\mathrm{p}=0.25$	$\mathrm{p}=0.5$	$\mathrm{p}=0.75$	$\mathrm{p}=0.9$	$\mathrm{p}=0.95$	$\mathrm{p}=0.975$	$\mathrm{p}=0.99$	$\mathrm{p}=0.995$	$\mathrm{p}=0.999$	$\mathrm{p}=0.9999$	ν_{2}
1	(+7) 6.0562	(+5) 6.0562	(+4) 2.4224	(+3) 6.0558	(+2) 9.6863	(+2) 2.4188	(+1) 6.0195	9.3202	2.0419	(-1) 6.7047	(-1) 3.0441	(-1) 2.0143	(-1) 1.4416	(-2) 9.9562	(-2) 7.7967	(-2) 4.7529	(-2) 2.5922	1
1.2	(6) 3.2291	(5) 6.9569	(3) 4.7581	(3) 1.4984	(2) 3.2506	(2) 1.0210	(1) 3.1870	6. 5863	1. 7677	:-1) 6.5084	(-1) 3.1319	(-1) 2.1198	(-1) 1.5397	(-1) 1.0772	(-2) 8.4934	(-2) 5.2325	(-2) 2.8772	1.2
1.5	(5) 1.7644	(3) 8.1893	(2) 9.5739	(2) 3.7964	(2) 1.1154	(1) 4.3967	(1) 1.7148	4.6961	1.5378	(-1) 6.3565	(-1) 3.2516	(-1) 2.2555	(-1) 1.6651	(-1) 1.1819	(-2) 9.392 i	(-2) 5.8562	(-2) 3.2508	1.5
2	(t+3) 9.9994	(+2) 9.9940	(+2) 1.9940	(+1) 9.9399	(+1) 3.9398	(+1) 1.9396	9. 3916	3.3770	1.3450	(-1) 6.2598	(-1) 3.4194	(-1) 2.4374	(-1) 1.8327	(-1) 1.3229	(-1) 1.0608	(-2) 6.7090	(-2) 3.7668	2
3	$(+2) 6.0275$	(+2) 1.2925	(+1) 4.3686	(+1) 2.7229	(+1) 1.4419	8.78	5. 2304	2. 4447	1.1833	(-1) 6.2391	(-1) 3.6661	(-1) 2.6967	(-1) 2.0723	(-1) 1.5262	(-1) 1.2375	(-2) 7.9664	(-2) 4.5377	3
4	(+2) 1.5398	(+1) 4.8053	(+1) 2.0967	(+1) 1.4546	8.8439	5. 9644	3. 9199	2.0820	1.112	(-1) 6.2700	(-1) 3.8383	(-1) 2.8752	(-1) 2.2380	(-1) 1.6683	(-1) 1.3619	(-2) 8.8630	(-2) 5.0942	4
5	(+1) 6.9250	(+1) 2.6917	(+1) 1.3618	(+1) 1.0051	6.6192	4.7351	3.297	1.88	1.0730	(-1) 6.3080	(-1) 3.9657	(-1) 3.0058	(-1) 2.3607	(-1) 1.7742	(-1) 1.4551	(-1) 9.5413	(-2) 5.5187	5
6	(+i) 4.1077	(+1) 1.8411	(+1) 1.0250	7.8741	5. 4613	4.0600	2. 9369	1. 7708	. 0478	(-1) 6.3432	(-1) 4.0640	(-1) 3.1083	(-1) 2.4557	(-1) 1.8567	(-1) 1.5280	(-1) 1.0075	(-2) 5.8546	6
7	(+1)		8. 3803	6.620	4.761	3.6	2. 7025	1.689	4	(-1) 6.3743	(-1) 4.1425	(-1) 3.1893	(-1) 2.5318	$(-1) 1.9230$	(-1) 1.5867	(-1) 1.0507	(-2) 6.1279	7
8	(+1) 2.1683	(+1) 1.1540	7. 2107	5. 814	4. 295	3. 3	2. 5380	1.6310		-1) 6.4016	(-1) 4.2066	(-1) 3.2555	(-1) 2.5941	(-1) 1.9776	(-1) 1.6351	(-1) 1.0865	(-2) 6.3549	8
9	(+1) 1.7590	9.8943	6.4171	5. 2565	3.9639	3.1373	2.4163	1. 5863	1.0077	(-1) 6.4255	(-1) 4.2602	(-1) 3.3108	(-1) 2.6462	(-1) 2.0233	(-1) 1.6757	(-1) 1.1166	(-2) 6.5467	9
10	(+1) 1.4901	3.7539	5. 8467	4.8492	3.716	2.9	2. 3226	13	1.0000	(-1) 6.4462	(-1) 4.3055	(-1) 3.3577	(-1) 2.6905	(-1) 2.0622	(-1) 1.7104	(-1) 1.1424	(-2) 6.7111	10
12	(+1) 1.1647	7.2920	5.0855	4.2961	3. 3736	2.753	2. 1878	1.4996	((-1) 6.4809	(-1) 4.3781	(-1) 3.4329	(-1) 2.7617	(-1) 2.1250	(-1) 1.7664	(-1) 1.1841	(-2) 6.9783	12
15	9.1309	6.0808	4.4236	3. 8049	3.060	2. 543	2.0593	1.4491	(-1)	(-1) 6.5198	(-1) 4.4573	(-1) 3.5149	(-1) 2.8395	(-1) 2.1938	(-1) 1.8279	(-1) 1.2302	(-2) 7.2744	15
20	7. 1805	5.0752	3. 8470	3. 368	. 7737	2.3479	1.936	1.3995		-1) 6.5638	(-1) 4.5440	(-1) 3.6049	(-1) 2.9252	(-1) 2.2699	(-1) 1.8961	$(-1) 1.2814$	(-2) 7.6049	20
24	6.3750	4.6379	3. 5870	3.1681	2.6396	2.2547	1. 8775	1.3750	(-1) 9.6081	(-1) 6.5880	(-1) 4.5905	(-1) 3.6534	(-1) 2.9714	(-1) 2.3111	(-1) 1.9330	(-1) 1.3093	(-2) 7.7852	24
30	5.6641	4.2388	3. 3440	2. 9791	2.5112	. 1	1.819	1.3507	(-1) 9.5540	(-1) 6.6142	(-1) 4.6395	(-1) 3.7043	(-1) 3.0202	(-1) 2.3547	(-1) 1.9722	(-1) 1.3389	(-2) 7.9770	30
40	5.0363	3.8744	3. 1167	2. 8005	388	2.0772	1.7627	1.3266	(-1) 9.500	(-1) 6.6419	(-1) 4.6911	(-1) 3.7581	(-1) 3.0718	(-1) 2.4008	(-1) 2.0137	(-1) 1.3704	(-2) 8.1816	40
60	4.4815	3.5415	2. 9042	2.6318	2. 270	1.992	1.7070	1. 3026	(-1) 9.447	(-1) 6.6711	(-1) 4.7456	(-1) 3.8152	(-1) 3.1266	(-1) 2.4498	(-1) 2.0580	(-1) 1.4040	(-2) 8.4007	60
120	3.9907	3.2372	2. 7052	2. 4721	2.1570	1.910	1.652	1.2787		(-1) 6.7029	$(-1) 4.8035$	(-1) 3.8758	(-1) 3.1848	(-1) 2.5022	(-1) 2.1052	(-1) 1.4400	(-2) 8.6358	120
∞	3.5564	2.9588	2. 5188	2. 3209	2.0483	1.8307	1. 5987	1.2549	(-1) 9	(-1) 6.7372	(-1) 4.8652	(-1) 3.9403	(-1) 3.2470	(-1) 2.5582	(-1) 2.1559	(-1) 1.4787	(-2) 8.8890	∞

