NATIONAL BUREAU OF STANDARDS REPORT

SPECTROPHOTOMETRIC AND COLORIMETRIC

RECORD OF SOME

LEAVES OF TREES, VEGETATION, AND SOIL.

By

Harry J. Keegan, John C. Schleter, Wiley A. Hall, Jr., and

Gladys M. Haas.

To

U. S. Department of the Air Force Aerial Reconnaissance Laboratory Wright Air Development Center Wright-Patterson Air Force Base, Ohio.

U. S. DEPARTMENT OF COMMERCE NATIONAL BUREAU OF STANDARDS

U. S. DEPARTMENT OF COMMERCE

Sinclair Weeks, Secretary

NATIONAL BUREAU OF STANDARDS A. V. Astin, Director

THE NATIONAL BUREAU OF STANDARDS

The scope of activities of the National Bureau of Standards is suggested in the following listing of the divisions and sections engaged in technical work. In general, each section is engaged in specialized research, development, and engineering in the field indicated by its title. A brief description of the activities, and of the resultant reports and publications, appears on the inside of the back cover of this report.

Electricity and Electronics. Resistance and Reactance. Electron Tubes. Electrical Instruments. Magnetic Measurements. Process Technology. Engineering Electronics. Electronic Instrumentation. Electrochemistry.

Optics and Metrology. Photometry and Colorimetry. Optical Instruments. Photographic Technology. Length. Engineering Metrology.

Heat and Power. Temperature Measurements. Thermodynamics. Cryogenic Physics. Engines and Lubrication. Engine Fuels.

Atomic and Radiation Physics. Spectroscopy. Radiometry. Mass Spectrometry. Solid State Physics. Electron Physics. Atomic Physics. Nuclear Physics. Radioactivity. X-rays. Betatron. Nucleonic Instrumentation. Radiological Equipment. AEC Radiation Instruments.

Chemistry. Organic Coatings. Surface Chemistry. Organic Chemistry. Analytical Chemistry. Inorganic Chemistry. Electrodeposition. Gas Chemistry. Physical Chemistry. Thermochemistry. Spectrochemistry. Pure Substances.

Mechanics. Sound. Mechanical Instruments. Fluid Mechanics. Engineering Mechanics. Mass and Scale. Capacity, Density, and Fluid Meters. Combustion Controls.

Organic and Fibrous Materials. Rubber. Textiles. Paper. Leather. Testing and Specifications. Polymer Structure. Organic Plastics. Dental Research.

Metallurgy. Thermal Metallurgy. Chemical Metallurgy. Mechanical Metallurgy. Corrosion.

Mineral Products. Porcelain and Pottery. Glass. Refractories. Enameled Metals. Concreting Materials. Constitution and Microstructure.

Building Technology. Structural Engineering. Fire Protection. Heating and Air Conditioning. Floor, Roof, and Wall Coverings. Codes and Specifications.

Applied Mathematics. Numerical Analysis. Computation. Statistical Engineering. Mathematical Physics.

Data Processing Systems. Components and Techniques. Digital Circuitry. Digital Systems. Analogue Systems.

Cryogenic Engineering. Cryogenic Equipment. Cryogenic Processes. Properties of Materials. Gas Liquefaction.

Radio Propagation Physics. Upper Atmosphere Research. Ionospheric Research. Regular Propagation Services.

Radio Propagation Engineering. Frequency Utilization Research. Tropospheric Propagation Research.

Radio Standards. High Frequency Standards. Microwave Standards.

• Office of Basic Instrumentation

• Office of Weights and Measures

NATIONAL BUREAU OF STANDARDS REPORT

NBS PROJECT

0201-20-2325

April 1956

4528

NBS REPORT

SPECTROPHOTOMETRIC AND COLORIMETRIC

RECORD OF SOME

LEAVES OF TREES, VEGETATION, AND SOIL.

By

Harry J. Keegan, John C. Schleter, Wiley A. Hall, Jr., and Gladys M. Haas, Photometry and Colorimetry Section Optics and Metrology Division

To

U. S. Department of the Air Force Aerial Reconnaissance Laboratory Wright Air Development Center Wright-Patterson Air Force Base, Ohio.

> Contract No. AF 33(616)-52-21, Task No. 62104.

U. S. DEPARTMENT OF COMMERCE NATIONAL BUREAU OF STANDARDS

The publication, re unless permission i 25, D. C. Such per cally prepared if t Approved for public release by the director of the National Institute of Standards and Technology (NIST) on October 9, 2015

in part, is prohibited tandards. Washington port has been specifieport for its own use.

PREFACE

This is one of a series of NBS reports of spectrophotometric and colorimetric work done under NBS Project 0201-20-2325 entitled Color Reconnaissance Studies, financed by the Aerial Reconnaissance Laboratory, Wright Air Development Center, Wright-Patterson Air Force Base, Ohio; Air Force Contract No. 33 (616) 52-21. It is coordinated with Air Force Contract No. 33 (616) - 262 under Dr. Hugh T. O'Neill, O'Neill Associates, Annapolis, Maryland, who requested the NBS to perform this test of leaves of trees, and who collected and identified the American leaf speciments and grouped and identified the Canadian leaf specimens.

> Harry J. Keegan Project Leader

.

SPECTROPHOTOMETRIC AND COLORIMETRIC

RECORD OF SOME

LEAVES OF TREES, VEGETATION, AND SOIL.

Harry J. Keegan, John C. Schleter, Wiley A. Hall, Jr., and

Gladys M. Haas.*

Abstract

Visible and near infrared measurements of spectral directional reflectance have been made on some selected leaves of déciduous trees from the Annapolis, Maryland, and Washington, D. C. areas of the United States of America, and from the Ottawa, Ontario, area of the Dominion of Canada on a General Electric recording spectrophotometer for the spectral region 400 to 1080 millimicrons. These recordings have been illustrated and tables of data are included as well as graphs and tables of chromaticity coordinates, daylight reflectances, Munsell renotations, and ISCC-NBS color designations. In addition, color difference determinations in terms of the NBS unit of color difference have been made between similar leaf specimens and between the ventral and the dorsal sides of the same leaf specimens. Similar reductions are reported and illustrated for some natural formations in the USSR as reported in the literature.

* Miss Gladys M. Haas is at present employed at the Mare Island Naval Shipyard, San Francisco, California.

Contents

		Page	
I.	Introduction	3	
II.	Material	3	
III.	Spectrophotometric Measurements	4	
IV.	Spectrophotometric Results	4	
⊽.	Colorimetric Computations	5	
VI.	Munsell Renotations and ISCC-NBS Color Designations	5	
VII.	Color - Difference Computations	5	
VIII.	American Forest Leaves	6	
	Table I Figures 1 to 18 Tables II to V Appendix A Appendix B	7 8 to 44 to 48 57	43 47
IX.	Canadian Forest Leaves	68	
	Table VIFigures 19 to 36Tables VII to XAppendix CAppendix D	69 70 to 106 to 110 125	105 109
Х.	Russian Vegetation and Soil	133	
	Table XI Figures 37 to 43 Tables XII to XIV Appendix E	134 135 to 1 149 to 1 152	148 151
XI.	Summary	156	
XII.	Bibliography	157	
	Appendix F	158	

I. Introduction

The overall objective of this Air Force investigation is stated as follows: "To develop by visible, near infrared, and near ultraviolet spectrophotometry, methods for the detection of objects from color reconnaissance; to study the colors, tonal contrast, and color separation necessary in aerial photography to yield maximum information; to determine the wavelength region at which the film manufacturer should strive to obtain maximum sensitivity to yield clear separation of an object from its adjacent area rather than to yield true color fidelity; to determine the characteristics required in a sensitized material for the rapid and accurate extraction of this information."

This particular report pertains to the spectrophotometric and colorimetric changes that appear in the background of an aerial scene; namely, the leaves of trees, vegetation, and soil. The leaves studied are from some of the prominent deciduous trees in eastern parts of the United States of America and in eastern parts of the Dominion of Canada. The vegetation and soil are some of those reported by Krinov [1] in Russia from the Eastern part of Europe and the Western part of Asia.

The method of measurement and computation is that requested in the original project proposal and used in three previous reports of this project $\lceil 2, 3, 4 \rceil$.

The leaves of trees were studied chiefly for other purposes, and the results are recorded here for ready reference as a start toward a collection of the complete information required for reliable interpretation of aerial photographs.

II. Material

With the exception of the seven Russian specimens for which data were taken from Krinov [1], all of the specimens of this report were supplied by Dr. H. T. O'Neill, O'Neill Associates, Annapolis, Maryland, on five work requests in the fall of 1952 and the spring of 1953. These five work requests were assigned NBS serial numbers 2.1/WADC-4/52, -5/52, -8/52, -19/53, and -20/53. Copies of these original work requests are included in Appendix F of this report. The first four work requests pertain to the leaves of deciduous trees picked in the Eastern part of the United States of America, three of them in the late fall of the year just before and just after the first frost of the season, and one in the early spring of the year. The fifth work request pertained to two shipments of leaves collected on May 10 and 18, 1953 by Dr. J. M. Robinson, Department of Resources and Development, Ottawa, Canada, from deciduous trees near there, and sent to Dr. O'Neill, at his request, who in turn selected certain representative specimens as examples of "early foliage in the

Numbers in brackets refer to bibliography on page 157 of this report.

subarctic deciduous forest; also dead overwintered leaves on the ground". Detailed designations of these specimens are listed in Tables I, VI, and XI of this report.

III. Spectrophotometric Measurements

Measurements of spectral directional reflectance were made on the NBS General Electric recording spectrophotometer [5, 6] for the American and the Canadian Forest leaves. In most cases these measurements covered the visible and near infrared spectrum, 400 to 1080 millimicrons. However, those leaves picked in the late fall in the United States and most of the Canadian leaves were measured for the visible spectrum only (400 to 750 millimicrons).

In each case the ventral side of the tree leaf was considered to be the side on which the measurements were to be made; however, when differences between the ventral and dorsal side of the specimens seemed to be large, measurements were made on both sides of the specimen. For each measurement, a backing specimen similar to the measured specimen was selected and the measured specimen was placed on top of the backing specimen and both specimens were held firmly against the integrating sphere of the instrument by a wooden block covered with black paper.

The measurements were made for the condition of inclusion of the specular component of the reflected radiant energy. The slit widths used for these measurements were approximately 10 millimicrons of spectrum for the spectral region, 400 to 750 millimicrons (visible spectrum), and 20 millimicrons of spectrum for the spectral region 730 to 1080 millimicrons (near infrared spectrum).

IV. Spectrophotometric Results

The results of the spectrophotometric measurements of this report are shown on the 20 Ozalid prints of the original recordings from the General Electric recording spectrophotometer. These Ozalid prints are a part of Appendices A and C of this report; fifteen of them are for the visible spectrum, 400 to 750 millimicrons, and five of them are for the near infrared spectrum, 730 to 1080 millimicrons. Ten of the graph sheets contain calibration curves for the correction of the wavelength and photometric scale errors [7, 8].

Values of spectral directional reflectances were read at each ten millimicron interval from 400 to 750 millimicrons or from 400 to 1080 millimicrons, whichever was available for each of the 49 spectrophotometric curves of 21 leaf specimens of American trees, and for each of the 48 spectrophotometric curves of 24 leaf specimens of Canadian trees. These 97 sets of spectrophotometric data are listed in Appendices B, D, and E of this report together with the spectrophotometric data published by Krinov for the seven samples of Russian terrain having data reported continuously from 400 to 900 millimicrons.

