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FITTING AN ARBITRARY FUNCTIONAL RELATIONSHIP BY LEAST
SQUARES WITH ALL OF THE VARIABLES SUBJECT TO ERROR

by

Kenneth A. Norton
National Bureau of Standards

Boulder, Colorado

1. INTRODUCTION

Although too often forgotten by those attempting to apply

the method of least sq^res, it has been emphasized by most
authors —*—^/throughout the development of the theory

1/ C. F, Gauss, "Theoria Motus Corporum Coelestium, "

(Hamburg, 1809), Art. 179.

i/c. H. Kummell, "Reduction of Observation Equations
which Contain More than One Observed Quantity, " The Analyst
(Des Moines), vol. 6, no. 4, July, 1879, pp. 97-105.

1/ H. S. Uhler, "Method of Least Squares eind Curve
Fitting, " Jour. Optical Society of America, vol. 7, pt. 2,

Nov., 1923, pp. 1043-1066,

4/ D. V. Lindley, "Regression Lines and the Linear
Functional Relationship, " Supplement to the Journal of Royal
Stat. Soce, vol. 9, no. 2, 1947, pp. 218-244.

.§/ Abraham Wald, "The Fitting of Straight Lines if Both
Variables are Subject to Error, " Annals, of Math, Stat,, vol. XI,

Sept., 1940, pp. 284-300.

^ M, S. Bartlett, "Fitting a Straight Line when Both
Variables are Subject to Error, " Biometrics, vol. V, no. 3,

1949 , p. 207-212.

2/ W. E. Deming, "Statistical Adjustment of Data, "

John Wiley and Sons, Inc., New York, 1943.
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that it is necessary to assign, or in some way determine, appropriate

relative weights for each of the coordinates determining the location

of each of the points, before it is possible to determine consistent

estimates of the parameters determining the line, curve, or surface

which is to be fitted to these points. The precision of consistent

estimates increases with the number of observations, and would give

the population mean values if the number of observations were infinite.

An additional requirement for obtaining consistent estimates of the

parameters by the method of least squares is that the expected values

of the errors of the observations be equal to zero, i. e. , the average
of an infinite number of these observational errors must be taken to

be equal to zero. A solution is presented in this paper, with all of

the variables subject to error, for this general least squares problem
of determining consistent estimates of the parameters of a functional

relationship which is expected to fit exactly the average of an infinite

number of observations, A general method for weighting the data is

presented, and examples are given to illustrate the effects of varying
the statistical characteristics of the observed data. These examples
demonstrate the necessity, if consistent estimates of the parameters
are to be obtained, of modifying the original design of the experiment
in many cases in order to obtain data in the particular form required
by the statistical model described in this paper. It cannot be em-
phasized too strongly that the use of statistical models not representa-
tive of the experimental data cannot yield consistent estimates of the

parameters of the functional relationship actually describing these

data. Thus, only to the extent that the experimenter can demonstrate
the validity of the statistical model used, can he expect to obtain by
its use consistent estimates of the parameters.

The sophisticated scientist, recognizing at the outset that all

of his conclusions based on measurements are only relatively correct,

turns to mathematical statistics as a means of assigning quantitative

probabilities to the degree of his belief. Throughout this paper an
attempt is made to determine confidence bands corresponding to

specified probabilities for the various statistics determined by least

squares. In most cases only approximate confidence bands are now
known for many of the important least squares statistics, and the

development of more precise solutions would involve a very considerable
complication of the analysis. Fortunately, great accuracy in the

absolute magnitudes of the confidence bands is usually of secondary im-
portance since probabilities are usually assigned to the proposed
significance levels in a somewhat subjective and arbitrary manner.
It is important, however, that the variation in the magnitudes of these



>1.3-

confidence bands with relevant statistical parameters, such as the

numbers of observations and the numbers of parameters fitted, be

relatively correct, and every effort has been made to ensure this

result. It is important to note in this connection that the determina-
tion of only approximate confidence bands for the statistics of a

model actually representative of the experimental data is much more
desirable than the determination of exact confidence bands for

statistics determined from a simpler statistical model which is not

representative of the data.

In this paper each of the n points to be fitted in a k dimen-
sional space is considered to be represented by the means, variances

and covariances of a series of observations on each of its k variables.

Thus the n points in our two dimensional examples (k = 2) are con-

sidered to be samples from n separate and independent bivariate

distributions. Estimated values of the parameters (two means, two
variances and one covariance) defining each of these distributions,

and thus each of the points, are considered to be known on the basis

of these measurements. Aside from being more general than the usual

textbook expositions, in which the expected values of these variances
and covariances are assumed to be the same for all n points, it is

believed that the above point of view is often more realistic since this

is the way experimental data frequently present themselves to the

analyst. For example, the individual coordinates of each of the points

to be fitted are often the means of samples from populations with
different variances when obtained by the same experimenter in the

same laboratory, and will even more likely be so when these points

have been obtained as the result of observations by different experi-
menters in different laboratories.

Many analysts have been disturbed.
4, 8/when using linear

regression theory to fit a straight line to a set of n points, X^, Y^,

to find that a different line is determined when all of the variance is

assigned to the values of Y. than when all of the variance is assigned
to the values of X.. In those cases where no independent information

is available as to the relative weights to assign to the Y. and X.
5 /

^11
observations, Wald— has developed a method for determining not

only consistent estimates of the parameters defining the line, but also

— Joseph Berkson, "Are There Two Regressions, " Jour,

Amer. Stat. Assoc., vol. 45, no. 250, June, 1950, pp. 164-180.
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confidence intervals for these parameters and estimates of the variances

of the Y. and X. observations, but only on the hypotheses (1) that the
1 1

expected values of the variances of X. and are the same for all n

points, (2) that the unknown errors are sufficiently small so that the

classification of the X. (or Y.) into two groups in accordance with11
their magnitudes will be the same as the corresponding classification

of the unknown population mean values X. (or Y. ), (3) that X. and
^ lO lO 1

Y. are normally distributed, and (4) that their covariances are zero.

Only the first two of the above conditions are required for obtaining

consistent estimates of the parameters, while the other two con-

ditions are required in order to permit the assignment of probabilities

to the confidence intervals, Bartlett has shown how to improve the

efficiency of Wald's method, and Bennett and Franklin—^ have described
a method of analysis for fitting a straight line involving a statistical

model which is in many respects the same as the model considered
in this paper. The present paper deals initially with the case in which
independent estimates are available to the analyst of the variances atnd

covariances of each of the X. and Y. observations. We will see that,11
when all of this information is independently available, either by meas-
urement or assumption, tests can be made either (1) of the validity of

the assumed functional relationship or (2) for the presence of random
"systematic” errors. The designation "systematic" error is used
consistently throughout this paper to refer to that component of error
of a particular observation point which is not reduced by making repeated

observations of its coordinates. If the tests indicate that the assumed
functional relationship is compatible with the observed data, consistent

estimates of its parameters can be obtained. These estimated param-
eters are, of course, derived from samples of observed populations

of the two random variables X. and Y., and are consistent estimates
1 1

of the "true" values of the parameters only to the extent that none of

these observed populations have any constant bias in their means
relative to the "true" values of these random variables. It is shown
that a constant bias of this kind cannot be detected by least squares.

If the tests indicate the presence of random "systematic"
errors, methods are given for including their effects in the fitting.

It is shown, however, that the proper inclusion of these effects of

such random "systematic" errors usually cannot be determined from a

9 /— Carl A. Bennett and Normal L. Franklin, "Statistical

Analysis, " John Wiley and Sons, 1954, p. 463. These methods appear
to be largely drawn from J. W. Tulcey, "Com.ponents in Regression, ”

Biometrics, 7, 1951, pp. 33-69.
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statistical analysis of the experimental data alone and must be based

on ad hoc assumptions supplied by the experimenter. In particular,

when fitting a straight line, the variance arising from these random
systematic” errors cannot, by statistical analysis alone, be sub-

divided into its three components: (1) a possible systematic error

variance of X., (2) a possible systematic error variance of Y^, and

(3) the covariance of these two possible sources of random systematic

error.

g /

Berkson— has proposed a most desirable experimental pro-
cedure for taking data intended to be fit to a linear functional relation-

ship with both variables subject to error. He calls this procedure a

controlled experiment and shows that great simplification in the

statistical analysis results from its use. In fact it can be shown that

the analysis of measurements made by this procedure with both

variables subject to error can be reduced to a problem involving only

one variable subject to error. This procedure and method of analysis

are described, and a brief indication given of how its great advantages

may be extended to the general problem of fitting an arbitrary func-

tional relationship with all of the variables subject to error.

It is shown for all of the statistical models discussed in this

paper how to "adjust” the experimental observations to those particular

values which jointly have a minimum weighted mean square deviation

relative to all of the experimental data and of the assumed functional

relationship. In the absence of systematic errors, these "adjusted”

values will also be consistent estimates of the population mean values
of the n experimental points. Thus, by directing the attention of the

experimenter to these estimated errors (random plus "systematic”)
thus determined for each coordinate of each of his observed points,

it often makes possible a better understanding of the nature and source
of these errors.

Methods are given for calculating (1) confidence bands for the

least squares estimates of each of the parameters of the functional

relationship considered independently, (2) elliptical confidence regions
for two or more of these parameter estimates considered jointly,

(3) confidence regions for the fitted functional relationship, and (4)

confidence regions for future values predicted by the use of the fitted

functional relationship.

The primary purpose of this paper is tutorial, although some
results are presented which are believed to be new, and errors in

previous solutions are corrected. By a slight m_odification in approach.
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some of the complexity of the usual expositions has been avoided,

while at the same time other aspects of the problem have been
generalized.

Many of our results are contained in the general solution

of this problem obtained by Kummell in 1879—^ but, possibly because
he presented no illustrative examples, the full significance and im-
portance of Kummell' s results appear to have been overlooked by
subsequent authors.

An effort is made in the following presentation to point out

the wide variety of solutions to be expected on the basis (a) of

different experimental information or of different initial assumptions
relative to the weights to be assigned to the individual observed points

or (b) of different assumptions relative to the form of the functional

relationship fitted to the data. Thus it cannot be emphasized too

strongly that the method of least squares should not be used blindly

by the experimenter in the hope that somehow this will provide in

some magic way a best solution. Instead, careful consideration

should be given first to the form of the function to be fitted to the

data, and then to the nature and reliability of each experimental
point. A solution by least squares does make possible the efficient

use of all of the information available to the experimenter, but it

can never give results which are any better than the assumptions
and experimental data used.

Some experimenters use least squares only in those cases
where it is quite clear from a plot of their data that the assumption
under consideration (linearity of the assumed relation, for example)
is well established and would not use the method when the points are
widely scattered. It seems to the author that this latter attitude

reveals a lack of appreciation of the scope of the method, since it

is frequently in just those cases where the data are widely scattered
that the method of least squares is most useful by providing a sig-

nificant quantitative evaluation of the reality of the assumed relations.

It is important to remember that the results of many, even properly
conducted, physical experiments yield widely scattered data because
of the impossibility of controlling the influence of many of the varia-
bles, and this results in the introduction of large errors. It is quite

clear that these uncontrollable experiments should receive as much,
if not more, careful attention from the analyst as those experiments
for which carefully controlled conditions are feasible. In this paper
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a more precise estimate of the standard errors is given which allows

for the second order effects which arise with widely scattered data.

Even granting the possibility of obtaining the above informa-
tion by the application of the method of least squares to the analysis

of a set of experimental data, the question as to when the complexities
of analysis by this method are justified is a difficult one, and pre-
sumably must finally be conceded to be a matter of judgment with the

individual analyst. In any case, before deciding this question, the

experimenter should know what kinds of additional information are
likely to become available from the application of the method, and it

is the purpose of this paper to supply that information in detail for the

particular case of fitting a linear functional relationship to a set of

experimentally determined points. Although most of the detailed

examples presented are confined to an assumed linear relationship,

the theory presented is developed for the general case of an arbitrary
functional relationship, and the norrxial equations given provide a
solution for this general case with all of the variables subject to

error.

In the case of fitting data to a straight line, it is shown that

the entire effect of introducing errors in the independent as well as

in the dependent variable enter into the solution for the parameters
by way of second order terms in the residuals and terms involving the

differentiation of the weights. The resulting effects on the estimated
parcLmeters is often quite large. The necessity for retaining these
additional terms makes our solution inherently more complex than
the usual solutions in which only the dependent variable is assumed
to be subject to error. Unfortunately the determination of the sampling
distribution for the estimated parameters is also inherently more
complicated in the general case, and precise analytical expressions
for these sampling distributions are not yet available. Nevertheless
it seems quite clear that it is more desirable, when both variables
are subject to error, to obtain consistent estimates of the parameters
and only rough estimates of their errors by the methods described in

this paper than to follow the current practice of arbitrarily suppressing

the influence of the errors of the independent variables, thus obtaining

incorrect estimates of the parameters and confidence regions for these

incorrect estimates which are precise only on the false assumption
that the errors of the independent variable may be suppressed.
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The ultimate aim of most analyses by least squares is the

prediction of one variable from the observed values of another, and
it is shown in this paper that the estimated functional relationship

should be used for this purpose. An example of the problem of pre-
diction is the following. Suppose n pairs of mean values X., Y.

(i = 1 to n) are determined by averaging m. observations on n different

populations which have n different unknown population mean values
X, , Y, . It is supposed that X. and Y. are normally distributed
io io 1 1 2 / 2 /

about X. and Y. with unknown variances c ./m. and cr ,/m,, respec-
lO lO €1 1 T]1 i

tivelv. and that Y. = a + 3 X. where a and 3 are unknown constants.
^ lO lO

A new mean value X is determined by averaging m. observations

of X from the population with unknown population mean values

X, , Y. which are also assumed to be related by Y. = a + 3 X, •

jo JO JO jo
It is desired to estimate the population mean value Y. by means of

the observed mean value X., and it is shown that a consistent estimate

of Y. is a + b X. where a and b are the least squares estimates of
JO J

. .

a and p, approaching these values in the limit as all of the m,(i = 1 to n)

approach infinity.

The above is believed to be a more realistic statement of

the problem of prediction than the more usual statement that we
wish to know the expected value of Y for a given observed value X.

without specifying that X. is from the j^^ population with a fixed , even

if unknown, population m^ean value X. . For example, if we have

estimated the density, p, of a certain kind of steel by measuring
the n weights, Y., and the n volumes, X., of n steel balls made with

this steel, we may estimate the weight, Y., of a j^^ steel ball by

bX. where b is the least squares estimate of p obtained on the assump-
tions (1) that Y. and X. are each measured with error and (2) that the

1 1

true density p is the same for all n + 1 balls, i. e. , the assumption that

a linear functional relationship exists. Note that the j^^ steel ball has

a fixed true weight Y. and a fixed true volume X. . Now the expected
JO

value of the observed volume X. for the steel ball is obviously its

true volume X.^and it follows that a consistent estimate of the weight

Y.^of the j^^ sieel ball (given the steel ball and its measuredvolume
X^) is bX.. Now consider Lindley' s^/ formulation and solution of the

J J
problem of prediction. Lindley assumes, in effect, that an infinite popu-
lation of steel balls exists and that the true volumes X are normally

lO
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distributed about a mean value X with variance cr
; he further

o o
assumes that the true density p is the same -for all of the steel balls

and that the variances of the errors of measurement have the same
2 2magnitudes cr^for weight and cr^for volume independent of the size

of the balls being measured. He then purports to show that an unbiased

estimate of the weight of the ball is b' X. where b’ is the regression

coefficient of the n random observed values of Y. on X.. However, he
1 1

also shows that b’ approaches the constant value
2 2,2 2 2

y =(X + cr )p/(X + cr + cr^ as n approaches infinity or, more generally,
o o o o

that the average value of b’ equals y where the individual values of b^

• are determined from many random finite samples with n balls in each
sample. Let us assume that y is determined exactly by determining

the regression of Y, on X, by measuring an infinite number of steel

balls chosen at random from the population. Now select one more
steel ball and measure its volume X..; Lindley states that an unbiased

th J
estimate of the weight of this j steel ball is Y! = y X.. But we may

/• 1 • "til i I
^measure the volume of this j steel ball an infinite number of times,

and in this way we might hope to determine the true weight Y. ;

however, the mean value Y'. = y X. - y X. < Y. = 3 X. and we conclude
1 , . „ J J JO JO JO
that Lindley' s prediction leads to a biased estimate of the true value
of the weight of the steel ball. If we had instead used the infinite

sample of Y., X. to estimate b by least squares with both variables11
subject to error, the estimate so obtained would be equal to p, and

now the mean value Y. = px. = pX. =Y. ,i. e., the use of the

r ^ ^ JO JO
average of a large number of measuremerts of the volume of the j

steel ball would lead in this way to the true weight of this ball. Lindley'

s

expected values are obtained by averaging over the entire population
of steel balls; thus he has shown that a second independent set of

measurements of n balls chosen at random from the same population
would lead, as n approaches infinity, to the same biased estimate, y,
of the density, provided this second set of measurements of volume
were made with instruments having the same precision so that

the same. Only in this most unsatisfactory sense can Lindley claim

>!<

Since a volume cannot be negative, this assumption cannot
be strictly true, but the distribution of X. can approximate a normal
distribution if cr < < X .

o o
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that pre^dictions based on simple regression theory are unbiased;

such predictions are not even consistent since they disagree with

the average of a large number of measurements made on the

ball.

Predictions made using the fitted functional relationship will,

in most cases, be biased; but they are always at least consistent,

and they have the advantage that no special assumptions need be made
as to the distribution of the true values X. . Furthermore, the bias

lO
of predictions made using the fitted functional relationship will

always* be less than the bias of predictions made using simple regres-
sion analysis with the errors in the independent variable neglected.

