NATIONAL BUREAU OF STANDARDS REPORT

4554

COMPUTATION OF THE EFFECTIVE INTENSITY OF FLASHING LIGHTS

By

C. A. Douglas

U. S. DEPARTMENT OF COMMERCE NATIONAL BUREAU OF STANDARDS

U. S. DEPARTMENT OF COMMERCE

Sinclair Weeks, Secretary

NATIONAL BUREAU OF STANDARDS A. V. Astin, Director

THE NATIONAL BUREAU OF STANDARDS

The scope of activities of the National Bureau of Standards is suggested in the following listing of the divisions and sections engaged in technical work. In general, each section is engaged in specialized research, development, and engineering in the field indicated by its title. A brief description of the activities, and of the resultant reports and publications, appears on the inside of the back cover of this report.

Electricity and Electronics. Resistance and Reactance. Electron Tubes. Electrical Instruments. Magnetic Measurements. Process Technology. Engineering Electronics. Electronic Instrumentation. Electrochemistry.

Optics and Metrology. Photometry and Colorimetry. Optical Instruments. Photographic Technology. Length. Engineering Metrology.

Heat and Power. Temperature Measurements. Thermodynamics. Cryogenic Physics. Engines and Lubrication. Engine Fuels.

Atomic and Radiation Physics. Spectroscopy. Radiometry. Mass Spectrometry. Solid State Physics. Electron Physics. Atomic Physics. Nuclear Physics. Radioactivity. X-rays. Betatron. Nucleonic Instrumentation. Radiological Equipment. AEC Radiation Instruments.

Chemistry. Organic Coatings. Surface Chemistry. Organic Chemistry. Analytical Chemistry. Inorganic Chemistry. Electrodeposition. Gas Chemistry. Physical Chemistry. Thermochemistry. Spectrochemistry. Pure Substances.

Mechanics. Sound. Mechanical Instruments. Fluid Mechanics. Engineering Mechanics. Mass and Scale. Capacity, Density, and Fluid Meters. Combustion Controls.

Organic and Fibrous Materials. Rubber. Textiles. Paper. Leather. Testing and Specifications. Polymer Structure. Organic Plastics. Dental Research.

Metallurgy. Thermal Metallurgy. Chemical Metallurgy. Mechanical Metallurgy. Corrosion.

Mineral Products. Porcelain and Pottery. Glass. Refractories. Enameled Metals. Concreting Materials. Constitution and Microstructure.

Building Technology. Structural Engineering. Fire Protection. Heating and Air Conditioning. Floor, Roof, and Wall Coverings. Codes and Specifications.

Applied Mathematics. Numerical Analysis. Computation. Statistical Engineering. Mathematical Physics.

Data Processing Systems. Components and Techniques. Digital Circuitry. Digital Systems. Analogue Systems.

Cryogenic Engineering. Cryogenic Equipment. Cryogenic Processes. Properties of Materials. Gas Liquefaction.

Radio Propagation Physics. Upper Atmosphere Research. Ionospheric Research. Regular Propagation Services.

Radio Propagation Engineering. Frequency Utilization Research. Tropospheric Propagation Research.

Radio Standards. High Frequency Standards. Microwave Standards.

• Office of Basic Instrumentation

• Office of Weights and Measures

NATIONAL BUREAU OF STANDARDS REPORT

NBS PROJECT

March 1956

NBS REPORT 4554

0201-20-2301 0201-20-2331

> Computation of the Effective Intensity of Flashing Lights

> > by C. A. Douglas

Prepared for

Airborne Equipment Division Bureau of Aeronautics

and

Equipment Laboratory Wright Air Development Center

U. S. DEPARTMENT OF COMMERCE NATIONAL BUREAU OF STANDARDS

The publication, ru unless permission i 25, D. C. Such pe cally prepared if 1

Approved for public release by the director of the National Institute of Standards and Technology (NIST) on October 9, 2015

r in part, is prohibited tandards. Washington eport has been specifireport for its own use.

Abstract

A mathematical analysis has been made of the effects on the effective intensity, I_c, computed from the Blondel and Rey relation

produced by changes in the limits of the integral. The maximum value of I is obtained when the times t_1 and t_2 are the times when the instantaneous intensity, I, is equal to I. Methods which facilitate the computation of I., the checking of conformance to effective intensity specifications, and the computation of visual range of flashing lights are given.

1. INTRODUCTION

It is generally recognized that when a light signal consists of separate flashes, the instantaneous intensity during the flashes must be greater than the intensity of a steady light in order to obtain threshold visibility. Blondel and Rey¹ found that the threshold illuminance for an abrupt flash (a flash producing a relatively constant illuminance throughout its duration) is

$$\mathbf{E}' = \mathbf{E}(\mathbf{a} + \mathbf{t})/\mathbf{t} \tag{1}$$

where E is the threshold illuminance for a steady light, t is the flash duration, and a is a constant. They found that a was equal to 0.21.

or

It is convenient to evaluate flashing lights in terms of their effective intensity, I_e, that is, the intensity of a fixed light which will produce the same visual effect as does the flashing light. Then

 $I_{e} = IE/E'$ $I_{e} = \frac{It}{a+t}$ (2)

Later Toulmin-Smith and Green² found that somewhat different effective intensities were obtained when the illuminance at the eye was above threshold. However, Hampton³ showed that their experimental results could be adequately

expressed by equation 2 when a is a function of the illuminance at the eye.

The flash from most lights used in aviation service, airway beacons, anticollision lights, etc., is not abrupt. The instantaneous intensity often rises and falls gradually and may vary appreciably during the flash. If the flash duration is very short or if the times of rise and fall of intensity are short in comparison to the flash duration, only small uncertainties would be introduced in the determination of flash duration and by the use of the product of the peak intensity during the flash and the flash duration for It. However, in many cases significant errors would be introduced. Some modification of equation 2 is required.

Some of the specifications for these lights have evaluated their signals in terms of the candle-seconds in the flash, integrating over a period of not more than 0.5 second, that is

candle-seconds =
$$\int_{t_1}^{t_2} Idt$$

where I is the instantaneous intensity and $t_2 - t_1$ does not exceed 0.5 second. This method of evaluation provides a measure of comparison between lights of roughly the same flash characteristics but is not suited to the comparison of lights of different flash characteristics nor to the computation of visual ranges.

When the specification for anticollision lights was being drafted, it was suggested that a modified form of equation 2 be used for the computation of effective intensity, so that*

$$I_{e} = \frac{\int_{t_{1}}^{t_{2}} Idt}{.2 + t_{2} - t_{1}}$$
(3)

The question of choice of limits was immediately raised. Rather than use an arbitrary set of limits, such as choosing for t_1 and t_2 the times when I was 10% of the peak of the flash, a choice of limits which would make I_e a maximum was suggested. This immediately poses the problem of developing a method, other than trial and error, of obtaining the maximum value of I_e . The development of such a method is the purpose of this paper.

2. FUNDAMENTAL THEOREMS

The method of obtaining the maximum value of I will be developed by means of one theorem and two corollaries. The proofs follow.

2.1 Theorem. I_e is a maximum when the limits t_1 and t_2 are the times when $I = I_e$.

Consider an intensity-time distribution curve of the type shown in figure 1, the only restrictions on the shape of the curve being that I is less than I_e in the intervals $t_1^{"}$ to t_1 and t_2 to $t_2^{"}$ and I is greater than I_e in the intervals t_1 to $t_1^{"}$ and $t_2^{"}$ to $t_2^{"}$.

$$I_{e} = \frac{\int_{t_{1}}^{t_{2}} Idt}{a + t_{2} - t_{1}}$$
(3a)

Let

where the times t_1 and t_2 are the times when $I = I_e$.

I'

Case I.

Consider the case where the integration is performed over the time interval t_1 to t_2 .

Then the intensity I' at the times t_1' and t_2' is greater than I_e .

$$I' > I_e$$
 (4)

Let

$$\frac{f_{1}^{i}}{a + t_{2}^{i} - t_{1}^{i}}$$
(5)

Then
$$\int_{t_1}^{t_2} \operatorname{Idt} = \int_{t_1}^{t_1} \operatorname{Idt} + \int_{t_1}^{t_2} \operatorname{Idt} + \int_{t_2}^{t_2} \operatorname{Idt}$$
 (6)

so that

$$I_{e} (a + t_{2} - t_{1}) = \int_{t_{1}}^{t_{1}'} Idt + I_{e}' (a + t_{2}' - t_{1}') + \int_{t_{2}'}^{t_{2}} Idt (7)$$

But
$$\int_{t_1}^{t_1} Idt > I_e (t_1 - t_1)$$
 (8a)

and
$$\int_{t_2}^{t_2} Idt > I_e (t_2 - t_2^i)$$
 (8b)

Substituting and combining terms we have

$$I_{e} (a + t_{2}^{i} - t_{1}^{i}) > I_{e}^{i} (a + t_{2}^{i} - t_{1}^{i})$$

herefore $I_{e} > I_{e}^{i}$ (9)

Case II.

T]

Consider now the case where the integration is performed over the time interval t_1^u to t_2^u which includes the interval t_1 to t_2^u .

Then the intensity. I" at the times $t_1^{"}$ and $t_2^{"}$ is less than I_e .

Let

$$I_{e}^{"} = \frac{\int t_{1}^{"} \, ldt}{a + t_{2}^{"} - t_{1}^{"}}$$
(11)

then,
$$\int_{t_1}^{t_2} Idt = \int_{t_1}^{t_1} Idt + \int_{t_1}^{t_2} Idt + \int_{t_2}^{t_2} Idt$$
 (12)

and
$$I_{e}^{"}(a + t_{2}^{"} - t_{1}^{"}) = \int_{t_{1}^{"}}^{t_{1}} Idt + I_{e}(a + t_{2} - t_{1}) + \int_{t_{2}}^{t_{2}^{"}} Idt$$
 (13)

But

$$\int_{t_1}^{t_1} Idt < I_e \quad (t_1 - t_1^n)$$

t"/

and

 $\int_{t_2}^{t_2''} Idt < I_e (t_2'' - t_2)$ (14b)

Substituting and combining terms we have

$$I_{e} > I_{e}^{u}$$
(15)

(14a)

Thus I is greater than both I' and I". Therefore, the maximum value which can be obtained from the Blondel-Rey relation, equation 3, is that obtained

when the intensity at the beginning and end of the interval of integration is equal to the effective intensity.

2.2 Corollary 1.	If the ins	stantaneous	intensity is	integrated over a
period of time t	to t' . sho	orter than t	t_1 to t_2 , and	I' is the instantaneous
intensity at these	times, a v	value I' is	obtained for	the effective intensity
that is always less	s than I'.			

From equation 9 we have

$$I_{a} > I_{a}^{\prime} \tag{9}$$

$$I' > I_e \tag{4}$$

Therefore
$$I' > I'_e$$
 (16)

2.3 Corollary 2. If the instantaneous intensity is integrated over a period of time t" to t" - longer than t to t, and I" is the instantaneous intensity at the times t" and t", a value I" is obtained for the effective intensity that is always greater than I".

$$I_{e}^{"}(a + t_{2}^{"} - t_{1}^{"}) = \int_{t_{1}^{"}}^{t_{1}} Idt + I_{e}(a + t_{2} - t_{1}) + \int_{t_{2}}^{t_{2}^{"}} Idt$$
(13)

But

but

$$\int_{t_{1}^{"}}^{t_{1}} Idt > I^{"}(t_{1} - t_{1}^{"})$$
(17a)

and

$$\int_{t_2}^{t_2'} Idt > I''(t_2'' - t_2)$$
(17b)

Also

$$I_e(a + t_2 - t_1) > I_e^u (a + t_2 - t_1)$$
 (18)

Substituting these into equation 13 and simplifying, we have

$$I^{*}_{\mu} > I^{*}$$
 (19)

3. COMPUTATIONS OF EFFECTIVE INTENSITY

Guides for the computation of the effective intensity from an intensitytime distribution curve may be obtained from the theorem and corollaries.

3.1 Computation of I_.

1. Make an estimate I' of the value of the effective intensity and solve equation 3 using the values of t corresponding to this intensity obtaining I_{e_1} .

2. Repeat step 1 above using as limits the values of t corresponding to the I_{e_1} obtained in step 1 obtaining I_{e_2} . Repeat as often as necessary to obtain the desired accuracy.

Note that when I_e is much less than the maximum instantaneous intensity (i.e., the flash is of short duration) the correct value of I_e will be obtained in a very few steps. When the flash is of relatively long duration, it may frequently be advantageous to make a new estimate of I_e after carrying out step 2 rather than using the limits corresponding to I_{e_2} in order to decrease the number of steps.

Note that if the estimated effective intensity is too high (I' in figure 1) the effective intensity, I_{e_1} , computed in step 1 will be below I_e (I" of figure 1) and thus I_e lies between I' and I_{e_1} . If the initial estimate is lower than I_e (I" of figure 1), I_e will be greater than both I" and I_{e_1} and a "straddle" is not obtained but I_e is approached continuously from the low side.

3.2 Determination of Conformance of a Flashing Light to Specification Requirements.

1. Compute I_{e_1} using the time limits corresponding to the specified effective intensity I_s . If I_{e_1} is greater than I_s , the unit obviously complies, for the conditions are those of figure 2a (corollary 2).

2. If I_{e_1} is equal to I_s , the unit just complies, for then $I_e = I_s = I_{e_1}$ (theorem).

3. If I_{e1} is less than I_s, the unit fails for then the conditions are those of figure 2b (corollary 1).

Note that the degree by which the unit exceeds or fails to meet the specification requirements is not given by the single computation of section 3.2. The method outlined in section 3.1 must be used for this purpose.

3.3 Visual Range Computations.

If the visual range of the light, under specified conditions of transmittance and threshold, is desired, compute the effective intensity by using

the method outlined in section 3.1 and compute the visual range by using Allard's Law.

If the problem is only the determination of whether the light can be seen at a given distance under specified conditions of transmittance and threshold, use Allard's law to compute the fixed intensity required to make the source visible at this distance. Then, by using the method outlined in section 3.2, determine if the effective intensity of the unit exceeds this intensity.

3.4 Application to Complex Intensity-Time Curves

Not all units have smooth intensity-time distribution curves similar to the curve shown in figure 1. Consider an intensity-time distribution curve of the type shown in figure 3 where I_b is the average intensity in the time interval t_b to t_y . (The time interval $t_c - t_z$ is sufficiently short so that the momentary decrease in intensity is not visible.) If I_e is less than I_a or is greater than I_z , then the restrictions on the shape of the curve stated in theorem 1 are met and there is no problem in the determination of I_e .

Consider the case where I_e lies between I_a and I_z . It may be easily shown by means of equations 8 and 14 that as the shape of other parts of the intensity-time distribution curve change, the lower limits of time to be used to obtain the maximum value of equation 3 will lie between t_a and t_b or between t_y and t_z and will never lie between t_b and t_y . If I_e is equal to I_b , then either t_b or t_y can be used as the lower limit.

3.5 Application to Groups of Short Flashes

In general a signal from a flashing light consists of regularly spaced single flashes of light and the interval between flashes is so great that each flash has little influence on the effective intensity of the adjoining flashes.

However, there are lights that produce a number of very short flashes in rapid succession. An example of a light of this type is a unit using a number of condenser-discharge lamps to produce a single flash.

Consider a flash with an intensity-time distribution similar to that of figure 4. If the threshold intensity required to make a steady light visible is much less than I_e (I_{T_1}) , the flash will be seen as a continuous flash with two peaks. However, if the threshold intensity is about equal to I_e (I_{T_2}) , two separate flashes will be seen. The maximum distance at which the light can be seen will be determined by the effective intensity of a single flash computed over the time interval t_1 to t_2 .

There appear to be no published data reporting studies of the effects of groups of flashes where the interval between flashes is short. Behavior

-7-

of the eye under somewhat similar conditions suggests that if in a group of flashes the periods during which the instantaneous intensity of the light is below the effective intensity of the flash are of the order of 0.01 second or less, the eye will perceive this group as a single flash. The effective intensity of the group should then be computed by equation 18 choosing as times t_1 and t_2 the first and the last times the instantaneous intensity is I_e (see figure 5).

$$I_{e} = \frac{\int_{t_{1}}^{t_{a}} Idt + \int_{t_{b}}^{t_{c}} Idt + \int_{t_{d}}^{t_{e}} Idt + \int_{t_{f}}^{t_{2}} Idt}{a + t_{2} - t_{1}}$$
(18)

Note that I_e is the effective intensity of the group and not that of a single flash.

If the periods during which the effective intensity is less than I e are of the order of 0.1 second or more, it is believed that the individual flashes will be seen. Therefore, the effective intensity should then be computed on the basis of a single flash.

When the dark period is between 0.01 and 0.1 second, the effective intensity will lie between that of a single flash and that of the group. The behavior during the transition is not known.