V. Colorimetric Computations

The spectral-directional-reflectance data of each of these seventyfour specimens listed in Appendices B, D, and E for the visible spectrum (400 to 750 millimicrons) were converted into terms of luminous reflectance, Y, and chromaticity coordinates, x, y of the C.I.E. colorimetric system by integration according to the C.I.E. standard observer [9] for C.I.E. source C, representative of average daylight.

These chromaticity coordinates and daylight reflectances are listed in tables at the end of each of the three classifications of this report, and in illustrations of the C.I.E. chromaticity diagram under each classification; namely, American, Canadian, and Russian.

VI. Munsell Renotations and ISCC-NBS Color Designations

From the above mentioned determinations of C.I.E. chromaticities and daylight reflectances of the seventy-four specimens studied in this report, the Munsell renotations were obtained from graphs of conversion from the C.I.E. system to the Munsell Renotation System [10]. These Munsell renotations then were converted into terms of the ISCC-NBS (Inter-Society Color Council - National Bureau of Standards) color designations [11]. Similarly, these renotations and color designations are listed in tables and illustrated in graphs under the respective country of origin of the specimens.

VII. Color Difference Computations

From the Munsell renotations of the fifty-two determinations of twenty-six of the American and the Canadian leaves, color differences in terms of the NBS unit of color difference (ΔE) were computed by means of the Godlove formula [12], as follows:

$$\Delta E_{\text{NBS}} = 5 \left[\{ 2 C_1 C_2 \phi(H) \} + (\Delta C)^2 + (4 \Delta V)^2 \right]^{1/2},$$

where, $\phi(H) = 1 - \cos 3.6 \circ \Delta H$.

These results are tabulated for the American leaves in Table V for differences between four sets of the ventral sides of similar leaves picked and measured on successive days. Also tabulated are color differences between the ventral and the dorsal sides of ten other pairs of American leaves. Illustrations of these changes are shown in Figures 16, 17, and 18. Similar color differences for the color changes between the ventral and the dorsal sides of twelve sets of Canadian leaves are shown in Table X and illustrated in Figure 36. Color differences between the two grasses and the two soils reported by Krinov were also computed and are listed in Table XIV and illustrated in Figure 43.

VIII. American Forest Leaves.

Table I lists the common name, the Latin name, and the dates of picking and measurement of the twenty-one leaf specimens. This is followed by eighteen illustrations (Figures 1 to 18) showing a record of the thirtyone determinations of these 21 specimens of leaves from deciduous trees or shrubs in the eastern part of the United States of America.

The first seven illustrations show the spectral directional reflectance curves of the specimens designated in the legends of the illustrations, and listed in the index to Appendix A. The data plotted in the illustrations are taken from that listed in Appendix B.

The chromaticity coordinates of the samples of these seven illustrations are shown in segments of the C.I.E. chromaticity diagram for standard source C, Figures 8, 9, and 10. The data used for these illustrations are listed in Table II.

The Munsell renotations of these same specimens are illustrated in the schematic diagrams of the "Ideal Munsell System" in Figures 11 to 15. The data used for these illustrations are listed in Tables III and IV together with the corresponding ISCC-NBS color designation.

Determinations were made of the color differences between separate samples picked from the same tree and between the ventral and the dorsal sides of the same leaf. This information is listed in Table V and illustrated in Figures 16, 17, and 18.

Each specimen, when received, was identified by the common name of the tree, such as "ASPEN", from which it was taken, and by a word, such as "Blackening", descriptive of the phase of color change of which the leaf was judged to be representative. These identifying words are used throughout this report except in the illustrations. When more than one phase in the color change of leaves from one kind of tree was represented, these phases were designated by consecutive numbers on the illustrations to save space. Thus, BEECH, BEECH "Russet Brown", and BEECH "Yellow", are identified in the illustrations as BEECH (1), BEECH (2), and BEECH (3), and the same method is used for DOGWOOD, SPANISH HAZELNUT, MOCKERNUT HICKORY, BLACK OAK, and WHITE OAK. The color names used by the botanist to differentiate one phase of the leaf-color change from another are not to be confused with the more precise ISCC-NBS color designations derived from the Munsell renotation of the specimen.

Table I

Identification of the Leaf Specimens from Trees and Shrubs of the Eastern Part of the United States of America, and the Dates of Picking and Measurement.

Spec	Date	Date	
Common Name	Latin Name	Picked	Measured
ASPEN "Blackening"	Populus grandidentata Michx	11- 2-52	11- 4-52
BEECH (1)	Fagus grandifolia Ehrh.	10-16-52	10-16-52
BEECH (2) "Russet Brown"	Fagus grandifolia Ehrh.	11- 2-52	11- 4-52
BEECH (3) "Yellow"	Fagus grandifolia Ehrh.	11- 2-52	11- 4-52
DOGWOOD (1)	Cornus florida L.	10-16-52	10-16-52
DOGWOOD (2)	Cornus florida L.	10-17-52	10-17-52
DOGWOOD (3) "Red and Green"	Cornus florida L.	11- 2-52	11- 4-52
SPANISH HAZELNUT (1) "Red"	Corylus avellana L.	4-22-53	4-22-53
SPANISH HAZELNUT (2) "Red and Green"	Corylus avellana L.	4-22-53	4-22-53
SPANISH HAZELNUT (3) "Green Sport"	Corylus avellana L.	4-22-53	4-22-53
MOCKERNUT HICKORY (1)	Carya tomentosa (Lam.) Nutt.	10-16-52	10-16-52
MOCKERNUT HICKORY (2)	Carya tomentosa (Lam.) Nutt.	10-17-52	10-17-52
BLACK OAK (1)	Quercus velutina Lam.	10-16-52	10-16-52
BLACK OAK (2)	Quercus velutina Lam.	10-17-52	10-17-52
SCARLET OAK "Red"	Quercus coccinea Willd.	11- 2-52	11- 4-52
WHITE OAK (1)	Quercus alba L.	10-16-52	10-16-52
WHITE OAK (2) "Green"	Quercus alba L.	10-17-52	10-17-52
WHITE OAK (3) "Red Brown"	Quercus alba L.	11- 2-52	11- 4-52
WHITE OAK (4) "Reddish"	Quercus alba L.	10-17-52	10-17-52
PLUM "Red"	Prunus pissardi Hort.	4-22-53	4-22-53
TULIP POPLAR "Yellow"	Liriodendron tulipifera L.	11- 2-52	11- 4-52

Figure 1.

Visible and near infrared spectral directional reflectance of the ventral side of the leaves of five typical deciduous trees in the Annapolis, Maryland, region of the U.S.A. picked and measured on October 16, 1952. They are Mockernut Hickory (1), Beech (1), Dogwood (1), White Oak (1), and Black Oak (1). For further identification see Table I and the index to Appendix A.

· ·

(

Figure 2.

Visible and near infrared spectral directional reflectance of the ventral side of the leaves of five typical deciduous trees in the Annapolis, Maryland, region of the U.S.A. picked and measured on October 17, 1952. They are Mockernut Hickory (2), Dogwood (2), White Oak (2) "green", White Oak (4) "reddish", and Black Oak (2). For further identification see Table I and the index to Appendix A.

.

·

Figure 3.

Visible spectral directional reflectance of the ventral and the dorsal sides of the leaves of two deciduous trees in the Annapolis, Maryland, region of the U.S.A. picked on November 2, 1952 and measured on November 4, 1952. They are Tulip Poplar "yellow" and Dogwood (3) "red and green". For further identification see Table I and the index to Appendix A.

Figure 4.

Visible spectral directional reflectance of the ventral side of the leaves of three typical deciduous trees in the Annapolis, Maryland, region of the U.S.A., and the dorsal side of two of them. Specimens picked on November 2, 1952 and measured on November 4, 1952. They are Aspen "blackening" (ventral side only), White Oak (3) "red brown", and Scarlet Oak "red". For further identification see Table I and the index to Appendix A.

.

Figure 5.

Visible spectral directional reflectance of the ventral and the dorsal sides of two leaves of a typical deciduous tree in the Annapolis, Maryland, region of the U.S.A. Specimens picked on November 2, 1952 and measured on November 4, 1952. They are: Beech (2) "russet brown" and Beech (3) "yellow". For further identification see Table I and the index to Appendix A.

Figure 6.

Visible and near infrared spectral directional reflectance of the ventral side of three leaves of a shrub, and a leaf of a tree, typical of "spring red leaves", in the Washington, D. C. region of the U.S.A. picked and measured on April 22, 1953. They are Plum "red", Spanish Hazelnut (1) "red", Spanish Hazelnut (3) "green sport", and Spanish Hazelnut (2) "red and green". For further identification see Table I and the index to Appendix A.

.

Figure 7.

Visible and near infrared spectral directional reflectance of the dorsal side of three leaves of a shrub, and a leaf of a tree, typical of "spring red leaves", in the Washington, D. C. region of the U.S.A. picked and measured on April 22, 1953. They are Plum "red", Spanish Hazelnut (1) "red", Spanish Hazelnut (3) "green sport", and Spanish Hazelnut (2) "red and green". For further identification see Table I and the index to Appendix A.

Figure 8.

Segment of the C.I.E. chromaticity diagram showing dominant wavelength, excitation purity, and chromaticity coordinates for standard source C of the ventral side of the leaves of Figures 1 and 2; from data listed in Table II. For further identification see Table I and the index to Appendix A.

Figure 9.

Segment of the C.I.E. chromaticity diagram showing dominant wavelength, excitation purity, and chromaticity coordinates for standard source C of the ventral (closed circles) and the dorsal (open circles) sides of the leaves of Figures 3, 4, and 5; from data listed in Table II. For further identification see Table I and the index to Appendix A.

(

Figure 10.

Segment of the C.I.E. chromaticity diagram showing dominant wavelength, excitation purity, and chromaticity coordinates for standard source C of the ventral (closed circles) and the dorsal (open circles) sides of the shrub and tree leaves of Figures 6 and 7; from data listed in Table II. For further identification see Table I and the index to Appendix A.

·

· · ·

Figure 11.

Vertical and horizontal projections of the color differences between the ventral sides of two leaves of Mockernut Hickory (1) and (2) (Figures 1, 2, and 8), and between the ventral (closed circle) and the dorsal (open circle) sides of Beech (2) "russet brown" (Figures 5 and 9), and of Beech (3) "yellow" (Figures 5 and 9). The upper diagram shows the Munsell Value of these measurements plotted against the Munsell Hue and Chroma points projected from the lower diagram. The Munsell data are listed in Tables III and IV. For further identification see Table I and the index to Appendix A.

Figure 12.

Vertical and horizontal projections of the colors of the ventral side of Aspen (Figures 4 and 9) and of Black Oak (2) (Figures 2 and 8), and of the color differences between the ventral (closed circle) and the dorsal (open circle) sides of Dogwood (3) "red and green" (Figures 3 and 9) and of White Oak (3) "red brown" (Figures 4 and 9). The upper diagram shows the Munsell Value of these measurements plotted against the Munsell Hue and Chroma points projected from the lower diagram. The Munsell data are listed in Tables III and IV. For further identification see Table I and the index to Appendix A. .

Figure 13.