The above discussion of prediction relates to the case in

which a functional relationship is assumed to exist. However, it also

follows from the above argument that predictions of a dependent
variable Y made by the use of regression analysis of data involving

one or more independent variables which are measured with error
will also be biased. For example, if (t^ denotes the variance of the

true values of the independent variable and the variance of the
.X,

errors of measurement of the independent variable, then an unbiased

prediction of Y is given by (Y - Y) = b’(X - X)(cr^ + cr^)/cr^ where b*

is the biased slope of the regression of Y on X with the errors in X
2 2 2

ignored. In practice the bias correction (cr + o' ) /o- might be
2 2 2 2 ^

estimated by S /(S - s ) where S„. is the sample variance of the
Xi !X 2 Xi 2

X. about their mean value X and s„ is an estimate of the variance
1 X X

of the errors of measurement of the X..
1

The mathematical proof is not yet available, but this

conclusion seems reasonable since the functional relationship analysis

is designed to provide a first order correction for this particular
bias. In a certain sense predictions made using the fitted functional

relationship can actually be shown to be unbiased— see page 2.18,



2. FITTING A STRAIGHT LINE

Let us begin with a precise formulation of the problem. We
consider 2n sets of random variables, X. . Y. . t = 1 to m., i = 1 to n

it it 1

with m. > 1 and n > 1. A random variable is a real variable with an
1

associated probability distribution. The expected values of these
random variables are E(X_) = X. and E(Y.,) = Y. . The expected

it lO it lO
value is the average of the values in a large sample as the sample size

goes to infinity; or, more precisely, the expected value of a random
variable is its first moment, i. e. , its average value weighted in

accordance with its probability distribution. X. and Y. are also

called the population mean values of these random variables while

the random variables (X.^ - X. )
= €. and (Y.^ - Y. )

= are called
it lO it it lO it

errors, although a large component of such deviations from the

population mean values may arise in some applications from the nat-

ural variations of the phenomena under investigation. Regardless of

the cause of the deviations, we take the expected values E(€ )
= 0

it
and E(n. )

= 0. The random variables and within the i^^ group
'it it it

°

are assumed to have the same bivariate probability distribution, to
7 2 2 2be independent and thus uncorrelated, i. e. , E(€7 )

= o' .» E('n7 )
= tr .,

it €1 it T)1

and E(€_ n. ) = p. cr . (r . while E(c_ €. )
= 0, E(ti_ n. )

= 0, and
it 'it ^1 CL T]1 it lu 'it lU

)
= 0 foi* t ^ u. The variances of and of n.. are all finite,

'it lu it 'it

but may differ from each other and from one group to the next. The
observations in the different groups (i = 1 to n) are independent and
thus uncorrelated E(e g. )

= 0 and Efn. -n.
)
= 0 for i j. It is antic-

ipated that the general approach here developed may be extended to

the case of fitting autocorrelated data, but this is beyond the scope of

the present paper. Finally it is assumed that the population mean
values X. and Y. are exactly related by the linear relation

Y^^ = a + p > Cl and p denote the "true” values of the param-

eters of this linear relation. By virtue of these assumptions, the

model described in this section excludes "systematic" errors by defi-

nition. More general models with explicit allowance for random
systematic errors are presented in later sections.

fVi
Let the i^ observation point be defined by the mean values

X. = —
1 m.

X.^ and Y. =
it 1 m.

1

Y.^. Our problem is to fit the straightm,
1
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Y = a + bX (2.1)

to the n points, X., Y^. In (2,1) a and b denote the estimated values

of the parameters a and p. Unbiased estimates of the variances of

X , Y_, X,, and Y. are:
it it 1 1

m.
1

_i_ Y
m. - 1 Lj

1 4-- 1

2
s .

Til

m.
1

Y.)^(2.2)

2 12
= s .

Xi m. €1
(2.3)

The estimate from the sample in the i^^ group of the correlation

coefficient, r., between X.^ and Y. . which also characterizes the
1 it it

correlation between the errors in the coordinates X. and Y of the
•th ^ i
1 observation point, is given by:

r. s . s .
= s

1 €1 T|1 €T11 i I
t = 1

(2.4)

The numerical values of the three coordinates and their

variances for the three -point examples discussed in detail in this

paper are given in Table 2.1.

TABLE 2. 1*

i m.
1

X.
1

2
s .

€1

2

"x.
1

Y.
1

2
s .

Til

2

®Y.
1

1 5 2 5 1 2 10 2

2 5 6 20 4 4 15 3

3 5 8 25 5 8 30 6

* The sample values in this table are unrealistic since, in

practice, the probability of finding such round numbers would be near
zero; these round numbers were chosen for convenience only. See

Section 8 for an example with a more typical set of numbers.
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Using three different values of r^ = 0, -0.9, and +0.9,

together with the values given in Table 2.1, we obtain by the methods
to be discussed in detail in the sequel, the three solutions shown by
the three different lines on Figs. 1, 2 and 3. The lines associated

with each of the three points on Fig.l extend a distance equal to one

standard error and are intended to provide a visual indication of the

uncertainties in each of the three observed values. The meaning of

the ellipses shown on these three figures will be explained later.

The necessity for estimating the standard errors, s and s
X

1

associated with each point before applying the method of least squares
will undoubtedly appeal to most physicists as a most natural course of

action and may lead, in many cases, to greater care in the planning of
2 2

experiments. The variances, s^ and s^j^ may be considered to arise

from experimental errors in observation of the coordinates of each
point, or may be considered to arise from natural variations of these

quantities. For example, the population mean of each observation

point, thought of as corresponding to a given fixed

setting (as of a rheostat, for example) of the experimental system,
and X^, might then be the averages of a series of m. observations

X. Y, . taken at that setting. Note that the m. values observed within

the i^“ group are assumed to be samples from the same statistical popu-
lation; in the language of the physicist these m^ values are considered

to have been obtained under the. same experimental conditions. On the

other hand, the observed values in the n different groups may each be from
statistical populations with different variances as well as different popu-
lation mean values, and this will often be the case in practice.

Let = (Y. - a - bX, ) denote the deviation in the Y direction
Yl 1 1

of the i*"^ point from the fitted line, and letw(VY.) denote the weight

assigned to the deviation Our present problem is to determine

the values of a and b in (2.1) which will minimize, S(a, b), the weighted
sum of the squares of the deviations of the points from the line:

S(a, b) = [w(Vy-) V^.] (2.5)*

This dual role of the symbols a and b, i. e. , as variables in

this expression for S(a, b) and as the particular constants which minimize
S, should not lead to as much confusion as the use of two sets of

symbols.
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Figure 2.1
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Following Gauss, the square brackets
[ ]

are used throughout

this paper to denote the sum of the n values so enclosed and corre-
sponding to the n independent points to which the functional relationship

is to be fitted. It will be convenient to define the weight of a deviation

to be the reciprocal of its variance as estimated by means of the follow-

ing particular approximate formula for this variance:

1 2 2 2 2—r = s = s - 2br. s s + b s

w(VYi) Yi 1 Yi Xi Xi

2 1
= s. = — (2. 6)

1 w.
1

The above approximate expression for the variance follows directly

from the above expression for a-nd the law for the propagation of

variance.^ It will become evident as we proceed that the definition of

the weight in terms of this particular approximation to the variance
will lead to consistent estimates of the parameters a and p. With a and
b now representing the particular values of these variables which
minimize S(a, b), (2, 5) may be expressed;

S(a, b) = [w(V )(Y. - a - bX.)^] = [(V ./s.)^]= minimum (2.7)Yii l Yii

The alert reader will raise the question as to why we have chosen to

measure our deviations, in the Y direction, and the answer is

that the direction chosen is immaterial since S is invariant to a
homogeneous strain, translation, or rotation of the coordinate axes;

the logical necessity for this invariance in least squares was pointed

out by Roos. 12./ In particular, it is easy to show that [w(V )V^. ] is

identical to (2.7); thus V„. = (X. + — -;^Y.)=-;^ V__. and
Xi 1 b b 1 b Yi

21_2 22 12 ®il
-<^Xi)

"

'^Xi
^

^
b^

^
b^

^
b^.

‘

Note that s. is finite and positive except in the trivial

cases r. = ± 1 and b s,,. = r. s ..
1 Xi 1 Yi

t 2 2
I Terms involving the variances s and s, of the random

. .
a b

variables a and b were omitted in deriving (2. 6).

—/ C. F. Roos, " A General Invariant Criterion of Fit for

Lines and Planes where all Variates are Subject to Error, ” Metron,
Feb., 1937.
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The proof of the more general invariance of S stated above is given

in Section 3. Throughout the remainder of this and the following

sections the symbol w. will be understood to represent w(V ) and
2 ^ 2

the symbol s. will be understood to represent s
1 Vyi

Since S is to be a minimum for the least squares determi-
nation of the values of a and of b, it follows that the partial deri-

vatives of S with respect to a and b must both be equal to zero. We
will consider first the partial derivative with respect to a:

_1

2

a

8a

[w. Y.]11

[w.(Y. - a - bX.)l = 011 1
(2.8)

[w. X.]
, 11 — —

• - b = Y - bX (2.9)

The point X, Y is what Deming —V calls the quasi center of gravity.

The first step in the series of calculations required for our

solution is the determination of the n values of w. corresponding to

the n pairs of observations. The reader will detect a logical diffi-

culty in our development at this point, since he is asked to use a

formula for w. which involves the value of the so far unknown con-
1

stant b. This is indeed a logical difficulty, but is overcome in prac-
tice simply by using an estimated value, say bQ, in (2.6) for the

initial determination of and later, if necessary, repeating the entire

set of calculations with a better estimate of b obtained from the first

set of calculations. The general conditions under which this itera-

tive process will be convergent have not been studied, but no difficulty

is anticipated in most practical applications. An estimated value of

the quasi center of gravity may now be determined.

Substituting the value of a obtained from (2.9) into (2.1), we
obtain:

(Y - Y) = b(X - X) (2.10)

It will be convenient now to choose a new set of coordinates,
X = X - X and y = Y - Y with their origin at the quasi center of gravity;

then (2.10) and (2.7) become:
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2 2
In the limit as cr .

= 0 or cr .
= 0, we obtain the following two solu-

€1 T[1

tions from (2.16) and (2.18), respectively:

r y-^-11

- s

b =
Yi
2

X.
1

Yi

(where cr .
= 0)

GL
( 2 . 20 )

b =

i z

r y.x.
11

xi

(where cr .
= 0)

rii
(
2 . 21 )

Fortunately in some cases all of the bivariate distributions

associated with the n observation points may be considered to be

samples from statistical populations with the same variance. In

these cases it will be advantageous to pool the sample variances
associated with the observations on each of the coordinates, and in

this way obtain improved estimates which also have the advantage of

being independent of i. These pooled estimates may be calculated

from the following equations:

m - 1) s^.] [(m - 1) s^
1 Cl zi 1 ni

; S = !-

[m. ]
“ n q [m. 1 - n

1 1

]

(
2 . 22 )

2 2
s„. = s /m.
Yi ri 1

(2.23)

The decision to pool the sample variances in the manner indicated

above should be made, of course, only after tests have been made to

see whether the n individual sample variances may reasonably be con-

sidered to be from the same parent population. A good review of such
tests is given in a publication of the Office of Scientific Research and
Developmentli./ and on page 196 of reference 9.

11.^ Churchill Eisenhart, Millard W. Hastay, and W. Allen Wallis,

"Techniques of Statistical Analysis, " Chapter 15, McGraw-Hill Book Co.,

Inc., 1947.
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A pooled estimate of the correlation coefficient, r, must also

be obtained. Such a pooled estimate of r may be obtained directly from:

[f
(X,, - X.KY,^ - Y.)]

S(Xit-x/][Z(Y.t-Y/]
(2.24)

It is often better, however, to make use of the individual sample values

of r. so that they also may be tested to find out whether they are pro-
babfy from the same population. For this purpose use may be made of

a characteristic of sample correlation coefficients for normally dis-

tributed data discovered by Fisher. Fisher found that the statistic:

z- = 7 [log^(l + " log (1 - ^-)] (2* 25)
\ c e 1 e 1

-1 /

is distributed almost normally with variance (m. - 3) . Snedecor—
discusses the use of this statistic for testing whether the individual

values of r, are from the same population, and presents a very con-

venient graphical method for converting r to z and vice versa,
i 1

Since z. is approximately normally distributed, a pooled estimate

r may be obtained from the weighted average value:

_
- 3) z.]

^ = [m. - 3]
(2.26)

which is then converted by means of the following relation to the

required pooled estimate of r:

r = tanh (2.27)

The above relation allows for a small bias in the distribution of z; this

transcendental equation for r may be solved by an iterative process,
using initially an estimate of r.

1^/ R. A. Fisher, "On the Probable Error of a Coefficient of

Correlation Deduced from a Small Sample, "Metron, vol. 1, no, 4, 1921.

13 / George W. Snedecor, "Statistical Methods, " Iowa State

College Press, Fifth Edition, 1956, page 175.
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before the radical in (2. 34) is perpendicular to the best fitting line if,

and only if, (C^- l)[w. x. y.] - p C {[w.(x? - y?)]} = 0.Ill 11 1

The locations (X!, Yp along the fitted lines on Figs. 2.1, 2.2,

and 2. 3 are called the "adjusted values" of these points, and formulas
for their determination are given in the following section of this

paper. The case shown on Fig. 2, 3 is of particular interest since

the line obtained, which actually passes above the point for i = 1,

would probably not have been anticipated as a possibility by an analyst

not equipped with the present theory. Note also in this case that the

order of ascending magnitude, X^, X^ and X^ is changed to Xj^, X^

and then X^ in the case of the "adjusted" values, and this illustrates

the difficulty involved in the a posteriori ordering of the data as

required in the Wald^/ and Bartlett—^ methods of analysis.

Table 2.2 gives the values of a and b as calculated for the

general case illustrated on Figs, 2. 1, 2. 2, and 2. 3, and for ten

other special cases. Each of the pairs of values of a and b shown
in Table 2,2 are least squares solutions for the parameters of the

lines fitting the same three points of Table 2, 1 but with weights as

described in the left-hand column of Table 2.2. Thus Table 2,2

provides examples of the effects of the several components in the

weighting factor. Note in particular the large influence of r^|^. Since

the weights depend on a knowledge of the variances and covariances
of a series of observations of the coordinates of the points, it is

only when estimates of all of these variances and covariances are

available that we may derive consistent conclusions from our least

squares solution.
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TABLE 2,2

No. Method of Weighting ^i a b

1 General Case (Table 2.1) Fig. 2.1 0 -0. 038 +0. 879

2 Weight independent of i

(Pooled variance; = 5)

0 -0. 647 +0. 996

3 General Case (Table 2.1) Fig. 2.2 -0.9 -0. 030 +0. 880

4 Weight independent of i

(Pooled variance; = 5)

-0.9 -0. 657 +0. 998

5 General Case (Table 2,1) Fig. 2. 3 +0. 9 +0. 894 +0. 627

6 Weight independent of i

(Pooled variance; = 5)

+0. 9 -0. 129 +0. 899

7 s^. = 0; s^. (from Table 2,1)
A.1 I 1

0 +0. 151 +0. 811

8
2

s^. = 0; Weight independent of i
Jvi 2(Pooled variance for SyJ constant) 0 -0. 286 +0. 929

9
2 2

syi = Oj ^xi Table 2.1) 0 -0. 125 +0. 938

10
2

Sv* = Oj Weight independent of i
^ ^ 2

(Pooled variance for s^; constant)

0 -1. 077 +1. 077

11
2 2

o'. = (r .;p = 0;w. by(2.33) and (1-16)
GL T|1 1

0 -0. 015 +0. 877

12
2 2

(T .
= cr .;p=-0.9;w. by(2.33) and (1-16)

€1 T|1 1
-0.9 -0.104 +0. 893

13 0-^. = cr^.
; p = +0. 9#w. by (2. 33) and (1-16)

61 T|1 1
+0.9 0.423 +0. 767
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at

^
When Bartlett’s test was applied to the variance estimates,

s . and s in Table 2.1, it was found that variations from the pooled
€i 1^1

estimates larger than those in Table 2.1 would be expected with random
normally distributed samples of this size with probabilities of 0. 57

and 0.33, respectively. Thus, in the absence of physical reasons for

expecting different variances, it appears that these might well be

samples from the same population, and thus may be pooled to obtain

an improved estimate. The pooled variances of Table 2.1 are s =16.666
2 ^

and s = 18. 333. These are the values used in obtaining the solutions

given in Table 2.2 for this case for the three assumed values of r.

Our general formula (2.15) for the slope of the least squares
straight line is quite complicated, but it should be noted that this

complication is inherent to the problem and arises from the use of a

very large amount of detailed information, i. e. , 5 numerical values

of X., Y., s,^., s„., and r, associated with each point. It is thus
1 1 Xi Yi i

natural to expect greater complication when more information is

taken into account. In the special cases for which a smaller number
of different data are necessary to describe the information available,

the solutions (e. g. , (2.20), (2.21), (2.28), (2. 31), (2. 32), and (2. 34))

are correspondingly less complex. Furthermore, the above formulas
are given primarily with the object of showing explicitly the ways in

which the several components of the weights influence the slope. In

a later section, matrix methods of solution are described, and these

are recommended for use not only for the solution of the general case

but for all of the simpler cases, since their use yields additional

information as a by-product such as the standard errors of the param-
eters.

* This particular test is described in Section 8.
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=
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.
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is
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(in

the

sense

described

above)
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even for n = 1. The proof that b = (3 in the general case with a ?? 0

and with unequal weights is left as an exercise for the student.