4. DISCUSSION

As noted above, concern has frequently been expressed about the choice of the limits for the integral of the Blondel-Rey relation when computing the visual range of a flashing light. Consider the situation shown in figure 6 where I_T is the intensity required for a steady-burning light to be seen at threshold, when the observation distance and the atmospheric transmittance are those under which the flashing light is observed. It seems illogical to extend the limits of the integral beyond t_1 or t_2 so that intensities which are below threshold, even for a steady-burning light, are included, or to exclude intensities which are above threshold for steady-burning lights. Using this reasoning Blondel and Rey suggested that the limits of the integral of equation 3 be the times, t_1 and t_2 , when the instantaneous intensity is equal to the effective intensity. As shown above these are also the limits in evaluating the performance of a lighting unit appears to be a logical choice.

The use of the maximum value of I_e as the effective intensity of a flashing light is probably not valid except when the light is at or near threshold. When the light is well above threshold, not only will the value of a in equation 3a be decreased, thus tending to increase the value of I_e , but also the limits of the integral should probably be extended to include the entire portion of the flash which is above threshold, thereby tending to decrease the value of I_e . In many cases this latter effect will be predominant. This is consistent with the decrease in effective intensity of airway beacons with increase in illuminance at the eye found by Neeland, Laufer, and Schaub⁴.

This analysis should be considered only as a mathematical treatment of equation 3. The analysis neither proves nor disproves the validity of this equation in determining the effective intensity of flashing lights nor the validity of the principle of choosing the limits of integration so that the effective intensity is a maximum.

References

- 1. A. Blondel and J. Rey, Journal de Physique 1, 530 and 643 (1911)
- 2. A. K. Toulmin-Smith and H. N. Green, Illuminating Engineering (London) 26, 304 (1933)
- 3. W. M. Hampton, Illuminating Engineering (London) 27, 40 (1934)
- 4. G. K. Neeland, M. K. Laufer, and W. R. Schaub, Journal Optical Society of America, 28, 280 (1938)

Figure 1

THE NATIONAL BUREAU OF STANDARDS

Functions and Activities

The functions of the National Bureau of Standards are set forth in the Act of Congress, March 3, 1901, as amended by Congress in Public Law 619, 1950. These include the development and maintenance of the national standards of measurement and the provision of means and methods for making measurements consistent with these standards; the determination of physical constants and properties of materials; the development of methods and instruments for testing materials, devices, and structures; advisory services to Government Agencies on scientific and technical problems; invention and development of devices to serve special needs of the Government; and the development of standard practices, codes, and specifications. The work includes basic and applied research, development, engineering, instrumentation, testing, evaluation, calibration services, and various consultation and information services. A major portion of the Bureau's work is performed for other Government Agencies, particularly the Department of Defense and the Atomic Energy Commission. The scope of activities is suggested by the listing of divisions and sections on the inside of the front cover.

Reports and Publications

The results of the Bureau's work take the form of either actual equipment and devices or published papers and reports. Reports are issued to the sponsoring agency of a particular project or program. Published papers appear either in the Bureau's own series of publications or in the journals of professional and scientific societies. The Bureau itself publishes three monthly periodicals, available from the Government Printing Office: The Journal of Research, which presents complete papers reporting technical investigations; the Technical News Bulletin, which presents summary and preliminary reports on work in progress; and Basic Radio Propagation Predictions, which provides data for determining the best frequencies to use for radio communications throughout the world. There are also five series of nonperiodical publications: The Applied Mathematics Series, Circulars, Handbooks, Building Materials and Structures Reports, and Miscellaneous Publications.

Information on the Bureau's publications can be found in NBS Circular 460, Publications of the National Bureau of Standards (\$1.25) and its Supplement (\$0.75), available from the Superintendent of Documents, Government Printing Office. Inquiries regarding the Bureau's reports and publications should be addressed to the Office of Scientific Publications, National Bureau of Standards, Washington 25, D. C.

NATIONAL BUREAU OF STANDARDS REPORT

NBS PROJECT

NBS REPORT

0201-20-2325

1

E

October, 1956

4544

SPECTRAL TRANSMISSIVE AND COLORIMETRIC

PROPERTIES OF SEVERAL AERIAL AND

HAND CAMERA LENSES AND FILTERS

By

Harry J. Keegan, John C. Schleter, Wiley A. Hall, Jr., and Gladys M. Haas, Photometry and Colorimetry Section Optics and Metrology Division

To

U. S. Department of the Air Force Aerial Reconnaissance Laboratory Wright Air Development Center Wright-Patterson Air Force Base, Ohio

Contract No. AF 33(616) 52-21 Task No. 62104

U. S. DEPARTMENT OF COMMERCE NATIONAL BUREAU OF STANDARDS

The publication, reprinting, or reproduction of this report in any form, either in whole or in part, is prohibited unless permission is obtained in writing from the Office of the Director, National Bureau of Standards, Washington 25, D. C. Such permission is not needed, however, by a Government agency for which a report has been specifically prepared if that agency wishes to reproduce additional copies of that particular report for its own use.

PREFACE

This is one of a series of NES reports of spectrophotometric and colorimetric work done under NES Project No. 0201 - 20 - 2325 entitled Color Reconnaissance Studies, financed by the Aerial Reconnaissance Laboratory, Wright Air Development Center, Wright-Patterson Air Force Base, Ohio; Air Force Contract No. AF 33(616) 52-21. It is coordinated with Air Force Contract No. AF 33(616) - 262 under Dr. Hugh T. O'Neill, O'Neill Associates, Annapolis, Maryland, who requested the NES to perform this test of hand camera lenses and photographic filters. The work on the aerial camera lenses and filters was performed at the request of Captain Robert J. Fisher, Aerial Reconnaissance Laboratory, Wright Air Development Center, Wright-Patterson Air Force Base, Ohio.

> Harry J. Keegan Project Leader

SPECTRAL TRANSMISSIVE AND COLORIMETRIC

PROPERTIES OF SEVERAL AERIAL AND

HAND CAMERA LENSES AND FILTERS

Harry J. Keegan, John C. Schleter, Wiley A. Hall, Jr., and Gladys M. Haas*

Abstract

Measurements of spectral transmittance have been made for the visible and near infrared spectral region 400 to 1080 millimicrons on a General Electric recording spectrophotometer at the National Bureau of Standards for three components of two aerial-camera lenses, five hand-camera lenses, one yellow anti-vignetting aerial camera filter, ten color temperature correcting hand camera filters, and thirteen selective absorbing handcamera filters. This report contains copies of the spectrophotometric curves of these photographic lenses and filters, tables and graphs of spectral transmittance and the colorimetric properties of the lenses and filters, and a comparative study of the conventional photographic color temperature correcting filters commercially recommended to be used for exposure of color film when the light source differs from that for which the film was manufactured.

*Miss Haas is at present employed at the Mare Island Naval Shipyard, San Francisco, California.

.

843	2	-
-----	---	---

Contents

I°	Introduction	Pa	.ge 3	
II.	Material		3	
	Table I Annotation		5	
III.	Spectrophotometric Measurements		7	
IV.	Spectrophotometric Results		7	
٧.	Colorimetric Computations		7	
VI.	Munsell Renotations and ISCC-NBS Color Designations		7	
VII.	Lovibond-Schofield System		8	
VIII.	Aerial Camera Lenses and Filters		8	
	Figures 1 to 9	10	to	27
	Tables II to IV	28	to	30
IX.	Hand Camera Lenses and Filters	1,1	1	
·	Figures 10 to 41	32	to	95
	Tables V to VII	96	to	98
X.	Color Temperature Conversion Filters	9	9	
	Figures 42 to 45	100	to	107
	Tables VIII to XI	108	to	111
XI.	Summary	11	.2	
XII.	Bibliography	11	.2	
Append	ix A	11	5	
Append	ix B	14	.3	
Append	ix C	16	1	

I. Introduction

The overall objective of this Air Force investigation is stated as follows: "To develop by visible, near infrared, and near ultraviolet spectrophotometry, methods for the detection of objects from color reconnaissance; to study the colors, tonal contrast, and color separation necessary in aerial photography to yield maximum information; to determine the wavelength region at which the film manufacturer should strive to obtain maximum sensitivity to yield clear separation of an object from its adjacent area rather than to yield true color fidelity; to determine the characteristics required in a sensitized material for the rapid and accurate extraction of this information".

The present report is concerned with the spectral characteristics in the visible and near infrared regions of the spectrum of photographic lenses and filters.

To fulfill the requests for these studies, listed in Appendix C, measurements of spectral transmittance of these camera lenses and filters were made from 400 to 1080 millimicrons; chromaticity coordinates and daylight transmittances were computed for the spectral data 400 to 750 millimicrons; Munsell renotations and ISCC-NBS color designations were derived from these computations, as were also the ideal Lovibond-Scofield designations. These data are illustrated in tables and in graphs.

The method of measurements and the computational methods are those outlined in the original project proposal, and used in previous reports of this project [1, 2, 3, 4, 5].*

It is believed that this type of information will assist in the selection of a suitable camera with proper lens and filtering system to produce the desired photograph needed for this project, and that this information is a necessary step towards attaining the overall objective of this investigation.

II. Material

The aerial-camera lenses and filters were furnished by Captain Robert J. Fisher, Aerial Reconnaissance Laboratory, Wright Air Development Center, Wright-Patterson Air Force Base, Ohio. He and Sergeant S. G. Ujhely brought the cameras to the National Bureau of Standards on March 16, 1954. They were present during the two days that the measurements were made and assisted in demounting the lens elements from the cameras so that they could be fitted into place in the light beam of the General Electric recording spectrophotometer. They also reassembled the cameras and returned them to the Wright-Patterson Air Force Base.

*Figures in brackets indicate references in the bibliography of this report, page 112.

Although three aerial cameras with lenses were brought to the National Bureau of Standards, measurements were made on the lenses of only two of them, the front and rear cells of a lens of 12" focal length and the rear cell of a 6" lens. These optical parts were placed in the General Electric recording spectrophotometer so that the illuminating beam was incident perpendicularly on the front surface of the lens cell and passed approximately through the center of the cell. The front cell of the 6" lens and the front and rear cells of a 24" lens with their mounts were so large that a rearrangement of the parts of the spectrophotometer (greater separation between sample beam and comparison beam) would have had to be carried out to accommodate them; so measurement of them was not attempted.

A description of these three lens-shutter aerial camera assemblies follows:

1) 6 inch (152.8 mm) f/6.3 Metrogon wide angle lens, Serial Number UF-6016, manufactured by the Bausch and Lomb Optical Company, Rochester, N. Y., for use with a "between-the-lens" shutter. The lens-shutter assembly is for use in a K-17 aerial camera. A glass antivignetting "minus blue" filter (for use with black and white film only) is a standard item in this assembly. Neither the lens elements nor the filter were coated with a reflectionreducing film.

2) 12 inch f/4.5 lens coated with a reflection-reducing film, Serial Number LF-8123, manufactured by the Bausch and Lomb Optical Company, Rochester, N. Y., for use with a "between-the-lens" shutter. This lens is not a standard lens but is used primarily for photographic tests at the Wright Air Development Center.

3) 24 inch (610 mm) f/6.0 Aero Tessar lens, Serial Number VF-2060, manufactured by the Bausch and Lomb Optical Company, Rochester, N. Y., for use with a K-18 aerial camera for a 9 by 18 inch negative.

The serial numbers given are for the lenses only; the serial numbers of the shutters are not recorded in this report. The telegram requesting these measurements, together with the reply, is included in Appendix C of this report.

The hand camera lenses and filters were furnished by Dr. Hugh T. O'Neill, O'Neill Associates, Annapolis, Maryland, with requests for measurements dated April 20, 1953, July 13, 1953, and February 25, 1954. These three requests are included in Appendix C of this report. All of Dr. O'Neill's cameras and filters were returned to him after the measurements had been completed.

Also included in this report are the measurements made on two Leitz hand-camera lenses belonging to one of the authors (JCS).

Additional technical information on the Ansco and Kodak Wratten filters, studied in this report, are available from the manufacturer [6, 7, 8].

The assigned object numbers and descriptive designations for the identification of the material studied in this report are listed in Table I.

Table I

9

3

3

Assigned Object Numbers and Descriptive Designations for the Identification of the Aerial and Hand Camera Lenses and Filters.

	A. Aerial Camera Lenses and Filters
Object No.	Sample Designation
(1)	Rear Cell, Bausch & Lomb Metrogon Lens, 6", f/6.3, Serial No. UF-6016.
(2)*	Assembled, Bausch & Lomb Metrogon Lens System, 6", f/6.3, Serial No. UF-6016.
(3)	Front Cell, Bausch & Lomb Coated Lens, 12", f/4.5, Serial No. LF-8123.
(4)	Rear Cell, Bausch & Lomb Coated Lens, 12", f/4.5, Serial No. LF-8123.
(5)*	Assembled Coated Lens System, Bausch & Lomb, 12", f/4.5, Serial No. LF-8123.
(6)	Yellow Glass Filter for use with Bausch & Lomb Metrogon Lens, Filter Only.
(7)	Yellow Glass Filter for use with Bausch & Lomb Metrogon Lens, Filter and Anti-vignetting Neutral Density Spot.
* Compute	d from spectral transmittance data of lens cells.
	B. Hand Camera Lenses and Filters
Object No.	Sample Designation
(8)	Ansco Xenon Lens, 50 mm focal length, f/2, Serial No. 2563656.
(9)	Kodak Ektar Lens, 80 mm focal length, f/2.8, Serial No. ET814L.
(10)	Leitz Elmar Lens, 90 mm focal length, f/4, Serial No. 720367.
(11)	Leitz Summitar Lens, 50 mm focal length, f/2, Serial No. 603453.
(12)	Ansco Portrait Lens, No. 30, Plus 1, Size 6.
(13)	Ansco No. 10 Conversion Filter, Size 5 (sample a).
(14)	Ansco No. 11 Conversion Filter, Size 5 (sample a).
(15)	Ansco No. 10 Conversion Filter, Size 6 (sample a).

(16) Ansco No. 11 Conversion Filter, Size 6 (sample a).

- 5 -

Table I (Continued)

B. Hand Camera Lenses and Filters (Continued)

Object No.	Sample Designation
(17)	Ansco No. 10 Conversion Filter, Size 5 (sample b).
(18)	Ansco No. 11 Conversion Filter, Size 5 (sample b).
(19)	Ansco No. 10 Conversion Filter, Size 6 (sample b).
(20)	Ansco No. 11 Conversion Filter, Size 6 (sample b).
(21)	Kodak Wratten Filter 80A, Series VI.
(22)	Kodak Wratten Filter 85, Series VI.
(23)	Ansco Ultraviolet-Absorbing Filter UV-15, Size 5.
(24)	Ansco Ultraviolet-Absorbing Filter UV-16, Size 5.
(25)	Ansco Ultraviolet-Absorbing Filter UV-17, Size 5.
(26)	Ansco Ultraviolet-Absorbing Filter UV-15, Size 6.
(27)	Ansco Ultraviolet-Absorbing Filter UV-16, Size 6.
(28)	Ansco Ultraviolet-Absorbing Filter UV-17, Size 6.
(29)	Ansco Ultraviolet-Absorbing Filter UV-16, Size 7.
(30)	Ansco Ultraviolet-Absorbing Filter UV-17, Size 7.
(31)	Kodak Wratten Filter A, Series VII.
(32)	Kodak Wratten Filter B, Series VII.
(33)	Kodak Wratten Filter C5, Series VII.
(34)	Kodak Wratten Filter N, Series VII.
(35)	Kodak Wratten Filter Aero 2, Series VII.

)

Charles and the second s

the second se

III, Spectrophotometric Measurements

Measurements of spectral transmittance were made on the NBS General Electric recording spectrophotometer [9, 10] for the visible and near infrared spectral range 400 to 1080 millimicrons. Slits of approximately 10 millimicrons of spectral width were used for the measurements in the visible spectrum, 400 to 750 millimicrons, and 20 millimicrons of spectral width for the near infrared spectrum, 730 to 1080 millimicrons. All recordings were made with calibration curves (didymium, zero, and 100% curves) for making wavelength and photometric scale corrections [11, 12]. Each of the sixteen curve sheets was read and corrected at each ten millimicron interval between 400 and 1080 millimicrons.

IV. Spectrophotometric Results

Ozalid prints of the 24 original recordings for the visible (400 to 750 millimicrons) and the near infrared (730 to 1080 millimicrons) spectral ranges obtained on the NBS General Electric recording spectrophotometer are included in Appendix A of this report. Tables of reduced and corrected data read from these 35 spectrophotometric curves are tabulated in Appendix B.

These corrected spectral transmittance data are shown in Figures 1 to 3 for the aerial camera lenses and filters and in Figures 10 to 22 for the hand camera lenses and filters.

The spectral transmittance data of the aerial camera lens system, computed from spectrophotometric data of the lens cells, are tabulated in Appendix B Figures 1 and 2 show respectively the spectral transmittance of the "B&L Metrogon 6" f/6.3" lens system, assuming the front and rear lens cells to be duplicates, and the "B&L 12" f/4.5" lens system.

Copies of the spectrophotometric curves of the aerial camera lenses and filter were given to Captain Fisher on March 17, 1954. Copies of the spectrophotometric curves of some of the hand camera lenses and filters were given to Dr. O'Neill on September 16, 1953 for incorporation in his report to the Wright Air Development Center dated September 30, 1953[13].