Vertical and horizontal projections of: (1) the colors of the ventral side of Beech (1) (Figures 1 and 8), of Black Oak (1) (Figures 1 and 8), and of White Oak (4) "reddish" (Figures 2 and 8); (2) the color differences between the ventral (closed circle) and the dorsal (open circle) sides of the leaves of Scarlet Oak "red" (Figures 4 and 9) and of Tulip Poplar "yellow" (Figures 3 and 9); and (3) the color differences between the ventral sides of two leaves of Dogwood (1) and (2) (Figures 1, 2, and 8). The upper diagram shows the Munsell Value of these measurements plotted against the Munsell Hue and Chroma points projected from the lower diagram. The Munsell data are listed in Tables III and IV. For further identification see Table I and the index to Appendix A.

Figure 14

Vertical and horizontal projections of the color differences between the ventral (closed circle) and the dorsal (open circle) sides of the leaves of Plum "red" (Figures 6, 7, and 10) and of Spanish Hazelnut (1) "red" (Figures 6, 7, and 10). The upper diagram shows the Munsell Value of these measurements plotted against the Munsell Hue and Chroma points projected from the lower diagram. The Munsell data are listed in Tables III and IV. For further identification see Table I and the index to Appendix A.

·

Gr

Figure 15

Vertical and horizontal projections of: (1) the color differences between the ventral sides of two leaves of White Oak (1) and (2) "green" (Figures 1, 2, and 8); and (2) the color differences between the ventral (closed circle) and the dorsal (open circle) sides of the leaves of Spanish Hazelnut (3) "green sport" (Figures 6, 7, and 10) and of Spanish Hazelnut (2) "red and green" (Figures 6, 7, and 10). The upper diagram shows the Munsell Value of these measurements plotted against the Munsell Hue and Chroma points projected from the lower diagram. The Munsell data are listed in Tables III and IV. For further identification see Table I and the index to Appendix A.

.

Figure 16

Color differences computed from the Godlove color-difference formula, converted into NBS units, between the ventral sides of sets of "nearly" identical leaf specimens, picked from the same tree on successive days (October 16, 1952 and October 17, 1952). The data are listed in Table V. For further identification see Table I and the index to Appendix A.

•

Figure 17

Color differences computed from the Godlove color-difference formula, converted into NBS units, between the ventral and the dorsal sides of the same leaf specimens picked in the late fall (November 2, 1952). The data are listed in Table V. For further identification see Table I and the index to Appendix A.

· ·

.

Figure 18.

Color differences computed from the Godlove color-difference formula, converted into NBS units, between the ventral and the dorsal sides of the same leaf specimens picked in early spring (April 22, 1953). The data are listed in Table V. For further identification see Table I and the index to Appendix A.

-44-

Table II

American Forest Leaves

Chromaticity Coordinates and Daylight Reflectances for C.I.E. Source C of the Leaves Studied.

I

I

	Ventral Side			Dorsal Side		
	Chroma	ticity	Daylight	Chroma	ticity	DayLight
Specimen	x	y	Y(%)	X	y	<u>Y(%)</u>
ASPEN "Blackening"	0.378	0.362	10.1			
BEECH (1)	.446	•379	10.8			
BEECH (2) "Busset Brown"	.407	•371	17.4	0.410	0.380	24.4
BEECH (3) "Yellow"	.438	• 369	10.2	•420	• 382	15.8
DOGWOOD (1)	.430	•317	7.0			
DOGWOOD (2)	.402	.321	6.3			
DOGWOOD (3) "Red and Green"	•370	• 348	8.8	• 357	• 347	18.4
SPANISH HAZELNUT (1) "Red"	• 328	• 316	4.2	•370	. 321	5.5
SPANISH HAZELNUT (2) "Red and Green"	.338	•368	6.0	•357	• 358	10.0
SPANISH HAZELNUT (3) "Green Sport"	• 347	.430	9.3	• 349	.406	16.6
MOCKERNUT HICKORY (1)	•457	.438	28.6			-
MOCKERNUT HICKORY (2)	•447	.423	23.0			
BLACK OAK (1)	.403	•370	13.6	CT 60 60		
BLACK OAK (2)	.414	•368	9.3			
SCARLET OAK	•362	• 319	4.8	.387	• 338	7.9
WHITE OAK (1)	• 355	.422	12.2			
WHITE OAK (2)	• 364	•423	14.3		-	
WHITE OAK (3) "Red Brown"	.400	• 358	7.8	•360	• 341	12.5
WHITE OAK (4) "Reddish"	.421	• 354	11.1			
PLUM "Red"	• 366	• 354	7.1	•365	•336	10.1
TULIP POPLAR Yellow"	• 455	• 392	13.8	.440	•402	17.4

-45-Table III

American Forest Leaves

Munsell Renotations and ISCC-NBS Color Designations of the Ventral Sides of the Leaves Studied.

l

Specimen	Munsell Renotations	ISCC-NBS Color Designations
ASPEN	8.7YR 3.7/2.4	Grayish Yellowish Brown
BEECH (1)	5.2YR 3.8/5.0	Strong Brown
BEECH (2)	6.5YR 4.7/4.2	Light Brown
BEECH (3)	4.0YR 3.7/4.7	Moderate Brown
DOGWOOD (1)	4.7R 3.1/5.0	Dark Red
DOGWOOD (2)	5.7R 2.9/3.4	Dark Red
DOGWOOD (3)	6.0YR 3.5/2.0	Grayish Brown
SPANISH HAZELNUT (1)	5.8R 2.4/0.7	Dark Grayish Red
SPANISH HAZELNUT (2)	2.0GY 2.9/1.6	Grayish Olive
SPANISH HAZELNUT (3)	5.6GY 3.6/3.9	Moderate Olive Green
MOCKERNUT HICKORY (1)	1.71 5.9/8.2	Deep Yellow
MOCKERNUT HICKORY (2)	1.0Y 5.3/6.8	Light Olive Brown
BLACK OAK (1)	7.1YR 4.2/3.6	Moderate Brown
BLACK OAK (2)	5.8YR 3.6/3.6	Moderate Brown
SCARLET OAK	6.1R 2.6/1.8	Grayish Reddish Brown
WHITE OAK (1)	4.3GY 4.0/3.7	Moderate Olive Green
WHITE OAK (2)	2.8GY 4.3/3.9	Moderate Olive Green
WHITE OAK (3)	5.1YR 3.3/3.0	Moderate Brown
WHITE OAK (4) "Reddish"	2.2YR 3.9/4.3	Moderate Reddish Brown
PLUM	9.0YR 3.1/1.8	Dark Grayish Yellowish Brown
TULIP POPLAR "Yellow"	6.4YR 4.3/5.9	Strong Brown

-46-

Table IV

American Forest Leaves

ł

I

Munsell Renotations and ISCC-NBS Color Designations of the Dorsal Sides of the Leaves Studied.

Specimen	Munsell Renotations	ISCC-NBS Color Designations
ASPEN		
"Blackening"		
BEECH (1)		
BEECH (2) "Russet Brown"	7.8YR 5.5/4.9	Light Brown
BEECH (3) "Yellow"	7.5YR 4.5/4.5	Light Brown
DOGWOOD (1)		
DOGWOOD (2)		
DOGWOOD (3)	8.1YR 4.8/2.0	Grayish Yellowish Brown
SPANISH HAZELNUT (1)	6.8R 2.7/1.1	Dark Reddish Gray
SPANISH HAZELNUT (2) "Red and Green"	2.21 3.7/1.7	Moderate Olive Brown
SPANISH HAZELNUT (3)	4.2GY 4.6/3.6	Moderate Yellow Green
MOCKERNUT HICKORY (1)		
MOCKERNUT HICKORY (2)		at an at
BLACK OAK (1)		
BLACK OAK (2)	***	00 an ce
SCARLET OAK	0.9YR 3.3/2.7	Grayish Reddish Brown
WHITE OAK (1)		
WHITE OAK (2)	***	at) an co
WHITE OAK (3)	4.9YR 4.1/1.9	Grayish Brown
WHITE OAK (4)	e) (21 a)	
"Reddish" PLUM "Red"	0.5YR 3.7/2.2	Grayish Reddish Brown
TULIP POPLAR "Yellow"	8.9YR 4.7/5.6	Strong Yellowish Brown

Table V

Color Differences Computed from the Godlove Color-Difference Formula, Converted into NBS Units; (1) Between the Ventral Sides of Sets of Nearly Identical Leaf Specimens (see Figure 16); (2) Between the Ventral and the Dorsal Sides of the Same Leaf Specimens Picked in Late Fall (see Figure 17); and (3) Between the Ventral and the Dorsal Sides of the Same Leaf Specimens Picked in Early Spring (see Figure 18).

I

Specimen	Color Difference <u> </u>
(1) Two "Nearly" Identical Leaf Speci	imens
DOGWOOD (1) and (2)	9.0
MOCKERNUT HICKORY (1) and (2)	14.0
BLACK OAK (1) and (2)	12.0
WHITE OAK (1) and (2)	6.0
(2) Ventral and Dorsal sides of Spect Picked in Late Fall	imens
BEECH (2)	16.5
"Russet Brown" BEECH (3)	16.5
DOGWOOD (3)	26.0
"Red and Green" SCARLET OAK "Red"	15.0
WHITE OAK (3)	17.0
TULIP POPLAR "Yellow"	9.0
(3) Ventral and Dorsal sides of Spect Picked in Early Spring	imens
SPANISH HAZELNUT (1)	6.5
SPANISH HAZELNUT (2)	17.0
SPANISH HAZELNUT (3)	20.0
"Green Sport" PLUM "Red"	13.5

-47-

.

· · ·

Appendix A.

Ozalid prints of the original recordings of the leaf specimens of some American Forest trees and shrubs obtained on a General Electric recording spectrophotometer at the National Bureau of Standards, 400 to 1080 millimicrons.

·

Index to Appendix A

1

	GE Graph N	Sheet Serial umber	Curve Number		
Specimen	Visible Spectrum	Near Infrared Spectrum	Ventral Side	Dorsal Side	
ASPEN "Blackening"	GE II-1076		16		
BEECH (1)	-1063	GE II-1064	5		
BEECH (2) "Russet Brown"	-1076		8	9	
BEECH (3)	-1076		14	15	
DOGWOOD (1)	-1063	-1064	6		
DOGWOOD (2)	-1065	-1066	4		
DOGWOOD (3)	-1076		6	7	
SPANISH HAZELNUT (1)	-1192	-1193	3	4	
SPANISH HAZELNUT (2)	- 1192	-1193	7	8	
SPANISH HAZELNUT (3)	- 1192	- 1193	5	6	
MOCKERNUT HICKORY (1)	-1063	-1064	4		
MOCKERNUT HICKORY (2)	-1065	-1066	5		
BLACK OAK (1)	-1063	-1064	8		
BLACK OAK (2)	-1065	-1066	8		
SCARLET OAK	-1076		10	11	
WHITE OAK (1)	-1063	-1064	7		
WHITE OAK (2)	- 1065	-1066	6		
WHITE OAK (3)	-1076		12	13	
WHITE OAK (4)	-1065	-1066	7		
PLUM	-1192	-1193	1	2	
TULIP POPLAR "Yellow"	-1076		4	5	

Appendix B

I

Spectral directional reflectance data obtained by correcting and reading the spectrophotometric curves of leaf specimens of some American Forest trees and shrubs.

•

American Forest Leaves (Near Annapolis, Maryland)

Spectral Directional Reflectance of the Ventral, or Ventral and Dorsal Sides of the Leaves of the Indicated Trees for the Visible Spectrum, 400 to 750 Millimicrons. (See Appendix A; GE Graph Sheet Serial No. GE II - 1076.)