The Probability Distribution of Fisher's Variance Ratio F

ν_{2}	$\mathrm{p}=0.0001$		$\mathrm{p}=0.001$		0.005		0.01		$\mathrm{p}=0.025$		$\mathrm{p}=0.05$		$\mathrm{p}=0.1$		$\mathrm{p}=0.25$	$\mathrm{p}=0.5$		$\mathrm{p}=0.75$		$\mathrm{p}=0.9$		$\mathrm{p}=0.95$		$=0.975$		$\mathrm{p}=0.99$		$\mathrm{p}=0.995$		$\mathrm{p}=0.999$		$\mathrm{p}=0.9999$		ν_{2}		
1.	(+7) 6.1067		(+5) 6.1067		(+4) 2.4426		(+3) 6.1063		(+2) 9.7671		(+2) 2.4391		(+1) 6.0705		$\begin{aligned} & 9.4064 \\ & 6.6399 \end{aligned}$	$\begin{aligned} & 2.0674 \\ & 1.7894 \end{aligned}$		$\begin{array}{ll} (-1) & 6.8432 \\ (-1) & 6.6485 \end{array}$		$(-1) 3.1481$		$\|(-1) 2.1065\|$		$\begin{array}{ll} (-1) & 1.5258 \\ (-1) & 1.6344 \end{array}$		$(-1) 1.0718$		$(-2) 8.5077$		$(-2) 5.3638$		$(-2) 3.0838$		1		
	(6)	3.2504	(4)	7.0027	(3) 4	4. 7894	(3)	1. 5033	(2) 3	3.2721	(2) 1	1.0278	(1)	3.2090				$(-1) 3$	3.2449	(-1)	2.2223	(-1)	1.1636			(-2)	9.3036	(-2)	5.9318		3.4412	1.2				
1.5	(5)	1.7715	(3) 8	8.2223	(2) 9	9.6126	(2)	3.8119	(2) 1	1.1200	(1) 4	4.4157	(1)	1.7230	4.7276		1. 5563			(-1)) 6.5009	(-1) 3	3.3771	(-1)	2.3719	(-1)	1. 7741	(-1)	1.2824	(-1)	1.0338	(-2)	6.6769		3.9143	1.5
2	(+3)	99		9.9942	(+2)	1.9942	(+i)	9. 9416	(+1)	3. 9415	(+1)	1. 9413		9. 4081	3. 3934		2. 3610	(-1)) 6.4123	(-1) 3	3. 5628	(-1)	2. 5738	(-1)	1.9624	(-1)	1.4437	(-1)	. 1751	(-2)	7. 7080		4.5768	2		
3	(+2)	5.9833		1.2832	(+1)	4.3387	(+1)	2.7052	(+1)	1.4337		8. 7446		5. 2156	2.4500		1.1972		6	(-1) 3	3.8380	(-1)	2.8651	(-1)	2.2350	(-1)) 1.6799	(-1)	1.3839	(-2)	9.2557		5.5867	3		
4	(+2)	1.5186		4.7412	(+1)	2.0705	(+1)	1.4374		8.7512		5. 9117		3.8955	2.0826		1.1255	(-1)) 6.4504	(-1) 4	4.0321	(-1)	3. 0682	(-1)	2.4265	(-1)	1.8478	(-1)	1. 5335	(-1)	1.0381		6.3321	4		
5	(+1)	6. 7908	(+1)	2.6418	(+1)	1. 3384		9. 8883		6. 5246		4.6777		3. 2682	1.8877		1.0855	(-1)	4981	(-1) 4	4.1771	(-1)	3.2197	(-1)	2. 5700	(-1)	1.9746	(-1)	1.6471	(-2)	1.1246	(-2)	6.9104	5		
6	(+1)	4.0081	(+1)	1.7989	(+1)	1.0034		7.7183		5. 3662		3. 9999		2. 9047	1.7668		1.0600	(-1)) 6.5419	(-1) 4	4.2900	(-1)	3.3377	(-1)	2.6822	(-1)	2.0744	(-1)	1.7370	(-1)	1.1935		7.3745	6		
7	(+1)	2. 7644	(+1)	1.3707		8. 1764		6. 4691		4.6658		3. 5747		2.6681	1.6843		1.0423		. 5802	(-1)	4. 3806	(-1)	3. 4324	(-1)	2. 7728	(-1)) 2.1554	(-1)	1.8101	(-1)	2499		7. 7566	7		
8	(+1)	2.0985	(+1)	1.1194		7.0149		5.6668		4.1997		3. 2840		2. 5020	1.62		1.0293	(-	138	(-1) 4	4551	(-1)	3. 5105	(-1)	2.8475	(-1)	2.2225	(-1)	1.8709	(-1)	1.2970		8.0771	8		
9	(+1)	1.6967		9. 5700		6.2274		5.1114		3. 8682		3.0729		2. 3789	1. 5788		1.0194	(-1)	6.6428	(-1)	4.5177	(-1)	3. 5760	(-1)	2.9105	(-1)) 2.2792	(-1)	1.9223	(-1)	1.3369	(-2)	8.3503	9		
10	(+1)	1.4330		8.4452		5.6613		4.7059		3.6209		2. 9130		2. 2841	1. 5430		1.0116				8		6319	(-1)	2. 9642	(-1)	2.3277	(-1)	. 9664	(-1)	1.3714	(-2)	8.5861	10		
12	(+1)) 1.1144		7.0046		4.9063		4.1553		3. 2773		2.6866		2. 1474	1.4902		1.0000	(-1)) 6.7105	(-1) 4	4.6568	(-1)	3.7222	(-1)	3.0513	(-1)) 2.4066	(-1)	2.0382	(-1)	1.4276		8.9732	12		
15		8.6859		5.8121		4.2498		3.6662		2. 9633		2.4753		2.0171	1.4383	(-1)	9.8863	(-1)	. 7586	(-1) 4	4.7508	(-1)	3.8213	(-1)	3. 1474	(-1)) 2.4940	(-1)	2. 1180	(-1)	1. 4905	(-2)	9. 4075	15		
20		6.7837		4.8229		3.6779		3. 2311		2.6758		2.2776		1.892	1.3		9.7746	(-1)	8129	(-1) 4	4.8551	(-1)	. 9314	(-1)	3. 2544	(-1)) 2.5917	(-1)	2. 2076	(-1)	1.5613	(-2)	9.8996	20		
24		5.9992		4.3929		3.4199		3.0316		2. 5412		2.1834		1.8319	1. 3621	(-1)	9.7194	(-1)	6.8432	(-1) 4	4.9116	(-1)	3.9912	(-1)	3.3127	(-1)	2.6452	(-1)	2.2566	(-1)	1.6003	(-1)	1.0171	24		
30		5.3075		4.0006		3.1787		2.8431		2.4120		2.0921		1.7727	1.3369	(-1)	. 6647	(-1)	8757	(-1) 4	9714	(-1)	4.0547	(-1)	3.3746	(-1)	2.7021	(-1)	2. 3090	(-1)	1.6421	(-1)	1.0464	30		
40		4.6973		3.6425		2. 9531		2.6648		2. 2882		2.0035		1.7146	1. 3119	(-1)	9.6104	(-1)	. 9104	(-1) 5	5.0350	(-1)	4.1222	(-1)	3.4408	(-1)	2. 7630	(-1)	2. 3651	(-1)	1.6870	(-1)	1.0778	40		
60		4.1585		3. 3153		2.7419		2.4961		2. 1692		1.9174		1.6574	1. 2870	(-1)	9. 5566	(-1)	. 9478	(-1) 5	5. 1028	(-1)	4.1943	(-1)	3.5115	(-1)	2. 8285	(-1)	2.4255	(-1)	1.7354	(-1)	1.1119	60		
120		3.6823		3.0161		2. 5439		2. 3363		2. 0548		1.8337		1.6012	1. 2621	(-1)	9. 5032	(-	9881	(-1) 5	5.1752	(-1)	.2717	(-1)	3. 5876	(-1)	2.8991	(-1)	2.4907	(-1)	1.7879	(-1)	1.1490	120		
∞		3.2612		2. 7425		2. 3583		2. 1848		1.9447		1.7522		1. 5458	1.2371	(-1)	9.4503	-1)	7.0319	(-1) 5	5. 2532	(-1)	4.3550	(-1)	3.6699	(-1)	2. 9755	(-1)	2. 5615	(-1)	1.8452	(-1)	1.1896	∞		

 tively. The numbers in parentheses indicate the power of ten by which the number following is to be multiplied, e.g., (-1) $1.2345=0.12345$