V. Colorimetric Computations

The spectral transmittances in the visible spectrum, 380 to 770 millimicrons, of the 35 lenses and filters were integrated into the International Commission on Illumination (C.I.E.) standard observer and coordinate system [14] for Source C, representative of average daylight. These colorimetric computations yielded the chromaticity coordinates and daylight transmittances listed in Tables II and V of this report. Also listed are the dominant wavelength and excitation purity [15] of the materials studied.

VI. Munsell Renotations and ISCC-NBS Color Designations

From the above determined C.I.E. chromaticity coordinates and daylight

transmittances of the 35 lenses and filters, the Munsell renotations were obtained from graphs of conversion from the C.I.E. system to the Munsell renotation system [16]. These Munsell renotations were then converted into terms of ISCC-NBS color designations [17].

VII. Lovibond Notations

In order that a comparison may be made between the transparent lenses and filters of this test and a standardized system of transparent media of the same approximate material, conversions were made from the C.I.E. chromaticity coordinates x and z of the camera lenses and filters to the Lovibond designations by means of the large scale graphs engraved on aluminum, for Source C, of the "ideal" Lovibond system as derived by Scofield [18], and sold by the Tintometer Ltd., Salisbury, England [19]. A similar C.I.E. graph, for Source C, for the NBS standard set of the Lovibond glasses, is also available in this country [20]. This and other information on the Lovibond Color System has been published by Judd [21]. The schematic illustrations, Figures 8, 9, and 35 to 11, are intended to show the relationship between the aerial and hand camera lenses and filters in terms of the "ideal" Lovibond system [22].

VIII. Aerial Camera Lenses and Filters

The following nine illustrations and three tables of data contain the spectrophotometric and colorimetric specifications of seven components, either measured or computed, for two of the three aerial-camera lens systems and filter that Captain Robert J. Fisher and Sergeant S. G. Ujhely brought to the National Bureau of Standards for measurement from the Aerial Reconnaissance Laboratory, Wright-Patterson Air Force Base, Ohio.

As mentioned in Section II, Material, above, it was not feasible to measure directly the spectral transmittance of the front lens cell of the 6" lens or of either of the assembled 6" or 12" lens systems. It is known, however, that the 6" lens is symmetrical; that is, the front and rear lens cells are essentially duplicates of each other; so a close approximation to the spectral transmittance of the assembled 6" lens system was found by squaring at each wavelength the value of the spectral transmittance obtained for the rear lens cell. Similarly a close approximation to the spectral transmittance of the assembled 12" lens system was obtained by the product at each wavelength of the values of spectral transmittance found for the front and rear lens cells.

Figures 1 to 3 show the visible and near-infrared spectral transmittance of seven components of these two aerial-camera lens systems and filter, plotted from the tables of data listed in Appendix B. These data were read or computed from the original recordings of spectral transmittance taken from the General Electric recording spectrophotometer and corrected for wavelength and photometric scale errors. Ozalid copies of these recordings are shown in Appendix A.

- -

Figures 4 and 5 show the chromaticity coordinates of these seven components of the two aerial-camera lens systems and filter computed from the visible portion of the spectral transmittance data (400 to 750 millimicrons) of these components and converted into terms of the International Commission on Illumination (C.I.E.) standard observer and coordinate system for Source C. The chromaticity coordinates, daylight transmittance, dominant wavelength, and excitation purity of these materials are listed in Table II.

Figures 6 and 7 show the Munsell renotations of these seven components of the two aerial camera lens systems and filter schematically illustrated. These data were obtained graphically by means of the C.I.E. chromaticity coordinates and daylight transmittance and are listed in Table III together with the ISCC-NBS color designations, derived from the Munsell renotations of these components.

Figures 8 and 9 show the "ideal" Lovibond units of red, yellow, and blue glasses for each of the seven components of the two aerial camera lens systems and filter. These data were obtained graphically by means of the C.I.E. chromaticity coordinates and are listed in Table IV together with the computed daylight transmittance which serves as the ordinate for the upper portions of the diagrams on Figures 8 and 9.

Figure 1. Visible and near infrared spectral transmittance of components of a Metrogon lens, B & L 6" f/6.3, from an aerial camera:

- (1) Rear lens cell.
- (2) Assembled lens system (assuming that the front lens cell has the same spectral transmittance as the rear lens cell).

1

•

.

-

-11-

Figure 2. Visible and near infrared spectral transmittance of components of a B & L 12" f/4.5 lens from an aerial camera:

(3) Front lens cell.

3

- (4) Rear lens cell.
- (5) Assembled lens system.

and the second second

-13-

)

FIGURE 2

Figure 3. Visible and near infrared spectral transmittance of a yellow-glass filter (approximately 1 cm thick) for use with a B & L Metrogon lens:

- (6) Filter only.
- (7) Filter and anti-vignetting neutral density spot.

->

3

>

and a second second second

FIGURE 3

Figure 4. Segment of the C.I.E. chromaticity diagram showing dominant wavelength, excitation purity, and chromaticity coordinates, for Source C, of several components of two aerial-camera lenses:

B & L Metrogon lens, 6", f/6.3

(1) Rear lens cell

(2) Assembled lens system

B & L lens, 12", f/4.5

- (3) Front lens cell
- (4) Rear lens cell
- (5) Assembled lens system

. .

1.1

Figure 5. Segment of the C.I.E. chromaticity diagram showing dominant wavelength, excitation purity, and chromaticity coordinates, for Source C, of a yellow-glass filter used with a B & L Metrogon Lens:

- (6) Filter only
- (7) Filter and anti-vignetting neutral density spot

)

Ĭ

)

-19-

)

D

Figure 6. Schematic illustration of the vertical and horizontal projections of the "ideal" Munsell system showing the Munsell Value (upper diagram) plotted against the Munsell Hue and Chroma points projected from the lower diagram of several components of two aerial-camera lenses:

B & L Metrogon lens, 6", f/6.3

(1) Rear lens cell

(2) Assembled lens system

B & L lens, 12", f/4.5

(3) Front lens cell

(4) Rear lens cell

(5) Assembled lens system

)

Figure 7. Schematic illustration of the vertical and horizontal projections of the "ideal" Munsell system showing the Munsell Value (upper diagram) plotted against the Munsell Hue and Chroma points projected from the lower diagram of a yellow-glass filter used with a B & L Metrogon lens:

- (6) Filter only
- (7) Filter and anti-vignetting neutral density spot

FIGURE 7

Figure 8. Schematic illustration of the "ideal" Lovibond system showing daylight transmittance (upper diagram) plotted against the units of the Lovibond color system, based on Red, Yellow, and Blue glass standards, projected from the lower diagram of several components of two aerial-camera lenses:

B & L Metrogon lens, 6", f/6.3

(1) Rear lens cell

(2) Assembled lens system

B & L lens, 12", f/4.5

(3) Front lens cell

(4) Rear lens cell

(5) Assembled lens system

FIGURE 8

Figure 9. Schematic illustration of the "ideal" Lovibond system showing daylight transmittance (upper diagram) plotted against the units of the Lovibond color systems, based on Red, Yellow, and Blue glass standards, projected from the lower diagram of a yellow-glass filter used with a B & L Metrogon lens:

- (6) Filter only
- (7) Filter and anti-vignetting neutral density spot

Table II

Aerial Camera Lenses and Filter

Chromaticity Coordinates, Daylight Transmittance, Dominant Wavelength, and Excitation Purity Determinations, for Source C, of the Two Aerial-Camera Lenses and the Aerial-Camera Filter.

		Chromaticity Coordinates		Luminous Transmittance	Dominant Wavelength	Excitation Purity
	Number		y	Y(%)	<u> </u>	p(%)
ERIAL	CAMERA LENSE	5:				
	(1) (2) (3) (4) (5)	0.310 .310 .314 .314 .318	0.318 .319 .324 .324 .324	82.5 68.2 93.4 93.3 87.2	550. 550. 567. 569. 565.5	0.5 1.0 3.0 3.3 6.2
ERIAL	CAMERA FILTE	R:				
	(6) (7)	0.483 .484	0.505 .504	66.0 37.1	576.4 576.5	97.1 97.1

A

I

- 28 -

Table III

Aerial Camera Lenses and Filter

Munsell Renotations and ISCC-NBS Color Designations of the Two Aerial-Camera Lenses and the Aerial-Camera Filter.

Object Number	Munsell Renotation	ISCC-NBS Color Designation
CAMERA LENS	ES:	
(1) (2) (3) (4) (5)	2.0G 9.2/0.2 1.2G 8.5/0.2 5.0GY 9.6/0.4 5.0GY 9.6/0.4 5.0GY 9.4/0.8	Colorless Light gray Colorless Colorless Faint green
CAMERA FILI	ER : '	

(6)	4.9Y	8.4/18.0	Vivid	yellow
(7)	5.4Y	6.6/14.5	Vivid	yellow

AERIAL

AERIAL

- 30 -

Table IV

Aerial Camera Lenses and Filter

Lovibond Analyses and Daylight Transmittance of the Two Aerial-Camera Lenses and the Aerial-Camera Filter.

	Lovi	bond Ana	lysis	Luminous Transmittance	
Number	R	<u> </u>	В	<u>Y(%)</u>	
AERIAL CAMERA LENSES:					
(1) (2) (3) (4) (5)	0.0 .0 .0 .0	0.0 .0 .2 .2 .5	0.0 .0 .0 .0	82.5 68.2 93.4 93.3 87.2	
AERIAL CAMERA FILTER:					
(6) (7)	2.5 2.8	100. 100.	0.0	66.0 37.1	

IX. Hand-Camera Lenses and Filters

The following 32 illustrations and three tables of data contain the spectrophotometric and colorimetric specifications of five hand camera lenses and 23 photographic filters.

Figures 10 to 22 show the visible and near infrared spectral transmittance of 28 hand-camera lenses and filters, plotted from the tables of data listed in Appendix B. These data were read from the original recordings of spectral transmittance taken from the General Electric recording spectrophotometer and corrected for wavelength and photometric scale errors. Ozalid copies of these recordings are shown in Appendix A.

Figures 23 to 27 show the chromaticity coordinates of these five handcamera lenses and twenty-three photographic filters computed from the visible portion of the spectral transmittance data (400 to 750 millimicrons) of these materials and converted into terms of the International Commission on Illumination (C.I.E.) standard observer and coordinate system for Source C. The chromaticity coordinates, daylight transmittance, dominant wavelength and excitation purity of these materials are listed in Table V.

Also shown on Figures 24 and 25 is a portion of the Planckian locus which connects the values of the chromaticity coordinates of the light sources.

Figures 28 to 34 show the Munsell renotations of these 28 materials schematically illustrated. These data were obtained graphically by means of the C.I.E. chromaticity coordinates and daylight transmittance. The Munsell renotations are listed in Table VI together with the ISCC-NBS color designations of the hand camera lenses and filters.

Figures 35 to 41 show the "ideal" Lovibond units of red, yellow, and blue glasses for each of the five hand camera lenses and of the twenty-three photographic filters. These Lovibond analyses were obtained graphically by means of the C.I.E. chromaticity coordinates and are listed in Table VII together with the computed daylight transmittance which served as the ordinate for the upper portion of the diagrams in Figures 35 to 41.

C

Figure 10. Visible and near infrared spectral transmittance of the lens of a hand camera:

 (8) Ansco Xenon Lens, 50 mm focal length, f/2, Serial No. 2563656

Figure 11. Visible and near infrared spectral transmittance of a hand-camera lens:

(9) Kodak Ektar Lens, 80 mm focal length, f/2.8, Serial No. ET8111

Figure 12. Visible and near infrared spectral

transmittance of two hand-camera lenses:

- (10) Leitz Elmar Lens, 90 mm focal length, f/4, Serial No. 720367
- (11) Leitz Summitar Lens, 50 mm focal length, f/2, Serial No. 603453

FIGURE 12

Figure 13. Visible and near infrared spectral transmittance of a supplementary lens for a hand camera:

(12) Ansco supplementary camera lens No. 30 Portrait Lens, Plus 1, Size 6

An angle of the state of the st

a faith ann an Martine an Arran an Arr

Figure 14. Visible and near infrared spectral transmittance of two color-temperature-conversion filters:

- (13) Ansco No. 10 Conversion Filter, Size 5 (sample a)
- (14) Ansco No. 11 Conversion Filter, Size 5 (sample a)

.

-41-

FIGURE 14

Figure 15. Visible and near infrared spectral transmittance of two color-temperature-conversion filters:

- (15) Ansco No. 10 Conversion Filter, Size 6 (sample a)
- (16) Ansco No. 11 Conversion Filter, Size 6 (sample a)

FIGURE 15

D.L

Figure 16. Visible and near infrared spectral transmittance of two color-temperature-conversion filters:

(17)	Ansco No. 10 Conversion	Filter,
	Size 5 (sample b)	

(18) Ansco No. 11 Conversion Filter, Size 5 (sample b)

7

. . .

FIGURE 16

· + 57.

.

1. 1. 1. 1. 1. S.

Figure 17. Visible and near infrared spectral transmittance of two color-temperature-conversion filters:

- (19) Ansco No. 10 Conversion Filter, Size 6 (sample b)
- (20) Ansco No. 11 Conversion Filter, Size 6 (sample b)

Provide Strange & States

- and the second sec

- 47 -

Figure 18. Visible and near infrared spectral transmittance of two color-temperature-conversion filters:

(21)	Kodak	Wratten	Filter	80A,	Series	VI
------	-------	---------	--------	------	--------	----

(22) Kodak Wratten Filter 85, Series VI

FIGURE 18

Figure 19. Visible and near infrared spectral transmittance of three ultraviolet-absorbing filters:

(23)	Ansco Ultraviolet Absorbing H	fil-
	ter UV-15, Size 5	

- (24) Ansco Ultraviolet Absorbing Filter UV-16, Size 5
- (25) Ansco Ultraviolet Absorbing Filter UV-17, Size 5

La contra de La Co

-51-

3.24

Figure 20. Visible and near infrared spectral transmittance of three ultraviolet-absorbing fil-ters:

(26)	Ansco I	Itraviolet	Absorbing	Fil-
	ter UV-	-15, Size 6		

- (27) Ansco Ultraviolet Absorbing Filter UV-16, Size 6
- (28) Ansco Ultraviolet Absorbing Filter UV-17, Size 6

Figure 21. Visible and near infrared spectral transmittance of two ultraviolet-absorbing filters:

- (29) Ansco Ultraviolet Absorbing Filter UV-16, Size 7
- (30) Ansco Ultraviolet Absorbing Filter UV-17, Size 7

-55-

FIGURE 21

Figure 22. Visible and near infrared spectral transmittance of five photographic filters:

- (31) Kodak Wratten Filter A, Series VII
- (32) Kodak Wratten Filter B, Series VII
- (33) Kodak Wratten Filter C5, Series VII
- (34) Kodak Wratten Filter N, Series VII
- (35) Kodak Wratten Filter Aero 2, Series VII

Figure 23. Segment of the C.I.E. chromaticity diagram showing dominant wavelength, excitation purity, and chromaticity coordinates of five lenses for hand cameras:

- 58 -

- (8) Ansco Xenon Lens, 50 mm focal length, f/2, Serial No. 2563656
- (9) Kodak Ektar Lens, 80 mm focal length, f/2.8, Serial No. ET814L

- (10) Leitz Elmar Lens, 90 mm focal length, f/4, Serial No. 720367
- (11) Leitz Summitar Lens, 50 mm focal length, f/2, Serial No. 603453
- (12) Ansco supplementary camera lens No. 30 Portrait Lens, Plus 1, Size 6

to at the second se

1.0

FIGURE 23

a state

Figure 24. Segment of the C.I.E. chromaticity diagram showing the Planckian locus and dominant wavelength, excitation purity, and chromaticity coordinates of two sets of color-temperatureconversion filters:

- (13) Ansco No, 10 Conversion Filter, Size 5 (sample a)
- (14) Ansco No. 11 Conversion Filter, Size 5 (sample a)
- (17) Ansco No. 10 Conversion Filter, Size 5 (sample b)
- (18) Ansco No. 11 Conversion Filter, Size 5 (sample b)

and of three ultraviolet-absorbing filters:

J)

- (23) Ansco Ultraviolet-Absorbing Filter UV-15, Size 5
- (24) Ansco Ultraviolet-Absorbing Filter UV-16, Size 5
- (25) Ansco Ultraviolet-Absorbing Filter UV-17, Size 5

- 61 -

7

Figure 25. Segment of the C.I.E. chromaticity diagram showing the Planckian locus and dominant wavelength, excitation purity, and chromaticity coordinates of three sets of color-temperature-conversion filters:

- (15) Ansco No. 10 Conversion Filter, Size 6 (sample a)
- (16) Ansco No. 11 Conversion Filter, Size 6 (sample a)
- (19) Ansco No. 10 Conversion Filter, Size 6 (sample b)
- (20) Ansco No. 11 Conversion Filter, Size 6 (sample b)
- (21) Kodak Wratten Filter 80A, Series VI
- (22) Kodak Wratten Filter 85, Series VI

and of three ultraviolet absorbing filters:

- (26) Ansco Ultraviolet-Absorbing Filter UV-15, Size 6
- (27) Ansco Ultraviolet-Absorbing Filter UV-16, Size 6
- (28) Ansco Ultraviolet-Absorbing Filter UV-17, Size 6

ju

all l

Figure 26. Segment of the C.I.E. chromaticity diagram showing dominant wavelength, excitation purity, and chromaticity coordinates of two ultraviolet-absorbing filters:

- (29) Ansco Ultraviolet Absorbing Filter UV-16, Size 7
- (30) Ansco Ultraviolet Absorbing Filter UV-17, Size 7

(

(

I

((

and the second of the second o

Figure 27. Segment of the C.I.E. chromaticity diagram showing dominant wavelength, excitation purity, and chromaticity coordinates of five photographic filters:

(31) Kodak Wratten Filter A, Series VII

- (32) Kodak Wratten Filter B, Series VII
- (33) Kodak Wratten Filter C5, Series VII
- (34) Kodak Wratten Filter N, Series VII
- (35) Kodak Wratten Filter Aero 2, Series VII

FIGURE 27

Figure 28. Schematic illustration of the vertical and horizontal projections of the "ideal" Munsell system showing the Munsell Value (upper diagram) plotted against Munsell Hue and Chroma points projected from the lower diagram of five lenses for hand cameras:

- (8) Ansco Xenon Lens, 50 mm focal length, f/2, Serial No. 2563656
- (9) Kodak Ektar Lens, 80 mm focal length, f/2.8, Serial No. ET814L
- (10) Leitz Elmar Lens, 90 mm focal length, f/4, Serial No. 720367
- (11) Leitz Summitar Lens, 50 mm focal length, f/2, Serial No. 603453
- (12) An sco supplementary camera lens No.
 30 Portrait Lens, Plus 1, Size 6

- 68 -

FIGURE 28

1 - Ang - A

¥

Figure 29. Schematic illustration of the vertical and horizontal projections of the "ideal" Munsell system showing the Munsell Value (upper diagram) plotted against Munsell Hue and Chroma points projected from the lower diagram for two sets of color-temperature-conversion filters:

- (13) Ansco No. 10 Conversion Filter, Size 5 (sample a)
- (14) Ansco No. 11 Conversion Filter, Size 5 (sample a)
- (17) Ansco No. 10 Conversion Filter, Size 5 (sample b)
- (18) Ansco No. 11 Conversion Filter, Size 5 (sample b)

States of the second second

and the second second

Figure 30. Schematic illustration of the vertical and horizontal projections of the "ideal" Munsell system showing the Munsell Value (upper diagram) plotted against Munsell Hue and Chroma points projected from the lower diagram for three sets of color-temperature-conversion filters:

- (15) Ansco No. 10 Conversion Filter, Size 6 (sample a)
- (16) Ansco No. 11 Conversion Filter, Size 6 (sample a)
- (19) Ansco No. 10 Conversion Filter, Size 6 (sample b)
- (20) Ansco No. 11 Conversion Filter, Size 6 (sample b)
- (21) Kodak Wratten Filter 80A, Series VI
- (22) Kodak Wratten Filter 85, Series VI

.

and the second second

1.00

Figure 31. Schematic illustration of the vertical and horizontal projections of the "ideal" Munsell system showing the Munsell Value (upper diagram) plotted against Munsell Hue and Chroma points projected from the lower diagram for three ultraviolet-absorbing filters:

- (23) Ansco Ultraviolet Absorbing Filter W-15, Size 5
- (24) Ansco Ultraviolet Absorbing Filter UV-16, Size 5
- (25) Ansco Ultraviolet Absorbing Filter UV-17, Size 5

some un ratio -

÷ E

\$ 18° -

Figure 32. Schematic illustration of the vertical and horizontal projections of the "ideal" Munsell system showing the Munsell Value (upper diagram) plotted against Munsell Hue and Chroma points projected from the lower diagram for three ultravioletabsorbing filters:

- (26) Ansco Ultraviolet Absorbing Filter UV-15, Size 6
- (27) Ansco Ultraviolet Absorbing Filter UV-16, Size 6

1,

(28) Ansco Ultraviolet Absorbing Filter UV-17, Size 6

- The second s

æ

FIGURE 32

Figure 33. Schematic illustration of the vertical and horizontal projections of the "ideal" Munsell system showing the Munsell Value (upper diagram) plotted against Munsell Hue and Chroma points projected from the lower diagram for two ultraviolet-absorbing filters:

- (29) Ansco Ultraviolet Absorbing Filter UV-16, Size 7
- (30) Ansco Ultraviolet Absorbing Filter UV-17, Size 7

FIGURE 33

Figure 34. Schematic illustration of the vertical and horizontal projections of the "ideal" Munsell system showing the Munsell Value (upper diagram) plotted against Munsell Hue and Chroma points projected from the lower diagram for five photographic filters:

- (31) Kodak Wratten Filter A, Series VII
- (32) Kodak Wratten Filter B, Series VII
- (33) Kodak Wratten Filter C5, Series VII
- (34) Kodak Wratten Filter N, Series VII
- (35) Kodak Wratten Filter Aero 2, Series VII

A Construction of the second o

)

2

1)

FIGURE 34

Figure 35. Schematic illustration of the "ideal" Lovibond system showing daylight transmittance (upper diagram) plotted against the units of the Lovibond color system, based on Red, Yellow, and Blue glass standards, projected from the lower diagram of five lenses for hand cameras:

 \mathbf{D}

- (8) Ansco Xenon Lens, 50 mm focal length, f/2, Serial No. 2563656
- (9) Kodak Ektar Lens, 80 mm focal length, f/2.8, Serial No. ET814L
- (10) Leitz Elmar Lens, 90 mm focal length, f/4, Serial No. 720367
- (11) Leitz Summitar Lens, 50 mm focal length, f/2, Serial No. 603453
- (12) Ansco supplementary camera lens No.
 30 Portrait Lens, Plus 1, Size 6

,

Figure 36. Schematic illustration of the "ideal" Lovibond system showing daylight transmittance (upper diagram) plotted against the units of the Lovibond color system, based on Red, Yellow, and Blue glass standards, projected from the lower diagram for two sets of color-temperature-conversion filters:

(13) Ansco No. 10 Conversion Filter, Size 5 (sample a)

- (14) Ansco No. 11 Conversion Filter, Size 5 (sample a)
- (17) Ansco No. 10 Conversion Filter, Size 5 (sample b)
- (18) Ansco No. 11 Conversion Filter, Size 5 (sample b)

FIGURE 36

Figure 37. Schematic illustration of the "ideal" Lovibond system showing daylight transmittance (upper diagram) plotted against the units of the Lovibond color system, based on Red, Yellow, and Blue glass standards, projected from the lower diagram for three sets of color-temperatureconversion filters:

- (15) Ansco No. 10 Conversion Filter, Size 6 (sample a)
- (16) Ansco No. 11 Conversion Filter, Size 6 (sample a)
- (19) Ansco No. 10 Conversion Filter, Size 6 (sample b)

5)

- (20) Ansco No. 11 Conversion Filter, Size 6 (sample b)
- (21) Kodak Wratten Filter 80A, Series VI
- (22) Kodak Wratten Filter 85, Series VI

Figure 38. Schematic illustration of the "ideal" Lovibond system showing daylight transmittance (upper diagram) plotted against the units of the Lovibond color system, based on Red, Yellow, and Blue glass standards, projected from the lower diagram for three ultraviolet-absorbing filters:

3

- (23) Ansco Ultraviolet Absorbing Filter UV-15, Size 5
- (24) Ansco Ultraviolet Absorbing Filter UV-16, Size 5
- (25) Ansco Ultraviolet Absorbing Filter UV-17, Size 5

spectrum a summaria summaria

Figure 39. Schematic illustration of the "ideal" Lovibond system showing daylight transmittance (upper diagram) plotted against the units of the Lovibond color system, based on Red, Yellow, and Blue glass standards, projected from the lower diagram for three ultraviolet-absorbing filters:

- (26) Ansco Ultraviolet Absorbing Filter UV-15, Size 6
- (27) Ansco Ultraviolet Absorbing Filter UV-16, Size 6
- (28) Ansco Ultraviolet Absorbing Filter UV-17, Size 6

al

Figure 40. Schematic illustration of the "ideal" Lovibond system showing daylight transmittance (upper diagram) plotted against the units of the Lovibond color system, based on Red, Yellow, and Blue glass standards, projected from the lower diagram for two ultraviolet-absorbing filters:

- (29) Ansco Ultraviolet Absorbing Filter UV-16, Size 7
- (30) Ansco Ultraviolet Absorbing Filter UV-17, Size 7

D

FIGURE 40

• • • •

Figure 41. Schematic illustration of the "ideal" Lovibond system showing daylight transmittance (upper diagram) plotted against the units of the Lovibond color system, based on Red, Yellow, and Blue glass standards, projected from the lower diagram for five photographic filters:

- (31) Kodak Wratten Filter A, Series VII
- (32) Kodak Wratten Filter B, Series VII*
- (33) Kodak Wratten Filter C5, Series VII
- (34) Kodak Wratten Filter N, Series VII*
- (35) Kodak Wratten Filter Aero 2, Series VII

*Object Nos. 32 and 34 are not shown on the diagram as these saturated green colors are outside of the gamut of the Lovibond color system.

I

Table V

Hand Camera Lenses and Filters

Chromaticity Coordinates, Daylight Transmittance, Dominant Wavelength, and Excitation Purity Determinations for Source C of Five Hand Camera Lenses and Twenty-Three Photographic Filters.

		Chromaticity Coordinates		Luminous Transmittance	Dominant Wavelength	Excitation Purity
	Obje c t Numb er		y	Y(%)	$\underline{\wedge}$	_p(%)_
HAND CAMERA	LENSES:					
	(8)	0.313	0.324	82.3	566.	2.7
	(9)	.320	.331	90.9	567.2	6.6
	(10)	.322	.330	86.6	575.2	6.8
	(11)	.318	.329	84.8	570.0	5.4
	(12)	.310	.317	91.8	550.	0.1
HAND CAMERA	FILTERS:					
	(13)	0.251	.233	36.7	469.9	32.0
	(14)	.415	.401	62.2	580.6	50.8
	(15)	.251	.227	34.5	467.0	33.0
	(16)	.417	.401	61.7	580.9	51.4
	(17)	.251	.234	36.8	470.0	31.8
	(18)	.416	.401	62.0	580.6	51.0
	(19)	.250	.228	34.6	467.6	32.9
	(20)	.416	.401	61.9	580.6	51.0
	(21)	.222	.199	26.9	471.3	46.6
	(22)	.397	.361	61.2	586.9	35.3
	(23)	.319	•335	89.1	568.1	7.4
	(24)	.315	•328	89.4	567.	4.5
	(25)	.316	•330	89.4	567.2	5.6
	(26)	.318	•332	89.2	569.5	6.5
	(27)	.317	•331	89.5	567.8	5.6
	(28)	.317	.331	89.6	567.4	5.7
	(29)	.314	.327	88.7	563.	3.7
	(30)	.316	.331	88.7	566.5	5.6
	(31)	.680	.320	14.1	615.	100.
	(32)	.237	.696	24.5	539.4	86.0
	(33)	.145	.048	2.7	463.6	96.
	(34)	.218	.702	18.4	536.0	83.8
	(35)	.445	.508	77.0	572.9	87.6

- 97 -

-

HAND

HAND

Table VI

Hand Camera Lenses and Filters

Munsell Renotations and ISCC-NBS Color Designations of the Five Hand Camera Lenses and Twenty-Three Photographic Filters.

Object Number	Munsell Renotation	ISCC-NBS Color Designation
CAMERA LENSES:	:	
(8)	6.4GY 9.2/0.4	Colorless
(9)	9.8Y 9.5/0.8	Faint yellow
(10)	4.2Y 9.4/0.8	Faint yellow
(11)	2.5GY 9.3/0.7	Faint yellow
(12)	N 9.6/	Colorless
CAMERA FILTERS	5:	
(13)	7.8PB 6.5/8.6	Light purplish blue
(14)	9.9YR 8.2/7.3	Light orange yellow
(15)	8.6PB 6.4/9.1	Brilliant purplish blue
(16)	9.8YR 8.1/7.4	Light orange yellow
(17)	7.7PB 6.6/8.4	Light purplish blue
(18)	9.8YR 8.2/7.2	Light orange yellow
(19)	8.2PB 6.4/8.9	Light purplish blue
(20)	9.8YR 8.2/7.2	Light orange yellow
(21)	7.1PB 5.7/11.4	Brilliant purplish blue
(22)	3.6YR 8.1/6.0	Light yellowish pink
(23)	5.2GY 9.5/1.0	Faint green
(24)	6.0GY 9.5/0.6	Faint green
(25)	5.9GY 9.5/0.8	Faint green
(26)	5.0GY 9.5/0.8	Faint green
(27)	5.6GY 9.5/0.8	Faint green
(28)	5.6GY 9.5/0.8	Faint green
(29)	7.4GY 9.4/0.6	Faint green
(30)	6.0GY 9.4/0.8	Faint green
(31)	8.4R 4.3/20.6	Vivid red
(32)	0.6G 5.5/20.	Vivid yellowish green
(33)	7.6PB 1.8/18.0	Vivid purplish blue
(34)	0.8G 4.8/19.	Vivid yellowish green
(35)	9.4Y 8.9/13.9	Vivid greenish yellow

a tradition of the second s ì

- 98 -

Table VII

Hand Camera Lenses and Filters

ļ

1)

 $\left(\right)$

Lovibond Analyses and Daylight Transmittance of the Five Hand Camera Lenses and Twenty-Three Photographic Filters.

	Lovih	oond An	alysis	Luminous Transmittance	
Number	R	<u> </u>	B	Y(%)	
HAND CAMERA LENSES:					
(8) (9) (10) (11) (12)	0.0 .2 .4 .3 .0	0.2 .5 .4 .0	0.0 .0 .0 .0	82.3 90.9 86.6 84.8 91.8	
HAND CAMERA FILTERS:					
(13) (14) (15) (16) (17)	1.5 3.4 1.9 3.5 1.5	0.0 5.4 .0 5.4 .0	4.0 .0 4.2 .0 4.0	36.7 62.2 34.5 61.7 36.8	
(18) (19) (20) (21) (22)	3.4 1.6 3.4 1.2 4.1	5.4 .0 5.4 .0 2.9	.0 4.2 .0 6.1 .0	62.0 34.6 61.9 26.9 61.2	
(23) (24) (25) (26) (27)	.0 .0 .0 .0	•5 •4 •5 •5	• 0 • 0 • 0 • 0	89.1 89.4 89.4 89.2 89.5	
(28) (29) (30) (31) (32)	.0 .0 58.0	.4 .2 .4 50.0	.0 .0 .0	89.6 88.7 88.7 14.1 24.5	
(33) (34) (35)	.0 	6.5 28.0	51.0 .0	2.7 18.4 77.0	

	۰.		
		, Na	
-		and a second sec	

(i) = to = 0 for an interval of the second se Second second

and the second second second				
				2 d.
			· ··	
				the second second second second
· ·			•	
	12		*	
	· .			×
				ана стана стана Стана стана стан
	1 S.			
	1	1	-	
	A 4 .	· · ·	9 	
	-2 + 			N 0
· ·	· 4		. *	
			1.1	
		ζı.		
				200 - ²
		* H .		
1 × 4 = 2			. :	
			<i>.</i>	· · · · ·
54 - F			*	
1 t			,	
		·		
		¢		
	1 m. 18 - 4	Ľ	- x	
	*			
the state of the s				
A second s		and the second	-44 ·	
	-	2	r	
			-	
	٤			

(

X. Color-Temperature-Conversion Filters

A comparison has been made in the next four illustrations (Figures 42 to 45) and four tables of data (Tables VIII to XI) of how well the commercially available color-temperature-conversion filters, studied in this report, serve their purpose in converting the spectral energy distribution of one illuminant to approximate the spectral energy distribution of a second illuminant. Six filters have been selected for study. They carried the object designations in Part IX of this report as (17), (18), (19), (20), (21), and (22). Two sets of these blue and orange filters are near duplicates available from one manufacturer (Ansco) differing only in size of filter (diameter). They are (17) Ansco No. 10 Conversion filter size 5 (sample b), (19) Ansco No. 10 Conversion filter size 6 (sample b), (18) Ansco No. 11 Conversion filter size 5 (sample b), and (20) Ansco No. 11 Conversion filter size 6 (sample b). The other set of blue and orange filters are (21) Kodak Wratten 80A, Series VI, and (22) Kodak Wratten 85, Series VI.

The three orange filters have been compared for effectiveness of conversion of both CIE Source C to CIE Source A and conventional color temperature for outdoor film (5500°K) to that for indoor film (3250°K). The three blue filters have been compared for effectiveness of conversion in the opposite direction. The data for the standard sources were taken from the Handbook of Colorimetry [15], and the spectral distribution of sources 3250°K and 5500°K were taken from the Frehafer-Snow tables [23].