Wave	ASPEN	BEECH (2) BE	BEECH (3)		DOGWOOD (3)	
Length	"Blackening"	"Russet Bron	wn" "Yel	low"	"Red and	d Green	
mu	Ventral	Ventral Dor:	sal Ventral	Dorsal	Ventral	Dorsal	
400	0.048	0.059 0.0	74 0.043	0.055	0.048	0.094	
10	.050	.067 .0	82 .044	.059	.050	.104	
20	.053	.073 .0	91 .044	.062	.053	.115	
30	.056	.078 .0	98 .044	.064	.057	.121	
40	.058	.082 .1	03 .044	.064	.058	.127	
450	.060	.085 .1	09 .044	.067	.061	.131	
60	.062	.089 .1	16 .044	.069	.062	.138	
70	.066	.093 .1	23 .045	.072	.063	.142	
80	.068	.098 .1	30 .046	.074	.063	.145	
90	.070	.102 .1	38 .046	.074	.064	.147	
500	.074	.109 .1	48 .048	.081	.066	.152	
10	.077	.116 .1	61 .052	.094	.071	.159	
20	.082	.125 .1	75 .058	.108	.075	.165	
30	.086	.135 .1	91 .066	.120	.079	.169	
40	.092	.146 .2	08 .075	.133	.080	.172	
550	.096	.158 .2	26 .085	.147	.082	.174	
60	.102	.171 .2	46 .097	.160	.085	.179	
70	.107	.184 .2	64 .110	.174	.089	.185	
80	.111	.199 .2	83 .124	.188	.094	.193	
90	.117	.214 .3	03 .137	.202	.100	.202	
600	.122	.229 .3	21 .151	•215	.108	.214	
10	.128	.244 .3	38 .164	•227	.116	.225	
20	.134	.259 .3	54 .176	•239	.121	.236	
30	.139	.274 .3	70 .188	•249	.127	.248	
40	.145	.290 .3	87 .200	•260	.124	.250	
650	.150	.305 .4	01 .212	.269	.114	.243	
60	.155	.321 .4	16 .220	.276	.104	.236	
70	.160	.338 .4	33 .228	.282	.091	.224	
80	.166	.354 .4	48 .242	.292	.090	.224	
90	.173	.375 .4	67 .264	.313	.139	.277	
700	.179	.395 .4	84 .283	• 331	.263	• 374	
10	.185	.414 .4	99 .298	• 345	.369	• 450	
20	.191	.435 .5	15 .312	• 357	.1446	• 505	
30	.197	.450 .5	28 .325	• 368	.500	• 543	
40	.203	.468 .5	43 .339	• 380	.538	• 569	
750	. 209	.483 .5	55 .356	. 389	•558	•585	

•
American Forest Leaves (Near Annapolis, Maryland)

Spectral Directional Reflectance of the Ventral and Dorsal Sides of the Leaves of the Indicated Trees for the Visible Spectrum, 400 to 750 Millimicrons. (See Appendix A; GE Graph Sheet Serial No. GE II - 1076.)

Wave	SCARLE	r oak	WHITE	OAK (3)	TULIP POPLAR		
nu nu	Ventral I	l" Dorsal	Ventral	Dorsal	Ventral	Low" Dorsal	
400	0.040	0.046	0.040	0.083	0.037	0.040	
10	040	.048	.040	.085	.039	.043	
20	040	.050	.041	.087	.042	.046	
30	040	.051	.043	.089	.043	.049	
40	041	.052	.044	.091	.043	.052	
450	- 041	.054	.044	• 092	.044	.054	
60	- 041	.056	.045	• 093	.045	.058	
70	- 041	.057	.046	• 095	.047	.062	
80	- 041	.058	.047	• 098	.048	.065	
90	- 041	.059	.048	• 099	.049	.070	
500	• 042	.060	.051	.102	.051	.078	
10	• 042	.062	.054	.104	.059	.092	
20	• 042	.063	.058	.108	.074	.109	
30	• 042	.064	.062	.111	.089	.128	
40	• 042	.065	.066	.114	.104	.146	
550	.042	.067	.070	.116	.122	.163	
60	.042	.070	.074	.122	.139	.180	
70	.044	.074	.079	.126	.157	.198	
80	.046	.081	.086	.132	.175	.214	
90	.050	.090	.094	.139	.194	.230	
600	• 054	.100	.100	.146	.210	.244	
10	• 060	.112	.110	.154	.223	.257	
20	• 068	.125	.120	.162	.233	.266	
30	• 080	.139	.130	.172	.243	.276	
40	• 096	.156	.141	.182	.250	.285	
650	.110	.171	.152	.190	•254	.287	
60	.126	.183	.161	.196	•249	.284	
70	.140	.193	.168	.200	•240	.275	
80	.157	.207	.181	.213	•249	.284	
90	.180	.231	.200	.235	•291	.328	
700	.201	252	.219	•254	• 333	.365	
10	.220	269	.235	•269	• 356	.386	
20	.237	283	.250	•283	• 373	.402	
30	.253	297	.264	•295	• 386	.414	
40	.268	310	.278	•307	• 400	.428	
750	.281	. 321	.291	.320	.413	.439	

American Forest Leaves (Near Annapolis, Maryland)

Spectral Directional Reflectance of the Ventral Side of the Leaves of the Indicated Trees for the Visible and Near Infrared Spectrum, 400 to 1080 Millimicrons. (See Appendix A; GE Graph Sheets Serial No. GE II-1063, -1064, -1065, -1066.)

BEECH (1)				DOGWOOD (1)				DOGWOOD (2)			
Ventral Side				Ventral Side				Ventral Side			
Wave Length <u>mu</u>	R	Wave Length mu		Wave Length mu	R _λ	Wave Length mu	R _λ	Wave Length mµ	R	Wave Length mu	R _λ
400	0.039	750	0.433	400	0.039	750	0.570	400	0.039	750	0.511
10	.040	60	.449	10	.041	60	.591	10	.041	60	.534
20	.040	70	.467	20	.043	70	.604	20	.042	70	.553
30	.041	80	.483	30	.045	80	.617	30	.044	80	.571
40	.041	90	.499	40	.045	90	.628	40	.045	90	.587
450	.041	800	•516	450	.048	800	•635	450	.046	800	.602
60	.042	10	•533	60	.048	10	•642	60	.047	10	.616
70	.042	20	•548	70	.049	20	•649	70	.048	20	.628
80	.043	30	•563	80	.049	30	•656	80	.048	30	.639
90	.043	40	•577	90	.049	40	•662	90	.048	40	.649
500	.046	850	.590	500	.049	850	.666	500	.048	850	.658
10	.051	60	.602	10	.049	60	.671	10	.048	60	.667
20	.060	70	.614	20	.049	70	.676	20	.048	70	.675
30	.072	80	.624	30	.049	80	.679	30	.048	80	.681
40	.082	90	.633	40	.049	90	.683	40	.048	90	.688
550	.094	900	.641	550	.049	900	.687	550	.049	900	.694
60	.106	10	.648	60	.049	10	.689	60	.049	10	.699
70	.119	20	.652	70	.051	20	.691	70	.051	20	.703
80	.131	30	.658	80	.056	30	.693	80	.056	30	.708
90	.145	40	.660	90	.066	40	.694	90	.063	40	.711
600	.159	950	.661	600	.084	950	.694	600	.074	950	.714
10	.173	60	.662	10	.114	60	.694	10	.089	60	.716
20	.184	70	.662	20	.152	70	.692	20	.112	70	.716
30	.199	80	.662	30	.199	80	.692	30	.140	80	.718
40	.213	90	.662	40	.246	90	.691	40	.174	90	.718
650	。223	1000	.661	650	.289	1000	. 690	650	.207	1000	.717
60	•227	10	.660	60	.318	10	. 690	60	.237	10	.716
70	•225	20	.660	70	.335	20	. 689	70	.261	20	.715
80	•242	30	.660	80	.361	30	. 688	80	.294	30	.714
90	•282	40	.660	90	.419	40	. 688	90	.340	40	.714
700 10 20 30 40	• 324 • 354 • 379 • 398 • 410	1050 60 70 80	•659 •659 •658 •658	700 10 20 30 40	.464 .494 .518 .538 .556	1050 60 70 80	•687 •687 •686 •686	700 10 20 30 40	• 381 • 413 • 444 • 468 • 491	1050 60 70 80	•713 •713 •712 •712

.

.

American Forest Leaves (Near Annapolis, Maryland)

Spectral Directional Reflectance of the Ventral Side of the Leaves of the Indicated Trees for the Visible and Near Infrared Spectrum, 400 to 1080 Millimicrons. (See Appendix A; GE Graph Sheets Serial No. GE II-1063, -1064, -1065, -1066.)

MOCKERNUT HICKORY (1) MOCKERNUT HICKORY (2)

BLACK OAK (1)

Ventral Side Ventral Side						Ventral	Side				
Wave		Wave		Wave		Wave		Wave		Wave	
mu	Ra	mi	Ra	mı.	Ra	mi	Ra	neng un	Ra	mi	Ra
400 10 20	0.042 .046 .049	750 60 70	0.553 .561 .567	400 10 20	0.042 .046 .048	750 60 70	0.481 .492 .505	400 10 20	0.048	750 60 70	0.411 .438 .454
40	.052	90	.581	40	.050 .053	90	•532	40	.066	90	.470 .487
490 60 70 80 90	• 053 • 055 • 058 • 059 • 063	10 20 30 40	•507 •592 •598 •598 •607	490 60 70 80 90	.054 .058 .063 .068 .072	10 20 30 40	•542 •555 •566 •577 •587	450 60 70 80 90	.089 .072 .074 .077 .081	10 20 30 40	•504 •520 •536 •552 •565
500 10 20 30 40	•077 •117 •177 •233 •271	850 60 70 80 90	.611 .615 .619 .622 .625	500 10 20 30 40	.087 .118 .154 .182 .206	850 60 70 80 90	•597 •606 •613 •621 •626	500 10 20 30 40	.086 .092 .099 .107 .115	850 60 70 80 90	•579 •593 •606 •618 •629
550 60 70 80 90	• 300 • 323 • 343 • 359 • 374	900 10 20 30 40	.627 .629 .631 .631 .632	550 60 70 80 90	.227 .249 .267 .284 .299	900 10 20 30 40	.633 .637 .640 .645 .647	550 60 70 80 90	.124 .134 .145 .155 .166	900 10 20 30 40	.641 .648 .656 .664 .671
600 10 20 30 40	.386 .398 .406 .415 .414	950 60 70 80 90	.631 .631 .630 .630 .629	600 10 20 30 40	•313 •325 •336 •347 •352	950 60 70 80 90	.648 .649 .648 .648 .648	600 10 20 30 40	.177 .189 .200 .210 .221	950 60 70 80 90	.676 .680 .682 .685 .686
650 60 70 80 90	.406 .400 .390 .404 .464	1000 10 20 30 40	.628 .627 .627 .626 .626	650 60 70 80 90	• 352 • 354 • 352 • 366 • 401	1000 10 20 30 40	.648 .647 .646 .645 .645	650 60 70 80 90	•230 •239 •248 •263 •288	1000 10 20 30 40	.686 .686 .686 .685 .685
700 10 20 30 40	•504 •523 •533 •539 •547	1050 60 70 80	•625 •625 •624 •624	700 10 20 30 40	•428 •442 •455 •460 •461	1050 60 70 80	•645 •645 •644 •644	700 10 20 30 40	•313 •334 •353 •379 •395	1050 60 70 80	.684 .684 .683 .683

'American Forest Leaves (Near Annapolis, Maryland)

Spectral Directional Reflectance of the Ventral Side of the Leaves of the Indicated Trees for the Visible and Near Infrared Spectrum, 400 to 1080 Millimicrons. (See Appendix A; GE Graph Sheets Serial No. GE II-1063, -1064, -1065, -1066.)