$\nu_{1}=15$																		
${ }^{2} 2$	$\mathrm{p}=0.0001$	$\mathrm{p}=0.001$	$\mathrm{p}=0.005$	$p=0.01$	$\mathrm{p}=0.025$	$\mathrm{p}=0.05$	$p=0.1$	$\mathrm{p}=0.25$	$\mathrm{p}=0.5$	$\mathrm{p}=0.75$	$\mathrm{p}=0.9$	$\mathrm{p}=0.95$	$\mathrm{p}=0.975$	$\mathrm{p}=0.99$	$\mathrm{p}=0.995$	$p=0.999$	$\mathrm{p}=0.9999$	${ }^{2}$
1	(+7) 6.1576	(+5) 6.1576	(+4) 2.4630	(+3) 6.1573	(+2) 9.8487	(+2) 2.4595	(+1) 6.1220	9. 4934	2.0931	(-1) 6. 9828	(-1) 3.2539	(-1) 2.2011	(-1) 1.6130	(-1) 1.1517	(-2) 9.2610	(-2) 6.0287	(-2) 3.6432	1
1.2	(6) 3.2718	(4) 7.0489	(3) 4.8210	(3) 1.5183	(2) 3.2938	(2) 1.0347	(1) 3.2312	6.6939	1.8112	(-1) 6.7903	(-1) 3.3603	(-1) 2.3278	(-1) 1.7328	(-1) 1.2546	(-1) 1.0166	(-2) 6.6968	(-2) 4.0868	1.2
1.5	(5) 1.7787	(3) 8.2557	(2) 9.6518	(2) 3.8275	(2) 1.1247	(1) 4.4349	(1) 1.7313	4.7594	1.5750	(-1) 6.6473	(-1) 3.5055	(-1) 2.4922	(-1) 1.8878	(-1) 1.3887	(-1) 1.1350	(-2) 7.5809	(-2) 4.6800	1.5
2	(1+3) 9.9994 ((+2) 9.9943	(+2) 1.9943	(+1) 9.9432	(+1) 3.9431	(+1) 1.9429	9.4247	3. 4098	1. 3771	(-1) 6.5673	(-1) 3.7103	(-1) 2.7157	(-1) 2.0986	(-1) 1.5726	(-1) 1.2986	(-2) 8.8190	(-2) 5.5221	2
3	(+2) 5.9384	(+2) 1.2737	(+1) 4.3085	(+1) 2.6872	(+1) 1.4253	8. 7029	5. 2003	2. 4552	1. 2111	(-1) 6.5781	(-1) 4.0164	(-1) 3.0419	(-1) 2.4080	(-1) 1.8460	(-1) 1.5442	(-1) 1.0712	(-2) 6.8329	3
4	$(+2) 1.4971$	(+1) 4.6761	(+1) 2.0438	(+1) 1.4198	8.6565	5. 8578	3. 8689	2. 0829	1.1386	(-1) 6.6353	(-1) 4.2348	(-1) 3.2727	(-1) 2.6286	(-1) 2.0437	(-1) 1.7233	(-1) 1.2117	(-2) 7.8228	4
5	(+1) 6.6544	(+1) 2.5911	(+1) 1.3146	9.7222	6.4277	4.6188	3.2380	1. 8851	1.0980	(-1) 6.6943	(-1) 4.3995	(-1) 3.4467	(-1) 2.7961	(-1) 2.1951	(-1) 1.8615	1) 1.3215	(-2) 8.6050	5
6	(+1) 3.9068	(+1) 1.7559	9.8140	7. 5590	5. 2687	3. 9381	2. 8712	1.7621	1.0722	(-1) 6.7476	(-1) 4.5288	(-1) 3.5836	(-1) 2.9285	(-1) 2.3157	(-1) 1.9721	(-1) 1.4101	(-2) 9.2427	6
7	(+1) 2.6819	(+1) 1.3324	7.9678	6. 3143	4. 5678	3. 5108	2.6322	1.6781	1.0543	(-1) 6.7944	$(-1) 4.6335$	(-1) 3.6947	(-1) 3.0364	(-1) 2.4146	(-1) 2.0630	(-1) 1.4835	(-2) 9.7743	7
8	(+1) 2.0274	(+1) 1.0841	6.8143	5. 5151	4. 1012	3. 2184	2.4642	1.6170	1.0412	(-1) 6.8348	(-1) 4.7203	(-1) 3.7867	(-1) 3.1263	(-1) 2.4972	(-2) 2.1394	(-1) 1.5454	(-1) 1.0225	8
9	(+1) 1.6331	9.2381	6.0325	4.9621	3. 7694	3. 0061	2. 3396	1. 5705	1.0311	(-1) 6.8700	(-1) 4.7934	(-1) 3.8646	(-1) 3.2024	(-1) 2.5675	(-1) 2.2044	(-1) 1.5985	(-1) 1.0614	9
10	(+1) 1.3747	8.1288	5. 4707	4. 5582	3. 5217	2. 8450	2. 2435	1. 5338	1.0232	(-1) 6.9008	(-1) 4.8560	(-1) 3.9313	(-1) 3.2678	(-1) 2.6282	(-1) 2.2606	(-1) 1.6445	(-1) 1.0952	10
12	(+1) 1.0630	6. 7092	4.7214	4. 0096	3. 1772	2.6169	2. 1049	1. 4796	1.0115	(-1) 6.9527	(-1) 4.9576	(-1) 4.0399	(-1) 3.3746	(-1) 2.7276	(-1) 2.3531	(-1) 1.7206	(-i) 1.1513	12
15	8.2290	5.5351	4.0698	3. 5222	2. 8621	2. 4035	1.9722	1. 4263	1.0000	(-1) 7.0111	(-1) 5.0705	(-1) 4.1605	(-1) 3.4939	(-1) 2.8391	(-1) 2.4571	(-1) 1.8067	(-1) 1.2152	15
20	6.3748	4.5618	3. 5020	3.0880	2. 5731	2. 2033	1.8449	1. 3736	(-1) 9.8870	(-1) 7.0786	(-1) 5.1967	(-1) 4.2965	(-1) 3.6286	(-1) 2.9657	(-1) 2.5756	(-1) 1.9053	(-1) 1.2890	20
24	5.6112	4.1387	3. 2456	2. 8887	2. 4374	2. 1077	1.7831	1. 3474	(-1) 9.8312	(-1) 7.1164	(-1) 5.2659	(-1) 4.3710	(-1) 3.7029	(-1) 3.0358	(-1) 2.6414	(-1) 1.9604	(-1) 1.3304	24
30	4.9385	3.7527	3.0057	2. 7002	2. 3072	2.0148	1.7223	1.3213	(-1) 9.7759	(-1) 7.1567	(-1) 5.3396	(-1) 4.4508	(-1) 3.7826	(-1) 3.1113	(-1) 2.7125	(-1) 2.0201	(-1) 1.3754	30
40	4. 3455	3.4003	2. 7811	2. 5216	2. 1819	1.9245	1.6624	1. 2952	(-1) 9.7211	(-1) 7.2005	(-1) 5.4189	(-1) 4.5366	(-1) 3.8685	(-1) 3.1929	(-1) 2.7894	(-1) 2.0851	(-1) 1.4246	40
60	3.8221	3.0781	2. 5705	2. 3523	2.0613	1. 8364	1. 6034	1.2691	(-1) 9.6667	(-1) 7.2485	-1) 5.5042	(-1) 4.6294	(-1) 3.9617	(-1) 3.2818	(-1) 2.8733	(-1) 2.1562	(-1) 1.4787	60
120	3. 3600	2.7833	2. 3727	2. 1915	1. 9450	1.7505	1. 5450	1. 2428	(-1) 9.6128	(-1) 7.3003	(-1)	(-1) 4.7301	(-1) 4.0632	(-1) 3.3789	(-1) 2.9654	(-1) 2.2347	(-1) 1.5386	120
∞	2.9509	2.5132	2. 1868	2.0385	1.8326	1.6664	1.4871	1.2163	(-1) 9.5593	(-1) 7.3578	(-1) 5.6977	(-1) 4.8407	(-1) 4.1748	(-1) 3.4863	(-1) 3.0673	(-1) 2.3218	(-1) 1.6055	∞

Interpolation should be carried out using the reciprocals of the degrees of freedom; the function $120 / v$ is convenient for this purpose. Fisher's variance ratio $F\left(\nu_{1}, \nu_{2}\right)>F\left(\nu_{1}, \nu_{2}, P\right)$ with probability p. $F\left(\nu_{1}, v_{2}\right)=\left\{u / v_{1}\right\} /\left\{v / v_{2}\right\}$ where u and v are random variables independently distributed as x^{2} with v_{1} and v_{2} degrees of freedom, respectively. In particular s_{1}^{2} / s_{2}^{2} is dis tributed as $F\left(\nu_{1}, \nu_{2}\right)$ where s_{1}^{2} and s_{2}^{2} are independent mean squares from normally distributed populations estimating a common variance σ^{2} and based on v_{1} and ν_{2} degrees of freedom, respec tively. The numbers in parentheses indicate the power of ten by which the number following is to be multiplied, e.g., (-1) $1.2345=0.12345$
The Probability Distribution of Fisher's Variance Ratio F

 tively. The numbers in parentheses indicate the power of ten by which the number fcllowing is to be multiplied, e.g., (-1) $1.2345=0.12345$.
$\nu_{1}=30$