Note that the solution for the above special case by simple
regression analysis may be written:

b» = [X.Y.]/[X. ]
1 1

(2.40)

If we introduce the expected values of [X. Y.] and of [X. ] in (2.40) we
obtain:

^ ^ ^

P [xf ] + (n/m) p 0- 0
-

b' = ^-2- (2.41)

[X. ] + (n/m) (T

lo e

Thus we see that regression analysis leads to an estimate of p which
is biased in the above -described sense unless cr^ = 0.
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3. THE ADJUSTED VALUES: X|, and Y!
1 1

Since the minimized sum S is invariant to the direction

chosen for measuring the deviations of the observations, X., Y.,

from the line, we have no clue so far as to the expected locations

along the fitted line of the adjusted values, XI, YI. In fact, we see

that the parameters a and b have been determined without reference

to such adjusted values which have usually played a prominent role

in the derivation of previous least squares solutions. R, J. Adcock 15./

and later Karl Pear son !§./ defined the "closest fitting" line to be that

which minimizes the sum of the squares of the perpendicular dis-

tances of the points, X., Y. from the line, but we shall see that this11
criterion is equivalent to the method of least squares only under very
special conditions of weighting.

Since our method of determining the adjusted values involves

the use of an invariant statistical form identical to that used by

Hotelling IZ/ 15./ in generalizing Student’s ratio to the multivariate
case, it seems useful to digress somewhat at this point in order to

summarize his analysis. Hotelling’s generalized T distribution may
be used with normally distributed observational data to define an
elliptical equi -probability curve with coordinates, X'^, Y*, and with

its center at the sample mean, X., Y.; these ellipses determine

confidence regions for the population means Y. , on the X*, Y*

plane characterized by the probability, 1 - p.(X*, Y^):

15./ R. J. Adcock, The Analyst, (Des Moines), 1878,

pp. 53-54.

1^/ Karl Pearson, "On Lines and Planes of Closest Fit,

to Systems of Points in Space," Phil. Mag,, 6 Ser. , vol. 2, Nov.,

1901, pp. 559-572.

IZ/ Harold Hotelling, "The Generalization of Student’s Ratio, "

Annals, of Math. Stat. , vol. II, no. 3, Aug., 1931, pp. 360-378. The
discussion of the degrees of freedom in this original article is not

easy to follow. Better discussions are given in Referencell, Chap-
ter 3, by Harold Hotelling and in Reference 18, pages 407-409.

15./ Harald Cramer, "Mathematical Methods of Statistics, "

Princeton University Press, 1946.
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p.(X^ Y«) = (l -H

and in the limit as m. — oo _

" -T?/2
p (X*. Y*) = e I '

where

(Y* - Y.)^ 2r.(Y* - Y.)(X# - X ) (X* - X,)^

tS—S- 4 r-i 1 i L+
(1 - r.)

®Yi
Yi Xi

®Xi

(3.1)

(3.2)

(3.3)

If we make a practice of determining the location and size of these

ellipses by solving (3.1) and (3.3) for the same probability, p., then—
for a large number of such ellipses determined from normally distrib-

uted data—the population mean of the i^^ point will lie within a fraction

(1 - p.) of them and will lie outside of a fraction p. of such ellipses.

Although (3.1) and (3. 2) are convenient for numerical calculations, it

may be noted that T, (m. -2)/2(m. -1) is distributed as the Fishe r -Snedecor111
variance ratio F {2, (m. - 2) }; tables and graphs of the significance levels

F(v ,
V

, p) are given in a companion paper. iZ./
i. Ct

We will now define the adjusted point (XJ, Y!) corresponding to

the i^^ observed point (X., Y.) as the particular point (X, Y) along the
? ^ ^ 7

fitted line at which Tr has its minimum value, Gf, and the probability,
1 1

p.(X*, Y^^) has its maximum value
, pi = p.(XI, YI), i. e. , the location

corresponding to the values of X‘^ and Y'f' which simultaneously mini-

mize T. and satisfy the least squares fitted relation Y = a + bX. Using

this relation to eliminate either Y* or X'^' from (3. 3) and then differen-

tiating the resulting expression with respect to the other variable, we
obtain the following equations for the adjustments, i. e. , the least squares
estimated errors of each of the coordinates of each point.

XI - X. = w.(bs
1 1 1 Xi

YI - Y. = -w.(s,,,
1 1 1 Yi

r.s s )V =w.(bs
1 Xi Yi Yi 1 Xi

r.bs s )V = -w.(s
1 Xi Yi Yi 1 Yi

Vxi^YiXh-^-'^V

-ribSx-SYiXY. -a-bXi)(3.^

t 2
Note that T. is invariant to a homogeneous strain, transla-

tion, or rotation of the coordinate axes. See reference 17.

(19) L. E. Vogler and K, A. Norton, " Graphs and Tables of the

Significance Levels F(v^, V
2 » p) for the Fisher -Snede cor Variance Ratio"

N. B. S. Report No. 5069 , May, 1957.
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Thus the adjusted values (X|, Yp of the point have been defined

so as to yield consistent estimates of the population mean of this point

since they correspond to minimum values of T^, and the corresponding
ellipses converge on the population means of the n points as all of the

approach infinity.

Upon substitution of the particular values (3. 4) and (3. 5) in

(3. 3) we obtain, after some algebraic manipulation:

= w. = w.(Y. -a-bX.)^ = w. {(Y: - Y.)-b(X! -X.)}^ (3.6)
1 lYiii 1 111 11

The last of the above expressions is easily established by noting that

we may subtract Y^ - a - bXj = 0 from Y. - a - bX. without changing

its value. Thus we see that the i^^ component of the minimized sum S_

is identically equal to the minimized value, G. , of Hotelling’s invariamt

form T^, Thus, regardless of the form of the statistical distribution

of the observational data, our adjusted points are those lying on the

least squares fitted relationship which have a minimum squared devia-
tion from the observed points. In the case of data from normally dis-

tributed populations, it appears from the above derivation that our
adjusted points may also be characterized as lying at their "most
likely" locations along the fitted line.

2 2 2
Since G. is a particular value of T. , it follows that G. and

2n
^ ^ ^ ' M /S = [G.J will have the same invariance properties that Hotelling tSJ

has established for T?; thus G?is invariant to an affine transforma -
1 1

tion, i. e. , is invariant to a homogeneous strain, translation, or

rotation of the coordinate axes. This proves the statement made in

connection with (2, 7). This invariance also makes all least squares
solutions subject to a very significaint limitation from the point of view
of the physicist. Let us suppose that all of the observations of the

random variables X. and Y. (t = 1 to oo and i = 1 to oo) are subject to
it it

"systematic" errors in the form of constant biases u^ and v^, respec-

tively. Each of the population mean values X. and Y. will then differ

from the "true" physical values and ^y the amounts of these

constant biases. It will clearly be impossible by least squares to

detect such constant bias since the introduction of such a bias is equiva

lent to a translation of the X coordinate axis by an amount u^, and the

Y coordinate axis by an amount v^ ,
and our solution is invariant to
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such a translation. Thus, throughout our development of least squares
solutions it should be remembered that the functional relations es-
timated are between the population mean values X, and Y. and these^ ^ io lo
may, by virtue of constant biases, differ from the "true” values X
and Y.^.

If we set (3. 3) equal to the values of G. given by (3. 6), we
obtain a formula for the particular ellipse with coordinates (X*, Y*)
and of probability (1 - p!) of containing the "true" mean; such ellipses

are shown on Figs. 2.1, 2.2, and 2. 3 for the example defined in

Table I and for the cases r. = o, -0.9 and +0.9, respectively; note

that these ellipses are tangent to the least squares fitted line at the

adjusted locations, (X.*, YI), of the n points. Thus we have established

the remarkable result that our least squares solution, independently

of the form assumed for the statistical distributions of the observational

data, may be considered to be exactly equivalent to the solution of the

geometrical problem of finding the parameters of the particular linear

functional relationship which is tangent to the n ellipses defined by

Hotelling’s generalized T^ associated with the n observational points

and for which the sumuhhas its minimum value [G^ ]
= S(a, b). t

Since these ellipses each converge on the population mean values

(X.^, as the m^ approach infinity, and the latter are related by

the functional relationship involving the true values a and (3 of the

parameters, it follows that our least squares solution leads to con-

sistent estimates of these parameters as the m
^
approach infinity.

It is of some interest to consider under what circumstances
the adjusted locations are on the perpendiculars to the line drawn
from the points X., Y.. It is evident from Figs. 2.1, 2.2, and 2. 3

that this will be the case only when the ellipses degenerate to circles

(s
Xi

= s^. and r^ = 0) or when the minor (or major) axes of the

ellipses are parallel to the fitted line; such conditions of weighting
would seldom be expected in practice. It should be noted that Karl
Pearson did not claim—/ that his line of closest fit was determined

This conclusion depends upon the assumption that unique
solutions exist for both the least squares and the geometrical problems;
all efforts made to date have failed to develop a set of data for which a

unique solution does not exist.
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by the method of least squares; he merely gave formulas for fitting

the line which minimized the sum of the squares of the perpendicular
distances of the points from it. Thus his solution would appear to

have more geometrical than statistical significance.
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4. THE GENERALIZED NORMAL EQUATIONS FOR DETERMINING
THE u UNKNOWN PARAMETERS OF A FUNCTION F INVOLVING
k» VARIABLES SOME OF WHICH MAY ENTER F NON-LINEARLY

AND ASSUMING NO SYSTEMATIC ERRORS

When more than one unknown parameter is to be determined
by least squares, the solution is most easily obtained by matrix
methods (see Section 6) for solving the u "normal equations". In

this section generalized normal equations will be developed which
will be applicable to the problem of determining the u unknown
parameters of a function F involving k’ variables, only k of which
are random.

It is assumed that n sets of observations (n ^ u) are available

which define n points in the k' dimensional space, i. e. ,

X..(j = 1 to k' and i = 1 to n), together with nk(k < k’) sample mean
7 ?

variances s7. = s ../m. (j = 1 to k) and nk(k - l)/2 different sample

correlation coefficients r., .(j # h); actually a total of k[m.J individual
ihi 1

observations of the k random variables are required to define these

n sample points and their sample variances and covariances. The k
random variables are each assumed to have statistical properties

similar to those postulated for the two random variables in Section 2;

thus X.. = X.. + n.. with the n.. independent with respect to the
Jit jio 'jit

2 2
subscripts i and t, E(ti7.,) = ^ ti, .^) = P . o' .. j

= 1 to k,
Jit

2
Jit hit "^jhi Tiji qhi

h = 1 to k, and i = 1 to n; cr
.
= o' . /m.. Furthermore, it is assumed

Ji “HJi 1

that a function F(X,
. , ... X.. , . . . X, .. , a. ... a , ... a )

= 0
lio jio k’lo 1 p u

exists which passes through the population mean values = 1 to k')

of these n points; this function involves u unknown parameters and
^may be non-linear in one or more of the variables or the parameters.

If it is known that the function F(X., ) must pass through v(v<u)
jh

specified points exactly (such points may be considered to be points of

infinite weight, i. e. ,
= 0(j = 1 to k and h = 1 to v)), then it will usually

be possible to eliminate v of the u unknown parameters from F at the

outset, and thus obtain a modified function H involving only (u - v)

parameters to be estimated by least squares. For example, if the

straight line represented by the function F = (Y - a - px} = 0 is known
to pass through the point (Y = 1, X=l), we may fit the simpler function



- 4.2 -

The principle of least squares provides a method for determining

consistent estimates, a
,

of the u values of the parameters, a , by
P P

minimizing the weighted sum of the squares of

F. = F(X,., . . . X.., ... X, a,, ... a , ... a ) evaluated at the
1 li ji k’i 1 p u

n points:

S = [w. F^l = [(F. /s.)^l = minimum (4.1)

It will be convenient and will lead to consistent estimates of the

parameters and to an invariant form for S if we define the weight

w, of the deviation F. to be the reciprocal of its variance cr? as11 1

estimated by the following particular approximate formula:

(1/w^ = s. =

j=l h=l

9F.

V ’jhi ®ji
(4.2)

In the above =1 when j
= h. Part of the approximation in the

above expression arises from the fact that only the linear terms in

the Taylor’s series expansion of F. were retained in its derivation.

In many cases— all linear functional relations, for example —there
may be only first derivatives, and then such an approximation is not

involved. In other cases, provided we may also assume that the

variables X. are normally distributed, additional terms in the Taylor's

series may“\>e retained and improved weights determined; this latter

method of obtaining improved weights is explained in a later section

in connection with the discussion of a particular problem, but the im-
provement possible with its use is seldom worth the additional compu-
tational work required for its application.

H = {Y-1-(3(X-1)} = 0 which now involves only the single param-
eter p. Such a reduction in the number of unknown parameters should
be accomplished whenever this is feasible. Throughout this paper
it has been implicitly assumed that F denotes this modified function
H with the minimum number of unknown parameters.
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Upon substitution of (4. 2) in (4.1) we may formally express
our solution of the general problem of least squares as the simultaneous
solution of the following u equations which involve as unknowns only

the u parameters a :

P

1 as

2 9i“
= 0 p = Ito u (4.3)

P

These u parameters will, in general, enter F., w., and consequently

S in a non-linear way, and this will complicate the simultaneous

solution of (4. 3). The estimates of the parameters obtained by using

(4. 3) will always be consistent estimates of the true values of these

parameters, although not necessarily statistically unbiased estimates.

Furthermore, as was pointed out in the previous section, least squares
leads to the best relations between the population mean values X,. ,

jio
and these may differ from the "true" values by virtue of systematic

biases.

We have seen in Section 2 that a direct solution for the param-
eters even in the simple linear case involves the evaluation of rather

complicated expressions. The solution of the equations (4. 3) is often

even more complex, and it becomes desirable to develop simpler methods
of approach. The following method is more general than that originally

developed for this purpose by Gauss, but becomes identical to Gauss'
method in those cases for which his solution is adequate. This generali-

zation not only provides consistent estimates for the parameters, but

also more accurate expressions for the probable errors of these

estimated values of the parameters and for extrapolated values of the

function in those cases for which either (1) the expression for the weight-

ing factor is dependent on the parameters or (2) the function F is

non-linear in one or more of the variables. The following method is

similar, in some respects, to that of Kummell.

4. 1 The Generalized Normal Equations

2 2 2
First set G. = w. F. = (F. /s.) . The value of S as given by

1 11 11
(4.1) is then expanded in a Taylor's series:
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u

S = [G. ] + S (a - a )
1 o

p = i p po

r 9G. n
1

8a
p -<0

2
u a

+ — S S (a - a )(a - a )

2 s = l t = l s so'' t to'

2 2
a G.

1

9a 8a.
s t -* o

(4.4)

The above expression for S is exact to quantities of the second
order in (a - a ). The subscript o indicates that these sums are

p po
to be evaluated using approximate values of the estimated parameters,
a . The solution (4.3) may now be written:
po

1

2

8S

8a
P

9G.
1

8a
P

u

S (a - a )s=l s so

9 G.
1

8a 8a
p S--

= 0 (4.5)

The u equations (4. 5) are the generalized normal equations; it may
be noted that they are linear in the u unknown quantities (a - a ).

P P®
Although they are approximate, this approximation may be madb as

small as the computer wishes to make it by means of the process of

iterative solution, using successively closer approximations for the

values a in evaluating the sums in the square brackets,
po

t 2
In these equations G. is considered to be a function of the

approximate values a used for its evaluation, but is considered

in most of the remainder of this paper to be the particular minimized
value obtained with a = a .

po p
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It will be convenient to write these generalized normal equa-
tions in the form:

^ 10^^11 (a -

P
a )A
po Ip

(a -
u

a )A « =
UO J.11

/

10

(a, - a, _)A ,+...+ (a - a )A + . . . + (a - a )A = A
1 10 pi P po PP u UO pu po (4.6)

(a - a )A + . . . + (a - a )A +
1 10 ul p po up

+ (a - a )A = A
U UO UU UO

where: A =
pq

r 1 d G, -n r 9G. 9G. -1 r a G.
1 1

1

1 1
4_ I c ^

2 da da
P q o L da

P
da

q O
^i 8a 9a

P q

(4.7)

A
po

fi
9G. -1

1
d"*

CO

c
1
—

L 2 9a
P ^ o L i 8a

p
-1

(4.8)

Note that A = A and that the A and A are specific numerical
pq qp pq po

values which may be calculated from the given values of the observa-
tions and weights, togetiier with the assumed values of a . The

reason for dividing A into two parts, as in (4. 7), will appear in the
pqnext section. As successively better approximations to the parameters

are determined by solving (4. 6), these improved estimates may be used

for re-evaluating the quantities A and A . In the limit as a
pq po po

^

approaches a , A approaches zero; thus the values of A provide
p po po

convenient measures of the degree of convergence attained at various

stages of the iterative process.

These generalized normal equations differ from the usual
normal equations used by all previous writers, with the exception of

Kummell, since they introduce the necessary additional terms which
arise from the differentiation of the weights.

As our first illustration (4. 5) will be applied to the linear

problem of Section 2 in which the observations of both variables are
subject to error. Note that F. = Y. - a - bX. and that (1/w.) is given111 1
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by (2. 6). Since there are only two parameters, the generalized

normal equations for this problem may be expressed:

(a - a^)Aj
j
+ (b - b^)Aj2 A^^

= ^20

"^11 =

(4.9)

(4.10)

(4. 11)

2 2A = A = |w.X. + 2w. F.(bs - r.s s )
12 21 1 1 1 1 Xl 1 Xi Yi

(4. 12)

22

2 2 2
w.X. + 4w. F.X.(bs__. - r. s__. s__.)11 111 Xl iXiYi (4. 13)

. 3 ^2 ,^ 2 .2 2 2 2
+ 4w. F. (bs - r. s s )

- w, F, s11 Xl iXiYi iiXl (4. 14)

A,. = [w. F.]
10 1 1 o

(4.15)

A- =
I
w.X.F. + w? F? (bs^. - r. s s )20 iiii ii Xi iXiYi

“O

(4.16)

Comparing the above generalized normal equations for fitting points

to a straight line with those obtained by the usual normal equations

as given in most textbooks, we find that the latter yield only the

leading terms in (4. 12), (4. 13), and (4. 15) and will thus lead to an

erroneous solution, i. e. , to a solution which does not minimize S
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in this case for which both variables are subject to error. Note
that a value for a.Q can be determined for a given value of b^ by set-

ting A^q = 0. However, if such a step is introduced regularly into

the iterative process, it will not converge; it is necessary to use

estimates of both a and b, obtained from the preceding step in the

process, in calculating the coefficients for the following step.