The conversions from near daylight illuminant to near incandescent illuminant are shown in Figures 42 and 44; and conversions from near incandescent illuminant to near daylight illuminant are shown in Figures 43 and 45. It should be noted that the ordinates of these four figures are in relative energy units and that all of the curves represented in the figures have been reduced to equality (50.0 units) at wavelength 560 millimicrons.

Figure 42. Spectral energy distribution of radiant energy transmitted by several orange-yellow filters approximating a conversion of C.I.E. Source C, representative of average daylight, to C.I.E. Source A, representative of incandescent illuminant, compared with the spectral energy distribution of C.I.E. Source A.

Figure 43. Spectral energy distribution of radiant energy transmitted by several purplish-blue filters approximating a conversion of C.I.E. Source A, representative of incandescent-lamp light, to C.I.E. Source C, representative of average daylight, compared with the spectral energy distribution of C.I.E. Source C.

. ,

· ·

.

Figure 44. Spectral energy distribution of radiant energy transmitted by several orange-yellow filters approximating a conversion of a 5500°K Planckian Radiator (color temperature balance for outdoor film) to a 3250°K Planckian Radiator (color temperature balance for indoor film), compared with the spectral energy distribution of a 3250°K Planckian Radiator.

I

FIGURE 44

一 一 清京集 的人名英

Figure 45. Spectral energy distribution of radiant energy transmitted by several purplish-blue filters approximating a conversion of a 3250°K Planckian Radiator (color temperature balance for indoor film) to a 5500°K Planckian Radiator (color temperature balance for outdoor film), compared with the spectral energy distribution of a 5500°K Planckian Radiator. ъ. Эр.

FIGURE 45

Table VIII

Relative Spectral Energy Distribution of Light Sources Before and After Transmission by Color-Temperature-Conversion Filters. (Reduced to Equality at . 560 mm.)

Wave length mµ	Incident Spectral Energy Distribution C.I.E. Source C	Relative Spe of Incident Transmission Ansco No. 11 Size 5	Desired Spectral Energy Distribution C.I.E. Source A		
400 10 20 30 40	30.06 38.27 46.58 53.37 57.69	(sample b) 7.39 8.46 10.05 12.32 15.40	(sample b) 7.59 8.62 10.20 12.32 15.40	2.23 10.56 20.93 28.40 33.50	7.36 8.84 10.50 12.34 14.35
450	58.88	19.88	19.88	36.00	16.54
60	58.45	24.71	24.71	38.40	18.91
70	58.78	30.56	30.56	41.81	21.44
80	58.83	36,07	36.07	44.15	24.12
90	57.31	39,83	39.83	45.41	26.96
500	53,23	40.39	40.39	44.05	29.93
10	48.58	38.29	38.49	40.24	33.03
20	46.01	36.81	36.92	37.61	36.25
30	46.53	38.44	38.44	38.34	39.56
40	48.48	42.52	42.52	40.97	42.98
550	49。95	46.68	46.68	42.45	46.46
60	50.00	50.00	50.00	50.00	50.00
70	48.58	53.21	53.21	58.00	53.59
80	46,44	57.29	57.29	65.22	57.22
90	44.26	60.32	60.32	67.83	60.86
600	42.59	61.40	61.40	67,97	64.52
10	41.98	61.89	62.00	68,09	68.67
20	41.83	62.14	62.38	68.51	71.81
30	41.78	62.22	62.39	68.50	75.41
40	41.69	62.04	62.25	68,50	78.99
650	41.88	62.18	62.46	68.82	82.51
60	41.74	61.86	62.11	68.58	85.98
70	40.98	60.56	60.84	67.33	89.38
80	39.89	58.79	59.05	65.58	92.71
90	38.08	55.90	56.19	62.44	95.96
700	36.23	53.03	53.31	59•37	99.13
10	34.38	50.12	50.41	56•31	102.20
20	32,43	47.17	47.42	53•06	105.18
30	30.58	44.30	44.56	50•00	108.06
40	29,20	42.13	42.43	47•68	110.83
750	28.11	40.40	40.66	45.89	113.50

Table IX

Relative Spectral Energy Distribution of Light Sources Before and After Transmission by Color-Temperature-Conversion Filters. (Reduced to Equality at 560 mµ.)

Wave length mµ	Incident Spectral Energy Distribution	Relative Spec of Incident R Transmission	Desired Spectral Energy Distribution		
	C.I.E. Source A	Ansco No. 10 Size 5 (sample b)	Ansco No. 10 Size 6 (sample b)	Wratten 80A Series VI	C.I.E. Source C
400	7.36	11.15	11.69	21.51	30.06
10	8.84	14.11	14.62	28.42	38.27
20	10.50	17.25	17.95	35.66	46.58
30	12.34	20.48	21.29	42.39	53.37
40	14.35	23.64	24.54	48.31	57.69
450	16.54	26.66	27.57	53.67	58.88
60	18.91	29.48	30.41	57.65	58.45
70	21.44	31.79	32.61	60.42	58.78
80	24.12	32.22	32.81	61.60	58.83
90	26.96	31.95	31.89	60.75	57.31
500	29.93	32.36	31.88	59.21	53.23
10	33.03	31.42	30.28	56.20	48.58
20	36.25	25.65	24.11	53.71	46.01
30	39.5 6	20.60	18.44	51.40	46.53
40	42.98	24.49	22.05	50.24	48.48
550	46.46	37.95	36.89	49.21	49 .95
60	50.00	50.00	50.00	50.00	50.00
70	53.59	53.71	54.96	52.48	48.58
80	57.22	53.91	54.86	56.43	46.44
90	60.86	52.84	53.83	62.25	44. 26
600	64.52	48.33	49.12	66.55	42.59
10	68.67	41.59	41.93	67.35	41.98
20	71.81	34.43	34.39	64.05	41.83
30	75.41	32.54	32.30	57.42	41.78
40	78.99	36.98	36.42	52.56	41.69
650	82.51	39.36	38.72	50.56	41.88
60	85.98	36.04	36.12	50.52	41.74
70	89.38	31.51	31.39	50.68	40.98
80	92.71	27.61	27.12	48.75	39.89
90	95.96	37.02	36.04	46.28	38.08
700	99.13	68.60	65.94	48.04	36.23
10	102.20	99.91	98.34	60.00	34.38
20	105.18	120.22	122.98	88.61	32.43
30	108.06	127.21	144.40	139.89	30.58
40	110.83	157.02	165.25	207.17	29.20
750	113.50	165.75	174.44	284.15	28.11

- 110 -

Table X

Relative Spectral Energy Distribution of Light Sources Before and After Transmission by Color-Temperature-Conversion Filters. (Reduced to Equality at 560 mµ.)

Wave length mu	Incident Spectral Energy Distribution Planckian Radiator 5500°K	Relative Spe of Incident Transmission Ansco No. 11 Size 5 (sample b)	ctral Energy D Radiant Energy by: Ansco No. ll Size 6 (sample b)	istribution after Wratten 85 Series VI	Desired Spectral Energy Distribution Planckian Radiator 3250°K
400	41.36	10.17	10.45	3.07	11.48
10	42.86	9.47	9.65	11.83	13.28
20	44.25	9.54	9.69	19.88	15.21
30	45.45	9.80	10.49	24.18	17.28
40	46.52	12.42	12.42	27.02	19.44
450	47.46	16.03	16.03	29.02	21.72
60	48.26	20.40	20.40	31.70	24208
70	48.93	25.44	25.44	34.80	26.52
80	49.43	30.31	30.31	37.10	29.04
90	49.85	33.95	34.65	39.50	31.60
500	50.20	38.09	38.09	41.54	34.20
10	50.35	39.69	39.90	41.71	36.84
20	50.45	40.36	40.49	41.24	39.50
30	50.45	41.68	41.68	41.56	42.14
40	50.35	44.16	44.16	42.55	44.78
550	50.20	46.91	46.91	42.65	47.42
60	50.00	50.00	50.00	50.00	50.00
70	49.66	54.40	54.40	59.30	52.55
80	49.36	60.91	60.91	69.32	55.10
90	48.94	66.72	66.72	75.02	57.55
600	48.45	69.84	69.84	77.31	59.95
10	47.98	70.75	70.87	77.84	62.30
20	47.49	70.48	70.82	77.70	64.50
30	46.84	69.74	69.94	76.78	66.65
40	46.24	68.82	69.05	75.98	68.80
650	45.63	67.75	68.06	74.97	70.80
60	44.99	66.68	66.95	73.92	72.70
70	44.31	65.50	65.80	72.81	74.55
80	43.62	64.29	64.58	71.71	76.30
90	42.94	63.04	63.36	70.40	77.90
700	42.23	61.82	62.14	69.20	79.40
10	41.49	60.49	60.84	67.95	80.90
20	40.77	59.30	59.61	66.70	82.20

- 111 -Table XI

Relative Spectral Energy Distribution of Light Sources Before and After Transmission by Color-Temperature-Conversion Filters. (Reduced to Equality at 560 mm.)

Wave lèngth <u>m</u> u	Incident Spectral Energy Distribution Flanckian Radiator 3250°K	Relative Spe of Incident Transmission Ansco No. 10 Size 5 (sample b)	ctral Energy D Radiant Energy by: Ansco No. 10 Size 6 (sample b)	Distribution after Wratten 80A Series VI	Desired Spectral Energy Distribution Planckian Radiator 5500°K
400	11.48	17.42	18.25	33.59	41.36
10	13.28	21.20	21.97	42.71	42.86
20	15.21	24.99	26.00	51.66	44.25
30	17.28	28.69	29.83	59.39	45.45
40	19.44	32.03	33.25	65.46	46.52
450	21.72	34.99	36.18	70.45	47.46
60	24.08	37.53	38.71	73.41	48.26
70	26.52	39.33	40.34	74.75	48.93
80	29.04	38.78	39.49	74.15	49.43
90	31.60	37.46	37.39	71.24	49.85
500	34.20	36.99	36.44	67.67	50.20
10	36.84	35.04	33.77	62.68	50.35
20	39.50	27.95	26.27	58.54	50.45
30	42.14	21.95	19.64	54.76	50.45
40	44.78	25.52	22.98	52.36	50.35
550	47.42	38.74	37.66	50.24	50.20
60	50.00	50.00	50.00	50.00	50.00
70	52.55	52.67	53.89	51.47	49.66
80	55.10	51.91	52.82	54.34	49. 36
90	57.55	49.96	50.90	58.87	48.94
600	59.95	44.90	45.64	61.84	48.45
10	62.30	38.00	38.32	61.56	47.98
20	64.50	30.93	30.89	57.53	47.49
30	66.65	28.75	28.54	50.76	46.84
40	68.80	32.21	31.72	45.78	46.24
650	70.80	33.78	33.22	43.39	45.63
60	72.70	30.47	30.54	42.72	44.99
70	74.55	26.28	26.18	42.27	44.31
80	76.30	22.72	22.32	40.12	43.62
90	77.90	30.05	29.25	37.58	42.94
700	79.40	54.94	52.82	38.48	42.23
10	80.90	79.08	77.84	47.50	41.49
20	82.20	93.95	96.11	69.26	40.77

L

-

XI. Summary

This report shows that measurements of spectral transmittance may be made of aerial- and hand-camera lenses on the General Electric recording spectrophotometer provided that the size of the optical elements of the cameras are larger than the dimensions of the light path of the instrument, and provided that the mounts of the camera lens do not block the comparison light beam of the instrument.

Figures 1 and 2 show that coating the optical elements of camera lenses with films that reduce reflection losses in the visible part of the spectrum may reduce the infrared transmittance of the lens below that of the uncoated lens and so make the lens less fit for use with "infrared film" [24].

The use of a system of color in transparent media may be useful for the colorimetric specification of photographic lenses and filters. In this report, in addition to the usual methods of expressing the data, use has been made of the Lovibond system of units of colored red, yellow, and blue glasses for the colorimetric specification of the lenses and filters.

An evaluation has been made of conversion filters of the types usually used in ordinary photography by comparing the spectral energy distributions of the converted sources with those of the sources which were intended to be duplicated.

XII. Bibliography

- [1] H. J. Keegan, J. C. Schleter, and W. A. Hall, Jr., Spectrophotometric and colorimetric change in the leaf of a white oak tree under conditions of natural drying and excessive moisture, NBS Report No. 4322 to WADC, September 1955.
- 2 H. J. Keegan, J. C. Schleter, W. A. Hall, Jr., and G. M. Haas, Spectrophotometric and colorimetric study of foliage stored in covered metal containers, NBS Report No. 4370 to WADC, November 1955.
- [3] H. J. Keegan, J. C. Schleter, W. A. Hall, Jr., and G. M. Haas, Spectrophotometric and colorimetric study of the fading of dyed papers and cardboards under natural daylight, NBS Report No. 4438 to WADC, December 1955.

4

H. J. Keegan, J. C. Schleter, W. A. Hall, Jr., and G. M. Haas, Spectrophotometric and colorimetric record of some leaves of trees, vegetation and soil, NBS Report No. 4528 to WADC, April 1956.

- [5] H. J. Keegan, J. C. Schleter, W. A. Hall, Jr., and G. M. Haas, Spectrophotometric and colorimetric study of diseased and rust resisting cereal crops, NBS Report 4591 to WADC, July 1956.
- [6] Color photography made easy with Ansco Color Film and Ansco Color Printon, pp 42-45, 1953. Ansco Division, General Aniline and Film Corporation, Binghamton, N. Y.
- [7] D. L. MacAdam. Colorimetric specifications of Wratten light filters. J. Opt. Soc. Am. <u>35</u>, 670 (1945).
- [8] Kodak Wratten Filters for scientific and technical use. 18th Edition, Eastman Kodak Company, Rochester, N. Y. 1951.
- [9] A. C. Hardy. A new recording spectrophotometer. J. Opt. Soc. Am. 25, 305 (1935); also A. C. Hardy. History of the design of the recording spectrophotometer. J. Opt. Soc. Am. 28, 360 (1938).
- [10] J. L. Michaelson. Construction of the General Electric recording spectrophotometer. J. Opt. Soc. Am. 28, 365 (1938).
- [11] K. S. Gibson and H. J. Keegan. Calibration and operation of the General Electric recording spectrophotometer of the National Bureau of Standards. J. Opt. Soc. Am. 28, 372 (1938).
- [12] H. J. Keegan and K. S. Gibson. On the use of didymium and Vitrolite glasses for spectrophotometric measurements. J. Opt. Soc. Am. 34, 770 (1944).
- [13] H. T. O'Neill and Associates, New methods of reconnaissance and intelligence from aerial photography especially by means of new types of films and filters, Contract 33(616)-262, Project 52-670A-55, E.O.R. 675-209-SA-10, September 30, 1953.
- [14] Proceedings, Eighth Session, Commission Internationale de l'Eclairage. Cambridge, England, pp 19 to 29, September 1931.
- [15] A. C. Hardy. Handbook of Colorimetry. Cambridge, Mass. Technology Press (1936).
- [16] S. M. Newhall, D. Nickerson, and D. B. Judd. Final report of the OSA subcommittee on the spacing of the Munsell colors. J. Optical Soc. Am. 33, 385 (1943).
- [17] K. L. Kelly and D. B. Judd. The ISCC-NBS method of designating colors and a dictionary of color names. NBS Circular C553, November 1, 1955.
- [18] R. K. Schofield. The Lovibond Tintometer adapted by means of the Rothamsted device to measure colours on the C.I.E. System. J. Sci. Ins. (printed in Great Britain) 16, 74 (1939).

- [19] Catalogue of colour measuring instruments and fused optical glass cells. The Tintometer Ltd., The Colour Laboratory, Salisbury, England, p. 33 (no year stated). (Representatives: Curry and Paxton Inc., 230 Park Avenue, New York 17, N. Y.)
- [20] G. W. Haupt and F. L. Douglas. Chromaticities of Lovibond glasses. J. Research NBS 39, 11 (1947); RP 1808.
- [21] D. B. Judd. Color in Business, Science, and Industry, New York, J. Wiley and Sons. pp. 134 - 142 (1952).
- [22] J. W. Lovibond, Light and colour theories. London, E. & F. N. Spon Ltd., p. 34 (1915).
- [23] M. K. Frehafer and C. L. Snow. Tables and graphs for facilitating the computation of spectral energy distribution by Planck's formula. Misc. Pub. NBS No. 56, March 21, 1925.
- [24] H. J. Keegan, M. A. Belknap, and D. J. Cordrey. Spectral transmissive properties of five selected optical glasses. J. Research NBS 52, 305 (1954); RP 2505.

6

K

P

Appendix A

ľ

Set of the Ozalid prints of the 24 original recordings of the visible and the near infrared spectral transmittance (400 to 1080 millimicrons) made on a General Electric recording spectrophotometer for the aerial and hand camera lenses and photographic filters studied in this report. An index to the spectrophotometric curves of this set are listed in the following table, together with the dates of measurement.