ν_{2}	$\mathrm{p}=0.0001$	$\mathrm{p}=0.001$	$\mathrm{p}=0.005$	$\mathrm{p}=0.01$	$\mathrm{p}=0.025$	=0.05	$\mathrm{p}=0.1$	$\mathrm{p}=0.25$	$\mathrm{p}=0.5$	$p=0.75$	$\mathrm{p}=0.9$	$\mathrm{p}=0.95$	$\mathrm{p}=0.975$	$\mathrm{p}=0.99$	$\mathrm{p}=0.995$	$\mathrm{p}=0.999$	$\mathrm{p}=0.9999$	v_{2}
1	(+7) 6.2610	(+5) 6.2610	(+4) 2.5044	07	(+3) 1.0014	(+2) 2.5009	(+1)	9.6698	2.14	(-1) 7.2669	4	(-i) 2.3976	(-1)	(-1) 1	(-1)		(-2)	1
1.2	(6) 3.3154	(4) 7.1428	(3) 4.8852	(3) 1.5385	(2) 3.3378	(2) 1.0487	(1) 3.2763	. 8034	1.8555			(-1) 2.5476	(-1) 1.9405	((-1) 1.2046	(-2) 8.4290	(-2) 5.6401	1.2
1.5	(5) 1.7934	(3) 8.3236	(2) 9.7314	(2) 3.8592	(2) 1.1342	(1) 4.4739	(1) 1.7480	. 8237	1.6129	(-1)	((-1) 2.7444	(-1) 2.1295	(-1) 1.6190	(-1)	(-2) 9.6487	(-2) 6.5442	1.5
2	(+3) 9.9995	(+2) 9.9947	(+2)	9466	(+1) 3.9465	(+1) 1.9462	9.4579	3. 44	1.4096	(-1) 6.8852	(-	(-1) 3.0159	(-1) 2.3911	(-1) 1.8551	(-1) 1.5736	((-2) 7.8631	2
3	(+2)	+2) 1.2545	(+1) 4.2466	(+1) 2.6505	(+1) 1.4081	8.6166	5. 16	2. 4650			(-1)	(-1)	(-1) 2.7860	(-1)	(-1) 1.9088	(-1) 1.4175	06	3
4	(+2) 1.4530	(+1) 4.5429	(+1) 1.9892	$(+1) 1.3838$	8.4613	5.7459	3.8174	2.0825	1.1649	(-1) 7.0205	(-1) 4.6681	(-1) 3.7180	(-1) 3.0770	(-1) 2.4889	(-1) 2.1630	(-1) 1.6328	(-1) 1.1705	4
5	(+1) 6.3746	(+1) 2.4869	(+1) 1.2656	9.3793	6.22	4.4957	3. 1741	1.8784	1.1234			(-1) 3.9470	(-1) 3.30	(-1)				5
6	(+1) 3.6984	(+1) 1.	9.3583) 7.2285	5.0652	3.8082	2.8000	1.7510	1.0969				(-1) 3.4883	9		(-1) 1.9523	(-1) 1.4282	6
7	(+1) 2.5118) 1	7.5345	5. 9921	4. 3624	3. 3758	2.5555	1.6635	1.0785		(-1)		(-1) 3.6417	(-1) 3.0262		(-1) 2.0759	(-1) 1.5296	7
8		(+1) 1.0109	6. 396	5. 1981	3. 8940	3.0794	2. 3830	1. 5996	1.0651		(-				(-	(-1)	(-1) 1.6181	8
9	(+1) 1.5013	8.5476	5.6248	4.6486	3. 5604	2.8637	2. 254	1. 5506	1.05	(-1) 7.3584	(-1) 5.4083	(-1) 4.5235	(-1) 3.8841	(-1) 3.2610	(-1) 2.8981	(-1) 2.2763	(-1) 1.6961	9
10	(+1) 1.2536	7.4688	. 70	2469	311	2.	2.15	1. 5119	1.0467		-1)	(-1) 4.61	(-1) 3	(-1)	(-1) 2.9904			10
12	9.5570	6.089	330	3.70	2. 9633	2.4663	2.01	1. 4544	1.0347		(-1)	(-1) 4.7	(-1) 4.1459	(-1) 3.5173	(-1	(-1) 2.4996	(-1)	12
15	7.270	4.950	3.6867	3.2141	.643	2. 2468	1.8728	3			. 8062	(-1) 4.96	33	(-1) 3.7034	(-1)		(-1) 2.0249	15
20	5. 5105	4.00		2.778	2. 3486	2.0391	1.7382	1.3401			(-1) 5.9977	(-1) 5.1768	(-1) 4.555	(-1) 3.9236	(-1) 3.5423	(-1) 2.8630	(-1) 2.19	20
24	4.7867	3.5935	2.8679	2. 5773	2. 2090	1.9390	1.6721	1. 3113	1.0057	(-1) 7.7322	(-1) 6.1061	(-1) 5.2983	(-1) 4.6819	(-1) 4.0504	(-1) 3.6668	(-1) 2.9787	(-1) 2.2965	24
30	4. 1492	3.2171	2.6278	2. 3860	2.07	1. 8409	i. 6065	23	1.0000			(-1) 5.4321	(-1) 4.8218	(-1) 4.1911	(-1) 3.80	1)	(-1)	30
40	3. 5868	2.8721	2.4015	4	. 94	1.	1. 5411	1.2529	(-1) 9.9440		1) 6.3565	(-1) 5.5810	(-1) 4.9778	(-1) 4.3493	(-1) 3.9618	((-1)	40
60	3.0894	2.5549	1874	2. 0285	1. 8152	1.649	1.4755	1.2229		(-1) 7.9548	(-1) 6.5036	(-1) 5.7484	(-1) 5.1546	(-1) 4.5292	(-1) 4.1406	(-1) 3.42	(-1) 2.690	60
120	2.6480	2.2621	1.9839	1.8600	1.6899	1. 5543	4	1.1921	(-1) 9.83									120
∞	2.2544	1.9901	1.7891	1.6964	1.5660	1.4591	1. 3419	1. 1600	(-1) 9.7787	(-1) 8.1593	(-1) 6.8662	(-1) 6.1641	(-1) 5.5969	(-1) 4.9845	(-1) 4.5956	(-1) 3.8626	(-1) 3.0860	∞

The Probability Distribution of Fisher's Variance Ratio F Interpolation should be carried out using the reciprocals of the degrees of freedom; the function $120 / v$ is convenient for this purpose. Fisher's variance ratio $F\left(v_{1}, v_{2}\right)>F\left(v_{1}, v_{2}, P\right)$ with probability p. $F\left(v_{1}, v_{2}\right)=\left\{u / v_{1}\right\} /\left\{v / v_{2}\right\}$ where u and v are random variables independently distributed as x^{2} with v_{1} and v_{2} degrees of freedom, respectively. In particular s_{1}^{2} / s_{2}^{2} is distributed as $F\left(\nu_{1}, v_{2}\right)$ where s_{1}^{2} and s_{2}^{2} are independent mean squares from normally distributed populations estimating a common variance σ^{2} and based on ν_{1} and ν_{2} degrees of freedom, respectively. The numbers in parentheses indicate the power of ten by which the number following is to be multiplied, e.g., (-1) $1.2345=0.12345$.
$\nu_{1}=40$