	BLACK C	AK (2)		WHITE OAK (1)				WHITE OAK (2)			
	Ventral	Side		Ventral Side				"Green" Ventral Side			
Wave		Wave		Wave		Wave		Wave		Wave	
mr	R _λ	mr	R	mu	R _λ		R_{λ}	mµ	R_{λ}	mu	R_{λ}
400 10 20 30 40	0.039 .041 .042 .044 .044	750 60 70 80 90	0.323 .339 .353 .369 .384	400 10 20 30 40	0.042 .046 .048 .050 .052	750 60 70 80 90	0.584 .603 .612 .617 .621	400 10 20 30 40	0.042 .046 .051 .054 .057	750 60 70 80 90	0.594 .612 .622 .628 .633
450 60 70 80 90	.046 .047 .048 .048 .050	800 10 20 30 40	. 399 .ц16 .ц31 .ц47 .ц61	450 60 70 80 90	• 053 • 055 • 055 • 057 • 058	800 10 20 30 40	.624 .627 .629 .631 .633	450 60 70 80 90	.058 .062 .063 .066 .067	800 10 20 30 40	.637 .641 .643 .647 .650
500 10 20 30 40	.053 .057 .063 .069 .075	850 60 70 80 90	.476 .491 .506 .520 .532	500 10 20 30 40	.063 .079 .110 .139 .154	850 60 70 80 90	.634 .637 .638 .640 .641	500 10 20 30 40	.069 .094 .127 .157 .174	850 60 70 80 90	.653 .655 .658 .660 .662
550 60 70 80 90	.083 .092 .100 .109 .118	900 10 20 30 40	•546 •558 •567 •576 •585	550 60 70 80 90	.162 .158 .144 .126 .116	900 10 20 30 40	.642 .643 .644 .645 .645	550 60 70 80 90	.183 ,181 .168 .152 .144	900 10 20 30 40	. 664 . 666 . 666 . 667 . 668
600 10 20 30 40	.128 .135 .144 .154 .163	950 60 70 80 90	.592 .598 .603 .607 .610	600 10 20 30 40	.113 .105 .096 .092 .087	950 60 70 80 90	.644 .644 .643 .642 .642	600 10 20 30 40	.140 .130 .120 .117 .110	950 60 70 80 90	.668 .668 .667 .667
650 60 70 80 90	.169 .174 .178 .189 .217	1000 10 20 30 40	.612 .613 .614 .613 .613	650 60 70 80 90	.075 .067 .059 .057 .084	1000 10 20 30 40	.641 .640 .640 .639 .639	650 60 70 80 90	.096 .084 .071 .069 .105	1000 10 20 30 40	.666 .665 .664 .664
700 10 20 30 40	244 263 280 294 309	1050 60 70 80	.612 .612 .612 .612	700 10 20 30 40	.187 .310 .423 .509 .558	1050 60 70 80	638 638 637 637	700 10 20 30 40	•223 •346 •454 •522 •568	1050 60 70 80	.663 .663 .662 .662

. 4

C

American Forest Leaves (Near Annapolis, Maryland)

Spectral Directional Reflectance of the Ventral Side of a Leaf of the Tree Indicated for the Visible and Near Infrared Spectrum, 400 to 1080 Millimicrons. (See Appendix A; GE Graph Sheets Serial No. GE II-1065, -1066.)

WHITE OAK (4)								
Ventral Side								
Wave		Wave						
mu	R	mu	R_{λ}					
400	0.042	750	0.417					
10	.046	60	.431					
20	.051	70	.445					
30	.054	80	.460					
40	.057	90	.475					
450	.058	800	.491					
60	.062	10	.506					
70	.063	20	.521					
80	.066	30	.536					
90	.068	40	.548					
500	.071	850	•563					
10	.075	60	•575					
20	.079	70	•587					
30	.082	80	•598					
40	.085	90	•609					
550	.089	900	.619					
60	.095	10	.627					
70	.105	20	.635					
80	.118	30	.640					
90	.135	40	.646					
600	.155	950	.648					
10	.176	60	.651					
20	.199	70	.652					
30	.223	80	.655					
40	.245	90	.656					
650	.264	1000	• 656					
60	.281	10	• 657					
70	.294	20	• 658					
80	.309	30	• 658					
90	.329	40	• 657					
700 10 20 30 止0	•348 •363 •379 •390 •401	1050 60 70 80	•657 •657 •656 •656					

·

Spectral Directional Reflectance of the Ventral and Dorsal Sides of a Leaf of the Indicated Tree for the Visible and Near Infrared Spectrum, 400 to 1080 Millimicrons. (See Appendix A; GE Graph Sheets Serial No. GE II-1192, -1193.)

I

Ventral Side Dorsal Side								
Wave ength mu	R _λ	Wave Length mµ	R	Wave Length mu	R _λ	Wave Length mu	Rλ	
400	0.039	750	0.578	400	0.039	750	0.564	
10	.040	60	.618	10	.040	60	586	
20	.040	70	.630	20	.042	70	599	
30	.040	80	.634	30	.045	80	.605	
40	.040	90	.639	40	.045	90	.609	
450	.040	800	.642	450	.045	800	.612	
60	.040	10	.644	60	.045	10	.616	
70	.040	20	.646	70	.044	20	.618	
80	.040	30	.648	80	.044	30	.619	
90	.040	40	.650	90	.044	40	.620	
500	.040	850	.650	500	. 044	850	.622	
10	.039	60	.652	10	. 044	60	.622	
20	.040	70	.653	20	. 044	70	.624	
30	.040	80	.654	30	. 044	80	.625	
40	.040	90	.656	40	. 045	90	.627	
550	.040	900	.658	550	.046	900	.628	
60	.040	10	.658	60	.048	10	.629	
70	.040	20	.658	70	.050	20	.630	
80	.040	30	.659	80	.054	30	.630	
90	.042	40	.659	90	.061	40	.630	
600	.046	950	.658	600	.070	950	.629	
10	.050	60	.655	10	.080	60	.626	
20	.052	70	.651	20	.089	70	.622	
30	.054	80	.650	30	.098	80	.621	
40	.054	90	.651	40	.101	90	.622	
650	.049	1000	.654	650	•099	1000	.624	
60	.045	10	.658	60	•095	10	.626	
70	.042	20	.661	70	•088	20	.631	
80	.042	30	.665	80	•086	30	.635	
90	.050	40	.669	90	•115	40	.637	
700 10 20 30 40	.122 .246 .375 .476 .542	1050 60 70 80	.671 .672 .676 .676	700 10 20 30 40	.188 .290 .375 .476 .530	1050 60 70 80	.642 .644 .646 .648	

Spectral Directional Reflectance of the Ventral and Dorsal Sides of a Leaf of the Indicated Tree for the Visible and Near Infrared Spectrum, 400 to 1080 Millimicrons. (See Appendix A; GE Graph Sheets Serial No. GE II-1192, -1193.)

UPod and Creent							
	Ventral	Side	Red and	Green"	Dorsal	Side	
Wave		Wa ve Length		Wave Length		Wave Length	
mu	R	mı	R	mu	R_{λ}	mu	R_{λ}
400	0.039	750	0.615	400	0.064	750	0.598
10	.040	60	.635	10	.065	60	.618
20	.040	70	.646	20	.065	70	.630
30	.040	80	.651	30	.065	80	.634
40	.040	90	.654	40	.066	90	.636
450	• 040	800	• 656	450	.068	800	.639
60	• 040	10	• 659	60	.069	10	.640
70	• 040	20	• 660	70	.068	20	.640
80	• 040	30	• 660	80	.068	30	.642
90	• 040	40	• 662	90	.068	40	.644
500	•040	850	.663	500	.070	850	.644
10	044	60	.664	10	.077	60	.645
20	055	70	.665	20	.086	70	.646
30	065	80	.666	30	.094	80	.646
40	•069	90	.667	40	.099	90	.648
550	•070	900	.668	550	.102	900	• 649
60	•069	10	.668	60	.106	10	• 650
70	•064	20	.670	70	.108	20	• 650
80	•060	30	.670	80	.109	30	• 650
90	•059	40	.670	90	.112	40	• 650
600	.060	950	.669	600	.118	950	.648
10	.060	60	.666	10	.120	60	.644
20	.056	70	.66ц	20	.117	70	.642
30	.054	80	.662	30	.116	80	.642
40	.050	90	.66ц	40	.112	90	.642
650	.044	1000	•666	650	.101	1000	.644
60	.040	10	•669	60	.095	10	.649
70	.036	20	•673	70	.084	20	.652
80	.036	30	•676	80	.081	30	.656
90	,048	40	•680	90	.105	40	.660
700 10 20 30 40	.120 .245 .385 .487 .572	1050 60 70 80	.684 .687 .688 .688	700 10 20 30 40	.190 .290 .385 .491 .560	1050 60 70 80	.665 .666 .668 .671

Spectral Directional Reflectance of the Ventral and Dorsal Sides of a Leaf of the Indicated Tree for the Visible and Near Infrared Spectrum, 400 to 1080 Millimicrons. (See Appendix A; GE Graph Sheets Serial No. GE II-1192, -1193.)

L

SPANISH HAZELNUT (3)							
	Ventral	Side	"Green	Sport" Do	orsal S	Side	
Wave		Wave		Wave		Wave	
mu	R _λ	mµ.	R_{λ}		R _λ	mu	R _λ
400	0.039	750	0.594	400	0.061	750	0.578
10	.040	60	.610	10	.069	60	.596
20	.040	70	.621	20	.074	70	.605
30	.040	80	.628	30	.076	80	.610
40	.040	90	.630	40	.079	90	.612
450	.040	800	.632	450	.084	800	.614
60	.040	10	.634	60	.086	10	.616
70	.040	20	.636	70	.088	20	.618
80	.040	30	.636	80	.089	30	.619
90	.041	40	.638	90	.092	40	.620
500	.044	850	.639	500	.101	850	.621
10	.051	60	.640	10	.124	60	.622
20	.076	70	.642	20	.156	70	.624
30	.110	80	.642	30	.186	80	.624
40	.129	90	.644	40	.201	90	.624
550	.136	900	.644	550	.206	900	.626
60	.132	10	.645	60	.202	10	.626
70	.112	20	.646	70	.186	20	.628
80	.092	30	.646	80	.170	30	.628
90	.081	40	.646	90	.160	40	.627
600	•076	950	.644	600	.155	950	.626
10	•070	60	.642	10	.148	60	.624
20	•062	70	.639	20	.139	70	.619
30	•058	80	.638	30	.134	80	.618
40	•054	90	.639	40	.129	90	.618
650	.048	1000	.641	650	.115	1000	.621
60	.045	10	.644	60	.106	10	.624
70	.042	20	.646	70	.094	20	.628
80	.040	30	.650	80	.090	30	.633
90	.050	40	.654	90	.116	40	.636
700 10 20 30 40	.122 .246 .390 .483 .554	1050 60 70 80	.656 .660 .664 .666	700 10 20 30 40	.190 .290 .390 .490 .546	1050 60 70 80	.638 .641 .644 .648

Spectral Directional Reflectance of the Ventral and Dorsal Side of a Leaf of the Indicated Tree for the Visible and Near Infrared Spectrum, 400 to 1080 Millimicrons. (See Appendix A; GE Graph Sheets Serial No. GE II-1192, -1193.)