Although equations in two unknowns such as (4,9) and (4.10)

are easily solved by a variety of methods, 2.^ Deming's
systematic solution, as presented in Chapter DC of his book, X/ is

particularly to be recommended since he obtains as a by-product an
evaluation of S. This method is described in Section 6 of this paper.
If we let M denote the determinant formed from the coefficients of

the parameters in the generalized normal equations (4. 6)

M = 1a
I

(4.16)
* pq

and let R denote the corresponding elements of the reciprocal
pq

or image determinant, then the solution of the generalized normal
equations may be expressed:

(a -a )= S R_A (4.17)
p po qsri pq qo

There will be one such equation for each value of p(p = 1 to u).

t 7/For example, although Deming— gives on page 184 the

correct egression-equivalent to (2. 34) in this paper—for b when
O' .

= C O' ., this result will not be obtained from the normal equa-
a Tu

tions developed in his book, since he neglected higher powers of the

residuals in approximating his (3) on page 50 by (7) on page 53. We
see by the above equations that the second order terms in the

residuals, F^, and terms arising from the differentiation of the

weights control the solution when both variables are subject to error.

Paul S. Dwyer, "Linear Computations, " John Wiley and
Sons, 1951.

R. L. Anderson and T. A. Bancroft, "Statistical Theory
in Research, " McGraw-Hill Book Co., Inc., 1952.
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It will become evident in the next section that the values,

R , of the elements of the reciprocal matrix are also required for
pq

the evaluation of the standard errors of the parameters, and con-

sequently their determination serves a double purpose.

4.2 The Adjusted Values X'.,

When the least squares estimates of the u parameters, a ,

have been determined, the following formula may be used to ^

determine the k’ coordinates of the adjusted values, X’.., (j =1 to k’)

for each of the n points (i = 1 to n):

= - w. F, s..
1 i

(4.18)

Since cr.. = 0 for the non-random variables. XI. = X., for j
= k + ltok*.

Ji Ji

The above general equation for the adjusted values was derived by the

same general procedure used in deriving (3.4) and (3.5).

2We will now introduce Hotelling's invariant form for the

multivariate case and thus establish the exact equivalence of our

general least squares solution to the geometrical problem of finding

the parameters of the particular functional relationship whose curve
in the k' dimensional space is tangent to the n hyper-ellipsoids defined

by the T? associated with the n observational points and for which the

sum [T| ] has its minimum value [Gf
]
= S(ai , . . . . , a , . . . . , a ).

Let Lji^ =
1

Sj^ Sj^^
j
denote the value of the determinant of the observed

moment matrix describing the i^h data point, and let denote the

corresponding elements of the image, or reciprocal, d'^terminant.

Note that the elements of the determinant L^^ are determined by the

m^ observations taken under the fixed experimental conditions cor-
responding to the i^^ point:

r
jhi ®ji ®hi

1

mi(mi - 1) ^ (Xjit
- - Xj^.)

t = i

(4.19)



- 4.9 -

We may now express Hotelling's invariant form T. in the following

form:

k k

j
= l h=l

(4. 20)

Each value of T. defines a hyper -ellipsoid in the k dimensional space

with its center at the location X..(j = 1 to k) of the i*” observation

point. Regardless of the form of the statistical distribution of the

observational data, all points X*(j = 1 to k) on the surfaces of these

hyper -ellipsoids have the same weighted squared deviation from the

mean observed values, X... For data from normally distributed

populations, the exact sampling distribution of Tf is known, and in

this case the surfaces of these hyper -ellipsoids can be characterized
as surfaces of equi -probability. Thus the quantity T? (m. -k)/k(m. -1)

is distributed as the Fisher-Snedecor variance ratio F(k, m. - k).

If we set T. (m. - k)/k(m. - 1) = F(k, m. - k, p.) we may construct

hyper -ellipsoidal confidence regions Xr.(j = 1 to k) centered on the

observed mean X..(j = 1 to k) which are expected to contain the popula-

tion mean X.. (j = 1 to k) with a confidence (1 - p.).
JIO

If we substitute the adjusted values X'.(j = 1 to k) as given by

(4.18) for the X* in (4. 20) we obtain an expression for the particular
2value G. corresponding to the particular hyper -ellipsoid centered on

fVi
^

the i^^ point which is just tangent to the least squares fitted functional

relationship at the adjusted location of the i^^ point:

2 2
G. = w. F.

1 11 (4.21)

The reader should make the above substitution, carry out the neces-
sary algebraic manipulations, and thus satisfy himself as to the

generality of (4.21), Since these hyper -ellipsoids converge on the

true location of the i^^ point as m. approaches infinity, we see that our

least squares solution yields consistent estimates of the adjusted values

and, since the adjusted values lie on the fitted function, consistent

estimates of its parameters. The above geometrical argument evidently



- 4. 10 .

cannot be used to show that consistent estimates are obtained when
the m. are finite and n approaches infinity. In this latter case the

hyper -ellipsoids will each have different finite magnitudes and,

although it seems plausible, it is not intuitively clear that consistent

estimates of the parameters of the functional relationship will neces-
sarily be obtained as the number n of these finite hyper -ellipsoids
approaches infinity. The proof of this latter consistency property
of our solution is not available, but it is intuitively clear that the n
points must be more or less uniformly distributed over an adequate
range of the variates if consistent estimates of the parameters are to

be obtained as n approaches infinity.
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5. ESTIMATES OF THE EXPECTED VARIANCES OF THE
ESTIMATED PARAMETERS AND OF THE ESTIMATED

FUNCTIONAL RELATIONSHIP

One of the major advantages of least squares over some other

methods of fitting data to an assumed functional relationship is the

possibility of determining standard errors for the estimated param-
eters as well as standard errors for the functional relationship itself.

The theory of all this goes back to Gauss vho showed how the standard

errors of the parameters could be determined directly from the

reciprocal matrix of the coefficients of the parzimeters in the normal
equations. Good discussions of this theory are given by Whittaker and

Robinson—

'

and by Chauvenet. —

‘

The modifications to this theory
which are necessary when the generalized normal equations are used
will be given below. We will see that the basis for the theory is that

the normal equations provide a set of linear relations between the

errors F. and the estimates of the parameters. In the particular case

of fitting data to a linear relationship in any number of dimensions
but with the values of only one of the variables subject to error, the

estimates of the parameters and the errors F. of the function are
24/ ^

linearly related, and Neyman and David—'have presented a proof
that Gauss' method of least squares provides the best linear unbiased
estimates of the parameters and their standard errors. We have seen
above, however, that the estimates of the parameters are not exactly

linearly related to the errors F^ in many other cases, and we conclude

that the Gauss method will give only approximate results in these other
cases. An improvement in accuracy is gained by using the generalized
rather than the usual normal equations in accordance with the method
outlined below, but there appears to be no simple way to obtain com-
pletely unbiased estimates of the standard errors of the parameters
in the general case.

22 /— E. T. Whittaker and G. Robinson, "The Calculus of

Observations, " Blackie and Son, Limited, London, 1924, pp. 226-259.

23/— William Chauvenet, "Manual of Spherical and Practical
Astronomy, " J. B. Lippincott Company, Philadelphia, 1863, vol. II,

pp. 469-566.

24/— J. Neyman and F. N. David, "Extension of the Markoff
Theorem on Least Squares, " Statist. Research Mem., 2(1938), p. 105.
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The solution (4,17) of the generalized normal equations may
be written:

(a - a )
= R

po p pi

r 1 r
G. ^

L 1 _

+ . . , + R 1 G.
pu < 1 9a^ u

(5.1)

Define the new variable n .

:

pi

o

4 . + R
pu

(5.2)

Using this variable, (5,1) may now be expressed:

a
P

a
po

- h .G.]
pi 1 o

(5,3)

Thus we have expressed a as a linear function of the normalized
P

deviations, G = (F./s.). In accordance with the rules for the

propagation of variance, we obtain the following approximate ex-

pression for the square of the standard error of a :

2
s
ap

(5.4)

A pooled estimate of s , independent of the within-group estimate
2 G

of variance, s. , may be obtained from the following:
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= —— [G^] = S/(n - u)G n - u 1
(5.5)^

The above between-groups estimate of variance was obtained by-

increasing the mean square value of the n expected deviations, G.,

from the fitted functional relationship by the factor n/(n - u) to

allow for the bias resulting from the fact that u parameters were
determined in fitting the n points to the function. A discussion of

the distribution of s^ is presented in Section 7. Note that G. has

been normalized so that its expected variance is approximately the

same for all values of i even in those cases where the observed

variances, s. , vary from point to point by more than would be ex-
^ Z

pected for sample varicinces from the same population. Since s

2 ^
is a constant, independent of i, s^. may be replaced by S/(n - u)

Gi
in (5.4) and removed from under the summation sign; we then obtain

the following estimate of the variance of a :

P

+ R
pu

(5.6)

o

Remembering that MR is the cofactor of A in the determinant
pq pq

M, (5. 6) may be expressed:

In the special case where the number of points equals the

number of unknown parameters (n = u) the function F can usually

be fitted exactly to these n points so that F. = 0 (i = 1 to u); thus
2 T ^2

[G. ]
= 0 and the between-groups estimate of variance s = 0 even

X
2though s^ 0 for all n points. In this case the confidence intervals

for the parameters and the confidence region for the fitted function

must be determined from the within-groups estimate of the variance.

An example of this use of the within-groups estimate of variance is

given in Section 12,
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Msfp(n - M
o

+

All

8Gi dG^

V 9a
1

’’pi 8a„

^ul “^UU

All ••• Ai„

dGn
n

dai 3au

^ul ^uu

^11 ^lu

L 1
8Gi

[V 8a
1 ^ L’’P1 8a„

^ul uu
0

( 5 . 7 )

I I til
that is, the determinant jA^^j

|

with the p row replaced by

r 9G. 1

,v aaj , LV 8aJ
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When (5.2) is substituted in (5. 7) we obtain:

Ml ^lu

Ms^p (n-u)/S = Rpi

r9G. 9G.

8 d a.^
_

^ul

*8G- 8G.
1 1

3ai 8a^j
+

uu

+ R
PP

11

ul

•lu

r8G- 8Gi“ r3Gi 8G- 1
1

8 Up 9 a
2 _

• •••••«
-9ap aa^ J

uu

+ Rpu

^11

^ul*

lu

r8Gi 8Gi~ ’-8Gi acq
_8a^ 8 a

2

• •••••
b

CO

J 9a^J

uu

(5.8)

0
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Consider first the case where the second term in (4.7) is zero for all

combinations of pq. In this case each of the determinants in (5.8)

except the one multiplied by Rpp» is equal to zero since two rows
are then identical. The determinant multiplied by Rpp is just equal

to M, and we obtain for this special case:

(5.9)

The above elegant solution for the estimated variance of the

estimated parameter a (p = 1 to u) was first obtained by Gauss.
P

The corresponding result using the generalized normal equations

may be obtained by substituting the following (from 4. 7) into (5. 8);

.2 =
ap

L 9a^

3G.

n - u

1

^i = A
9"

n Gil
^q ^ 9a_ 9a^

^q J o L p qJ

u u —

Z R I R G:
1 pv , pw

V = 1 ^ w=l
1

8^G.. n

w
(5.10)

In similar fashion we may determine the covariance:

^pq ®ap ®aq
s r,

n - u v”iV|„ V 8^G. -
1

^ 9a 9a
'^«'V ''“’WJ o

(5.11)

The above may also be expressed after considerable manipula-
tion as follows

:

u
S R. R.

r 9G. 9G. n
' 1 1

pq ap aq n - u ^ ^ ^
Pv qw 9 a, 9aw o

(5.12)

Equations (5.11) and (5.12) may be used for calculating the

variance (5.10) by noting that r =1 when p = q.
pq

In numerical work it is desirable to use both (5.11) and (5.12)

for evaluating these variances since this provides a very valuable
check on the calculations.
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. ^
Finally a between-groups estimate, s

, of the variance
£

of the function F, corresponding to a given point, X^.(j = 1 to k),

on the fitted relation with its parameters determined by least squares

from the n observations, may be determined by applying the usual

rules for the propagation of variance Z/ to the function.

F(X
1

* X.,
J 1

’

2 u
s„ = S 2 r s sF p = l q = l pq ap aq

3F
9a

9F
9a

(5.13)

In the above r =1 when p = q. The approximation in the above,
pq

aside from the fact that r s s is necessarily the sample rather
pq ap aq

than the population value, arises from the fact that only the linear

terms in the Taylor's series expansion of F were retained in its

9F \ / 9F
derivation. In evaluating the derivatives

^ J
and

^
'

q^
'

J

^ o ^ o

important to notice that the same estimated values of the parameters
are to be used as were used in calculating R . It is then possible to

pqshow that the right hand member of (5.13) is inherently greater than

or equal to zero. The iterative process of using successively better

estimated values of the parameters should be continued until two
successive determinations of s^ do not differ appreciably. Com-
paring (5.9) with (5.10), we see that the correction to Gauss* solution

will vanish in the limit as the deviations, Gj^, approach zero; thus we
see that (5.11) or (5.12) provide the first order correction to allow for

the finite sizes of the deviations which, in Gauss' solution were
passumed to be negligibly small. The estimate of variance s^ given

by (5.13) represents an estimate of the square of the standard error
of the function determined by our sample of n sets of observations
relative to a hypothetical "true" value for the function which one would
expect to determine if all m.( i= 1 to n) were allowed to approach
infinity.
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6. SYSTEMATIC METHOD FOR THE NUMERICAL SOLUTION
OF THE GENERALIZED NORMAL EQUATIONS

The method described in this section follows closely that

proposed by Doming in Chapter IX of reference 7, and the student

is referred to Ms book for proofs of the statements made in tMs
section. The method will be discussed in detail for the case of fit-

ting a straight line involving 2 unknown parameters. An explicit

form for determining 3 unknown parameters is then given, and it

will be clear from these examples how the method may be extended
to more than 3 unknown parameters. Incidental to the determination
of the u parameters, tMs method also provides u + 1 different values
of the sum S of the weighted squares of the deviations from the func-
tion: thus S(a ) is the first estimate of S determined by using the

estimated values a
, and then u successively smaller values of S

po
are obtained as the u least squares values of a are determined

P
successively and used in the calculations. Furthermore, the method
also yields estimates for the variances and covariances of the u
estimates of the parameters.

6.1 Fitting a Straight Line

First it is necessary to determine approximate values a and

b^ for the parameters. TMs may be done in a variety of ways, but

plotting the data and fitting a line by eye is usually the simplest. In

some cases these estimates need not be very accurate and, in fact,

it will sometimes be convement simply to let a = b =0; however,
o o

if the relative weights depend on the value of b, it will be desirable

to use a good estimate of b at the outset. The estimated values a
0 o

and b^ are entered at the top of the tabulation form given on the next

page. Next, the weights w. (i = 1 to n) are calculated and used to
1

calculate the 5 sums A^^, A^^»
q»

page 4. 6 together with S(a , b ) = [w. F.] . These six values are then00110
entered on the tabulation form. The Arabic numerals in parentheses

(1), (2), .... (35) indicate the preferred order of calculation and entry

on the tabulation form of the 35 numbers required for a complete
solution. Row 4 is now obtained by multiplying the values in Row I

i^em (8) is (-A^^/A^^)* Aj
^2
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and item (9) is (“-^2 1^* *^0* items (10, (11), and (12) are

obtained by adding the numbers immediately above in Rows 2 and 4,

Item (13) is item (14) is (-A^^/A^ ^)* Item (15)

is (”^2
o'^^22^

item (16) is (“®20^^22^*^20*

obtained by adding the numbers immediately above it in Rows 3, 6,

and 7, i. e. , S(a, b) = S(a , b ) + (14) + (16). Note that (14) and (16)
o o

are necessarily negative, and (14) represents the reduction of S

arising from the change of a to a while (16) represents the additional

reduction of S arising from the change of b^ to b. Next, item (18)

is determined by considering Row II to be the following equation for

(b - b^):

=
®Z0 ( 6 . 1 )

Thus (b - b ) = {item (11) /item (10)}, and this is item (18). Next,
o

using this value of (b - b^). Row I may now be solved for (a - a^):

A^^(a - a^) + A^^(h - bj = (6.Z)

At this point in the calculations, a decision should be made
regarding the adequacy of the original estimates of a^ and b^; thus

we should determine the new estimates a + (a - a ) and b + (b - b )o 00 o
of a and b, respectively, and repeat the entire procedure outlined

above using these new estimates, the revised results being entered
on a new tabulation form. In many cases the second set of calcula-

tions will lead to values of (a - a ) and (b - b ) equal to zero: if not,
0 0

the above procedure should be repeated until the calculated values

of (a - a ) and (b - b ) are sufficiently near to zero.00
We may now proceed with the calculations of items (20)

through (35). Thus R^^ and R^^ are determined by considering that

they are the values of (b - b^) and (a - 3,^)t respectively, which would

be obtained by replacing column C by column C ; thus R = (iteml2/B }O X M J. W U
and = {(1 “ ^21^2^^^!^* Similarly, R^^ 3-nd R^^ determined

by replacing column C by column C ; thus R = 1/B and

and R^^ = - ^22'^2^‘^1* ^2 ~
^21 obtain a check on our
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calculations at this point; thus item (20) must be equal to item (2 3).

Furthermore, we may now check (a - a ) and (b - b ) and enter the
o o

results as (24) and (25) by using the equations (4.17):

(a - a^) ^2'^20 (6. 3)

(b - b^) = R
2A0 ^22"^20 (6.4)

We have already determined that (a - a ) and (b - b ) are near zero,
o o

and the above equations simply indicate that this will be true only to

the extent that and are near zero. Items (26) and (27)

represent our final estimates of a and b.