ν_{2}	$\mathrm{p}=0.0001$	$\mathrm{p}=0.001$	$\mathrm{p}=0.005$	$\mathrm{p}=0.01$	$\mathrm{p}=0.025$	$\mathrm{p}=0.05$	$\mathrm{p}=0.1$	$\mathrm{p}=0.25$	$\mathrm{p}=0.5$	$\mathrm{p}=0.75$	$\mathrm{p}=0.9$	$\mathrm{p}=0.95$	$p=0.975$	$\mathrm{p}=0.99$	$\mathrm{p}=0.995$	$\mathrm{p}=0.999$	$\mathrm{p}=0.9999$	ν_{2}
	(+7) 6.2871	(+5) 6.2871	(t+4) 2.5148	(+3) 6.2868	(+3) 1.0056	(+2) 2.511	6.2529	9.7144	2.1584	(-1) 7.3389	8	(-1) 2.4481	(-1) 1.8437	(-1) 1.3672	(-1) 1.1328	(-2) 7.9306	(-2) 5.3566	1
1.2	(6) 3.3264	(4) 7.1666	(3) 4.9015	(3) 1.5436	(2) 3.3490	(2) 1.0522	(1) 3.2877	6.8310	1.8677			(-1) 2.6044	6	19	(-i) 1.2548	(-2) 8.9046	(-2) 6.0850	1.2
1.5	(5) 1.7971	(3) 8.3408	(2) 9.7515	(2) 3.8672	(2) 1.1366	(1) 4.4837	(1) 1.7523	4.8399	1.6225			(-1) 2.8099	(3	(-1) 1.4176	(-1) 1.0221	(-2) 7.0830	. 5
2	(+3) 9.9995	(+2) 9.9948	(+2) 1.9947	(+1) 9.9474	(t1) 3.9473	(+1) 1.9471	9. 4663	3.4511	1.4178			(-1) 3.0943	(-1) 2.4685	(-1) 1.9311	(-1) 1.6484	(-1) 1.2120	(-2) 8.5485	2
3	(+2) 5.8236	(+2) 1.2496	(+1) 4.2308	(+1) 2.6411	(+1) 1.4037	8. 5944	5. 159	2. 4674	4	(-1) 7.0230	(-1) 4.4922	(-1) 3.5227	(-1) 2.8874		(-1)		(-1) 1.0956	3
4	(+2) 1.4418	(+1) 4.5089	(+1) 1.9752	(+1) 1.3745	8.4111	5. 7170	3.8036	2.0821	1.1716	(-1) 7.1200	(-1) 4.7826	(-1) 3.8373	(-1) 3.1989	(-1) 2.6121	(-1) 2.2863	(-1) 1.7550	(-1) 1.2888	4
5	(+1) 6.3031	(+1) 2.4602	(+1) 1.2530	9. 2912	6.1751	4. 4638	3. 1573	1.8763	97	(-1) 7.2134	(-1) 5.0080	(-1) 4.0825	(-1) 3.4439	(-1) 2.8459	(-1) 2.5088	(-1) 1.9500	(-1) 1.4495	5
6	1) 3.6450	$(+1)$	9. 2408	7.1432	5. 0125	3.7743	2.781	74	31	. 2961	(-1) 5.1897	(-1) 4.2810	(-1) 3.6438	(-1) 3.0386	(-1) 2.6933	(-1) 2.1130	(-1) 1.5865	6
7	(+1) 2.4680	(+1) 1.232	7.4225	5. 9084	4.3089	3.34	2. 53	1.65	46	(-1) 7.3687	(-1) 5.3405	(-1) 4.4464	(-1) 3.8113	(-1) 3.2012	(-1) 2.8500	(-1) 2.2545	(-1) 1.7053	7
8	(+1) 1.842	9.919	6.287	5.115	3.8398	3.0428	2. 361	1. 5945	1	(-1) 7.4322	(-1)	(-1) 4.5867	(-1) 3.9543	(-1) 3.3411	(-1) 2.9853	(-	(-1) 1.8097	8
9	(+1) 1.4672	8.3685	5. 5186	4. 5667	3. 5055	2. 8259	2.2320	1. 5450	1.0608	(-1) 7.4884	(-1) 5.5776	(-1) 4.7081	(-1) 4.0785	(-1) 3.4631	(-1) 3.1037	(-1) 2.4849	(-1) 1.9025	9
10	(+1) 1.2222	7.2971	4. 9659	4.1653	25	2.66	2. 1317	1. 5056	1.0526	(-1) 7.5381	(-1) 5.6731	(-1) 4.8142	(-1) 4.1873	(-1) 3.5708	(-1) 3.20	(-1)	(-1) 1.9856	10
12	9.27	5.9278	4. 2282	3.619	2. 906	425	1.9861	44	04	. 6225	(-1) 5.8323	(-1) 4.9913	(-1) 4.3702	(-1) 3.7526	(-1) 3.3863	(-1) 2.74	(-1) 2.128	12
15	7.0197	4. 7959	3. 5850	3. 1319	2. 5850	2. 2043	454	1. 3888	0287	(-1) 7.7208	(-1)	(-1) 5.1962	(-1) 4.5832	(-1) 3.9657	(-i) 3.5957	(-1) 2.9409	(-1) 2.30	15
20	5.2817	3.8564	3.0215	2.694	2. 2873	1.9938	1.708	1. 3301	0171	(-1) 7.8382	(-1) 6.2298	(-1) 5.4380	(-1) 4.8363	(-1) 4.2214			(-1) 2.5	20
24	4.5669	3.4468	2.7654	2. 4923	2. 1460	1.8920	1.6407	1. 3004	1.0113	(-1) 7.9058	(-1) 6.3528	(-1) 5.5776	(-1) 4.9828	(-1) 4.3706	$(-1) 3.9968$	(-1) 3.321	(-1) 2.6418	24
30	3.9370	3.0716	2. 5241	2.2992	2.0089	1.7918	573	1.2703		(-1) 7.981	(1) 6.	(-1) 5.7326	(-1) 5.1469	-1)	(-1) 4.16	(-1) -3. 481	(-1) 2.7880	30
40	3. 3804	2.7268	2. 2958	2.1142	1.8752	1.6928	1. 5056		0	(-1) 8.066	(-1) 6.64	(-1) 5.9074	(-1) 5.3328	(-1) 4.7299	(1) 4.3	(-1) 3.6673	(-1) 2.9582	40
60	2.8870	2.4086	2.0789	1.9360	1.7440	1. 5943	1. 4373	1. 2081	-1) 9.9441	(-1) 8.16		(-1) 6.1076	(-1) 5.5469	(-1) 4.9	(-1) 4.57	1) 3.88	(-1) 3.16	60
120	2.4471	2.1128	1.8709	1.7628	1.6141	1. 4952	1. 3675	1.1752	(-1) 9.8887	(-1) 8.27	(-1) 7.01	($(-1) 6.3428$	(-1) 5.7998	(-1) 5.21	(-1) 4.8461 ((-1) 4.1489	(-1) 3.4073	120
∞	2.0516	1.8350	1.6691	1.5923	1.4835	1. 3940	1. 2951	1.1404	(1)	(-1) 8.4154	(-1) 7.2627	(-1) 6.6273	(-1) 6.1084	(-1) 5.5411	(-1) 5.1765 ((-1) 4.4791	(-1) 3.7208	∞

Interpolation should be carried out using the reciprocals of the degrees of freedom; the function $120 / \nu$ is convenient for this purpose. Fisher's variance ratio $F\left(\nu_{1}\right.$, $\left.\nu_{2}\right)>F\left(\nu_{1}\right.$, ν_{2}, p) with probability p. $F\left(v_{1}, v_{2}\right)=\left\{u / v_{1}\right\} /\left\{v / v_{2}\right\}$ where u and v are random variables independently distributed as χ^{2} with v_{1} and v_{2} degrees of freedom, respectively. In particular $\mathrm{s}_{1}^{2} / \mathrm{s}_{2}^{2}$ is distributed as $F\left(v_{1}, v_{2}\right)$ where s_{1}^{2} and s_{2}^{2} are independent mean squares from normally distributed populations estimating a common variance σ^{2} and based on v_{1} and v_{2} degrees of freedom, respec tively. The numbers in parentheses indicate the power of ten by which the number following is to be multiplied, e. g., (-1) $1.2345=0.12345$.