PLUM IIRedu							
	Ventral	Side	100	su	Dorsal	Side	
Wave		Wave		Wave		Wave	
Length	P.	Length	P.	Length	P	Length	P.
	<u></u>	1	<u> </u>	<u> </u>	<u> </u>		10,
400	0.044	750	0.634	400	0.061	750	0.631
20	.045	70	•050 •658	20	.009	70	. 640
30	.047	80	.661	30	.076	80	.650
40	.047	90	.664	40	.077	90	.651
450	.048	800	.665	450	.079	800	.652
60	.048	10	.666	60	.080	10	-654 651
80	.040	30	.668	80	.079	30	.655
90	.048	40	.668	90	.077	40	.655
500	.050	850	.669	500	.078	850	•655
10	•054	60	•670 670	10	.080	60 70	•656
30	.059	80	.670	30	.005	80	.656
40	.064	90	.670	40	.084	90	.658
550	.066	900	.671	550	.086	900	.658
60 70	.071	10	.672	60 70	.091	10	-650 650
80	.082	30	.671	80	.110	30	.659
90	.090	40	.670	90	.125	40	.656
600	.096	950	.668	600	.140	950	.654
20	.096	60 70	.664 659	20	.146	60 70	· 650
30	.086	80	.656	30	.147	80	.642
40	.080	90	.657	40	•14ा	90	.642
650	.066	1000	.660	650	.125	1000	. 644
60 70	.050	20	•004 •668	60 70	.114	20	.652
80	.048	30	.67,4	80	.094	30	.656
90	. 068	40	.676	90	.129	40	.660
700	.174	1050	.680	700	.235	1050	.665
20	· J16	60 70	.682	20	· 355	60 70	.000
30	.550	80	.688	30	.550	80	.675
40	.607			40	.605		

IX. Canadian Forest Leaves

Table VI lists the common name, the Latin name, and the dates of collection and measurement of the twenty-four leaf specimens. This is followed by eighteen illustrations (Figures 19 to 36) showing a record of the forty-eight determinations on these twenty-four specimens of leaves picked from trees or gathered from the ground near Ottawa, Ontario, by Dr. J. M. Robinson of the Department of Resource and Development, on May 10 and May 18, 1953, and delivered to the NBS by Dr. H. T. O'Neill on May 14 and 25, 1953.

These two shipments were made in large cardboard boxes. The samples were wrapped in newspapers and these were surrounded with many leaves picked from trees and off of the ground.

The first nine illustrations, Figures 19 to 27, show the spectral directional reflectance curves of the specimens designated in the legends of the illustrations, and listed in Table VI and in the index to Appendix C. The data plotted in the illustrations are taken from the tables of reduced spectrophotometric readings listed in Appendix D.

The chromaticity coordinates of the samples of these nine illustrations are shown in the segments of the three C.I.E. chromaticity diagrams for standard source C, Figures 28, 29, and 30. The data used for these three illustrations are listed in Table VII.

The Munsell renotations of these same specimens are illustrated in the five schematic diagrams of the "ideal" Munsell System in Figures 31 to 35. The data used for these illustrations are listed in Tables VIII and IX together with the corresponding ISCC-NBS color designation.

Color-difference determinations by means of the Godlove color-difference formula were computed between the ventral and the dorsal sides of twelve of these leaves. These differences are listed in Table X and illustrated in Figure 36.

Table VI

Identification of the Leaf Specimens from Trees of the Eastern Part of the Dominion of Canada, near Ottawa, and the Date of Gathering and Measurement.

Sj	Date	Date	
Common Name	Latin Name	Gathered	Measured
TREMBLING ASPEN	Populus tremuloides Michx.	5-18-53	5-25-53
BASSWOOD	Tilia americana L.	5-10-53	5-14-53
BEECH (1)	Fagus grandifolia Ehrh.	5-10-53	5-14-53
BEECH (2)	Fagus grandifolia Ehrh.	5 - 18 - 53	5-25-53
BEECH (3)	Fagus grandifolia Ehrh.	5-18-53	5-25-53
WHITE BIRCH	Betula alba L.	5 - 10-53	5-14-53
YELLOW BIRCH	Betula lutea Michx.	5-10-53	5-14-53
PIN CHERRY	Prunus pennsylvanica L.	5-10-53	5-14-53
*WHITE ELM (1)	Ulmus americana L.	5-10-53	5-14-53
WHITE ELM (2)	Ulmus americana L.	5-18-53	5 - 29 - 53
HORNBEAM	Carpinus betulus L.	5-10-53	5-14-53
IRO NWO OD	Carpinus caroliniana Walt.	5-18-53	5-29-53
JUNEBERRY	Amelanchier arborea (Michx.f.)	Fern.	
RED MAPLE	Acer rubrum L.	5-10-53	5-29-53
SUGAR MAPLE (1)	Acer saccharum Marsh.	5 - 10 - 53	5-14-53
SUGAR MAPLE (2)	Acer saccharum Marsh.	5-18-53	5 - 29 - 53
*SUGAR MAPLE (3)	Acer saccharum Marsh.	5-10-53	5-14-53
*SUGAR MAPLE (4)	Acer saccharum Marsh.	5-10-53	5-14-53
*SUGAR MAPLE (5)	Acer saccharum Marsh.	5-10-53	5-14-53
BALSAM POPLAR (1)	Populus balsamifera L.	5-10-53	5-14-53
BALSAM POPLAR (2)	Populus balsamifera L.	5-18-53	5-29-53
BALSAM POPLAR (3)	Populus balsamifera L.	5-18-53	5 - 29 - 53
LARGE TOOTH POPLAR(1)	Populus grandidentata Michx.	5-18-53	5-29-53
"Green" LARGE TOOTH POPLAR(2) "White"	Populus grandidentata Michx.	5-18-53	5-29-53

*Overwintered leaves gathered from ground.

Figure 19.

Visible and near infrared spectral directional reflectance of the ventral side of the leaves of four typical deciduous trees in the Ottawa, Ontario, region of the Dominion of Canada, picked on May 10, 1953. They are Hornbeam, White Birch, Beech (1), and Balsam Poplar (1). For further identification see Table VI and the index to Appendix C.

.

Figure 20.

Visible and near infrared spectral directional reflectance of the ventral side of the leaves of four typical deciduous trees in the Ottawa, Ontario, region of the Dominion of Canada, picked on May 10, 1953. They are Sugar Maple (1), Yellow Birch, Basswood, and Pin Cherry. For further identification see Table VI and the index to Appendix C.

Figure 21.

Visible and near infrared spectral directional reflectance of the ventral side of overwintered leaves from two typical deciduous trees in the Ottawa, Ontario, region of the Dominion of Canada, collected on May 10, 1953. They are White Elm (1), and a "light-", "medium-", and "dark-brown" specimen of Sugar Maple (3), (4), and (5), respectively. For further identification see Table VI and the index to Appendix C.

1

Figure 22.

Visible spectral directional reflectance of the ventral side of the leaves of three typical deciduous trees in the Ottawa, Ontario, region of the Dominion of Canada, picked on May 18, 1953. They are White Elm (2), Red Maple, and Sugar Maple (2). For further identification see Table VI and the index to Appendix C. (The spectrophotometric curves of the dorsal side of these same leaves are shown in Figure 23.)

.

•

,

Figure 23.

Visible spectral directional reflectance of the dorsal side of the leaves of Figure 22, picked on May 18, 1953 in the Ottawa, Ontario, region of the Dominion of Canada. They are White Elm (2), Red Maple, and Sugar Maple (2). For further identification see Table VI and the index to Appendix C.

.

.

.

Figure 24.

Visible spectral directional reflectance of the ventral side of the leaves of three typical deciduous trees in the Ottawa, Ontario, region of the Dominion of Canada, picked on May 18, 1953. They are a "brown" and a "green" Beech (2) and (3), a "green" and a "black" Balsam Poplar (3) and (2), and a "green" and a "white" Large Tooth Poplar (1) and (2). For further identification see Table VI and the index to Appendix C. (The spectrophotometric curves of the dorsal sides of these same leaves are shown in Figure 25.)

-80-

Figure 25.

Visible spectral directional reflectance of the dorsal side of the leaves of Figure 2h, picked on May 18, 1953 in the Ottawa, Ontario, region of the Dominion of Canada. They are a "green" and a "brown" Beech (3) and (2), a "green" and a "black" Balsam Poplar (3) and (2), and a "green" and a "white" Large Tooth Poplar (1) and (2). For further identification see Table VI and the index to Appendix C.

•
Figure 26.

Visible spectral directional reflectance of the ventral side of the leaves of three typical deciduous trees in the Ottawa, Ontario, region of the Dominion of Canada, picked on May 18, 1953. They are Juneberry, Trembling Aspen, and Ironwood. For further identification see Table VI and the index to Appendix C. (The spectrophotometric curves of the dorsal sides of these same leaves are shown in Figure 27.)

Figure 27.

Visible spectral directional reflectance of the dorsal side of the leaves of Figure 26, picked on May 18, 1953 in the Ottawa, Ontario, region of the Dominion of Canada. They are Juneberry, Trembling Aspen, and Ironwood. For further identification see Table VI and the index to Appendix C.

· ·

·

Figure 28.

Segment of the C.I.E. chromaticity diagram showing dominant wavelength, excitation purity, and chromaticity coordinates for standard source C of the ventral sides of Hornbeam, Pin Cherry, and Balsam Poplar (1), and the ventral and dorsal sides of Balsam Poplar (3) "green", Balsam Poplar (2) "black", Ironwood, and Beech (2) "brown"; from data listed in Table VII. For further identification see Table VI and the index to Appendix C. Note ventral side of specimens are illustrated with closed circles and the dorsal side of the specimens by open circles.

-88-

Figure 29.

Segment of the C.I.E. chromaticity diagram showing dominant wavelength, excitation purity, and chromaticity coordinates for standard source C of the ventral sides of "light-", "medium-", and "dark-brown" Sugar Maple (3), (4), and (5), and the ventral and the dorsal sides of Trembling Aspen, Red Maple, and Large Tooth Poplar (2) "white"; from data listed in Table VII. For further identification see Table VI and the index to Appendix C. The sugar maple specimens were "dead overwintered leaves on the ground". Note ventral side of specimens are illustrated with closed circles and the dorsal side of the specimens by open circles.

Figure 30.

Segment of the C.I.E. chromaticity diagram showing dominant wavelength, excitation purity, and chromaticity coordinates for standard source C of the ventral sides of Sugar Maple (1), White Birch, Basswood, Beech (1), Yellow Birch, and White Elm (1); and the ventral and the dorsal sides of Beech (3) "green", Sugar Maple (2), Juneberry, and White Elm (2); from data listed in Table VII. For further identification see Table VI and the index to Appendix C. The White Elm (1) specimen was a "dead overwintered leaf on the ground". Note ventral side of specimens are illustrated with closed circles and the dorsal side of the specimens by open circles.

Figure 31.

Vertical and horizontal projections of the colors of the ventral sides (closed circle) of Basswood, Balsam Poplar (1), Pin Cherry, and Hornbeam; and of the color differences between the ventral (closed circle) and the dorsal (open circle) sides of Balsam Poplar (2) "black". The upper diagram shows the Munsell Value of these measurements plotted against the Munsell Hue and Chroma points projected from the lower diagram. The Munsell data are listed in Tables VIII and IX. For further identification see Table VI and the index to Appendix C.