Index to Appendix A

GE Graph Sheet Serial No., and Date Measured Near Infrared Object Visible Curve Spectrum Sample Designation Spectrum Number Number (1)GE II-1415 GE II-1416 4 Rear cell, B&L Metrogon lens, 6", f/6.3, Serial No. UF-6016 March 17, 1954 (2)Assembled, B&L Metrogon lens, (No direct measurement made) 6", f/6.3, Serial No. UF-6016 4 (3) Front cell, B&L lens, 12", -1413 -1414 March 17, 1954 f/4.5, Serial No. LF-8123 (4)-1/11 4 Rear cell, B&L lens, 12", -1412 March 16, 1954 f/4.5, Serial No. LF-8123 (5) Assembled, B&L lens, 12", (No direct measurement made) f/4.5, Serial No. LF-8123 (6) -1417 -1418 4 Yellow glass filter for use March 17, 1954 with Metrogon lens, filter only 5 (7)-1418 Yellow glass filter for use March 17, 1954 with Metrogon lens, filter and anti-vignetting spot 4 Ansco Xenon lens, 50 mm, f/2, -1237 -1238 (8) June 4, 1953 Serial No. 2563656 Kodak Ektar lens, 80 mm, f/2.8, -1188 -1189 3 and 2 (9)April 20, 1953 Serial No. ET814L 4 and 3 Leitz Elmar lens, 90 mm, f/4, -1195 -1196 (10)April 23, 1953 Serial No. 720367 -1195 -1196 5 and 2(11)Leitz Summitar lens, 50 mm, April 23, 1953 f/2, Serial No. 603453 -1200 -1199 4 Ansco portrait lens, No. 30, (12)April 24, 1953 plus 1, size 6 7 -1197 -1198 (13)Ansco filter, Conversion 10, April 23 and 24, 1953 size 5 (sample a)

Real Providence

		(-
1 d. 1200 e. ¹ 14 e.	ter en	
in a second		î;
1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -	ter and <u>Research</u> States and States and St	
		ť.
	an a	
	an a	
		i y

.

Index to Appendix A (continued)

		and Date Measured	
Obje ct Number	Sample Designation	Visible Near Infrared Spectrum Spectrum	Curve Number
(14)	Ansco filter, Conversion 11, size 5 (sample a)	GE II-1197 GE II-1198 April 23 and 24, 1953	8
(15)	Ansco filter, Conversion 10, size 6 (sample a)	-1200 -1199 April 24, 1953	8
(16)	Ansco filter, Conversion ll, size 6 (sample a)	-1200 -1199 April 24, 1953	9
(17)	Ansco filter, Conversion 10, size 5 (sample b)	-1398 -1399 March 1, 1954	4
(18)	Ansco filter, Conversion ll, size 5 (sample b)	-1398 -1399 March 1, 1954	5
(19)	Ansco filter, Conversion 10, size 6 (sample b)	-1398 -1399 March 1, 1954	6
(20)	Ansco filter, Conversion 11, size 6 (sample b)	-1398 -1399 March 1, 1954	7
(21)	Kodak Wratten filter 80A, series VI	-1400 -1401 March 3, 1954	4
(22)	Kodak Wratten filter 85, series VI	-1400 -1401 March 3, 1954	5
(23)	Ansco filter, UV-15, size 5	-1197 -1198 April 23 and 24, 1953	4
(24)	Ansco filter, UV-16, size 5	-1197 -1198 April 23 and 24, 1953	5
(25)	Ansco filter, UV-17, size 5	-1197 -1198 April 23 and 24, 1953	6
(26)	Ansco filter, UV-15, size 6	-1200 -1199 April 24, 1953	5
(27)	Ansco filter, UV-16, size 6	-1200 -1199 April 24, 1953	6

•

- 1. M. 1. .

- í ..

Index to Appendix A (continued)

.

Object Number	Sample Designation	GE Graph Sheet Serial No., and Date Measured Visible Near Infrared Spectrum Spectrum	Curve Number
(28)	Ansco filter, UV-17, size 6	GE II-1200 GE II-1199 April 24, 1953	7
(29)	Ansco filter, UV-16, size 7	-1190 -1191 April 20, 1953	10
(30)	Ansco filter, UV-17, size 7	-1190 -1191 April 20, 1953	9
(31)	Kodak Wratten filter A, series VII	-1190 -1191 April 20, 1953	4
(32)	Kodak Wratten filter B, series VII	-1190 -1191 April 20, 1953	6
(33)	Kodak Wratten filter C5, series VII	-1190 -1191 April 20, 1953	5
(34)	Kodak Wratten filter N, series VII	-1190 -1191 April 20, 1953	7
(35)	Kodak Wratten filter Aero 2, series VII	-1190 -1191 April 20, 1953	8

Appendix B

Tables of visible and near-infrared spectral-transmittance data (400 to 1080 millimicrons) of thirty-five components of lenses and of filters used with aerial and hand cameras. Values of spectral transmittance were read at 10 millimicron intervals from the 2½ recordings in Appendix A. For the overlapping segments of the region 730 to 750 millimicrons, an average of both determinations in each case is reported.

Aerial-Camera Lens

- 144 -

Spectral Transmittance, T_{λ} , of the Rear Lens Cell, and of the Assembled Lens (Assuming the Front Lens Cell to have the same Spectral Transmittance, T_{λ} , as the Rear Lens Cell) of a Bausch & Lomb Metrogon Lens, 6 inch focal length, f/6.3, Serial No. UF-6016. (See Index to Appendix A, and GE Graph Sheets Serial No. GE II - 1415, -1416.)

	Rear I	ens Cel	11	As	semble	ed Lens	
Wave Length <u>mu</u>	Τ _λ	Wave Length <u>mµ</u>	Τ _λ	Wave Length mu	Tλ	Wave Length mu	Τ _λ
400 10 20 30 40	0.765 .790 .804 .812 .815	750 60 70 80 90	0.810 .810 .810 .809 .808	400 10 20 30 40	0.585 .624 .646 .659 .664	750 60 70 80 90	0.656 .656 .654 .654
450 60 70 80 90	.818 .822 .825 .826 .828	800 10 20 30 40	.807 .806 .806 .804 .804	450 60 70 80 90	.669 .676 .681 .682 .686	800 10 20 30 40	.651 .650 .650 .646 .646
500 10 20 30 40	.828 .828 .828 .828 .828 .828	850 60 70 80 90	.803 .803 .802 .801 .800	500 10 20 30 40	.686 .686 .686 .686	850 60 70 80 90	.645 .645 .643 .642 .640
550 60 70 80 90	.828 .827 .826 .825 .824	900 10 20 30 40	•799 •799 •798 •798 •797	550 60 70 80 90	.686 .684 .682 .681 .679	900 10 20 30 40	•638 •638 •637 •637 •635
600 10 20 30 40	.823 .821 .820 .819 .818	950 60 70 80 90	• 797 • 796 • 796 • 795 • 795	600 10 20 30 40	.677 .674 .672 .671 .669	950 60 70 80 90	.635 .634 .634 .632 .632
650 60 70 80 90	.817 .816 .816 .815 .815	1000 10 20 30 40	• 794 • 794 • 794 • 794 • 794	650 60 70 80 90	.667 .666 .666 .664 .664	1000 10 20 30 40	.630 .630 .630 .630 .630
700 10 20 30 40	.814 .813 .813 .812 .811	1050 60 70 80	• 794 • 794 • 793 • 793	700 10 20 30 40	.663 .661 .661 .659 .658	1050 60 70 80	.630 .630 .629 .629

Aerial-Camera Lens

- 145 -

Spectral Transmittance, T_{λ} , of the Front Lens Cell, the Rear Lens Cell, and of the Assembled Lens, of a Bausch & Lomb Lens, 12 inch focal length, f/4.5, Serial No. LF-8123. (See Index to Appendix A, and GE Graph Sheets Serial No. GE II - 1413, -1414.)

Fr	ont Le	ens Cell	-	Re	ear Lei	ns Cell		As	ssemble	d Lens	
Wave Length <u>mu</u>		Wave Length <u>mu</u>	Τ _λ	Wave Length <u>mu</u>	Τ _λ	Wave Length <u>mu</u>	Τ _λ	Wave Length 	Τ _λ	Wave Length <u>mu</u>	Τ _λ
400	0.759	750	0.899	400	0.786	750	0.911	400	0.597	750	0.819
10	.810	60	.898	10	.820	60	.907	10	.664	60	.814
20	.834	70	.895	20	.836	70	.905	20	.697	70	.810
30	.853	80	.891	30	.852	80	.903	30	.727	80	.805
40	.866	90	.888	40	.862	90	.900	40	.746	90	.799
450	.881	800	.885	450	.876	800	.898	450	•772	800	• 795
60	.897	10	.882	60	.891	10	.895	60	•799	10	• 789
70	.910	20	.880	70	.903	20	.892	70	•822	20	• 785
80	.917	30	.876	80	.912	30	.890	80	•836	30	• 780
90	.923	40	.874	90	.918	40	.887	90	•847	40	• 775
500	.928	850	.870	500	•923	850	.884	500	.857	850	•769
10	.932	60	.868	10	•928	60	.882	10	.865	60	•766
20	.936	70	.865	20	•932	70	.879	20	.872	7 0	•760
30	.938	80	.862	30	•935	80	.877	30	.877	80	•756
40	.940	90	.860	40	•938	90	.874	40	.882	90	•752
550	. 940	900	.857	550	•939	900	.872	550	.883	900	• 747
60	. 941	10	.855	60	•940	10	.870	60	.885	10	• 744
70	. 940	20	.853	70	•939	20	.867	70	.883	20	• 740
80	. 938	30	.851	80	•938	30	.866	80	.880	30	• 737
90	. 934	40	.850	90	•937	40	.864	90	.875	40	• 734
600	•933	950	.848	600	• 935	950	.862	600	.872	950	•731
10	•931	60	.846	10	• 933	60	.859	10	.869	60	•727
20	•928	70	.844	20	• 932	70	.857	20	.865	70	•723
30	•926	80	.842	30	• 929	80	.856	30	.860	80	•721
40	•923	90	.842	40	• 928	90	.856	40	.857	90	•720
650	.920	1000	•840	650	•926	1000	.854	650	.852	1000	•717
60	.917	10	•839	60	•924	10	.853	60	.847	10	•716
70	.916	20	•838	70	•924	20	.852	70	.846	20	•714
80	.916	30	•837	80	•924	30	.851	80	.846	30	•712
90	.914	140	•837	90	•924	40	.850	90	.844	40	•711
700 10 20 30 40	.912 .910 .907 .905 .902	1050 60 70 80	•836 •836 •835 •833	700 10 20 30 40	.922 .921 .919 .915 .913	1050 60 70 80	.850 .849 .848 .846	700 10 20 30 40	-841 -838 -834 -828 -824	1050 60 70 80	

Aerial-Camera Filter

Spectral Transmittance, T_{λ} , of a Yellow Glass Filter for use with the Bausch & Lomb Metrogon Lens. (See Index to Appendix A, and GE Graph Sheets Serial No. GE II - 1417, -1418.)

Fi]	Lter	Onl	-y
-----	------	-----	----

Filter	and	Anti-	Vigne	tting,
Neutral	-Den	sity	Film	

wave Length mu	Tλ	Wave Length <u>m</u> u	Tλ	Wave Length <u>mu</u>	Τ _λ	Length mu	Τ _λ
400 10 20 30 40	0.000 .000 .000 .000 .000	750 60 70 80 90	0.800 .795 .789 .783 .777	400 10 20 30 40	0.000 .000 .000 .000 .000	750 60 70 80 90	0.472** .469* .466* .463* .463*
450 60 70 80 90	.000 .000 .000 .000 .000	800 10 20 30 40	•771 •765 •760 •754 •750	450 60 70 80 90	.000 .000 .000 .000 .000	800 10 20 30 40	.458* .456* .453* .450* .450*
500 10 20 30 40	.024 .312 .568 .654 .704	850 60 70 80 90	•744 •739 •734 •729 •724	500 10 20 30 40	.014 .174 .315 .365 .393	850 60 70 80 90	• 445* • 444* • 444* • 439* • 438*
550 60 70 80 90	.738 .766 .787 .806 .819	900 10 20 30 40	.720 .716 .712 .709 .706	550 60 70 80 90	.413 .430 .443 .454 .462	900 10 20 30 40	.437* .436* .434*
600 10 20 30 40	.829 .835 .840 .842 .843	950 60 70 80 90	• 703 • 700 • 698 • 696 • 694	600 10 20 30 40	.467 .472 .475 .475 .477 .479	950 60 70 80 90	
650 60 70 80 90	.842 .841 .839 .836 .831	1000 10 20 30 40	.692 .690 .688 .688 .688	650 60 70 80 90	.479 .480 .481 .481 .481	1000 10 20 30 40	
700 10 20 30 40	.827 .822 .817 .811 .806	1050 60 70 80	.686 .686 .685 .684	700 10 20 30 40	•477 •475 •474 •475 •473	1050 60 70 80	

* Adjusted values.

Hand-Camera Lens

Spectral Transmittance, T_{λ} , of an Ansco Xenon Lens, 50 millimeter focal length, f/2, Serial No. 2563656. (See Index to Appendix A, and GE Graph Sheets Serial No. GE II - 1237, -1238.)

Wave Length mu	Τ _λ	Wave Length <u>mu</u>	Τ _λ
400	0.685	750	0.782
10	.718	60	.779
20	.739	70	.777
30	.756	80	.771
40	.770	90	.771
450	.782	800	.768
60	.792	10	.768
70	.801	20	.763
80	.809	30	.761
90	.816	40	.758
500	.820	850	• 756
10	.824	60	• 753
20	.826	70	• 751
30	.828	80	• 750
40	.828	90	• 748
550	.829	900	.747
60	.829	10	
70	.828	20	
80	.825	30	
90	.825	40	
600	.821	950	
10	.819	60	
20	.817	70	
30	.814	80	
40	.814	90	
650 60 70 80 90	.808 .805 .804 .801 .799	1000 10 20 30 40	8 2) 8 2) 8 2) 8 2) 8 2) 8 2) 8 2) 8 2)
700 10 20 30 40	•798 •795 •792 •788 •784	1050 60 70 80	88 88 88 88 88 88 88 88 88 88 88 88 88

Hand-Camera Lens

Spectral Transmittance, T_{λ} , of an Eastman Kodak Ektar Lens, 80 millimeter focal length, f/2.8, Serial No. ET814L. (See Index to Appendix A, and GE Graph Sheets Serial No. GE II - 1188, -1189.)

Wave Length mu	Τ _λ	Wave Length <u>mu</u>	Τ _λ
400	0.661	750	0.905
10	.709	60	.904
20	.741	70	.901
30	.767	80	.899
40	.785	90	.896
450	.805	800	.894
60	.825	10	.891
70	.841	20	.888
80	.855	30	.886
90	.868	40	.886
500	.880	850	.880
10	.890	60	.877
20	.898	70	.875
30	.904	80	.872
40	.910	90	.872
550	.914	900	.867
60	.916	10	.865
70	.919	20	.861
80	.920	30	.859
90	.921	40	.859
600 10 20 30 40	.923 .924 .924 .924 .924 .923	950 60 70 80 90	.854 .853 .851 .848 .845
650	.922	1000	.843
60	.922	10	.842
70	.920	20	.840
80	.918	30	.839
90	.918	40	.835
700 10 20 30	.915 .914 .911 .910 .907	1050 60 70 80	.835 .833 .832 .831

	223		*
	. 7	- 5 4	
,			
			\$ ₅
		κ. ·	

Hand-Camera Lens

Spectral Transmittance, T_{λ} , of an E. Leitz Elmar Lens, 90 millimeter focal length, f/4, Serial No. 720367, and an E. Leitz Summitar Lens, 50 millimeter focal length, f/2, Serial No. 603453. (See Index to Appendix A, and GE Graph Sheets Serial No. GE II - 1195, -1196.)

	Elmar	Lens				Summita	ar Lens	
Wave Length <u>mu</u>	Tλ	Wave Length <u>mu</u>	Τ _λ	L	Wave ength mu	T _λ	Wave Length <u>mu</u>	Τ _λ
400	0.674	7 50	0.903		400	0.627	750	0,827
10	.704	60	.903		10	.676	60	.826
20	.724	70	.902		20	.709	70	.824
30	.740	80	.901		30	.734	80	.820
40	.754	90	.900		40	.754	90	.818
450	.770	800	. 899		450	.770	800	.814
60	.785	10	. 897		60	.785	10	.812
70	.797	20	. 896		70	.799	20	.809
80	.808	30	. 895		80	.812	30	.806
90	.819	40	. 893		90	.822	40	.804
500	.830	850	.891		500	.830	850	.800
10	.838	60	.890		10	.838	60	.798
20	.848	70	.888		20	.844	70	.795
30	.854	80	.886		30	.848	80	.792
40	.854	90	.886		40	.851	90	.789
550	.868	900	.884		550	.854	900	• 788
60	.874	10	.882		60	.856	10	• 785
70	.879	20	.880		70	.857	20	• 782
80	.882	30	.878		80	.857	30	• 780
90	.882	40	.878		90	.856	40	• 779
600	• 889	950	.875		600	.855	950	•777
10	• 892	60	.873		10	.854	60	•774
20	• 895	70	.871		20	.853	70	•771
30	• 896	80	.870		30	.850	80	•769
40	• 899	90	.868		40	.850	90	•767
650	. 900	1000	.867		650	.848	1000	•766
60	. 901	10	.865		60	.846	10	•764
70	. 904	20	.864		70	.844	20	•762
80	. 904	30	.863		80	.842	30	•761
90	. 905	40	.860		90	.842	40	•759
700 10 20 30 40	。905 。906 。906 。906 。904	1050 60 70 80	.858 .857 .856 .855		700 10 20 30 40	.838 .836 .834 .832 .830	1050 60 70 80	•758 •75 7 •756 •754

Hand-Camera Supplementary Lens

Spectral Transmittance, T_{λ} , of an Ansco No. 30 Portrait Lens, Plus 1, Size 6. (See Index to Appendix A, and GE Graph Sheets Serial No. GE II - 1200, -1199.)