ν_{2}	$\mathrm{p}=0.0001$	$\mathrm{p}=0.001$	$\mathrm{p}=0.005$	$\mathrm{p}=0.01$	$\mathrm{p}=0.025$	$\mathrm{p}=0.05$	$\mathrm{p}=0.1$	$\mathrm{p}=0.25$	$\mathrm{p}=0.5$	$\mathrm{p}=0.75$	$\mathrm{p}=0.9$	$\mathrm{p}=0.95$	$\mathrm{p}=0.975$	$\mathrm{p}=0.99$	$\mathrm{p}=0.995$	$\mathrm{p}=0.999$	$\mathrm{p}=0.9999$	v_{2}
1	$(+7) 6.3134$	(+5) 6.3134	(+4) 2.5253	(+3) 6.3130	(+3) 1.0098	(+2) 2.5220	(+1) 6.2794	9.7591	2.1716	(-1) 7.4113	(-1) 3. 5824 ((-1) 2.4993	(-1) 1.8919	(-1) 1.4130	(-1) 1.1772	(-2) 8.3521	(-2) 5.7548	1
1.2	(6) 3.3375	(4) 7.1904	(3) 4.9178	(3) 1.5488	(2) 3.3602	(2) 1.0558	(1) 3.2991	6.8588	1.8779	(-1) 7.2258	(-1) 3.7204	(-1) 2.6619	(-1) 2.0497	(-1) 1.5547	(-1) 1.3064	(-2) 9.3973	(-2) 6.5529	1.2
1.5	(5) 1.8008	(3) 8.3581	(2) 9.7718	(2) 3.8753	(2) 1.1390	(1) 4.4937	(1) 1.7565	4.8562	1.6321	(-1) 7.0985	(-1) 3.9090	(-1) 2.8763	(-1) 2.2575	(-1) 1.7430	(-1) 1.4792	(-1) 1.0815	(-2) 7.6516	1.5
2	(1+3) 9.9995	(+2) 9.9948	(+2) 1.9948	(+1) 9.9483	(+1) 3.9481	(+1) 1.9479	9. 4746	3.4594	1.4261	(-1) 7.0482	(-1) 4.1785	(-1) 3.1742	(-1) 2.5476	(-1) 2.0091	(-1) 1.7256	(-1) 1.2874	(-2) 9.2758	2
3	(+2) 5.8002	(+2) 1.2447	(+1) 4.2149	(+1) 2.6316	(+1) 1.3992	8. 5720	5. 1512	2. 4697	1.2536	(-1) 7.1149	(-1) 4.5926	(-1) 3.6257	(-1) 2.9918	(-1) 2. 4237	(-1) 2.1146	(-1) 1.6204	(-1) 1.1972	3
4	(+2) 1.4305	(+1) 4.4746	(+1) 1.9611	(+1) 1.3652	8. 3604	5.6878	3. 7896	2.0817	1.1782	(-1) 7.2213	(-1) 4.8996	(-1) 3.9601	(-1) 3.3248	(-1) 2.7404	(-1) 2.4155	(-1) 1.8844	(-1) 1.4165	4
5	(+1) 6.2309	(+1) 2.4333	(+1) 1.2402	9.2020	6.122	4.4314	3.140	1.874	1.1361	(-1) 7.3223	(-1) 5.1395	(-1) 4.2224	(-1) 3.5890	(-1) 2.9950	(-1) 2.6596	(-1) 2.1024	(-1) 1.6009	5
6	(+1) 3.5910	(+1) 1.6214	9.1219	7.0568	4. 9589	3.7398	2. 762	1.7443	1. 1093	(-1) 7.4123	(-1) 5.3342	(-1) 4.4366	(-1) 3.8060	(-1) 3.2065	(-1) 2.8639	(-1) 2.2873	(-1) 1.7596	6
7	(+1) 2.4238	(+1) 1.2119	7. 3088	5. 8236	4.2544	3.3043	2. 514	1.6548	1.0908	(-1) 7.4912	(-1) 5.4963	(-1) 4.6157	(-1) 3.9891	(-1) 3.3864	(-1) 3.0385	(-1) 2.4471	(-1) 1.8985	7
8	(+1) 1.8041	9. 7272	6.1772	5.0316	3.7844	3.005	2. 339	1. 5892	1.0771	(-1) 7.5609	(-1) 5.6344	(-1) 4.7687	(-1) 4.1465	(-1) 3.5420	(-1) 3.1904	(-1) 2.5874	(-1) 2.0216	8
9	(+1) 1.4327	8.1865	5. 4104	4. 4831	3.4493	2.7872	2. 2085	1. 5389	1. 0667	(-1) 7.6225	(-1) 5.7537	(-1) 4.9017	(-1) 4.2838	(-1) 3.6785	(-1) 3.3241	(-1) 2.7120	(-1) 2.1319	9
10	(+1) 1.1904	7.1224	4.8592	4.0819	3. 1984	2.6211	2. 10	1.49	5	(-1) 7.6770	(-1) 5.8582	(-1) 5.0186	(-1) 4.4049	(-1) 3.7997	(-1) 3.4433	(-1) 2.8237	(-1) 2.2314	10
12	8.9933	5.7623	4.1229	3. 5355	2.8478	2. 3842	1.9597	1.4393	1.0464	(-1) 7.7700	(-1) 6.0335	(-1) 5.2154	(-1) 4.6100	(-1) 4.0062	(-1) 3.6471	(-1) 3.0163	(-1) 2.4047	12
15	6. 7628	4.6377	3.4803	3.0471	2. 5242	2.1601	1. 816	1. 3796	1.03	(-1) 7.8796	(-1) 6.2367	(-1) 5.4454	(-1) 4.8513	(-1) 4.2512	(-1) 3.8903	(-1) 3.2488	(-1) 2.6164	15
20	5.0463	3.7030	2. 9159	2.6077	2. 2234	1.9	1.676	3193	8	(-1) 8.0122	(-1) 6.4788	(-1) 5.7208	(-1) 5.1427 :	(-1) 4.5500	(-i) 4.1890	(-1) 3.5378	(-1) 2.8834	20
24	4.3397	3.2946	2.6585	2. 4035	2.0799	1.8424	1.6073	1. 2885	1.0170	(-1) 8.0900	(-1) 6.6194	(-1) 5.8820	(-1) 5.3143	(-1) 4.7272	(-1) 4.3672	(-1) 3.7122	(-1) 3.0465	24
30	3. 7163	2.9196	2.4151	2.2079	1. 9400	1.7396	1. 5376	1.2571	1.0113	(-1) 8.1773	(-1) 6.7774	(-1) 6.0639	(-1) 5.5090	(-1) 4.9298	(-1) 4.5716	(-1) 3.9140	(-1) 3.2369	30
40	3. 1642	2.5737	2. 1838	2.0194	1. 8028	1.6373	1.4672	1. 2249	1.0056	(-1) 8.2775	(-1) 6.9575	(-1) 6.2723	(-1) 5.7339	(-1) 5.1653	(-1) 4.8102	(-1) 4.1518	(-1) 3.4638	40
60	2.6723	2.2523	1.9622	1.8363	1.6668	1. 5343	1. 3952	1. 1912	1.0000	(-1) 8.3949	(-1) 7.1674	(-1) 6.5176	(-1) 5.9995	(-1) 5.4457	(-1) 5.0963	(-1) 4.4400	(-1) 3.7420	60
120	2.2301	1.9502	1.7469	1.6557	1. 5299	1. 4290	1. 3203	1. 1555	(-1) 9.9443	(-1) 8.5361	(-1) 7.4206	(-1) 6.8152	(-1) 6.3251	(-1) 5.7927	(-1) 5.4523	(-1) 4.8028	(-1) 4.0975	120
∞	1.8250	1.6601	1. 5325	1.4730	1. 3883	1.3180	1. 2400	1.1164	(-1) 9.8891	(-1) 8.7154	(-1) 7.7429	(-1) 7.1979	(-1) 6.7467	(-1) 6.2477	(-1) 5.9224	(-1) 5.2897	(-1) 4.5828	∞

 tively. The numbers in parentheses indicate the power of ten by which the number following is to be multiplied, e.g. , $(-1) 1.2345=0.12345$.
The Probability Diatribution of Fisher's Variance Ratio F