Item (28) is the determinant M defined by (4.16):

^ ^ 1*^22 (6. 5)

When M is small it is indicative of a condition of near indeterminacy
in the solution for the parameters; this possible difficulty is discussed

by DemingZ/ who also gives other references.

2 2
Item (29) is the estimate s ; if s is much larger than unity,G G

it will be desirable to use the tests described in Section 7 for de-

termining the statistical plausibility of the solution. A very large or
2very small value of s may, of course, simply indicate numericalG

errors in the calculations in some cases.

Items (30), (31), and (32) are obtained by using (5.10):

®G 1^1 ^^11^2 r^i 8a9b ‘ ^2 1 °i „2
o 8b ->o

( 6 . 6 )

2 2 r

% " ®G 1^22 " ^^22 ^2 r

'
^i 1 2

^i 8a8b
" ^22

L. -I

r 9 G.

G. ^
^ 8b^ o

(6.7)
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^^ab®a®b ®g1^2 ^^1^22 ^2*

9 G. -,

G.
^

i 8a9b
-J o
-^2 R

22

d^G.
, 1

2
8b -*o

I ( 6 . 8 )

I We see by (4. 7) that the terms involving G. in the above expression

are simply components of A and A and, by appropriately arranging
Xu u u

I the calculations, can be obtained during the course of the evaluation

of Aj
^2

“^22’ these terms may be expressed as follows:

a^G.
, 1

'i 8a8b
-J o

= fw^ F(bs^ -rs s )]
i i' Xi i Xi Yi'-*o

( 6 . 9 )

a G.

i 2
8b -*o

= [2 w? F. X. (b s^. - r . s s )111 Xi 1 Xi Yi

.
_ 3 _2 2 .2 2 _2 2 , ,

+ 3w. F. (b s„. - r. s„. s__.) - w. F. s ] (6.10)
1 1 Xi 1 Xi Yi 1 1 Xi-^o

As a valuable numerical check on the above calculations,

items (33), (34), and (35) may next be calculated using the following

expressions:

_ _ , _ r/8G. -.2. p8G. 8G.-. _ r. aG..2

®a ""
V ”9r"ab“ '^2

( "ab")
^

(6 . 11 )

2 2 6 2 1

^ Jo 22

r8G. 8G.-
- 1 1

8a 8b
+ R2

-* o
22 LV 9b y J

( 6 . 12 )

r
,

s s = s^
ab a b G 1 ^2 [

(^ 'aa'y*
_

'^^1^22'’^2'

9G. 8G.

8a 8b

r.aG.v 2

'^2^22i (_ab )

(6.13)
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The terms involving G. in the above are the remaining components of

^2' =

(6.14)

8G.
1

8a

9G.
1

8b
-* o

= [w. X, + w. F.(b s
1 i 1 1 Xi ^i®Xi®Yx>lo (6.15)

8G.V 2

8b
o

= [w. xf + 2wf F. X.(bs - r. s _11 111 Xi iXiYis__) + F^(bs
Xi“^i®Xi®Yi^ ^o

( 6 . 16 )

This completes the general description of the calculations required
for the tabulation forms.

In most cases the procedure up to item (19) described above
need not be carried out more than two times. However, the following

example indicates how slowly the iterative process may converge in

an extreme case. Thus, for the linear example of Table 2.1 with
r .

= 0.9 and the variances not pooled, six repetitions of the above-

described iterative process were required before (a - a^) and (b - b^)

were considered negligible. Table 6.1 lists the results of calculations

on the form using successively better estimates a and b . The
o o

initial value of b^ was arbitrarily set equal to 1 and a corresponding

value of a^ determined by setting = 0; in subsequent steps, however,

the previous estimates of both a and b were used. In the fourth
o o

column, the values of and b^ were taiken to be approximately the

averages of the two previous estimates. Note that only the values in

the last column represent the least squares solution, and then only
to the extent that they may be considered to be calculated with suffi-

cient accuracy. In the present problem, since the standard errors

of the parameters —and thus the function—were found to be so large, it

would have been satisfactory to use column 4 as a final solution. The
process was carried further to show how it converged. Note that the

calculations in the first five columns in Table 6.1 need only have been
carried to the point at which the new estimates of a and b became
available; the other calculations shown on Table 6.1 are included simply
to indicate the behaviors of these items in the iterative process.
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Table 6.1

The Iterative Solution of the Normal Equations for the

Linear Example of Table t. = +0.9, Variances Not Pooled

a
o

b
o

-* o

20

L.\ dlo^ -*

r_
®

°i ]G.

3b o

2
= tG.

S(a, b)

a

b

M
^1
^2

r
ab

s
a

s
b

1 2 3 4 5 6

-0. 596522 -0. 182254 0.911686 0. 869 0. 883217 0. 893603

1. 000000 0. 865564 0. 582203 0.614 0. 629517 0. 626848

2. 200627 1. 832055 1. 166980 1.228491 1. 259757 1. 254321

1. 307844 1. 667553 1. 378206 1. 471759 1. 515409 1. 508034

0. 876429 0. 824808 0. 511546 0. 545986 0. 563365 0. 560352

0 0. 177771 0. 596571 0. 278496 -0. 007691 -0. 000016

4. 384900 4. 324416 3. 056732 3. 246236 3. 338531 3. 322707

16. 385947 18. 167640 14. 089969 15. 314429 15.996677 15.918974

-2. 873803 -2. 100252 -0. 605595 -0. 340995 -0. 122211 -0. 120688

13. 512144 16. 067388 13.484374 14. 973434 15. 874466 15. 798286

-1. 683430 -0. 110643 3. 049609 1. 393608 -0. 054371 -0. 000033

87. 637878 98. 910118 77. 540889 86. 262304 91. 334105 90. 853235

33.477844 -36. 490220 -11.477707 -10. 170050 -9. 182016 -9. 024872

54. 160034 62.419898 66. 063182 76. 092254 82. 152089 81. 828363

3. 671059 3. 714150 3.255054 3. 150050 3. 125100 3. 125042

3. 714150 3. 255054 3. 150050 3. 125100 3. 125042
-0. 182254 0. 911686 0. 826615 0. 883217 0. 893603 0. 893567
0. 865564 0. 582203 0.645728 0. 629517 0. 626848 0. 626854
54.908298 11. 768649 20. 109100 22. 809688 22. 268625 22. 305834
0. 986372 5. 303914 3.285238 3. 335962 3. 689141 3. 668474

-0. 246086 -1. 365270 -0. 670561 -0. 656451 -0. 712862 -0. 708258

0. 079859 0. 367452 0. 152007 0. 142318 0. 149921 0. 148961

5. 941998 159. 3493 18. 807762 19. 609167 24. 102001 23. 651773

0. 662294 11. 83746 0.956191 0. 896478 1. 031835 1. 011737

-1. 848725 -43. 319318 -4. 120100 -4. 087972 -4. 788318 -4. 793551



6.8
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The page following Table 6.1 contains the tabulation form with

the values of the 35 items entered for this same problem beginning

with the final estimates a and b at the top of Column 6 in Table 6.1.
o o

The tabulation form for fitting a straight line may also be used
for the calculations required in fitting an arbitrary function involving

any two unknown parameters provided -^2* ^
defined by (4. 7) and (4. 8).

6. 2 Fitting an Arbitrary Function with 3 or More
Unknown Parameters

In the case of 3 unknown parameters, the tabulation form on
the following page may be used. The method of calculation of the

various entries on this form should be clear from the discussion in

the preceding subsection 6.1. The extension of the tabulation forms
and methods of calculation to cover the case of more than 3 unknown
parameters should be clear from the above -described tabulation forms
for 2 and 3 unknown parameters.

.and
22 ’/ 20

are
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The Iterative Solution of the Generalized Normal Equations for Determining u = 3 Parameters and Their Variances

^10 - ^20 - ^30

Row *^1 ^10^ *^2 ^20* *^3 ^30* "
^o Cl C 2 C

3

I

(1) Ajj (2) Aj2 (4) Aj3 (7) Ajo
1 0 0

2

(3) A22 (5) A
23 ( 8 ) ^20

0 1 0

3

(8 ) A33 (9) A30
0 0 1

4 How Obtained
( 10

) Kf?]‘•1 1 'o

5
A,,

- -ii • (I)

An

( 12 ) (13) (14) ( 11 )

0 0

II 2 + 5

(15) B
22 ( 16 ) 833 ®20 (18)

1 0

7
Ai ^

- —• (I)

All

( 20 ) ( 21 ) (19)

0 0

8

B?3
(II)

^^22

(23) (24) (25) (22 )

0

m 3 + 7+8
(26) C 33 (27) C 30 (28) (29)

1

10 -^ . (I)

All

(31) (30)

0 0

11 (H)

®22

(33) (32)

0

12 -^ . (Ill)

C 33

(35) (34)

IV 4 + 10 + 11 + 12

(36) S(a
3 , a2 > a3 )

14 I solved for (a^ - a^Q)
(39 ) (a^ “ a^Q) (49) (ai - aio) (42) Rii (45) R

^2 (48) Rj3

15 II solved for {a.^ - ^
2.0 ^

(38) (a^ - a
2Q) (50) (a2 - a2o) (41) R21 (44) R

23
(47) R

^3

16 III solved for (a3 - a 3Q)

(37) (a
3

- ajp) (51) (aj - ajp) (40) Rjj (43) R32 (46) R
33

17 M = All - ®22 *"33

(55) M (52) ai (57)
al

18
_2 _ S(ai- a2 . a3>

(n - 3)

(56) 2
SG (53) a2 (58)ri2 8

^38^2 (60) ,
2
^

19

(54) aj (^^) ®al®a3 (^I>’^23"a2«a3 (62 ) 3|3

20
(63) 2

“al

21

(^^) ’^

12 ®al«a2
(^6

> sl2

22

(^5)
"^IS \l"a3 (^^> ’^23®a2 ®a3 (68 ) 2

®a3
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7. THE DISTRIBUTION OF S

Throughout this section it will be assumed that each of the
25 /observed random variables are from normally distributed populations,

—

and it will be shown, on this assumption, that S/v^ (where S = ]

is the minimized sum defined in (4.1)) is sometimes exactly but is

always approximately^ distributed as Fisher’s variance ratio ^
2)

with V and v degrees of freedom:
X M

= n - u

r 2^2

^2
. 4
[s^ / (m, - 1)]

(7.1)

(Variances not pooled) (7.2)

''2 =K 1] (Variances pooled) (7.3)

Here, as before, u denotes the number of unknown parameters esti-

mated in minimizing S, and s^ is defined by (4. 2). This distribution

may be used to detect statistically significant departures of the ob-

served data from the statistical models assumed in deriving S. Thus

if the observed value of (S/v
) is larger than F(v , v

, p) for the
X JL M

probability level p chosen in advance as the minimum value consist-

ent with accepting the model, we may conclude (a) that the observed
data contain a statistically significant component of variance arising

from the presence of random systematic errors, (b) that the form of

the function fitted to the data is incorrect, or (c) that a combination
of both of the above factors is responsible for the observed large

value of S.

^ The proof given in subsection 7. 3 for k > 1 depends on the

the assumptions (a) that the have the same values independent

of i for all n groups of observations i = 1 to n and (b) that the ratios of
2/2

the population variances (r ../<r, .have the same values C., independent^ ^ T]ji T]hi jh
of i for all n groups of observations i = 1 to n. These assumptions may
not be necessary, but they are at least sufficient.

25/
Kenneth A, Norton and Eugene Barrows, "The Kolmogorov

Test of the Goodness of Fit of Data Samples to Independently Specified

Continuous Distributions, Together with a Test of the Normality of a

Small Sample, " NBS Report 5070, July, 1957.
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When the same population variances cannot be assumed for

all n groups, this approximate distribution of S provides the only

satisfactory means presently available for testing our models. It

should be noted that the statistical tests for heterogeneity of variance

will often indicate a common population variance when, in fact, the

actual population variances differ. Thus, in those cases where the

experimenter has reason to suspect different population variances,

it will be better to obtain the solution without pooling the variances

even though the statistical tests for heterogeneity of variance indicate

no statistically significant differences. This point is emphasized here
since there may be a tendency to attempt to justify the simpler method
of pooled variances by statistical tests alone, and this will lead oc-

casionally to an incorrect acceptance or rejection of a proposed model.

7. 1 One Variable Subject to Error (k = 1) and
the Variances Pooled

We will consider initially in this subsection the case of one

variable (k’ = 1), and will assume that n groups of observations are

used to estimate the population mean value a which is assumed to be

the same for all groups. The least squares estimate for a may be

expressed:

[w. Y.]11
a =

[w.]

m.

Y. = — > Y
1 m. it

1 t = l

(7.4)

(7.5)

w. = m. / s .

1 1 Til

S = [w. (Y. - a)^] = [w^ {(Y^ - a) - (a - a) }^]

(7.6)

(7.7)

S = - ci)^ - 2w^(Y. - a)(a - a) + w^(a - a)^]

S = “ [w.](a - a) (7.8)
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Assume now that the variance o' . is known for each group of observa-

tions and let

wl = m. /cr .

1 1 T|1
(7.9)

If we write z = n/ w' (Y. - a), i = 1 to n, it follows that the z. are111 1

independent random variables normally distributed about zero with

unit variance; now, if w. is replaced by wj, (7. 8) and (7. 4) may be

written

S = [z. ] - [w.'] (a
cr 1 1

- a) =
I

— (Y. - a)

Til

p
n/ w.‘ z. -

'^
[
wj ] (a - a) =

I

—-p===
1 L si [w>] -i

(7.10)

(7.11)

The subscript cr on S is used to indicate that the weights w! are con-

sidered to be known constants. Note now that the linear form

*^[w| 1 (a - a) = [c. z.l has coefficients c. which satisfy the condition
1 11 1 +

[c, ]
= 1. Thus we may apply Fisher's lemma to (7.10), and conclude

(a) that S is distributed exactly as x with (n - 1) degrees of freedom;
cr

or alternatively that S /(n - 1) is distributed exactly as Fisher's
0" o

variance ratio F(n - 1, oo), and (b) that (n - l)[w.' ](a - a) /S is

distributed exactly as F(l, n - 1). There are no formal difficulties

in extending these conclusions to problems involving u unknown
parameters and more than one variable provided the additional

variables are not random; for example, this has been done by
Cramer in Chapter 37 of reference 18 and the principal change in-

volved is the replacement of (n - 1) by (n - u). These conclusions
are not very useful, however, since they depend on an assumed a priori

knowledge of the variances cr^.. However, if it is reasonable on physical

grounds (independently of the observed data) to assume that the n groups

have a common population variance cr
,
and particularly if, in addition,

T)

statistical tests for heterogeneity of the n observed variances indicate

t A good discussion of Fisher's lemma is given by Cramer in

reference 18, p. 379. Another discussion, involving more elementary
mathematics, is given in Section 10. 6, p. 262, of the book by A. Hald.~^^

26/
A. Hald, "Statistical Theory with Engineering Applications, "

John Wiley and Sons, 1952.
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that this assumption is not statistically unreasonable ,^ we may express
S as follows:

/(s^/cr^
T1 T1

(7.12)

where [m - l](s^/or^) = [(m - l)(s^ /cr^)] (7.13)
1 T| 1 T)1 T|

2
,
2

It is well known that each of the terms (m. - 1) s .
/cr on the right

2 1 T)i n
hand s’de of (7.13) is distributed as x with (m^ - 1) degrees of freedom,

and it follows that their sum will be distributed as x with [m. - 1]

degrees of freedom. Finally, since S/(n - 1) may now be expressed

as a ratio of two independent mean squares (u/v )/(v/v ) where
2 i ^

u = S is distributed as x with v = (n - 1) degrees of freedom and
1 2

,
2 ^2

V = [m. - l](s /cr ) is distributed as x with v = [m. - 1] degrees of
1 T| r| 2 1

freedom, it follows (a) that S/(n - 1) is distributed exactly as

F(n - 1, [m. - 1]) and (b) that (n - l)[m.](a - a) /Ss is distributed
1 1 T|

exactly as F(l, n - 1). These last two conclusions may be extended

(See Cramer, chapter 37 in reference 18) to problems involving u

parameters and k' variables, only one of which is random, simply by
replacing a by ^p>(P = 1 to u) and (n - 1) by (n - u). These are the only
problems for which the exact distribution of S is readily determinable.

7. 2 One Variable Subject to Error (k = 1) and
the Variances not Pooled

We will consider next the one -variate problem for the case
where it is not reasonable to assume that the n groups of observations
are from populations with the same variance, and will make use of a

t
Note that statistical tests on a particular observed sample

cannot provide a sufficient reason for assuming homogeneity of the

variances, although repeated tests on many samples might be con-

sidered to provide adequate grounds for such an assumption; also,

statistical tests for homogeneity of variances are unnecessary in

case valid physical reasoning leads to the assumption of a common
population variance.
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27ytheorem on quadratic forms derived in a recent paper by Box.

Let Q be the weighted sum of n different variates characterized

by degrees of freedom, i = 1 to n:

Q =

s . -1

’ll _r / •

m.
1 -j

[ V m.(m. - 1)

/ (m. - 1) s .

1 rp.

2
a .