Figure 32.

Vertical and horizontal projections of the colors of the ventral sides (closed circle) of Beech (1), and White Elm (1); and of the color differences between the ventral (closed circle) and dorsal (open circle) sides of Beech (2) "brown", Beech (3) "green", and White Elm (2). The upper diagram shows the Munsell Value plotted against the Munsell Hue and Chroma points projected from the lower diagram. The Munsell data are listed in Tables VIII and IX. For further identification see Table VI and the index to Appendix C.

Figure 33.

Vertical and horizontal projections of the colors of the ventral sides (closed circle) of Yellow Birch and White Birch; and of the color differences between the ventral (closed circle) and dorsal (open circle) sides of Trembling Aspen, Ironwood, and Juneberry. The upper diagram shows the Munsell Value plotted against the Munsell Hue and Chroma points projected from the lower diagram. The Munsell data are listed in Tables VIII and IX. For further identification see Table VI and the index to Appendix C.

.

Figure 34.

Vertical and horizontal projections of the colors of the ventral sides (closed circle) of "light-", "medium-", and "dark-brown" Sugar Maple (3), (4), and (5); and of the ventral (closed circle) and dorsal (open circle) sides of Sugar Maple (2), and Red Maple. The upper diagram shows the Munsell Value plotted against the Munsell Hue and Chroma points projected from the lower diagram. The Munsell data are listed in Tables VIII and IX. For further identification see Table VI and the index to Appendix C. .

·

.

Figure 35.

Vertical and horizontal projections of the color differences between the ventral (closed circle) and the dorsal (open circle) sides of Large Tooth Poplar (2) "white", Large Tooth Poplar (1) "green", and Balsam Poplar (3) "green". The upper diagram shows the Munsell Value plotted against the Munsell Hue and Chroma points projected from the lower diagram. The Munsell data are listed in Tables VIII and IX. For further identification see Table VI and the index to Appendix C.

.

Figure 36.

Color differences computed from the Godlove color-difference formula, converted into NBS units, between the ventral and the dorsal sides of the same leaf specimens picked in the spring (May 18, 1953) in the Ottawa, Ontario, region of the Dominion of Canada.

_	1	0	6	-
	-	~	~	

Table VII Canadian Forest Leaves

Chromaticity Coordinates and Daylight Reflectances for C.I.E. Source C of the Leaves Studied.

	Ventral Side			Dorsal Side		
	Chroma	ticity	Daylight	Chroma	ticity	Daylight
Specimen	x	nates y	Y(%)	x	na les	Y(%)
TREMBLING ASPEN	0.337	0.429	9.3	0.341	0.404	18.8
BASSWOOD	.361	.448	12.8			
BEECH (1)	• 376	.442	16.7			
BEECH (2)	.409	•391	13.2	•384	•378	15.6
BEECH (3)	•360	•446	7.9	• 348	.401	15.5
WHITE BIRCH	•359	• 454	13.2			
YELLOW BIRCH	.340	• 382	6.9			
PIN CHERRY	• 335	.418	8.6			
WHITE ELM (1)	•373	• 352	13.3			
WHITE ELM (2)	.363	.440	12.4	• 349	•399	18.8
HORNBEAM	• 354	.432	6.8			
IRONWOOD	.374	.434	10.8	• 358	.384	14.3
JUNEBERRY	• 384	.450	14.1	• 369	.408	22.5
RED MAPLE	• 354	.432	11.6	• 356	.423	13.5
SUGAR MAPLE (1)	• 366	.464	14.5			
SUGAR MAPLE (2)	• 372	•457	14.3	• 351	.407	21.3
SUGAR MAPLE (3)	.418	•390	17.8			
SUGAR MAPLE (4)	• 390	• 358	12.6			
SUGAR MAPLE (5)	• 360	• 346	8.1			
BALSAM POPLAR (1)	• 339	.402	10.4			·
BALSAM POPLAR (2)	•340	• 334	4.8	• 365	• 356	11.3
BALSAM POPLAR (3)	•362	.430	15.3	• 341	•377	29.7
LARGE TOOTH POPLAR (1)	• 369	. 437	18.8	•338	.372	31.4
"Green" LARGE TOOTH POPLAR (2) "White"	•329	.338	15.4	• 331	.342	32.8

.

×

(e

Table VIII Canadian Forest Leaves

-107-

Munsell Renotations and ISCC-NBS Color Designations of the Ventral Side of the Leaves Studied.

Munsell Specimen Renotations		ISCC-NBS Color Designations		
TREMBLING ASPEN	6.6GY 3.6/4.1	Moderate Olive Green		
BASSWOOD	4.8GY 4.1/4.7	Moderate Olive Green		
BEECH (1)	2.5GY 4.6/4.8	Moderate Yellow Green		
BEECH (2)	0.4Y 4.2/3.8	Moderate Yellowish Brown		
"Brown" BEECH (3) "Green"	4.7GY 3.3/4.2	Moderate Olive Green		
WHITE BIRCH	5.3GY 4.2/5.0	Moderate Olive Green		
YELLOW BIRCH	3.4GY 3.1/2.2	Grayish Olive Green		
PIN CHERRY	6.5GY 3.4/3.6	Moderate Olive Green		
WHITE ELM (1)	7.0YR 4.2/2.4	Grayish Brown		
WHITE ELM (2)	4.2GY 4.1/4.4	Moderate Olive Green		
HORNBEAM	4.8GY 3.0/3.7	Moderate Olive Green		
IRONWOOD	2.0GY 3.8/4.0	Moderate Olive		
JUNEBERRY	1.8GY 4.3/4.9	Moderate Olive		
RED MAPLE	5.1GY 3.9/4.0	Moderate Olive Green		
SUGAR MAPLE (1)	5.4GY 4.4/5.5	Moderate Olive Green		
SUGAR MAPLE (2)	3.8GY 4.3/5.2	Moderate Olive Green		
SUGAR MAPLE (3) "Light Brown"	8.9YR 4.8/4.6	Moderate Yellowish Brown		
SUGAR MAPLE (4)	5.5YR 4.1/3.0	Moderate Brown		
SUGAR MAPLE (5)	7.5YR 3.3/1.6	Grayish Brown		
BALSAM POPLAR (1)	5.6GY 3.7/3.1	Moderate Olive Green		
BALSAM POPLAR (2) "Black"	7.71 2.6/0.9	Olive Gray		
BALSAM POPLAR (3)	3.799 4.5/4.3	Moderate Olive Green		
LARGE TOOTH POPLAR (1 "Green") 3.2GY 4.9/4.8	Moderate Yellow Green		
LARGE TOOTH POPLAR (2" "White") 5.0x 4.5/0.8	Olive Gray		

-108-

Table IX

Canadian Forest Leaves

Munsell Renotations and ISCC-NBS Color Designations of the Dorsal Sides of the Leaves Studied.

Specimen		Munsell Renotations	ISCC-NBS Color Designations
TREMBLING ASPEN		5.7GY 4.9/3.7	Moderate Yellow Green
BASSWOOD			
BEECH (1)			
BEECH (2) "Brown"		1.51 4.5/3.1	Light Olive Brown
BEECH (3)		4.0GY 4.5/3.2	Moderate Olive Green
WHITE BIRCH			
YELLOW BIRCH			
PIN CHERRY			
WHITE ELM (1)			
WHITE ELM (2)		3.8GY 4.9/3.4	Moderate Yellow Green
HORNBEAM			
IRONWOOD		9.0Y 4.3/2.5	Grayish Olive
JUNEBERRY		0.4GY 5.3/3.8	Light Olive
RED MAPLE		4.1GY 4.2/3.9	Moderate Olive Green
SUGAR MAPLE (1)			
SUGAR MAPLE (2)		4.00Y 5.2/3.9	Moderate Yellow Green
SUGAR MAPLE (3)			a) a 10a
"Light Brown" SUGAR MAPLE (4) "Medium Brown"			
SUGAR MAPLE (5)			
BALSAM POPLAR (1)			
BALSAM POPLAR (2) "Black"		9.5YR 3.9/2.0	Grayish Yellowish Brown
BALSAM POPLAR (3)	P	3.1GY 6.0/2.7	Grayish Yellow Green
LARGE TOOTH POPLAR	(1)	3.4GY 6.1/2.5	Grayish Yellow Green
LARGE TOOTH POPLAR "White"	(2)	5.8Y 6.2/1.5	Light Olive Gray

•

Table X

Color Differences Computed from the Godlove Color-Difference Formula, Converted into NBS Units, Between the Ventral and Dorsal Sides of the Same Leaf Specimen of the Canadian Forest Trees.

Specimen	Color Difference
TREMBLING ASPEN	26.0
BEECH (2)	7.5
"Brown" BEECH (3)	24.5
WHITE ELM (2)	17.0
IRONWOOD	13.0
JUNEBERRY	20.5
RED MAPLE	6.0
SUGAR MAPLE (2)	19.0
BALSAM POPLAR (2)	27.0
BALSAM POPLAR (3)	31.0
LARGE TOOTH POPLAR (1)	26.5
LARGE TOOTH POPLAR (2) "White"	34.0

-110-

Appendix C.

Ozalid prints of the original recordings of the leaf specimens of the Canadian Forest Trees obtained on a General Electric recording spectrophotometer at the National Bureau of Standards, 400 to 1080 millimicrons.

-111-

Index to Appendix C.

	GE Graph	GE Graph Sheet Serial				
	Visible	Near Infrared	Ventral	Dorsal		
Specimen	Spec trum	Spectrum	Side	Side		
TREMBLING ASPEN	GE II-1216	888 88 0	l	2		
BASSWOOD	- 1207	GE II-1208	9			
BEECH (1)	-1207	-1208	7			
BEECH (2)	-1217		1	2		
BEECH (3)	-1217		3	4		
WHITE BIRCH	-1207	-1208	5			
YELLOW BIRCH	-1207	-1208	8			
PIN CHERRY	-1207	-1208	11			
WHITE ELM (1)	-1210	-1209	4			
WHITE ELM (2)	-1224		l	2		
HORNBEAM	-1207	-1208	4			
IRONWOOD	-1221	and the spinor	l	2		
JUNEBERRY	-1222		l	2		
RED MAPLE	-1215		l	2		
SUGAR MAPLE (1)	-1207	-1208	6	80 gg)		
SUGAR MAPLE (2)	-1223		l	2		
SUGAR MAPLE (3)	, - 1210	-1209	5	an (23)		
SUGAR MAPLE (4)	-1210	-1209	6			
SUGAR MAPLE (5)	-1210	-1209	7			
BALSAM POPLAR (1)	-1207	-1208	10			
BALSAM POPLAR (2)	- 1219		3	4		
BALSAM POPLAR (3)	-1219		l	2		
LARGE TOO TH POPLAR ((1) -1220		1	2		
"Green" LARGE TOOTH POPLAR ("White"	(2) -1220		3	4		

Appendix D

Spectral directional reflectance data obtained from correcting and reading the spectrophotometric curves of leaf specimens of Canadian Forest Trees.
Spectral Directional Reflectance of the Ventral and Dorsal Sides of the Leaves of the Trees Indicated for the Visible Spectrum, 400 to 750 Millimicrons. (See Appendix C, GE Graph Sheets Serial No. GE II-1216, -1217, 1224.)