ν_{2}	$p=0.0001$	$p=0.001$	$\mathrm{p}=0.005$	$\mathrm{p}=0.01$	$p=0.025$	$\mathrm{p}=0.05$	$\mathrm{p}=0.1$	$\mathrm{p}=0.25$	$\mathrm{p}=0.5$	$p=0.75$	$\mathrm{p}=0.9$	$p=0.75$	$\mathrm{p}=0.975$	$p=0.99$	$\mathrm{p}=0.995$	$p=0.999$	$p=0.9999$	ν_{2}
1	$(1+7) 6.3397$	(15) 6.3397	(+4) 2.5359	(i+3) 6.3394	(+3) $1.0: 40$	(+2) 2.5325	(+1) 6.3061	9.8041	2.1848	(-i) 7.4839	(-1) 3.6393	(-1) 2.5510	(-1) 1.9408	(-1)1.4596	$(-1) 1.2226$	(-2) 8.7873	-2) 6.1714	1
1.2	(6) 3.3486	(4) 7.2144	(3) 4.9342	(3) 1.5539	(2) 3.3714	(2) 1.0593	(1) 3.3106	6.8867	1.8892	(-1) 7.2998	(-1) 3.7824	(-1) 2.7201	(-1) 2.1056	(-1) 1.6086	(-1) 1.3592	(-2) 9.9068	(-2) 7.0438	1.2
1.5	(5) 1.8045	(3) 8.3755	(2) 9.7922	(12) 3.8834	(2) 1.1415	(1) $\leq .5036$	(1) 1.7608	4.8725	1.6417	(-1) 7.1754	(-1) 3.9788	(-1) 2.9436	(-1) 2.3232	(-1) 1.3072	(-1) 1.5425	(-1) 1.1432	(-2) 8.2502	1.5
2	(4+3) 9.9995	(1+2) 9.9949	(+2) 1.9949	(+1) 9.9491	(+1) 3.9490	$\left(\begin{array}{l}\text { (1) } \\ 1\end{array} 1.9487\right.$	9. 4829	3.4677	1.4344	(-i) 7.1306	(-1) 4.2602	(-1) 3.2554	(-1) 2.6284	(-1) 2.0892	$(-1) 1.8053$	(-1) 1.3659	(-1) 1.0045	2
3	(4+2) 5.7766	(1+2) 1.2397	(t1) 4.1989	(+1) 2.6221	(+1) 1.3947	8. 5494	5. 1425	2. 4720	1.2508	(-1) 7. 2.082	(-1) 4.6948	(-1) 3.7311	(-1) 3.0989	(-1) 2.5321	(-1) 2.2236	(-1) 1.7297	(-1) 1.3058	3
4	(+2) 1.4130	(+1) 4.4400	(t+1) 1.9468	(+1) 1.3658	8. 3092	5.6581	3. 7753	2.0812	1.1849	(-1) 7.3239	(-1) 5.0193	(-1) 4.0863	(-1) 3.4551	(-1) 2.8739	(-1) 2.5506	(-1) 2.0214	(-1) 1.5538	4
5	(+1) 6.1580	(+1) 2.4060	$(+1) 1.2274$	9.1118	6.0693	4.3984	3.1225	1. 8719	1.1426	(-1) 7.4333	(-1) 5. 2745	$(-1) 4.3668$	(-1) 3.7397	(-1) 3.1511	1) 2.8163	(-1) 2.2647	(-1) 1.7649	5
6	(t1) 3.5364	(+1) 1.5981	9.0015	6.9690	4.9045	3.7047	2. 7423	$1.740 ?$	1.1156	(-1) 7.5313	(-1) 5.4831	(-1) 4.5977	(-1) 3.9755	(-1) 3.3831	(-1) 3.0442	(-1) 2.4730	(-1) 1.9484	6
7	(t1) 2.3790	(+1) 1.1909	7.1933	5.7372	4. 1989	3. 2674	2.4928	1.6502	1.0969	(-1) 7.6173	(-1) 5.6577	(-1) 4.7923	(-1) 4.1757	(-i) 3.5819	(-1) 3.2390	(-1) 2.6546	(-1) 2.1106	7
8	(t+1) 1.7652	9.5321	6.0649	4. 9460	3.7279	2. 966	2.3	1. 5836	1. 0832	(-1) 7.6929	(-	-1) 4.9593	(-1) 4.3490	(-1) 3.7553	(-1) 3.4095	(-1) 2.8154	(-1) 2.2556	δ
9	(+1) 1.3976	8.0014	5. 3001	4.3778	3.3918	2. 7475	2.1843	1. 5325	1.0727	(-1) 7.7604	(-1) 5.9372	(-1) 5.1052	(-1) 4.5011	(-1) 3.9084	(-1) 3.5609	$(-1) 2.9592$	(-1) 2.3866	9
10	(t+1) 1.1580	6.9443	4.7501	3. 99	3. 139	2. 5801	2.0818	1.491	1.0645	$(-1) 7.8204$	$(-1) 6.0518$	(-1) 5.2342	(-1) 4.6361	(-1) 4.0451	(-1) 3.6966	(-1) 3.0891	(-1) 2.5058	10
12	8. 7031	5.5931	4.0149	3.4494	2.7819	2. 3410	1.9323	1.4310	1.0523	(-1) 7.9233	(-1) 6.2453	(-1) 5.4535	$\mid(-1) 4.86607$	(-1) 4.2803	(-1) 3.9310	(-1) 3.315	(-1) 2.7157	12
15	6.4995	4.4750	3.3722	2.	2. 461	2.1141	. 786	1. 3698	03	$(-1) 8.0463$	(-1) 6.4725	(-1) 5.7127	(-1) 5.1414	(-1) 4.5631	(-1) 4.2146	(-1) 3.592%	(-1) 2.9762	15
20	4. 3031	3.5438	2. 8058	2. 5168	2.156	1.89	1.6433	1. 30.74	1.9285	(-1)	(-1) 6.7472	(-1) 6.0288	(-1) 5.4798	(-1) 4.9150	(-1) 4.5702	(-1) 3.	(-1) 3.3135	20
24	4.1037	3.1357	2. 5463	2. 3099	2.0099	1.789?	1. 5715	1. 2754	1.0227	(-1) 8.2864	(-1) 6.9099	(-1) 6.2174	(-1) 5.6828	(-1) 5.1282	(-1) 4.7870	(-1) 4.1634	(-1) 3.5244	24
30	3.4852	2. 7595	2. 2997	2. 1107	1.8664	1.6835	1.4989	1. 2424	1.0170	$(-1) 8.3885$	(-1) 7.0952	(1) 6.4338	(i-1) 5.9175	(-1) 5.3763	(-1) 5.0406	(-1) 4.4206	(-1) 3.7764	30
40	2.734?	2.4103	2.0635	1.9172	1.7242	1. 5766	1.4248	1. 2080	1.0113	(-1) 8.5092	(-1) 7.3121	(-1) 6.6881	(-1) 6.1954	(-1) 5.6728	(-1) 5.3450	(-1) 4.7330	(-1) 4.0864	40
60	2.4405	2.0821	1.8341	1.7263	1. 5810	1. 4673	1.3476	1.1715	1.0056	$(-1) 8.6543$	(-1) 7.5740	(-1) 6.9979	(1-1) 6. 5364	(-1) 6.0397	(-1) 5.7244	(-1) 5.1277	(-1) 4, 4842	60
120	1.9877	1.7667	1.6055	1. 5330	1. 4327	1. 3519	1. 2646	1.1314	1.0000	(-1) 8.8586	(-1) 7.9076	(-1) 7.3970	(-1) 6.9798	(-1) 6.5232	(-1) 6.22	(-1) 5.6601	(-1) 3.0309	120
∞	1:5527	1.4468	1. 3637	1. 3246	1. 2684	1. 2214	1.1636	1.0838	(-1) 9.9445	(-1) 9.1017	(-1) 8.3850	(-1) 7.9751	(-1) 7.6313	(-1) 7.2438	(-1) 6.9876	(-1) 6.4792	(-1) 5.8940	∞