Til

=
I \ x (v.) (7.14)

X. = (T . /m.(m. - 1)
1 T|1 1 1

X^(v.) = (m. - 1) s^. /(T^.
1 1 T|1 T]1

(7.15)

(7.16)

Note that the X, are simply constants and that v. = m. - 1.
1

^ ^ 11
According to Theorem 3.1 in Box^s paper, Q/g will be distributed

approximately as x^(^) where:

h = [v.X.]^ /[v.xf] = [(T^./m.]^ /[(T^. /mf(m. - 1)]11 •’ll T|i 1 'qi 1 1
(7.17)

gh = [v. V] = [ O' ./m.]
Til 1

Now consider the ratio R:

(7.18)

R = {S^/(n - !)}/{Q/gh} (7.19)

2
Since is distributed exactly as x with (n - 1) degrees of

freedom* and Q/g is distributed approximately as x with h degrees of

freedom and independently of S , it follows that R is distributed

G. E. P. Box, ”Some theorems on quadratic forms applied

in the study of analysis of variance problems, I. Elffect of inequality

of variance in the one-way classification, " Annals of Mathematical
Statistics, Vol. 25, June, 1954, pp. 290-302.
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approximately as F(n - 1, h). If we now rej)lace the cr

^
in (7.17),

(7.18), and (7.19) by the estimated values s ., we find that gh = Q,

S SS , R S S/(n - 1),
O'

= [s^./m.f /[s^./m^{m. - 1)] s h
T]! 1 T^l 1 1

(7.20)

and conclude that S/(n » 1) is distributed app

r

03dmately as F(n - 1,

Furthermore, we may use the estimates w. for w.’ in (7.10), and thus

conclude that (n - l)[w.](a - a) /S is distributed jipproximately as

F(l, n - 1) even when the population variances <r . vary from group to

group. These last two conclusions may be extended to problems
involving u parameters and k’ variables, only one of which is random,
simply by replacing a by a and^a by a (p = 1 to u), and (n - 1) by

(n - u). Since s . approaches cr . as m. approaches infinity, the above
T|1 Tjl 1 2

two approximate distributions for S and for (a - a) become exact as

all of the m. are allowed to increase without limit. It is of interest

to compare the above approximate solution for the distribution of S

with the approximate solution obtained by Welch for the special

case n = 2. For this case (n 1) = 1, and we may write:

S =

't]1

m^(Y^ - a)

'il2

= (^1 - ^2) /

2 2
S s
_ni _t]2

m.
(7.21)

The second expression on the right of (7. 21) is readily obtained when
we substitute in the middle member of (7.21) the following expression
for a:

a

“1^1

V
>lX ti2

m.

/(
V

*Tll

(7.22)

28 /-— B. L. Welch, "The Generalization of Student's Problem
When Several Different Population Variances Are Involved, "

Biometrika, vol. 34, pp. 28-35, 1947.

2
s

t The reader should note that the replacement of cr

^
by

increases the variance of the numerator and decreases the
Til

.

variance of the denominator in (7.19); the approximation depends
upon the fact that these two effects are approximately compensatory.
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Welch concludes, when (r^ may differ from cr^ , that S is distrib-
1

uted approximately as F(l, v ) with v defined exactly as in (7.20). A
comparison of Aspin^s —'tabulated exact results for this special

case indicates that Welch’s approximation should have adequate

accuracy for most applications. Thus we see that our approximate
solution has satisfactory accuracy in this special case, and presume
that it will also be satisfactory in the general case.

The numerator in (7.19) represents a between-groups
estimate of variance, while the denominator in (7,19) represents
a within-groups estimate of the same variance. Box^Z.' obtained in

Section 7 of his paper an expression for the distribution of such a

variance ratio without the restriction that the n group population

variances must be the same, but his variance ratio was essentially

different from (7.19); thus he did not weight either his Y. or his
2 2 ^

(Y. - a)^ in inverse proportion to cr^. Although his solution was
1 T|i

appropriate to the simple analysis of variance problem he was con-
sidering, our least squares formulation appears to be in a more useful

form when no assumption is made about the population variances (t^..

7. 3 More Than One Variable Subject to

Error (k > 1)

We will show in this subsection that the extension of the above
results to the general case in which more than one variable is sub-
ject to error involves only the use of (4, 1) for defining S and the

2 2replacement of s . /m. by s, as defined in (4. 2); we obtain in this way
Tp. 1 1

a good approximation to the distribution of S. However, since the

estimated values, a , are not linear functions of the errors of the
P

k random variables, we can obtain only rough approximations to the

distributions of (a - a ) in this general case. In the particular case
P P

of fitting a straight line to observations on k = 2 random variables, it

is shown in Section 12, however, that Wald’s method of defining estimates

29/— B. L, Welch, "Further Note on Mrs. Aspin’s Tables
and on Certain Approximations to the Tabled Function, " Biometrika,
vol. 36, 1949, pp. 293-296.

30 /— Alice A. Aspin, "Tables for Use in Comparisons Whose
Accuracy Involves Two Variances, Separately Estimated, " Biometrika,
vol. 36, pp. 290-296, 1949.
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a' and of the two parameters a and p leads to exact distributions for

(a^ - a) and for (b* - p), but Waldos method may be used only when the

population variances (r , and (r^. are independent of i.
Tp. SL

For simplicity in presentation the following discussion will

be limited to the case of fitting a straight line with both variables

subject to error; the extension to the general case discussed in

Section 4 is straightforward. We will consider the distribution of

S in two artificial limiting cases (both involving implicitly the assump-
tion that m. is infinite), and we will in this way obtain an approxima-
tion to the distribution of S when m. is large but finite.

We will consider first the somewhat artificial case in which
2 2

(T (T and p, are assumed to be known for each value of i = 1 to n,
T^l €1 '^i

and only the parameters a and b and the adjusted values X'. and
Cr (T 1(T

Y.' are estimated from the n groups of data. Such a situation might

actually arise in practice if the experimenter had made many—
theoretically an infinite number— of simultaneous observations of

X.. and Y. in order to establish the values of o- c and p., and
it it rp. GL 1

then wished later to fit a relatively small sample of data from the

same populations to a straight line. We will use the subscript or to

distinguish this case from the solution described in Section 2 involving

the values s s ,, and r. obtained from the sample being fitted. In
rp. d 1

tr o

the present case the minimized sum S may be expressed:

S
O'

a - b X.)^
cr cr 1

or. =(cr .
- 2b p. O' . O' . + b cr .)/m.

1 T|1 O' "^l T]1 GL o- a 1

(7.23)

(7.24)

We may also express S^ in the following form:

S
O'

(Y. -Y!
1 10-

2
or .

Til

2p.(Y. - Y! )(X. -X! )11 10' 1 10
'

O' . cr .

T|1 €1

(7.25)

The equivalence of (7. 23) and (7.25) may be established by substituting

the adjusted values XI and YI appropriate to this case in (7.25).
17 I

Hotelling—

'

has established the invariance of the magnitude of quadratic

forms like those in (7.25) to a rotation of the coordinate axes. Thus,
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consider a rotation of the X, Y axes by an angle 0 to new axes U,

V, respectively, where positive 9 corresponds to counterclockwise

rotation, and

tan 29 =

2p. cr .
cr

.

1 T|1 €1

2 2
(cr .

- (7 .)a Tji

(7.26)

2 2 2 .2
If we assume that p. = p and cr .

= C cr then tan 29 = 2pC/(C -1);
€L pi ^

in this case, since such a rotation is independent of i, the errors

u. = €. cos 0 + p. sin 0 and v^= - €. sin 0 + p. cos 9 in each group will11 1 11 1
^

®

be uncorrelated in the new coordinate system ' and we may write:

S
c

m.{V.

O'

V

m.(U.
1 1

(7.27)

The above is now in exactly the same form as the minimized sum S

studied by Demin^ J-J Deming fitted a straight line on the

assumption that o' and o' were known constants, and that p =0,
u V 2

and proved for this case that S is distributed like \ with (n - 2)

degrees of freedom,-^ i. e. , that S^/(n - 2) is distributed like

F(n - 2, oo). In view of the above invariant transformation, it appears
that Deming' s results will also apply when p is different from zero

provided p. = p and o' .
= C o' ..

1 d pi

t 2 2 2 2
' Note that E(u. v. ) = (o' . - o' . ) sin 0 cos 0 + p o' . o' .(cos 9 - sin 0

)

2 2
^ ^ 2®- 2

^ 61 pi'
2

= 0'
. {(1 - C ) sin 0 cos 0 + pC(cos 9 - sin 0) } = 0 if tan 20 = 2pC/(C -1).

Note that this is less restrictive than assuming that the population

variances are the same for each group since o'^ may vary with i.

LI/ See the discussion and accompanying references in

reference 7 on pages 18, 23, 27, 141, and 230. For the case of fitting

an arbitrary functional relation to random variables U and V with un-

correlated errors, see W. E. Deming, '^On the Application of Least

Squares-- III A New Property of Least Squares^” Phil. Mag. ,
Ser. 7,

vol. XIX, p. 389, Supplement, February, 193 5.
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We will consider next the even more artificial case in which
the population parameters X. , Y. , a, and p are known constants,

2 2 lo lo
I

but in which s s and r. are estimated from the samples. It will
Tp. a 1

be convenient in this case to introduce the following notation:

F =Y-a-6X
Pi i ^ i

(7.28)

22^^ Z 2
= s .

- 2p r. s . s
, + p s .

pi T)1 1 T|1 €1 €1
(7.29)

22^^ Z Z
= (T .

- 2p p. cr . cr . + p cr .

Pi Tjl 1 T|1 €1 a (7.30)

S =
o

m.(Y - a - PX r m {(Y - Y ) - P(X - X
1 1 1 1 1 lo 1 io

2

®pi

2
(7.31)

(TO

mi {(Y. - Y.^) - P(X. - X.^)}‘

Pi

(7.32)

The expressions on the right of (7. 31) and (7. 32) may be obtained by

subtracting ( Y. - a - p X. ) = 0 from Y. - a - p X., It is now obvious
lO lO 1 1

that S is the sum of the squares of n variables each of which is
(TO

normally and independently distributed about zero with unit variance;
2thus S is distributed as y with n degrees of freedom. We may now

cro

apply Box’s theorem to the above expressions in ess entially the same
way it was applied in the preceding subsection, and thus find that

S^/n is distributed approximately as F(n, v^q) where:

’'20 = (7. 33)

2
, ,

2
When all of the m. are large, b approaches p, s approaches s. and

approaches v_ as defined in (7. 2), It should be noted that this last

result is valid for completely arbitrary value s of cr^, cr^

ni’ Pi’

These estimates are defined in (2. 2) and (2. 4).
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and this suggests that the requirement that p. = p and
2 2 2 ^

O' = C O' . imposed in deriving the distribution of S may not be
d T|1 0-

necessary when all of the m. are large. In the special case where
2 ^ 2

we may assume that cr has a constant value cr_ independent of i, we
2 Pi P

may set S = S /(Sq/ct ) and use the same arguments as were used
o cro p P

in subsection 7.1 to show that S /n is distributed in this case exactly

as F(n, [m. - 1]).
°

If we attempt to apply the above distributions for S and for

S to the determination of the distribution of S in our more general
o 2 2

formulation in which the values of s s r., XJ, Y.', a, and b
a rp. 1 1 1

must all be estimated from the data, we find that the n separate terms
in S are no longer independent as they were in S , and the weights are

now random variables instead of being known constants as they were
2 2

in S . Nevertheless, since the estimated values s s ., r., XI, YI,
or 2 2 ^ ^ 1 1

a and b all approach the constant values cr cr ., p., X. , Y. , a, and
a T]i 1 lo lo

P, respectively, as m^ is allowed to increase without limit, it appears

that S will be approximately equal to both S and S when all of the m.
o O' — i

are large. Thus, since all of the above discussion may be extended

without formal difficulties to the general case discussed in Section 4,

we may expect S/v^ to be approximately distributed as F(v^, v^) with
1. X ^

V defined by (7.1), and v defined by either (7. 2) or (7. 3), and this

approximation should be better the larger the values of all of the m..

By using v = n - u in F(v ,
v ), approximate allowance has been made

for the fact that the sum of the numerators of the n terms in S,

normalized by their respective variances, has only (n - u) degrees of

freedom since the estimated values of u parameters were determined
in minimizing S; and by using as defined in (7. 2) or (7. 3), ap-

proximate allowance has been made for the degrees of freedom in

estimating the n variances o'g.. Thus, to a first approximation, al-

lowance has been made for tne variances of all of the random variables

entering the problem. Even for small values of m., changes in these

random variables will affect our approximate distributions in the same
directions as they affect the exact distributions ^Z^and thus our approxi-
mate theory will always provide a dependable, even if not exact, guide

to the analyst. Even when the exact distributions become available

in a usable form, it seems likely that the above -described approxima-
tions will continue to be useful because of their simplicity.
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8. THE SIMPLEST LEAST SQUARES PROBLEM:
ONE VARIABLE AND ONE PARAMETER

8.1 Without "Systematic" Errors

This is the simplest of all least squares problems, and will

be discussed in some detail since it illustrates, under the simplest
possible conditions, many of the characteristics and limitations of

our least squares solution. We assume in this subsection that

E(Y..) = Y. = a, and thus, by assumption, exclude any "systematic"
it lo 2 2

errors; also E{(Y. - Y. ) } = o- ..
it lO T]1

F. = Y. - a
1 1

m.
1

(l/w.) = sf = s^.
1 2— s .m. m
1

t = l

( 8 . 1 )

( 8 . 2 )

The estimate of variance (8. 2) will be called the sample "within

group" estimate.

*'10 (8.3)

All = (8.4)

= [w.(Y. - aj] (8. 5)

a =

Fw.Y.I
1 1

[w.]
[m Y /s^ ]/[m /s^

]
1 1 T|1 1 T^l

(Variances not pooled) (8. 6)

We see by (8. 6) that least squares leads in this case to the weighted
mean with the weights equal to the reciprocal of the variances of the

group means determined from the sample within group estimates of

variance. Let us assume th^t it is reasonable on technical grounds to

assume that the variances s . for i = 1 to n may be considered to
Til
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be samples from the same statistical parent population. In this case

we may pool these n estimates and obtain a value s which does not

depend on i; this common value cancels out in (8. 6) which now becomes

a =
P

[m. Y.]
1 1

(Variances pooled) (8.7)

We see exhibited here the two basic statistical properties of our

system of weighting: (8. 6) and (8. 7) both show that the relative weight

to be assigned are directly proportional to the number, m^, of obser-

vations averaged in obtaining the mean values Y. while (8. 6) makes
allowance in addition for variations in the observational conditions

which might be present in determining these n different mean values.

For example, with i = 1 and 2 suppose verniers were available on the

measuring instruments and none for i = 3, 4 and 5; this could lead to

values of s . and s _ which are systematically smaller than the

2 2 2
values s

, s and s , even with m. the same for all 5 groups,
T|3 t^4 T]5 1

and our least squares method has been formulated so as to give an
appropriate additional amount of weight to Y and Y as compared to

1 2
Y^, Y^ and Y^ in this situation.

3 4 5

The following equations apply whether or not the variances
are pooled:

S(a) = [w.(Y^ - a) ] ( 8 . 8 )

^1 =
1

^1 [w.]
(8.9)

2 2 S
s„ = s =
F a n - 1 ^1 =

[wj(Y. - a)"]

(n - l)[w.]
( 8 . 10 )

Note that s is an estimate of the standard error of the weighted mean,

a, obtained from the n independent groups of observations of Y. Our
least squares solution can thus be expressed in the following form:

a = a ± s ( 8 . 11 )
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In this particular case, on the assumption that the population mean
Y. is equal to the "true" mean a, a is an unbiased estimate of the
lo 2

"true" mean value a, and s is an unbiased estimate of the variance
a

of a. We will see as we proceed, however, that the assumption
E(Y.^) = a -will not always be realized in practice because of the

presence of systematic errors.

We will now introduce several numerical examples in order
to illustrate more clearly the nature of our least squares solution of

the one variate problem. In order to ensure that the data are from
normal populations, we will construct our observations by using the

table of random normal deviates in the Appendix to reference 7. This

also has the advantage that we will know in these illustrative examples
the population mean Y^^ = a and population variances thus, for

all of the examples in this section we take Y. = a = 17, and for the

example in Table 8.1 we take cr^. = 1 for i = 1 to 5. Thus the 5 groups

of observations in Table 8,1 might correspond to observations made
by 5 different observers in 5 different laboratories.

2
It may be noted in passing that s . should normally be cal-

culated by means of the following exactly equivalent formula rather
than directly from its definition (2. 2):

2
s . ( 8 . 12 )

On modern electrical calculators the two sums in (8.12) may be
obtained in a single operation; when (8.12) is used it will be neces-
sary to carry more significant figures than would be the case if

(2. 2) were used, but this is readily done on a modern electrical

calculator.

From the data in Table 8.1 and equations (8. 6), (8. 8) and
(8.10) we obtain: a = 17.223, S = 2.939, and s = 0.124; thus:

a

a = 17.223 ± 0.124 (Variances not pooled) (8.13)
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Table 8. 1

Y. = a
lO

= 17; 0-
.
=

Tjl

or = 1 ; m. = m
T1 1

= 10; n = 5

t i = 1 i = 2 i = 3 i = 4 i = 5

1 18.95 18. 87 17. 63 14. 08 18.72
2 18. 57 18.41 18. 17 18. 53 16.92

3 15. 81 16. 63 18.25 16.49 18.29

4 15. 53 16. 75 16. 76 15.98 16. 04

5 17. 35 16. 75 16.69 16.22 17.91

6 15.93 17. 57 16.66 16. 02 15.48

7 17. 54 18. 27 17. 53 17. 17 17. 70

8 16. 54 16.41 15.62 18. 31 18.21

9 17. 81 16.98 17. 19 17. 30 17.40
10 18. 16 16.62 18.27 15. 58 17. 35

Y.
1

17.219 17. 326 17.277 16. 568 17.402

2
s .

T]1
1.45968 0. 79054 0. 74051 1. 74686 1. 03440

2

®Yi
0. 145968 0. 079054 0. 074051 0. 174686 0. 103440

w.
1

6. 85082 12. 64958 13. 50421 5. 72456 9. 66744

Y. -
1

Y!
1

-0. 004 0. 103 0. 054 -0. 655 0. 179

1
0. 00011 0. 13420 0. 03938 2.45598 0. 30975

Pi
0.99 0. 73 0. 85 0. 15 0.59

Y. -
1

Y.
lO

0.219 0. 326 0.277 -0.432 0.402

lO
0. 32857 1. 34435 1. 03616 1. 06834 1. 56230

p!
lO

0. 58 0.28 0. 34 0. 33 0.24

Y. -
1

y :

ip
0. 061 0. 168 0. 119 -0. 590 0.244

ip
0. 03223 0. 24449 0. 12267 3. 01542 0. 51573

P.I 0. 86 0. 63 0. 74 0. 12 0.49 •
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Before accepting the above result, it is desirable to mcike tests to

determine whether some of the group means contain systematic errors.