No. F	30 Por Plus 1,	trait 1 Size (Lens S
Wave Length mu	Τ _λ	Wave Length <u>mu</u>	
400 10 20 30 40	0.912 .912 .912 .914 .914	750 60 70 80 90	0.912 .912 .912 .911 .911
450 60 70 80 90	.915 .916 .918 .918 .918	800 10 20 30 40	.911 .910 .910 .910 .910
500 10 20 30 40	.918 .918 .918 .918 .918 .918	850 60 70 80 90	•909 •909 •908 •908 •907
550 60 70 80 90	.918 .918 .918 .918 .918 .918	900 10 20 30 40	.907 .906 .906 .906 .906
600 10 20 30 40	.917 .916 .916 .915 .915	950 60 70 80 90	• 906 • 906 • 906 • 906 • 906
650 60 70 80 90	.915 .914 .914 .914 .914 .913	1000 10 20 30 40	.906 .907 .907 .907 .907
700 10 20 30 40	.913 .914 .913 .912 .912	1050 60 70 80	• 907 • 907 • 907 • 907

Spectral Transmittance, T_{λ} , of an Ansco Filter, Conversion 10, Size 5 (sample a), and an Ansco Filter, Conversion 11, Size 5 (sample a). (See Index to Appendix A, and GE Graph Sheets Serial No. GE II - 1197, -1198.)

(Convers Size	sion 10 5		(Convers Size	sion ll e 5 le a)	
Wave Length <u>mu</u>	Τ _λ	Wave Length <u>mu</u>	Τ _λ	Wave Length mu	Τ _λ	Wave Length <u>mu</u>	Τ _λ
400	0.683	750	0.701	400	0.150	750	0.856
10	.717	60	.763	10	.133	60	.851
20	.740	70	.800	20	.130	70	.849
30	.747	80	.822	30	.141	80	.846
40	.742	90	.831	40	.164	90	.843
450	.726	800	.835	450	.202	800	.840
60	.707	10	.835	60	.255	10	.837
70	.667	20	.834	70	.314	20	.834
80	.602	30	.831	80	.369	30	.831
90	.533	40	.831	90	.420	40	.831
500 10 20 30 40	.485 .424 .318 .236 .251	850 60 70 80 90	.827 .826 .824 .821 .821 .820	500 10 20 30 40	.456 .474 .482 .495 .525	850 60 70 80 90	.827 .826 .824 .821 .821 .819
550	.360	900	.820	550	• 558	900	.817
60	.445	10	.819	60	• 595	10	.815
70	.450	20	.817	70	• 649	20	.814
80	.423	30	.816	80	• 728	30	.812
90	.391	40	.815	90	• 804	40	.812
600	.340	950	.814	600	.852	950	.810
10	.276	60	.813	10	.875	60	.810
20	.216	70	.811	20	.883	70	.809
30	.192	80	.810	30	.885	80	.807
40	.210	90	.810	40	.885	90	.807
650	.214	1000	.809	650	.883	1000	.806
60	.189	10	.809	60	.880	10	.805
70	.159	20	.809	70	.879	20	.805
80	.131	30	.808	80	.876	30	.805
90	.172	40	.808	90	.874	40	.804
700 10 20 30 40	.309 .435 .510 .573 .634	1050 60 70 80	.808 .807 .807 .807	700 10 20 30 40	.870 .869 .865 .861 .858	1050 60 70 80	.803 .803 .802 .802

Spectral Transmittance, T_{λ} , of an Ansco Filter, Conversion 10, Size 6 (sample a), and an Ansco Filter, Conversion 11, Size 6 (sample a). (See Index to Appendix A, and GE Graph Sheets Serial No. GE II - 1200, -1199.)

(Convers Size	sion 10 e 6		(Conversion 11 Size 6					
Wave Length <u>mu</u>	(samp) T _λ	Wave Length	Τ _λ	Wave Length <u>mu</u>	T_{λ}	.e a) Wave Length 	Τ _λ			
400	0.676	750	0.695	400	0.141	750	0.854			
10	.708	60	.757	10	.126	60	.850			
20	.727	70	.791	20	.125	70	.846			
30	.735	80	.810	30	.135	80	.844			
40	.730	90	.817	40	.158	90	.844			
450	.711	800	.821	450	.199	800	.837			
60	.686	10	.821	60	.250	10	.834			
70	.650	20	.819	70	.305	20	.831			
80	.585	30	.817	80	.360	30	.828			
90	.506	40	.815	90	.lul	40	.825			
500	.454	850	.812	500	.449	850	.823			
10	.391	60	.810	10	.467	60	.821			
20	.282	70	.808	20	.474	70	.817			
30	.199	80	.805	30	.488	80	.815			
40	.216	90	.804	40	.516	90	.813			
550	.331	900	.801.	550	•551	900	.810			
60	.425	10	.800	60	•588	10	.809			
70	.438	20	.797	70	•643	20	.807			
80	.412	30	.796	80	•723	30	.806			
90	.382	40	.796	90	•802	40	.805			
600	.331	950	•795	600	.853	950	.804			
10	.266	60	•794	10	.875	60	.802			
20	.207	70	•792	20	.882	70	.802			
30	.181	80	•791	30	.883	80	.801			
40	.197	90	•790	40	.883	90	.801			
650 60 70 80 90	.202 .180 .151 .122 .159	1000 10 20 30 40	。790 。789 。788 。787 。787	650 60 70 80 90	.883 .879 .879 .879 .876 .873	1000 10 20 30 40	•800 •799 •798 •797 •797			
700 10 20 30 40	.286 .407 .493 .569 .633	1050 60 70 80	。787 。787 。788 。790	700 10 20 30 40	.869 .868 .866 .861 .859	1050 60 70 80	•796 •796 •796 •796			

Spectral Transmittance, T_{λ} , of an Ansco Filter, Conversion 10, Size 5 (sample b), and an Ansco Filter, Conversion 11, Size 5 (sample b). (See Index to Appendix A, and GE Graph Sheets Serial No. GE II - 1398, -1399.)

(Convers Size	sion 10		(Conver: Size	sion ll	
Wave Length mµ	(samp) Τ _λ	Wave Length <u>mu</u>	Τ _λ	Wave Length <u>mu</u>	(samp. Τ _λ	Wave Length 	Τ _λ
400 10 20 30 40	0.681 .717 .738 .746 .740	750 60 70 80 90	0.707 .761 .800 .823 .833	400 10 20 30 40	0.150 .133 .130 .137 .158	750 60 70 80 90	0.858 .855 .852 .850 .850 .846
450 60 70 80 90	•723 •700 •666 •600 •532	800 10 20 30 40	.837 .837 .837 .835 .835	450 60 70 80 90	.200 .250 .308 .363 .412	800 10 20 30 40	.844 .841 .838 .835 .835
500 10 20 30 40	.486 .427 .318 .234 .256	850 60 70 80 90	.831 .828 .827 .826 .824	500 10 20 30 40	•450 •470 •476 •490 •520	850 60 70 80 90	.831 .828 .826 .825 .825
550 60 70 80 90	• 367 • 449 • 450 • 423 • 390	900 10 20 30 40	.822 .820 .818 .816 .815	550 60 70 80 90	• 554 • 592 • 649 • 731 • 808	900 10 20 30 40	.820 .819 .817 .816 .815
600 10 20 30 40	•336 •274 •215 •194 •210	950 60 70 80 90	.814 .814 .813 .813 .813 .812	600 10 20 30 40	.854 .875 .884 .885 .885	950 60 70 80 90	.814 .813 .812 .811 .811
650 60 70 80 90	.214 .188 .158 .134 .173	1000 10 20 30 40	.812 .812 .810 .810 .810	650 60 70 80 90	.884 .882 .880 .877 .874	1000 10 20 30 40	.810 .809 .809 .809 .809
700 10 20 30 40	.311 .439 .513 .574 .635	1050 60 70 80	.810 .810 .810 .810	700 10 20 30 40	.872 .869 .866 .864 .862	1050 60 70 80	.809 .809 .809 .809

Spectral Transmittance, T_{λ} , of an Ansco Filter, Conversion 10, Size 6 (sample b), and an Ansco Filter, Conversion 11, Size 6 (sample b). (See Index to Appendix A, and GE Graph Sheets Serial No. GE II - 1398, -1399.)

(Convers Size (samo]	sion 10 e 6 Le b)		(Convers Size (samo)	sion 11 e 6 Le b)	
Wave Length Mu	Τ _λ	Wave Length mu	Τ _λ	Wave Length <u>mu</u>	T _λ	Wave Length <u>mu</u>	Τ _λ
400 10 20 30 40	0.678 .706 .729 .736 .730	750 60 70 80 90	0.707 .761 .793 .813 .820	400 10 20 30 40	0.116 .131 .128 .137 .158	750 60 70 80 90	0.853 .851 .848 .846 .846 .842
450 60 70 80 90	.711 .686 .649 .580 .505	800 10 20 30 40	.822 .822 .821 .817 .816	450 60 70 80 90	.200 .250 .308 .363 .412	800 10 20 30 40	.838 .835 .832 .829 .829 .826
500 10 20 30 40	.454 .391 .284 .199 .219	850 60 70 80 90	.814 .811 .810 .807 .805	500 10 20 30 40	•450 •467 •474 •490 •520	850 60 70 80 90	.824 .821 .819 .817 .815
550 60 70 80 90	• 339 • 426 • 438 • 409 • 377	900 10 20 30 40	.804 .801 .799 .799 .796	550 60 70 80 90	。554 。592 。649 。731 。808	900 10 20 30 40	.813 .811 .810 .809 .807
600 10 20 30 40	.325 .262 .204 .183 .197	950 60 70 80 90	• 795 • 7 94 • 794 • 793 • 792	600 10 20 30 40	.854 .874 .880 .882 .882	950 60 70 80 90	.805 .805 .804 .803 .803
650 60 70 80 90	.200 .179 .150 .125 .160	1000 10 20 30 40	•791 •790 •790 •789 •789	650 60 70 80 90	.880 .878 .876 .873 .873	1000 10 20 30 40	.801 .800 .800 .800 .800
700 10 20 30 40	. 284 . 410 . 499 . 574 . 634	1050 60 70 80	•790 •790 •790 •791	700 10 20 30 40	.867 .864 .862 .860 .856	1050 60 70 80	.800 .800 .800 .800

I

Spectral Transmittance, T_{λ} , of an Eastman Kodak Filter, Wratten 80A, Series VI, and an Eastman Kodak Filter, Wratten 85, Series VI. (See Index to Appendix A, and GE Graph Sheets Serial No. GE II - 1400, -1401.)

	Wra ⁻ Sei	tten 80A ries VI	L	Wi	Series	85 V I	
Wave Length mu	Τ λ	Wave Length <u>mu</u>	Tλ	Wave Length <u>m</u> u	Τ _λ	Wave Length <u>mu</u>	Tλ
400 10 20 30 40	0.639 .702 .742 .751 .736	750 60 70 80 90	0.549 .660 .735 .790 .827	400 10 20 30 40	0.041 .152 .247 .292 .319	750 60 70 80 90	0.896 .896 .895 .893 .893
450 60 70 80 90	。709 。666 。616 。558 。492	800 10 20 30 40	.847 .858 .866 .868 .871	450 60 70 80 90	. 336 . 361 . 390 . 412 . 435	800 10 20 30 40	.891 .890 .889 .888 .888
500 10 20 30 40	.432 .372 .324 .284 .256	850 60 70 80 90	.871 .872 .873 .873 .873	500 10 20 30 40	. 454 . 455 . 449 . 452 . 464	850 60 70 80 90 ³	.886 .885 .884 .884 .884
550 60 70 80 90	。232 。218 。214 。216 。224	900 10 20 30 40	.873 .872 .872 .872 .872 .872	550 60 70 80 90	.486 .549 .656 .771 .842	900 10 20 30 40	.882 .882 .881 .880 .880
600 10 20 30 40	.225 .216 .195 .166 .145	950 60 70 80 90	.872 .872 .871 .871 .871	600 10 20 30 40	.876 .891 .899 .900 .902	950 60 70 80 90	.880 .880 .879 .879 .879
650 60 70 80 90	.134 .128 .124 .124 .115 .105	1000 10 20 30 40	.870 .870 .869 .869 .868	650 60 70 80 90	。902 。902 。902 。903 。903	1000 10 20 30 40	•877 •877 •876 •876 •876
700 10 20 30 40	.106 .128 .184 .296 .421	1050 60 70 80	.870 .870 .871 .871	700 10 20 30 40	•900 •899 •898 •898 •898	1050 60 70 80	•877 •877 •877 •877

- 156 -

Hand-Camera Filters

Spectral Transmittance, T_{λ} , of an Ansco Filter, UV-15, Size 5, of an Ansco Filter, UV-16, Size 5, and of an Ansco Filter, UV-17, Size 5. (See Index to Appendix A, and GE Graph Sheets Serial No. GE II - 1197, -1198.)

UV-15 Size 5						-16 • 5		UV-17 Size 5				
	Wave Length <u>mu</u>	Tλ	Wave Length mµ	Tλ	Wave Length <u>mu</u>	Τ _λ	Wave Length <u>mu</u>	Tλ	Wave Length 	\mathtt{T}_{λ}	Wave Length mu	Т
	400 10 20 30 40	0.658 .662 .679 .708 .734	750 60 70 80 90	0.850 .846 .844 .840 .837	400 10 20 30 40	0.365 .546 .686 .765 .806	750 60 70 80 90	0.850 .846 .844 .840 .840 .837	400 10 20 30 40	0.197 •397 •601 •725 •792	750 60 70 80 90	0.856 .851 .849 .846 .843
	450	•770	800	•834	450	.836	800	.834	450	.831	800	.840
	60	•805	10	•831	60	.855	10	.831	60	.855	10	.837
	70	•835	20	•826	70	.869	20	.826	70	.869	20	.834
	80	•857	30	•824	80	.878	30	.824	80	.878	30	.831
	90	•872	40	•822	90	.884	40	.822	90	.884	40	.830
	500	.883	850	.819	500	.890	850	.819	500	.890	850	.827
	10	.891	60	.816	10	.895	60	.816	10	.895	60	.826
	20	.895	70	.814	20	.896	70	.814	20	.896	70	.824
	30	.898	80	.811	30	.898	80	.811	30	.898	80	.821
	40	.898	90	.809	40	.899	90	.809	40	.898	90	.821
	550	•900	900	.808	550	• 900	900	.808	550	•900	900	.817
	60	•900	10	.805	60	• 900	10	.805	60	•900	10	.815
	70	•898	20	.805	70	• 898	20	.805	70	•898	20	.814
	80	•897	30	.803	80	• 897	30	.803	80	•897	30	.812
	90	•895	40	.801	90	• 895	40	.801	90	•895	40	.811
	600	.893	950	.800	600	.893	950	.800	600	.893	950	.810
	10	.891	60	.800	10	.891	60	.800	10	.891	60	.810
	20	.887	70	.798	20	.888	70	.798	20	.890	70	.809
	30	.884	80	.797	30	.885	80	.797	30	.886	80	.807
	40	.884	90	.796	40	.885	90	.796	40	.884	90	.807
	650	.879	1000	• 796	650	.880	1000	。796	650	•883	1000	.806
	60	.876	10	• 795	60	.878	10	。795	60	•880	10	.805
	70	.874	20	• 794	70	.875	20	。794	70	•879	20	.805
	80	.871	30	• 794	80	.872	30	。794	80	•876	30	.805
	90	.868	40	• 793	90	.869	40	。793	90	•874	40	.804
	700 10 20 30 40	•865 •863 •860 •856 •855	1050 60 70 80	•793 •793 •792 •792	700 10 20 30 40	.866 .863 .860 .856 .855	1050 60 70 80	•793 •793 •792 •792	700 10 20 30 40	.870 .869 .865 .861 .858	1050 60 70 80	.803 .803 .802 .802

1

- 157 -

Hand-Camera Filters

Spectral Transmittance, T_{λ} , of an Ansco Filter, UV-15, Size 6, of an Ansco Filter, UV-16, Size 6, and of an Ansco Filter, UV-17, Size 6. (See Index to Appendix A, and GE Graph Sheets Serial No. GE II - 1200, -1199.)