v_{2}	$\mathrm{p}=0.0001$	$\mathrm{p}=0.001$	$\mathrm{p}=0.005$	$\mathrm{p}=0.01$	$\mathrm{p}=0.025$	$\mathrm{p}=0.05$	$\mathrm{p}=0.1$	$\mathrm{p}=0.25$	$\mathrm{p}=0.5$	$\mathrm{p}=0.75$	$\mathrm{p}=0.9$	$\mathrm{p}=0.95$	$p=0.975$	$\mathrm{p}=0.99$	$\mathrm{p}=0.995$	$\mathrm{p}=0.999$	$\mathrm{p}=0.9999$	${ }^{2}$
1	6.3662	((+4) 2.5465	(+3) 6.3660	(+3) 1.0183	(+2) 2.5432	(+1) 6.3328	9.8492	2.1981	(-1) 7.5569	2	(-1) 2.6031	(-1) 1.9905	(-1) 1.5072	(-1) 1.2691	(-2) 9.2357	(-2)	1
1.2	(6) 3.3598	(4) 7.2384	(3) 4.9507	(3) 1.5591	(2) 3.3827	(2) 1.0629	(1) 3.3222	6.9147	1.9905) 7.3741	(((-1) 2.1623	(-1) 1.6636	(-1) 1.4133	(-1) 1.0437	(-2) 7.6055	1.2
1.5	(5) 1.8083	(3) 8.3929	(2) 9.8126	(2) 3.8916	(2) 1.1439	(1) 4.5136	(1) 1.7651	4.8889	1.6514	(-1) 7.2527	(9	((-1) 1.8729	(-1) 1.6076	(-1) 1.2076	(-2) 8.9520	1.5
2	(+3)	(+2) 9.9950	(+2) 1.9951	(+1) 9.9501	(+1) 3.9498	(+1)	9. 4913	3. 4761	. 4427	(-1) 7.2134	(-1) 4.3429	((-1) 2.7108	(-1) 2.1715	(1)	((-1) 2.0857	2
3	(+2)	347	(+1) 4.1829	(+1) 2.6125	(+1)	8. 5265	5.13	2.4742	1. 2680	(-1)	(-1) 4.7989	(-1) 3.8389	(-1) 3.2091	(-1) 2.6444	(-1) 2.3368	(-1) 1.8443	(-1) 1.1213	3
4	(+2)	1) 4.4051	(+1) 1.9325	(+1) 1.3463	8.2573	5.6281	3.7507	2.0806	1.1916	(-1) 7.4278	(-1) 5.1417	(-1) 4.2160	(-1) 3.5896	(-1) 3.0128	(-1) 2.6917	(-1) 2.166	(-1) 1.7012	4
	(+1) 6.0844	(+1) 2.3785	(+1) 1.21	9.02	6.01	4.3650	3. 1050	1.8694	0	(-1) 7.5466	(-1) 5.4133	(-1) 4.5165	(-1) 3.8964	(-1) 3.3142	(-1) 2.9852	(-1) 2.	(-1) 1.9421	5
6) 3) 1.574	8.8793	6.88	4.84	B	2.7222	8	219	(-1) 7.6523	(-1) 5.6367	(-1) 4.7651	(-1) 4.1525	(-1) 3.5689	(-1) 3.2349	(-1)	(-1) 2.1539	6
7	(+1) 2.	1) 1.1696	7.0760	5.6495	4. 1423	3.2298	2.4708	1.6	31	(-1) 7.7459	(-1) 5.8251		(-1) 4.3716	(-1) 3.78	(-1) 3.4521	(-1)	(7
8	(+1) 1	9.33	5.950	4.8588	3.6702			7		((-1)	(-1) 5.1589	(-1) 4.5625	(-1)	(-1) 3.6438	(-1)	(-1) 2.5135	8
9	(+1) 1.3620	7.8128	5. 1875	4.3105	3.3329	2. 7067	2.159	1. 5257	1.0788	(-1) 7.9026	(-1) 6.1293	(-1) 5.3194	(-1) 4.7313	(-1) 4.1540	(-1) 3.8153	(-1) 3.228	(-1) 2.6690	9
10	(+1) 1.1250	6.7625	4.6	3.9090	3.07	2. 53	2.0554	1.48	2705	(-1) 7.9688	(-1) 6.2551	(-1) 5. 4624	(-1) 4.8821	(-1) 4.3087	(-1) 3.9701	(-1)	(-1) 2.8118	10
12	8.4063	419	3. 9039	3.3608		2.2962	1.9036	1.42	1.0582	(-1) 8.0834	(-1) 6.4691	(-1) 5.7071	(-1) 5.1422	(-1) 4.5771	(-1) 4.2403	(-1) 3.64	(-1)	12
15	6.		3.2602		2.	2.0658	1.7551	1.3	1.0461	(-1) 8.2217	(-1) 6.7245	(-1) 6.0010	(-1) 5.4567	(-1) 4.9056	(-1) 4.57	(-1) 3.97		15
20	4.5503	778	2.6904	2.4212	2.0853	1.8432		1.2943	3	(-1) 8.3935	(-1)		(-1) 5.8531	(-1) 5.3240	(-1) 5.0005	(-1) 4.41	(-1)	20
24	3.8566	2.9685	2. 4276	2.2107	1.9353	1.7331	1. 5327	1. 2607	1.028	(-1) 8.4983	(-1) 7.2296	(-1) 6.5907	(-1) 6.0968	(-1) 5.5841	(-1) 5.2679	(-1) 4.689	(-1) 4.0947	24
30	3.240	2.5889	2.1760	2.0062	1.78	1.622	1.45	1. 2256	1.0226	(-1) 8.6207	(-1) 7.4521	(-1) 6.85	-1) 6.3857	(-1) 5.8948	(-1) 5.5894	(-1) 5.02	(-1) 4.4357	30
40	2.687	2.232	1.9318	1.804	1.63	1. 5089	1.37	1.188	016	3.7689	(-1) 7.7214	(-1) 7.1736	(-1) 6.7408	(-1) 6.2802	(-1) 5.9913	(-1) 5.44	(-1) 4.8743	40
60	2.1821	1.890	1.6885	1.6006	1.4822	1. 3893	1.2915	1.1474	1.0112	(-1) 8.9574	(-1) 8.06	(-1) 7.5873	(-1) 7.2031	(-1) 6.788	(-1) 6.52	(-1) 6.02	(-1) 5.4793	60
20	1.6966	1.5434	1.4311	1.3805	1. 3104	1.2539	1.1926	1.0987	, 005	8	(-1) 8.5) 8.187	(-1) 7.8839	(-1) 7.5494	(-1) 7.333	(-1) 6.907	(-1) 6.4403	120
∞	1.0000	1. 0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	10000	1.0000	1.0000	∞

$F\left(\nu_{1}, \nu_{2}, p\right)$ $\begin{array}{llllllllllllll}0.0001 & 0.0005 & 0.001 & 0.002 & 0.005 & 0.01 & 0.02 & 0.05 & 0.1 & 0.15 & 0.2 & 0.3 & 0.4 & 0.5\end{array}$

$F\left(\nu_{1}, \nu_{2}, p\right)$

$F\left(\nu_{1}, \nu_{2}, p\right)$

$F\left(\nu_{1}, \nu_{2}, p\right)$

$F\left(\nu_{1}, \nu_{2}, p\right)$

19
101
12
15
20
24
30
60
120
00

$F\left(\nu_{1}, \nu_{2}, p\right)$

$F\left(\nu_{1}, \nu_{2}, p\right)$

$F\left(\nu_{1}, \nu_{2}, p\right)$

p

p

$F\left(\nu_{1}, \nu_{2}, p\right)$

$F\left(\nu_{1}, \nu_{2}, p\right)$

\section*{$F\left(\nu_{1}, \nu_{2}, p\right)$} | 0.0001 | 0.0005 | 0.001 | 0.002 | 0.005 | 0.01 | 0.02 | 0.05 | 0.1 | 0.15 | 0.2 | 0.3 | 0.4 | 0.5 | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | | | 1 | | | | | | | | | | | | | | 10^{6}

THE NATIONAL BUREAU OF STANDARDS

The scope of the scientific program of the National Bureau of Standards at laboratory centers in Washington, D. C., and Boulder, Colorado, is given in the following outline: Washington, D.C.
Electricity and Electronics. Resistance and Reactance. Electron Tubes. Electrical Instruments. Magnetic Measurements. Dielectrics. Engineering Electronics. Electronic Instrumentation. Electrochemistry.
Optics and Metrology. Photometry and Colorimetry. Optical Instruments. Photographic Technology. Length. Engincering Metrology.
Heat and Power. Temperature Physics. Thermodynamics. Cryogenic Physics. Rheology and Lubrication. Engine Fuels.
Atomic and Radiation Physies. Spectroscopy. Radiometry. Mass Spectrometry. Solid State Physics. Electron Physics. Atomic Physics. Nuclear Physics. Radioactivity. X-rays. Betatron. Nucleonic Instrumentation. Radiological Equipment. AEC Radiation Instruments.
Chemistry. Organic Coatings. Surface Chemistry. Organic Chemistry. Analytical Chemistry. Inorganic Chemistry. Electrodeposition. Gas Chemistry. Physical Chemistry. Thermochemistry. Spectrochemistry. Pure Substances.
Mechanics. Sound. Mechanical Instruments. Fluid Mechanics. Engineering Mechanics. Mass and Scale. Capacity, Density, and Fluid Meters. Combustion Controls.
Organic and Fibrous Materials. Rubber. Textiles. Paper. Leather. Testing and Specifications. Polymer Structure. Organic Plastics. Dental Research.
Metallurgy. Thermal Metallurgy. Chemical Metallurgy. Mechanical Metallurgy. Corrosion. Metal Physics.
Mineral Products. Engineering Ceramics. Glass. Refractories. Enameled Metals. Concreting Materials. Constitution and Microstructure.
Building Technology. Structural Engineering. Fire Protection. Air Conditioning. Heating, and Refrigeration. Floor, Roof, and Wall Coverings. Codes and Specifications. Heat Transfer.
Applied Mathematics. Numerical Analysis. Computation. Statistical Engineering. Mathematical Physics.
Data Processing Systems. SEAC Engineering Group: Components and Techniques. Digital Circuitry. Digital Systems. Analogue Systems. Application Engineering.

- Office of Basic Instrumentation Boulder, Colorado - Office of Weights and Measures Boulder, Colorado BOLLDER LABORATORIES
F. W. Brown, Director

Cryogenic Engineering. Cryogenic Equipment. Cryogenic Processes. Properties of Materials. Gas Liquefaction.
Radio Propagation Physics. Upper Atmosphere Research. Ionospheric Research. Regular Propagation Services. Sun-Earth Relationships.
Radio Propagation Engineering. Data Reduction Instrumentation. Modulation Systems. Navigation Systems. Radio Noise. Tropospheric Measurements. Tropospheric Analysis. Radio Systems Application Engineering.
Radio Standards. High Frequency Electrical Standards. Radio Broadcast Service. High Frequency Impedance Standards. Calibration Center. Microwave Physics. Microwave Circuit Standards.
Department of Commerce
Boulder Laboratories
Boulder, Colorado
Official Business

p!ed səəя pue əภิe7sod

[^0]: $1 /$
 R. A. Fisher, "On a distribution yielding the error functions of several well-known statistics," Proceedings of the International Mathematical Conference, p. 805, Toronto, 1924.

 2 George W. Snedecor, "Analysis of Variance and Covariance," Collegiate Press, Inc., Ames, Iowa, 1934.

[^1]: 4/ M. Merrington and C. M. Thompson, "Tables of Percentage Points of the Inverted Beta (F) Distribution," Biometrika, vol. 33, pp: 73-88, 1943. Biological, Agricultural and Medical Research," 1942, Oliver and Boyd, Edinburgh.

[^2]: $\nu_{1}=2$

[^3]: $\nu=7$