All of the tests given in this section of the paper depend upon the

assumption that the observations are from normally distributed

populations; in the illustrative examples this is insured since they

were constructed from a table of random normal deviates. For this

problem S = [G?] = 2. 93942 and it was shown in subsection 7. 2 that

an approxim_ate test of the hypothesis that all 5 group means are from
populations with the same a but with possibly different variances

cr^. may be obtained by setting S/(n - 1) = 0. 73485 = F(4, v
, p) where

2 2 4 ^
V = (m - l)[s .] /[s

. ]
= 40. 3803. From the graphs in reference 19

2 T)1 TJl

we find p ™ 0. 58. Note that p is approximately the probability of

observing, in repeated random sampling with samples of this size

from populations with arbitrary variances, a value of S larger than

the value actually observed. Since p =0. 58 is much larger than the

level 0. 05 arbitrarily adopted t throughout this paper as the minimum
permissible value of p for accepting the hypothesis, we conclude that

there is no statistical evidence that these 5 groups of data are not

from populations with the same mean a.

We may also examine the estimated errors Y. - YI as given

in Table 8.1; for the one variate problem YJ = a. The probabilities

p^
provide a more detailed, although less accurate, check for the

presence of systematic errors. Thus, the probabilities pj may be
. . 2 ^

obtained by setting G. = F(l, 9, p.') and, in the present illustrative

problem, since a = 17 is known, we may also determine probabilities

p! by setting G? = F(l, 9, pi ). Here G? is the value of T? obtained
lO lO lO lO 1

with Y'^ replaced by a. The probability pi represents the probability
io fi.

of observing, in repeated sampling from the i population with samples
of this size, a value of G. larger than the value actually observed.

2 2Since G. approaches G. as all of the m. are allowed to increase without
1 lO 1

limit, we see that pi will also to this degree approximate pl^ and thus

^ Note that the level chosen in practice for rejecting the

hypothesis should be adopted in advance of making the test; the proba
bility level actually used should depend on the risk involved, and
should be chosen with due regard for the alternative actions to be

taken if the hypothesis is either accepted or rejected.
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the probabilities
p|

provide rough indications of the separate relia-

bilities of the n means Y.. We see in Table 8.1 that none of the
1

probabilities p.' are less than 0. 05, so we have no statistical reason
1

to suspect any of these 5 means. Note, however, that the p' differ
i

substantially from the corresponding probabilities p'
, and thus they

io
should not be relied on except for a rough check.

In view of the above checks we conclude that (8.13) represents
an acceptable solution to our problem.

2
It was shown in subsection 7. 2 that (n - l)[w. ](a - a) /S is

distributed approximately as F(l, n - 1). This result permits us

to determine a confidence band for a:

Y* {100(1 - p)%} sa ± (SF(1, n - 1, p)/(n - l)[w.]}^''^ = a ± s {F(l,
1 3i

(8.14)

The result (8,14) is to be interpreted as follows. If n = 5 samples
of m^ = 10 individuals are observed repeatedly from these same 5

populations, which are assumed to have the same population mean
a but possibly different variances, and if confidence bands as defined

by (8. 14) are constructed for each such sampling, then as the number
of such samplings is increased without limit, it will be found that

(approximately) a fraction (1 - p) of the confidence bands so constructed

will contain the population mean a. From reference 19 we find

F(l, 4, 0.5) = 0.54863, F(l, 4, 0.05) = 7. 7086, and F(l, 4, 0. 005) = 31. 333

so that Y*(50%) ^17.131 to 17. 315j Y*(95%) S16.879 to 17. 567 and

Y*(99. 5%) = 16. 529 to 17. 917. Note that for this particular sample
the 50% confidence band does not contain the population mean a = 17,

but that the 95% and 99. 5% confidence bands do contain the population

mean. All we can say is that the population mean will be found in

approximately 100(1 - p)% of the confidence bands constructed in this

manner.

Suppose now that some physical theory indicates that the "true”

value of a = 16. Since we can write:

(n - l)[w.](a - a)^/S S F(l, n - 1, p) (8.15)
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2
and we know that (n - l)[w^](a - 16) /S = 98 = F(l, n - 1, p), we find

in reference 19 that p —0.0006. Thus we may conclude, on the assump-
tion that the theory is correct, either (a) that the observed sample
contains "systematic” errors or (b) that the observed sample just

happened to have a large deviation from the population mean, in fact

in this case, so large that a still larger deviation would be expected
to be observed in random sampling with a probability of only 0.0006,

Alternatively, if the analyst had adopted 0,05 in advance as his

hypothesis rejection level, these data would provide a basis for re-

jecting the theory.

Since the example in Table 8, 1 was constructed by random
sampling from 5 groups with the same normal distribution, i. e.

,

Y. =17 and cr .
= 1, we know in advance that the variances may be

lo Til
!

pooled. It will nevertheless be mstructive to apply Bartlett's test to

these five observed variances s . in Table 8.1. Bartlett has shown
2

for n sample variances s . from populations with the same population
2

variance o" that B/(n - 1) is distributed approximately as Fisher's

variance ratio F(n - 1, oo), where:

B = {[m. - 1] log s^ - [(m. - 1) log s^.]} (8.16)C 1 10 T] 1 10 Tfl

c 1 +

1

3(n - 1)

2 _

"1 [m. - 1]
1

(8.17)

(8.18)

The above test is useful even for small values of m., say 5 or more.
1

. 2
If we apply this test to the variances in Table 8.1 we find s =1,15440,

C = 1. 04444, B/(n - 1) = 0. 61073 = F(4, oo, p); and from reference 19

M, S, Bartlett, "Properties of Sufficiency and Statistical

Tests, " Proc. of the Royal Society of London, vol. 160A (1937),

pp. 268-282.
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we find p = 0. 66. Since this is much larger than the level 0. 05

arbitrarily adopted throughout this paper as the minimum permis-
sible value of p for accepting the hypothesis, we conclude that there

is no statistical evidence th?it these 5 sample variances are not from
populations with the same variance. Note that B/(n - 1) is only

approximately distributed as F(n - 1, oo); however, Thompson and

Merrington—^ have developed tables from which the exact 5% and 1%
significance levels for B may be determined, and these will be useful

when p is near the rejection level chosen. Reference may also be made
to a paper by Hartley in which a test for heterogeneity of variance
is given which involves only the ratio of the largest to the smallest

variances in the n groups; this test is more convenient but less power-
ful than Bartlett’s test, and is recommended only when m. has the same
value m for all n groups.

In some problems it may happen that a test is required of the

statistical significance simply of the departure of the largest of a set

of variances. For example, it might be reasonable to pool the re-
maining variances if the largest of the set were eliminated, Cochran
has developed such a test,and appropriate tables for the application of

this test are given in reference 11.

2
Using the pooled variance s = 1.15440, we obtain:

T|

a = [Y.]/n = 17.158 (8.19)
p 1

S = m[(Y. - a) ]/s^ = 3.93054 (8.20)

s - [(Y. - a)^]/n(n - 1) = 0.022687 (8.21)
cL X

a = 17.158 ± 0.151 (Variances pooled) (8.22)

Catherine M. Thompson and Maxine Merrington, ** Tables
for testing the homogeneity of a set of estimated variances, ” Biometrika,
Vol. 33 (1946), pp. 296-304. These tables are also available in

reference 9, page 198.

H. O. Hartley, "The maximum F-ratio as a short cut

test for heterogeneity of variance, " Biometrika, Vol. 37 (1950) pp. 308-312.
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In this case the exact results in section 7,1 apply and we may set

S/(n - 1) = 0. 98263 = F(4, 45, p) and find p = 0. 425; ;Y*(50%) = 17. 046

to 17.270; Y*(95%) = 16. 740 to 17. 576 and Y^-(99. 5%) = 16. 315 to 18. 001;

furthermore, the probability p= 0. 0016 is obtained in this case using

pooled variances for an assumed ’’true" value a = 16. The probabilities

p' corresponding to this case are also given in Table 8.1.
iP

Thus we see that only slightly different results: (8,22) or

(8.13) are obtained in this example
,
depending upon whether or not the

experimenter assumes that the 5 population variances are the same
or assumes that they may be different. In general it is better to assume
that the population variances may be different unless there are good
physical reasons, independent of the data and independent of statistical

tests on it, for expecting that the population variances are the same.
For example, it might be expected that the variances would be the

same for n groups of measurements made under similar environmental
conditions with apparatus of the same manufacture. However, even in

this case, the n population variances might be different if n different

observers were involved and it was established (possibly by statistical

tests for heterogeneity of variance or otherwise) that a significant

portion of the variance was contributed directly by the observers.

8.2 Example with Different Population Variances
and without "Systematic" Errors

We will illustrate the results of the preceding subsection fur-
ther by considering a numerical example constructed in such a way
that the population variances are different. The numbers in Table 8, 2

were obtained from the table of random normal deviates in the Appen-
dix to reference 7 using the assumed population parameters: Y. =17,22 222/, lo
O' - = cr _ = 1, and cr =(r .

= (t - = 6. 25. Let us assume for our
T|1 r\Z ti3 t]4 r]5

discussion that the observations for the groups i = 1 and i = 2 might
have been made using instruments with verniers, while the observa-
tions for the groups i = 3, 4 and 5 might have been made with instruments
not having verniers. Thus the experimenter would have a good a priori
physical reason, independent of an analysis of his data, to doubt whether
the variances would be the same for all 5 groups, although he might
expect the same variances in groups 1 and 2 and in groups 3, 4, and
5, respectively.
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Table 8. 2

Y. = a = 17;
lO "^Til '^r]2 °“il3 "^ti4

cr =6.25
r|5

t i = 1 i = 2 i = 3 i = 4 i = 5

1 16. 46 17.42 16. 35 22. 10 19.08
2 16.79 18.67 14.45 14.30 18.45
3 16.40 17.67 15.98 15. 52 16. 08

4 15.41 17. 06 13.95 17. 70 17.65
5 16.40 18. 37 14. 30 20. 25 18. 33

6 17.22 16.43 17.00 14. 57 15.63

7 18.45 16. 31 15.97 17.27 19.85
8 16. 16 17.79 14. 60 18. 70 12. 70

9 18. 72 16.43 20.95 16. 15 15.40
10 17.93 16. 00 14. 83 17. 02 15.98

Y.
1

16.994 17.215 15. 838 17. 358 16.915

2
s . 1. 14036 0. 84249 4. 24308 6. 09466 4. 60936

2
s
Yi

0. 114036 0. 084249 0.424308 0. 609466 0.460936

w.
1

8. 76916 11.86958 2.35677 1. 64078 2. 16949

Y. -
1

y:
1

-0. 012 0.209 -1. 168 0. 352 -0. 091

1
0. 00129 0. 51793 3. 21576 0.20317 0. 01801

p!
1

0.97 0.49 0. 11 0. 66 0.90

Y. -

1
Y.
lO

-0. 006 0.215 -1. 162 0. 358 -0. 085

lO
0. 00032 0. 54867 3. 18223 0. 21029 0. 01567

pL 0.99 0.48 0. 11 0. 66 0.90
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If we apply Bartlett's test for homogeneity to the 5 variances

in Table 8. 2, we find s^ = 3. 386, B/(n - 1) = 2. 92 = F(4, oo, p); and

from reference 19 we find p = 0. 02. Since this is less than the

probability level 0. 05 arbitrarily chosen throughout this paper for

rejecting the hypothesis, we conclude (as was to be expected in view
of the way the data in Table 8. 2 were obtained) that it is statistically

unlikely that these 5 variances are samples from populations with the

same variance,

2
Inspection of the observed variances s . in Table 8, 2

.

indicates that the use of the vernier evidently reduced the variances

for these two groups substantially. To test the statistical significance

of this difference, we may pool the variances obtained with and without

the vernier: s^ (with vernier) = 0. 99143 and s^ (without vernier) = 4. 98237.
T| Ti

On the assumption that they are samples from normal populations with
2 2 2

the same variance o' , the ratio: s (without vernier) /s (with vernier)
T) “n 5 'n

would be distributed as F(v , v ) with v = / (m. - 1) = 27(without12 1 2-/ i

2 i = 3

vernier) and ^ (m^ - 1) = 18 (with vernier). If we set

i = 1

4. 98237/0. 99143 = 5. 025 = F(27, 18, p) we find by reference 19 that

the probability of observing a ratio as large or larger than this by
chance, if the samples were actually from normal populations with

the same variance, is p = 0. 0004, Thus clear physical, and strongly

supporting statistical, evidence is available as to the practical im-
portance of the use of the vernier. This example also illustrates the

importance of using all of the physical and statistical information
available in drawing conclusions from the analysis; in this example
our confidence in rejecting the hypothesis that the variances were
equal increased from 0.98 (based on Bartlett's test) to 0,9996 when
the prior knowledge was added as to the particular groups for which
the verniers were used.

Consider now the following three estimates of a: (a) with

no pooling of variances a = 17. 006 ± 0,192; (b) with partially pooled

variances a = 17. 012 ± 0.181; and (c) using only the data from groups
1 and 2 for which the vernier was used a = 17.105 ± 0.110. Since the

estimate (b) above makes use of all of the physical and statistical

evidence available to the analyst, it is to be preferred over the
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estimate (c) even though the latter has a smaller estimated standard

error. On the basis of the above description of the experiment there

is no way of choosing between the estimates (a) ajid (b); however, the

estimate (a) is more conservative and should certainly be adopted if

the experimenter has reasons (different observers, for example) to

doubt that groups 1 and 2 and groups 3, 4, and 5, respectively, have
the same population variances.

8, 3 Example with "Systematic** Bias and
Random ** Systematic'* Errors

We assume initially in this subsection that each group of

observations (i = 1 to n) is subject to a systematic bias v^ and a

random "systematic** error v., i. e. , Y.. = Y. +T] =a+v +v. + 11,.;
^ 1 it lo it o 1 'it

as m. approaches infinity E(Y. ) = Y. + v. = a + v + v, and, as n
1 it lo 1 o i

approaches infinity E(Y. )
= Y, = a + v . Thus v is an assumed

lo io o o
systematic bias which has the same value for all n groups and for each
observation within each group. A constant systematic bias of this kind

cannot be detected by least squares. In fact it can be shown more
generally that such systematic biases occurring in one or more of the

observed variables in the multivariate model of Section 4 cannot be

detected by least squares. The proof of this general statement follows

from the fact that our least squares solution is invariant to a transla-

tion of the coordinate axes and a systematic bias in an observed
variable is equivalent to a translation of the corresponding coordinate
axis by the amount of this systematic bias. Since such systematic bias

cannot be detected by least squares, the analyst should remember that

his solution of the above one variate problem can yield only an estimate
of the population mean Y^^ = a + v^ or, more generally, that the popula-

tion means multivariate problem which he can estimate by

a least squares analysis may actually be the sum of a "true" value plus

an unknown systematic bias v. present in all of the observations of the
th JO

j variable. Thus we conclude that other means than least squares
must be used to detect such systematic biases. Throughout the remainder
of this paper it will be convenient to eliminate explicit allowance for such
systematic biases, and the student should remember that his least

squares analysis leads only to population mean values and not neces-
sarily to the "true" values.
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Our one variate model with random systematic errors may
now be described as follows: = Y. + v. = Y. + v. + t|

it lO It lO 1 It

approaches infinity E(Y.^) = Y.^ + v., = cr^, = 0

for i ^ j and E(n. ti. )
= 0 for t ^ u; and as n approaches infinity

it lU
2 2

E(v.
)
= O' , E(v. V.) = 0 for i ifc j. The values in Table 8. 3 were ob-

1 V 1 j

tained from a table of random normal deviates using the population
2 2 2param.eters a = 17, o' .

= o' =1, m. = m = 10 and o' =9. We will^ T^l T| 1 V
assume that the variances may be pooled and the solution in this case

is:

a = 17.238 ± 1.026. (8.23)

2
For this example S = [G. ]

= 467. 62, and we may test the hypothesis
2 ^

O' =0 by setting S/(n - 1) = 116. 91 = F(4, 45, p). In this case we find
V

that p<0. 0001;this is the probability of observing a value of S as

large or larger than the value actually observed in random sampling

from populations with the same population means and variances and
2

with r = 0. Since p is less than the level 0. 05 chosen for rejecting
^ 2

the hypothesis, we conclude that o' ^0.
V

It is of interest now to examine the estimated errors Y. - YI
1 1

as given in Table 8. 3; note that one of these has a large negative

value: -3.9262. If the experimenter has some actual physical reason
for believing that the third group of measurements might be biased in

this particular direction, he might be led to reject this group entirely.

However, the statistical analysis can give him still further assistance
in arriving at a correct solution. With the third group eliminated,

n = 4 and we obtain a = 18.130 ± 0.454; S = 58.176, and if we set

S/(n - 1) = 19.392 = F(3, 36, p) we find p <0. 0001; thus we still have
statistical evidence of random systematic errors in the remaining 4

group means and conclude that the elimination of the third group of

measurements did not improve matters appreciably.