	UV- Size	-15 e 6			UV∞16 Size 6				Size 6			
Wave Length mu	Τ _λ	Wave Length <u>mu</u>	Τ _λ	Wave Length <u>mµ</u>	Τ _λ	Wave Length <u>mu</u>	Τ _λ	Wave Length 	^T λ	Wave Length <u>mu</u>	Τ _λ	
400 10 20 30 40	0.697 .706 .719 .740 .760	750 60 70 80 90	0.851 .848 .844 .844 .841 .837	400 10 20 30 40	0.285 .474 .636 .735 .785	750 60 70 80 90	0.855 .851 .847 .844 .844	400 10 20 30 40	0.210 .401 .591 .717 .785	750 60 70 80 90	0.855 .852 .848 .846 .846 .842	
450 60 70 80 90	.781 .816 .838 .856 .869	800 10 20 30 40	.833 .831 .828 .825 .825	450 60 70 80 90	.824 .848 .862 .874 .881	800 10 20 30 40	.837 .834 .831 .828 .825	450 60 70 80 90	.824 .850 .866 .875 .884	800 10 20 30 40	.839 .836 .833 .831 .828	
500 10 20 30 40	.879 .886 .891 .895 .895	850 60 70 80 90	.820 .817 .815 .812 .810	500 10 20 30 40	.887 .893 .897 .899 .901	850 60 70 80 90	.823 .821 .817 .815 .813	500 10 20 30 40	.889 .893 .897 .899 .901	850 60 70 80 90	.826 .823 .821 .818 .818	
550 60 70 80 90	.900 .901 .900 .899 .897	900 10 20 30 40	.807 .806 .804 .804 .804	550 60 70 80 90	.902 .902 .901 .899 .897	900 10 20 30 40	.810 .809 .807 .806 .805	550 60 70 80 90	。902 。902 。902 。902 。899	900 10 20 30 40	.814 .812 .811 .810 .808	
600 10 20 30 40	. 895 . 892 . 889 . 887 . 883	950 60 70 80 90	.801 .800 .798 .797 .796	600 10 20 30 40	.895 .892 .889 .889 .887 .883	950 60 70 80 90	.804 .802 .802 .801 .801	600 10 20 30 40	•898 •895 •892 •889 •889	950 60 70 80 90	. 808 . 807 . 806 . 804 . 804	
650 60 70 80 90	.883 .879 .878 .874 .874	1000 10 20 30 40	•796 •795 •795 •794 •794	650 60 70 80 90	.883 .879 .879 .876 .873	1000 10 20 30 40	.800 .799 .798 .797 .797	650 60 70 80 90	.885 .882 .881 .877 .875	1000 10 20 30 40	.803 .803 .801 .801 .801	
700 10 20 30 40	.868 .867 .862 .858 .854	1050 60 70 80	•794 •794 •791 •790	700 10 20 30 40	.869 .868 .866 .861 .858	1.050 60 70 80	.796 .796 .796 .796	700 10 20 30 40	.871 .870 .866 .861 .858	1050 60 70 80	.801 .801 .801 .801	

]

Spectral Transmittance, T_{λ} , of an Ansco Filter, UV-16, Size 7, and of an Ansco Filter, UV-17, Size 7. (See Index to Appendix A, and GE Graph Sheets Serial No. GE II - 1190, -1191.)

	UV-1 Size	L6 € 7		UV-17 Size 7					
Wave Length Mu	Τ _λ	Wave Length <u>mu</u>	Tλ	Wave Length Mu	Τ _λ	Wave Length <u>mu</u>	Tλ		
400	0.298	750	0.809	400	0.150	750	0.818		
10	.496	60	.802	10	.349	60	.811		
20	.671	70	.797	20	.573	70	.806		
30	.764	80	.791	30	.713	80	.801		
40	.812	90	.787	40	.784	90	.796		
450	.844	800	.782	450	.825	800	.791		
60	.861	10	.776	60	.850	10	.786		
70	.873	20	.772	70	.865	20	.782		
80	.881	30	.767	80	.875	30	.777		
90	.886	40	.763	90	.881	40	.773		
500	.890	850	•760	500	.885	850	•770		
10	.892	60	•756	10	.888	60	•766		
20	.893	70	•752	20	.890	70	•763		
30	.893	80	•748	30	.891	80	•760		
40	.893	90	•746	40	.891	90	•757		
550	. 893	900	•743	550	.893	900	• 754		
60	. 892	10	•740	60	.893	10	• 751		
70	. 891	20	•738	70	.893	20	• 748		
80	. 888	30	•736	80	.892	30	• 747		
90	. 884	40	•733	90	.892	40	• 745		
600	.881	950	。732	600	.886	950	•742		
10	.878	60	。730	10	.883	60	•741		
20	.875	70	。728	20	.879	70	•741		
30	.869	80	。726	30	.876	80	•740		
40	.864	90	。726	40	.871	90	•737		
650 60 70 80 90	.859 .855 .851 .847 .842	1000 10 20 30 40	•725 •724 •724 •724 •724 •722	650 60 70 80 90	.866 .861 .859 .855 .855	1000 10 20 30 40	•737 •736 •736 •736 •734		
700 10 20 30 40	.836 .831 .826 .819 .814	1050 60 70 80	.721 .720 .719 .719	700 10 20 30 40	.844 .839 .832 .827 .822	1050 60 70 80	.734 .731 .731 .731		

- 159 -

Į

Spectral Transmittance, T_{λ} , of an Eastman Kodak Filter, Wratten A, Series VII, of an Eastman Kodak Filter, Wratten B, Series VII, and of an Eastman Kodak Filter, Wratten C5, Series VII. (See Index to Appendix A, and GE Graph Sheets Serial No. GE II - 1190, -1191.)

Wratten A Series VII						Wratten B Series VII				Wratten C5 Series VII			
	Wave Length <u>mu</u>	Τ _λ	Wave Length <u>mu</u>	Τ _λ	Wave Length 	Τ _λ	Wave Length <u>mu</u>	T_{λ}	Wave Length 	Tλ	Wave Length mu	T_{λ}	
	400 10 20 30 40	0.000 .000 .000 .000 .000	750 60 70 80 90	0.860 .858 .856 .855 .853	400 10 20 30 40	0.000 .000 .000 .000 .000	750 60 70 80 90	0.362 .533 .652 .728 .782	400 10 20 30 40	0.073 .181 .354 .460 .488	750 60 70 80 90	0.071 .198 .343 .484 .608	
	450 60 70 80 90	• 000 • 000 • 000 • 000 • 000	800 10 20 30 40	.850 .848 .846 .846 .843	450 60 70 80 90	.000 .000 .000 .010 .055	800 10 20 30 40	.816 .841 .856 .866 .871	450 60 70 80 90	.470 .421 .337 .272 .188	800 10 20 30 40	.692 .752 .790 .816 .8 3 2	
	500 10 20 30 40	。000 。000 。000 。000 。000	850 60 70 80 90	.842 .840 .837 .836 .835	500 10 20 30 40	.205 .428 .551 .554 .486	850 60 70 80 90	.876 .877 .880 .880 .881	500 10 20 30 40	.112 .052 .018 .002 .000	850 60 70 80 90	.843 .850 .854 .859 .861	
	550 60 70 80 90	.000 .000 .000 .000 .115	900 10 20 30 40	.834 .832 .831 .831 .830	550 60 70 80 90	.386 .279 .179 .090 .034	900 10 20 30 40	.881 .881 .881 .882 .882	550 60 70 80 90	• 000 • 000 • 000 • 000	900 10 20 30 40	.862 .864 .865 .866 .866	
	600 10 20 30 40	。536 。760 。821 。841 。850	950 60 70 80 90	.829 .828 .827 .826 .826	600 10 20 30 40	.010 .000 .000 .000	950 60 70 80 90	.882 .882 .882 .882 .882 .882	600 10 20 30 40	•000 •000 •000 •000 •000	950 60 70 80 90	.867 .867 .867 .867 .867	
	650 60 70 80 90	.855 .859 .862 .864	1000 10 20 30 40	.825 .825 .825 .825 .825	650 60 70 80 90	.000 .000 .000 .000	1000 10 20 30 40	.882 .882 .882 .882 .882 .881	650 60 70 80 90	• 000 • 000 • 000 • 000 • 000	1000 10 20 30 40	.867 .867 .867 .867 .867	
	700 10 20 30 40	. 864 . 864 . 862 . 862 . 862 . 861	1050 60 70 80	.824 .822 .819 .819	700 10 20 30 40	.000 .000 .019 .097 .221	1050 60 70 80	.881 .881 .880 .880	700 10 20 30 40	.000 .000 .000 .004 .024	1050 60 70 80	.867 .867 .867 .867	

Spectral Transmittance, T_{λ} , of an Eastman Kodak Filter, Wratten N, Series VII, and of an Eastman Kodak Filter, Wratten Aero 2, Series VII. (See Index to Appendix A, and GE Graph Sheets Serial No. GE II - 1190, -1191.)

	Wratter Series	N VII		Wratten Aero 2 Series VII							
Wave Length 	ι Τ _λ	Wave Length <u>mµ</u>	Tλ		Wave Length <u>mµ</u>	Τ _λ	Wave Length <u>mu</u>	Т _λ			
400 10 20 30 40	0.000 .000 .000 .000 .000	750 60 70 80 90	0.102 .250 .384 .497 .590		400 10 20 30 40	0.000 .000 .000 .000 .000	750 60 70 80 90	0.865 .862 .861 .859 .857			
450 60 70 80 90	000 000 000 006 060	800 10 20 30 40	.655 .705 .727 .746 .756		450 60 70 80 90	.000 .000 .020 .131 .340	800 10 20 30 40	•855 •852 •851 •850 •847			
500 10 20 30 40	.205 .360 .436 .432 .370	850 60 70 80 90	•759 •768 •771 •772 •772		500 10 20 30 40	• 545 • 674 • 742 • 779 • 804	850 60 70 80 90	. 847 . 844 . 842 . 842 . 841 . 840			
550 60 70 80 90	.284 .190 .107 .050 .018	900 10 20 30 40	•772 •772 •772 •772 •772		550 60 70 80 90	.821 .836 .848 .857 .864	900 10 20 30 40	.838 .837 .836 .836 .835			
600 10 20 30 40	• 001 • 000 • 000 • 000	950 60 70 80 90	•771 •771 •771 •771 •770		600 10 20 30 40	.868 .872 .874 .875 .875	950 60 70 80 90	.835 .833 .832 .831 .831			
650 60 70 80 90	• 000 • 000 • 000 • 000 • 000	1000 10 20 30 40	•770 •770 •770 •769 •769		650 60 70 80 90	.874 .875 .875 .875 .875 .873	1000 10 20 30 40	.831 .831 .830 .829 .829			
700 10 20 30 40	.000 .000 .000 .004 .034	1050 60 70 80	•767 •767 •767 •767		700 10 20 30 40	.872 .871 .870 .868 .866	1050 60 70 80	.828 .828 .827 .827			

Appendix C

Copies of the four requests authorizing the studies on the aerial- and hand-camera lenses and filters herein reported are included in this appendix together with other information on the disposition of the data. It will be noted that some of the camera lenses, both aerial and hand, could not be measured on the presently unmodified General Electric recording spectrophotometer. The unsuitable size of the optical elements or of the mounts of the camera lenses interfered with either the optical path of the light beam through the sample or with the comparison light beam of the instrument.

.

The following are copies of the original work requests received from Dr. O'Neill for hand-camera lenses and filters. Also included are copies of the WADC telegram requesting measurements of the aerial-camera lenses and filters, together with the NBS answer, and NBS notes on both of these matters.

* * * * *

Serial Number 2.1 WADC-17/53 (A)

April 20, 1953

July 13, 1953

"Spectrophotometric curves of filters, lenses, etc. for use with Hasselblad, Karomat, Speedex, Viking and other cameras".

* * * * *

Serial Number 2.1 WADC-17/53 (B)

"Spectrophotometric curves of the filters accompanying Fr. Dutilly's Hasselblad camera on clear Ozachrome cellulose acetate. These filters are: UV 16, UV 17, Aero 2 (yellow), Wratten A (red), Green B, Green N, Blue C-5. Also on Ozachrome cellulose acetate clear, a considerable number of spectrophotometric curves which you have already determined and which are of sufficient importance to justify making duplicates on this transparent medium for the purpose of comparison on a light-table".

"This request may be considered as duplicating a previous request. It is sent to make clearer what we need, if such clarification is necessary. If not, this request should be destroyed".

* * * * *

Note JCS to HJK

September 16, 1953

February 25, 1954

"One set of each of the single and the double Ozachromes given to Dr. O'Neill. Dr. O'Neill also has four sets of double Ozalids of two double sheets of lenses and filters, GE II-1188, - 1189, -1190, and -1191".

* * * * *

Serial Number 2.1 WADC-17/53 (C)

"Please determine the spectrophotometric curves of the following filters which will be used in experimental photography for WADC in the near future: Two conversion filters No. 10 Ansco, Series V and VI; and two conversion filters No. 11 Ansco, Series V and VI. These are herewith. They are for using Ansco Color Daylight film in tungsten-light illumination and Ansco Color tungsten-light film used in daylight. As these conversion filters differ very notably even to the eye, from similar conversion filters for Eastman's Kodachrome, we also wish to have similarly studied the Kodak

- 163 -

conversion filters which we will deliver next week but in size Series VI only. It is believed the curves resulting from these studies will enable us to understand the different results obtained when using the two corresponding films, at least to some extent".

* * * * *

Telegram

March 11, 1954 152PM

"FM COM WADC Wright Patterson AFB Ohio. To National Bureau of Standards. From WCLFP-1 For Mr. Harry J. Keegan, Spectrophotometry Section".

"Capt. Robert Fisher and T/Sgt Stephen Ujhelyi expect to arrive National Bureau of Standards on 16 March 1954 with four aerial camera lenses, two 24-inch, one 12-inch and one 6-inch to be tested for spectral transmittance characteristics. Please advise if this date not suitable. Photographic Reconnaissance Laboratory WADC."

* * * * *

Telegram March 11, 1954 332P "175 CI WBS /C-NBS/ Washington 3-11-54 332P Commanding General /WCLFP/ Wright Air Development Center, Wright-Patterson Air Force Base, Ohio.

Retel. We shall expect Captain Robert Fisher and Sergeant Stephen Ujhelyi on 16 March 1954. Can measure spectral transmission of 6-inch aerial camera lens. Will try to measure spectral transmission of 12 and 24-inch lenses.

Harry J. Keegan, National Bureau of Standards

* * * * *

Note JCS to HJK

16 1954 6 12 24

JG 334P"

March 17, 1954

"Tracings of visible and near infrared spectral transmittance curves given to Captain Robert Fisher of the following: (1) the rear cell of a Metrogon lens, B & L 6" f/6.3; (2) the front and rear cells of a B & L 12" f/4.5 lens; and (3) a yellow glass filter used with the B & L Metrogon lens, showing the spectral transmittance of the glass filter and the antivignetting neutral density spot of the glass filter".

* * * * *

Note JCS to HJK

April 15, 1955

"Given to Dr. O'Neill, copies of the following: (1) double Ozachromes. GE graph sheet Nos. GE II-1190-1191, 1197-1198, 1200-1199, 1237-1238, 1188-1189; (2) single Ozachromes. GE graph sheet Nos. GE II-1188, 1189, 1190, 1191, 1197, 1198, 1199, 1200, 1237, and 1238".

* * * * *

.

THE NATIONAL BUREAU OF STANDARDS

Functions and Activities

The functions of the National Bureau of Standards are set forth in the Act of Congress, March 3, 1901, as amended by Congress in Public Law 619, 1950. These include the development and maintenance of the national standards of measurement and the provision of means and methods for making measurements consistent with these standards; the determination of physical constants and properties of materials; the development of methods and instruments for testing materials, devices, and structures; advisory services to Government Agencies on scientific and technical problems; invention and development of devices to serve special needs of the Government; and the development of standard practices, codes, and specifications. The work includes basic and applied research, development, engineering, instrumentation, testing, evaluation, calibration services, and various consultation and information services. A major portion of the Bureau's work is performed for other Government Agencies, particularly the Department of Defense and the Atomic Energy Commission. The scope of activities is suggested by the listing of divisions and sections on the inside of the front cover.

Reports and Publications

The results of the Bureau's work take the form of either actual equipment and devices or published papers and reports. Reports are issued to the sponsoring agency of a particular project or program. Published papers appear either in the Bureau's own series of publications or in the journals of professional and scientific societies. The Bureau itself publishes three monthly periodicals, available from the Government Printing Office: The Journal of Research, which presents complete papers reporting technical investigations; the Technical News Bulletin, which presents summary and preliminary reports on work in progress; and Basic Radio Propagation Predictions, which provides data for determining the best frequencies to use for radio communications throughout the world. There are also five series of nonperiodical publications: The Applied Mathematics Series, Circulars, Handbooks, Building Materials and Structures Reports, and Miscellaneous Publications.

Information on the Bureau's publications can be found in NBS Circular 460, Publications of the National Bureau of Standards (\$1.25) and its Supplement (\$0.75), available from the Superintendent of Documents, Government Printing Office. Inquiries regarding the Bureau's reports and publications should be addressed to the Office of Scientific Publications, National Bureau of Standards, Washington 25, D. C.