2
Thus we see that the within group variances s although

consistent among themselves, do not measure all of the variance of

the data. Other random errors v. evidently also occur from one

group to the next, and the experimenter will wish to understand these;

for example, if the n groups of measurements were made on n different

days, an explanation would naturally be sought in terms of possibly
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Table 8. 3

Y. = 17; 0-^, = 1 (i
lO T|1

t i = 1 i = 2

1 17.21 17.43
2 16. 56 16.66

3 18. 19 18. 01

4 17. 50 18.43

5 18.87 17.64
6 17.96 16.68

7 17.70 16.65
8 18. 84 17.83

9 16.83 17.66
10 17.43 17.84

Y.
1

17.709 17.483

Y. + V.
lO 1

17.69 17.27

2
s .

til
0. 59832 0. 38858

2
s 0.45044 0.45044

w.
1

22.20031 22.20031

Y. - YI
1 1

0.4708 0. 2448

1
4.92076 1. 33040

Pi 0. 053 0.28

Y. - a
1

0. 709 0.483

lO
11. 1597 5. 1791

pi
lO

0. 0089 0. 050

or w.
1

23. 5606 23. 5606

Y. - y:
1 1

-0.421 -0. 647

G^
1

4. 1759 9. 8627

Pi 0. 073 0. 013

= 1 to 5); (T^ = 9
V

i = 3 i = 4 i = 5

13.48 19.29 19.29
12.04 20. 16 16.67

13. 79 19.70 18.01

12.48 18.90 17.81

13.45 19.61 17.20

13. 19 18.76 17.40

12. 52 20.05 18.01

13. 81 19.45 18.47
14.24 19.45 17.62

14. 12 19.34 18.08

13.312 19.471 17.856

13. 31 19.67 17.84

0. 55447 0. 19601 0. 51485

0.45044 0.45044 0.45044

22.20031 22.20031 22.20031

-3.9262 2.2328 0.6178

342.21881 110.67733 8.47334

<0. 0001 <0.0001 0. 017

-3. 688 2.471 0.856

301.9540 135. 5516 16.2670

<0. 0001 <0.0001 0.0027

0 23. 5606 23. 5606

1. 341 -0.274

42.3686 1.7688

<0.0001 0.22
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different experimental conditions on these n days. In particular,

the analyst will wish to obtain an estimate of variances of

these random^systematic errors. The following derivation of an

estimate of ^ will be applicable to the general case in which both
2 ^

m. and may differ from group to group. Consider the minimized

sum for our present model which now involves random ’’systematic"

errors v.

:

1

(8.24)

wl = m, /(T
,

1 i T^i
(8.25)

Y. - Y = V. + Tf.
-

r
*
^ih

L~^i;—

J

2L
1 1 r rn.

1

2
O' .

-*

Til

(8.26)

m.

1 V
^i
~

1 t^l

(8.27)

Using these relations it may be shown that the expected value of

may be expressed:

,[w^f - [w’^]

E(S^) = (n-l)4<r^|— (8.28)

2 2
If we replace o' . by s . on both sides of (8. 28) we obtain the following

^
^

' Til

estimate for
V

*2 f _S_ .I f% - |(n-l) - I
(8.29)
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Note that this reduces, when the variances or
, are the same so that

2
the s . may be pooled, to the following unbiased estimate:

r\L

2
s

^2
cr

V

where m =

m ^(n - 1)

[m. - [m. ]
1 1

(n - l)[m.]

- 1
2 2

(cr .
= O' ; variances pooled)

711 T)

(8. 30)

Using the result obtained in Section 7 that S/(n - 1) is distributed

approximately as F(v
,

v
) with v and v defined by (7.1) and (7.2),12 1 2

respectively, we may use the method of Bross—'to obtain the follow-

ing approximate fiducial distribution for o-^:

2 ^2
cr (1 - p) = cr

V V n - 1
- F(v^.

2
* P)h/

SF(v^, oo, p)

n - 1
- F(v^, v^, p)

(8. 31)

2
In the above cr (1 - p) denotes the value which the population value
2 ^

(T^ will exceed in repeated random sampling from the same normal

population with an approximate fiducial probability^ of (1 - p). For
2

values of p so small that S < (n - 1) F(v
,

v
, p), cr (1 - p) = 0.

I. Bross, ’’Fiducial intervals for variance components, ”

Biometrics, Vol. 6, page 136, 1950.

t 2
This is the same as the unbiased estimate of c determined

V
by analysis of variance; see page 328 in reference 9 or page 312 in

reference 11.

The subtle distinction between confidence and fiducial

intervals is well described by M. G. Kendall in the book ’’The Advanced
Theory of Statistics, ” Vol. II, Chapter 20, Charles Griffin and
Company, London, 1946. For most applications the distinction between
confidence and fiducial intervals is of little importance.
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To illustrate the use of the above formula, we will detexrnine

for the example in Table 8, 3 the 90% fiducial interval for cr :

O' 10,95) < O' < 0-^ (0. 05) with probability 0. 9:
V V V

o-^(0.9 5)= 5. 22086 {116. 91 - 2. 5790} / (116. 91 x 2.3719 -2. 5790 > = 2.173

ij-^(0. 05) = 5.22086(116. 91 - 0.17519}/ (116. 91 x 17768 - 0.17519} = 29. 59

For this particular problem the population value cr =9 happens to lie

within this 90% fiducial interval; however, the population value would
be expected to lie within only approximately 90% of a large number
of such intervals so constructed from random samples.

The derivation of the above -described approximate fiducial

distribution for depended on the assumption that both the and

the V. are samples from normal populations with mean zero. On this

assumption we may also obtain confidence intervals for a from the

data of Table 8. 3 ip exactly the same way as was done in subsections

8.1 and 8.2; but now, bec^ause of the additional variance between
groups, these intervals are naturally much larger: Y*(50%) = 16. 478

to 17.998; Y*(95%)= 14.389 to 20.087 and Y*f'(99. 5%) = 1 1. 495 to 22. 981.

Since we have only a confidence p < 0, 0001 that the samples

in Table 8. 3 are free from random "systematic" errors, we may
conclude that such errors are, in fact, present and obtain a solution

to our problem on this assumption. The only modification to the

analysis which is required is the replacement of the weights

w. = m/s by w." = l/( o' + s,^) with s,, = s /m. In the present case,
1 Ti l vY Yq

since the 5 weights were the same in determining the solution (8.23),

the revised solution will still be (8. 23) since the w" still do not vary
from group to group. However, S" will now be smaller by the factor

s^/(s^ + m^^) = 0. 0085536 and S"/(n - 1) = 1. Note that S" is not
T1 T1 V

a random variable; consequently, S" cannot be used for testing the

physical hypothesis a = 16. However, this hypothesis can still be

tested by setting (a-l6)^/s^= 1.456 = F(1, n- 1, p) and we find p = 0.30.
sl

This is the probability of observing a sample departing from a = 16

more than the sample in Table 8. 3 by random sampling from populations



- 8.18 -

with both and normally distributed. Since this value of p is

larger than 0, 05, we conclude that the sample in Table 8 . 3 does not

necessarily provide evidence for rejecting the theory. However, in

this case, since we have statistical evidence for the presence of

random "systematic** errors, these errors (estimated by Y. - 16)

should certainly be thoroughly investigated before the theory is

accepted.

8.4 Example with Random "Systematic" Errors
and Unequal Population Variances

The model and the analysis in this case is essentially the

same as in the preceding subsection, although differing slightly in

detail.

Table 8.4 is representative of data which might be ob-

tained in practice with the population parameters: a = 17,

= %2
=

1. %3 = %4 = %5
= 4. m

3
= = 5;

and 0
-^ = 9. We find a = 18. 501, S = 22. 3875 and ? ^ = 0. 83881.
V V

In this case the revised weights will vary from group to group:

w." = 1/(0-^+ s^.) ( 8 . 32)

Using these revised weights we find a" = [w*! Y. ]/[w'I] = 19. 097,
2 t

i i i

and S = [w.(Y. - a") ] = 34.4875. Using this revised estimate of
^ -.2 2

S in ( 8 . 29) we obtain cr = 1. 3908 as a revised estimate of cr . This
V V

revised value may now be used to obtain a second revision of w 1 ;

this second revision is given in Table 8 . 4 and leads to a" = 19.1^6

and S = 37. 4528 so that finally:

Note that the estimate a" involves the weights w" since

we wish to average out both within-group and between-group errors;

on the other hand, S is a ratio of between-group and within-group variances
and is therefore defined in terms of the original w..
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Table 8. 4

Y,
lO

2 2
17; 0-

1
= 0-

-nl t]2
= 1 ;

0
-

t]3

2 2

^r\4: °^ri5

t i = 1 i = 2 i = 3 i = 4 i = 5

1 18.23 18. 14 21.25 22. 19 20. 23

2 18.30 17. 01 20. 03 17.67 17.25

3 17.59 18.41 19.23 22. 51 19.39
4 18. 53 17.22 17.99 21. 05 18. 89

5 17.97 16.89 20. 79 20.95 22. 09

6 17. 64 19.41
7 19.38 18. 51

8 18. 38 16. 59

9 19.55 17.95
10 19.88 17. 18

Y.
1

18. 545 17. 731 19.858 20.874 19. 570

1
0
+ V.

1
17.90 17. 78 20. 03 20. 57 18. 65

2
s . 0. 63754 0. 79954 1. 67992 3. 67768 3. 16580

2

®Yi
0.063754 0. 079954 0. 33598 0. 735536 0.63316

w.
1

15.685 12. 507 2.9763 1. 3596 1. 5794

Y. -

1
• a +0. 044 -0. 770 1. 357 2. 373 1.069

1
0. 0304 7.4154 5.4807 7.6561 1.8049

Pi
0. 86 0. 025 0.080 0. 051 0.25

Y. -

1
- a 1. 545 0. 731 2.858 3. 874 2. 570

lO
37. 440 6. 6833 24. 311 20.399 10.432

pi
lO

<0. 0001 0. 031 0. 0079 0.011 0. 032

w»!
1

0.68750 0. 67992 0. 57911 0.47029 0.49408

Y. .

1
. a" -0. 621 -1.435 -0.692 1. 708 0.404

6 . 0488 25. 7547 1.4252 3.9663 0.2578

P- 0. 037 0. 0047 0. 30 0. 12 0. 64
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a = 19.17 ± 0.52 (8. 33)

-2
Using tMs second revision of S leads to cr =1, 53, In this case

V
S/(n - 1) is distributed approximately as F(v , v ) with v =(n-l) = 4

2 ^ j± 1 Z 1

as before, but with v = [s ]/[s . /(m. - 1)] = 6.9787, and we obtain
Z jlX XX X 2

by (8. 31) the following 90% fiducial interval for cr^:

0.44 < <r^ <9.4 (8. 34)
V

2
Again the population value or =9 happens to lie within the 90%

fiducial interval, but in 10% of the cases of random sampling it

would not be expected to do so.

We may also obtain the following approximate confidence

intervals for a: Y*(50%) = 18. 78 to 19. 56; Y«=(95%) = 17. 73 to 20. 61

and Y*(99. 5%) = 16. 26 to 22. 08.

It is of interest to note that the estimate a = 18. 501 obtained

with the weights w. happens in this case to be nearer the population

value a = 17 than tAe more properly weighted estimate a” = 19.166.

This will occur occasionally because of sampling fluctuations;

nevertheless, the use of the procedure described above is recommended
since it will yield better results on the average for a large number of

samples.

This completes the discussion of the one variable problem.
All of the above methods of analysis have their counterparts in

least squares analyses involving several random variables and, in

some respects, the methods of handling these more general problems
are the same as for one variable. Thus the random systematic errors
in the multivariate problem are estimated in much the same way;
unfortunately, however, the allocation of the several components of

these random systematic errors to the corresponding random variables
by this method is necessarily somewhat arbitrary, and this is one of

the principal difficulties of extending the method of least squares as

formulated in Sections 2, 3 and 4 to include the effects of random
systematic errors. In the particular case of fitting a straight line to

two random variables, Wald’s method, as generalized in Section 11,

eliminates some of this arbitrariness of including the effects of random
systematic errors, but no method is presently available which leads to

a completely unambiguous solution in all cases.



CONCLUSION

It is unfortunate that the unique solution to the problem of

fitting a series of points to a specified functional relation is so

complex in the general case where more than one of the observed

variates determining these points is subject to error. However,
no short cuts have been found to a correct statistical understanding

of experimental data obtained under these rather typical conditions.

It is hoped that the methods presented herein are in sufficiently

usable form that they will be employed by experimenters wishing

to obtain consistent conclusions from their analyses of experimental
data.

In those cases where the experiments are still in the plan-

ning stage, use may often be made of the methods presented in this

paper to design the experiments in such a way that repeated obser-
vations of the coordinates of each point become available; in this

way more nearly optimum use may be made of statistical theory
in the analysis of the resulting experimental data.
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APPENDIX I

Maximum Likelihood Estimation of the 3n + 2
2 2

Parameters X. , Y. ,
cr p, and C for k = 2

lO lO T|1

Normally Distributed Variables

A statistical model often encountered in least squares fitting

when only two of the variables are random, involves n bivariate

distributions with 2n different means and 2n different variances,
2

but with the same correlation coefficient p and the same ratio C
2 2 2

between the 2n variances: cr .
= C cr .. If the two random variables

CL T|1

are both normally distributed, we may use the method of maximum
likelihood to obtain consistent and asymptotically efficient estimates
of the 3n + 2 parameters defining these n bivariate distributions.

L = [i.] (I-l)

m^

i.
1

t = l

r
j

]

1

2
'

ZttCct . sT. 2
~

T|1 1 - p

it

2 2
20- .(1 - p )

r]i

(1-2)

(X - X. )
it lO

2p(X.^ - X. )(Y.^ - Y. )
it lO it lO

+ (Y.
it

(1-3)

The maximum likelihood estimates X. , Y. , of the 2n mean values
lO lO

are determined by solving simultaneously the following 2n equations:

9L
ax.

lO

ai.
1

ax.
lO (1 -

2 2

T|1

m.
1

V
/

c.
t = i

(X.^ - X. )
it lO

= 0 (1-4)
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m.

X. =
lO m.

1

X.^ = X.
it 1

(1-6)

t = l

mi

io m.
1

Y._ = Y,
it 1

(1-7)

t = l

The maximum likelihood estimates cr p» and C of the remaining

n + 2 parameters are determined by solving simultaneously the fol-

lowing n + 2 equations:

m.

9cr . ^ ^ O' .

8L
.2 2

90-
. 9(T

. ^ ,
r\i T|i t = 1

f.
It

•5/1
2(1 - p )(T

T|1 Tjl

= 0 (1-8)

mi

9p -2
(1 - P )

P
-

it

^2 -.2
(i-P

Til

= 0 ( 1-9 )

m.
1

9L
9C .K-t

*

(1 - p^)
^

J

T|1

p-(Xjt - X,)(Y.^ - Y. ),,

(1 - p^}
^ qi

= 0 ( 1-10 )

In the above equations f^^denotes the value of f.^with the parameters

replaced by their maximum likelihood estimates. Using the sample

values defined by (2. 2) ajid (2. 4), the above n + 2 equations may be

expressed:

^2
O' .

=
TP

(m, - 1) _ s . 2p r. s . s . -
1 r €L '^1€1T|1.2

2m^(l - p
^) £2

+ S
T]1

(I-ll)

P
=

[mi]C

r (m. - 1) r . s . s .

1 1 €1 T|1

^2
cr .

T]1

( 1.12 )
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(m. - 1) s^.
1 €1

-.2
cr .

711

It does not appear to be useful to further separate the variables in

the above equations since they may be solved directly in their present

form by numerical methods involving an iterative process. For
•

^ ^
example, estimates of p and C may be obtained by setting
-.2 2
(T . S s .(m. - l)/m. so that:

Til T)1 1 1

(1-13)

r
L

2
m. s .

1 a (1-14)

est [m.] C
1 est

m. r. s .

1 1 a
(1-15)

Using these estimated values in (I-ll), revised estimates of o' . may

be obtained; these may then be substituted in (1-12) and (1-13) to obtain

better estimates of p and C. The above process could be repeated,

if better accuracy were required, but this would presumably not often
•—•2

be the case in practice since the values o' p and C are themselves

only estimates of the population values of tkese parameters, and

these estimated values are required in our least squares solution

only in the determination of the relative weights.

Fortunately, a case often encountered in our least squares

application is the one in which the magnitudes of p and C are known
a priori and thus need not be estimated by the method of maximum
likelihood from the data. In this special case the n maximum likeli

hood estimates of cr
, may be expressed:

(m. - 1)

2m.(l - p^)

i T|i

C
(1-16)
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If we determine the expected value of (1-16) we find that

(m. "1)

Thus the bias of the maximum likelihoodE(?^.) =— <T~..
T|i m. r\i

estimate a
. as given by (1-16) may be removed by multiplying by

the factor m. /(m. - 1). When p and C are unknown, the bias of c ,11 T|1

(as given by (I-ll)) is not as readily determined but, in the absence

of better information, the same factor may be used:



i THE NATIONAL BUREAU OF STANDARDS
Functions and Activities

The functions of the National Bureau of Standards are set forth in the Act of

Congress, March 3, 1901, as amended by Congress in Pubhc Law 619, 1950. These
'

>3 include the development and maintenance of the national standards of measurement

and the provision of means and methods for making measurements consistent with

these standards: the determination of physical constants and properties of materials;

the development of methods and instruments for testing materials, devices, and

structures; advisory services to Government Agencies on scientific and technical

problems; invention and development of standard practices, codes, and specifica-

tions. The work includes basic and applied research, development, engineering, in-

strumentation, testing, evaluation, calibration services, and various consultation and

information services. A major portion of the Bureau’s work is performed for other

Government Agencies, particularly the Department of Defense and the Atomic En-

ergy Commission. The scope of activities is suggested by the listing of divisions and

sections on the inside of the front cover.

Reports and Publications

The results of the Bureau’s work take the form of either actual equipment and
devices or published papers and reports. Reports are issued to the sponsoring agency

of a particular project or program. Published papers appear either in the Bureau’s

own series of publications or in the journals of professional and scientific societies.

The Bureau itself publishes three monthly periodicals, available from the Govern-
ment Printing Office: The Journal of Research, which presents complete papers re-

porting technical investigations; the Technical News Bulletin, which presents sum-
mary and preliminary reports on work in progress; and Basic Radio Propagation

Predictions, which provides data for determining the best frequencies to use for radio

communications throughout the world. There are also five series of nonperiodical

publications: The Applied Mathematics Series, Circulars, Handbooks, Building Ma-
terials and Structures Reports, and Miscellaneous Pubfications.
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