Wave	TREMBLIN	G ASPEN	BEECH	(2)	BEECH	(3)	WHITE I	ELM (2)
	Ventral	Dorsal	Ventral	Dorsal	Ventral	Dorsal	Ventral	Dorsal
400	0.029	0.040	0.040	0.060	0.021	0.054	0.028	0.068
10	.030	.050	.044	.065	.024	.064	.032	.078
20	.033	.066	.046	.069	.025	.069	.038	.086
30	.036	.080	.050	.073	.026	.074	.041	.090
40	.040	.096	.052	.076	.028	.076	.044	.093
450	.044	.101	.054	.080	.028	.081	• 046	.099
60	.045	.108	.058	.084	.029	.084	• 048	.102
70	.045	.108	.061	.089	.030	.086	• 049	.104
80	.045	.109	.064	.094	.030	.087	• 050	.106
90	.045	.113	.070	.099	.030	.090	• 050	.109
500	.050	.126	.076	.106	.034	.100	.058	.121
10	.062	.150	.086	.116	.044	.120	.075	.144
20	.087	.188	.098	.126	.066	.148	.106	.176
30	.116	.217	.108	.136	.091	.171	.142	.206
40	.129	.229	.116	.144	.105	.184	.160	.220
550	.132	.232	.126	.152	.111	.188	.168	.226
60	.125	.226	.137	.162	.110	.186	.168	.226
70	.106	.208	.148	.171	.096	.174	.150	.211
80	.088	.189	.159	.180	.081	.161	.130	.195
90	.078	.178	.170	.188	.078	.152	.119	.186
600	.074	.171	.174	.192	.068	.148	.114	.180
10	.068	.164	.176	.194	.062	.141	.105	.174
20	.060	.152	.181	.198	.054	.134	.095	.164
30	.056	.148	.190	.205	.050	.129	.090	.159
40	.051	.139	.192	.204	.046	.122	.084	.153
650 60 70 80 90	044 039 034 032	.124 .110 .096 .092 .129	.180 .158 .137 .147 .198	.196 .174 .155 .163 .211	.038 .032 .026 .024 .038	.109 .098 .085 .080 .106	.071 .061 .050 .048 .067	.136 .126 .110 .104 .135
700	.124	.219	.259	.274	.101	.184	.150	.220
10	.242	.320	.322	.336	.200	.266	.264	.314
20	.380	.425	.360	.376	.298	.338	.380	.401
30	.511	.511	.384	.396	.374	.395	.476	.476
40	.585	.581	.400	.410	.418	.429	.541	.522
750	•626	.612	-11-14	.420	.438	.444	•578	.550

Spectral Directional Reflectance of the Ventral and Dorsal Sides of the Leaves of the Trees Indicated for the Visible Spectrum, 400 to 750 Millimicrons. (See Appendix C; GE Graph Sheets Serial No. GE II-1215, -1221, -1222, -1223.)

1

Wave	IRON	DOOD	JUNEBERRY		RED M	APLE	SUGAR MAPLE (2)		
Length 	Ventral	Dorsal	Ventral	Dorsal	Ventral	Dorsal	Ventral	Dorsal	
400	0.029	0.060	0.030	0.062	0.040	0.040	0.034	0.088	
10	.031	.066	.034	.078	.044	.048	.036	.091	
20	.034	.071	.037	.090	.045	.052	.038	.094	
30	.036	.074	.039	.094	.046	.054	.040	.096	
40	.038	.076	.040	.096	.046	.054	.041	.098	
450	.039	.080	.041	.100	.047	.058	• 043	.104	
60	.041	.084	.044	.106	.048	.060	• 044	.109	
70	.042	.085	.045	.108	.048	.061	• 046	.110	
80	.042	.086	.045	.109	.049	.062	• 046	.111	
90	.044	.090	.049	.114	.050	.066	• 049	.116	
500	.049	.099	.059	.129	.057	.075	.057	.131	
10	.064	.112	.082	.156	.075	.097	.081	.160	
20	.090	.129	.116	.195	.106	.126	.124	.200	
30	.118	.143	.150	.231	.138	.155	.166	.237	
40	.131	.150	.171	.252	.150	.168	.186	.254	
550	.139	.158	.181	.264	.156	.171	.196	.261	
60	.140	.162	.184	.269	.152	.169	.195	.259	
70	.131	.160	.176	.261	.136	.154	.176	.242	
80	.118	.156	.158	.249	.119	.140	.152	.222	
90	.110	.154	.148	.240	.109	.131	.139	.209	
600 10 20 30 40	.106 .100 .096 .086 .081	.154 .151 .148 .146 .142	.141 .134 .120 .114 .109	.236 .229 .216 .209 .206	.104 .096 .086 .084	.126 .119 .110 .106 .099	.131 .121 .106 .100 .094	.202 .192 .180 .174 .165	
650	• 068	.130	• 094	.188	.063	.086	.074	.144	
60	• 058	.121	• 076	.164	.054	.075	.061	.129	
70	• 048	.107	• 056	.135	.046	.064	.049	.110	
80	• 045	.102	• 050	.124	.046	.062	.044	.104	
90	• 068	.134	• 072	.158	.074	.100	.072	.139	
700	.151	.215	.160	•260	.165	.185	.185	•247	
10	.279	.292	.264	•357	.270	.270	.320	•360	
20	.374	.354	.352	•433	.348	.348	.434	•454	
30	.445	.400	.416	•486	.414	.400	.524	•525	
40	.490	.434	.459	•520	.452	.436	.575	•575	
750	.518	.456	.481	•539	.472	.456	.609	. 604	

Spectral Directional Reflectance of the Ventral and Dorsal Sides of the Leaves of the Trees Indicated for the Visible Spectrum, 400 to 750 Millimicrons. (See Appendix C; GE Graph Sheets Serial No. GE II-1219, -1220.)

Wave	BALSAM PO	OPLAR(2)	BALSAM PO	OPLAR(3)	LARGE POPL	TOOTH AR(1)	LARGE TOOTH POPLAR(2)		
Length mu	"Blac Ventral	Dorsal	"Gree Ventral	Dorsal	"Gre Ventral	en" Dorsal	"Whi Ventral	te" Dorsal	
400	0.037	0.052	0.052	0.096	0.050	0.136	0.090	0.146	
10	.038	.059	.054	.116	.055	.160	.104	.184	
20	.038	.064	.056	.138	.060	.179	.114	.212	
30	.039	.068	.058	.156	.064	.191	.120	.235	
40	.040	.071	.060	.174	.066	.200	.125	.252	
450	.040	.074	.062	.189	.069	.206	.129	.266	
60	.040	.077	.063	.200	.071	.212	.132	.277	
70	.040	.080	.064	.206	.072	.214	.134	.286	
80	.041	.082	.064	.210	.072	.216	.135	.292	
90	.041	.084	.064	.216	.074	.219	.136	.298	
500	.042	.086	.070	•230	.084	.229	.138	.302	
10	.042	.090	.086	•252	.109	.254	.141	.308	
20	.044	.095	.124	•282	.158	.294	.146	.314	
30	.044	.100	.169	•311	.211	.332	.150	.320	
40	.044	.104	.195	•326	.238	.354	.154	.325	
550	.046	.109	.206	• 335	.248	.360	.158	• 329	
60	.049	.114	.206	• 335	.246	.359	.160	• 333	
70	.050	.119	.189	• 324	.226	.344	.160	• 336	
80	.051	.124	.164	• 308	.202	.326	.160	• 338	
90	.052	.129	.149	• 299	.186	.314	.160	• 340	
600	• 054	.134	.140	•292	.178	• 307	.160	• 343	
10	• 055	.137	.131	•286	.169	• 300	.161	• 345	
20	• 056	.141	.119	•277	.156	• 292	.160	• 346	
30	• 058	.146	.113	•272	.150	• 286	.160	• 348	
40	• 059	.150	.104	•265	.136	• 276	.159	• 348	
650	.059	.151	.087	.250	.111	.256	.154	• 346	
60	.058	.152	.078	.239	.100	.246	.152	• 345	
70	.056	.152	.068	.222	.084	.232	.150	• 342	
80	.057	.157	.064	.215	.076	.228	.150	• 342	
90	.064	.166	.082	.244	.114	.260	.160	• 354	
700	.072	.176	.186	• 326	.250	.374	.204	.364	
10	.078	.184	.330	• 422	.399	.492	.249	.411	
20	.082	.190	.471	• 515	.504	.574	.275	.428	
30	.086	.195	.576	• 592	.566	.624	.294	.440	
40	.090	.200	.639	• 639	.600	.646	.305	.448	
750	.094	. 204	.672	. 664	.616	.659	.315	. 454	

Spectral Directional Reflectance of the Ventral Side of the Leaves of the Trees Indicated for the Visible and Near Infrared Spectrum, 400 to 1080 Millimicrons. (See Appendix C; GE Graph Sheets Serial No. GE II-1207, -1208.)

	BASSW	DOD		BEECH (1)			WHITE BIRCH				
Wave Length	Ventral	Side Wave Length		Wave Length	entral R.	Side Wave Length		Wave Length	Ventral	Side Wave Length	
400 10 20 30 40	0.043 .044 .043 .043 .043 .043	750 60 70 80 90	0.556 .578 .585 .590 .593	400 10 20 30 40	0.047 .048 .050 .050 .052	750 60 70 80 90	0.568 .578 .585 .592 .597	400 10 20 30 40	0.039 .042 .043 .043 .043	750 60 70 80 90	0.570 .581 .585 .588 .590
450	. 043	800	•595	450	•055	800	.602	450	.043	800	•591
60	. 044	10	•598	60	•058	10	.607	60	.044	10	•593
70	. 046	20	•600	70	•059	20	.611	70	.046	20	•594
80	. 047	30	•603	80	•062	30	.615	80	.047	30	•595
90	. 048	40	•602	90	•066	40	.618	90	.048	40	•594
500	.057	850	. 604	500	.081	850	. 622	500	.057	850	• 598
10	.079	60	. 606	10	.109	60	. 625	10	.079	60	• 598
20	.122	70	. 607	20	.152	70	. 628	20	.122	70	• 600
30	.154	80	. 608	30	.186	80	. 630	30	.164	80	• 602
40	.170	90	. 608	40	.203	90	. 632	40	.182	90	• 602
550	.174	900	.610	550	.212	900	.637	550	.187	900	.604
60	.168	10	.610	60	.212	10	.638	60	.180	10	.605
70	.150	20	.608	70	.196	20	.641	70	.155	20	.605
80	.130	30	.607	80	.180	30	.642	80	.131	30	.606
90	.118	40	.601	90	.169	40	.643	90	.118	40	.606
600	.112	950	.591	600	.164	950	.640	600	.111	950	.603
10	.103	60	.579	10	.156	60	.638	10	.103	60	.602
20	.093	70	.570	20	.146	70	.637	20	.093	70	.600
30	.089	80	.569	30	.141	80	.637	30	.089	80	.601
40	.080	90	.571	40	.128	90	.640	40	.080	90	.602
650	.066	1000	•576	650	.108	1000	.644	650	.066	1000	.605
60	.057	10	•583	60	.095	10	.648	60	.058	10	.608
70	.047	20	•589	70	.079	20	.650	70	.050	20	.610
80	.045	30	•590	80	.077	30	.652	80	.049	30	.613
90	.075	40	•593	90	.121	40	.654	90	.078	40	.615
700 10 20 30 40	.189 .292 .402 .482 .530	1050 60 70 80	•596 •597 •596 •596	700 10 20 30 40	.249 .376 .458 .515 .550	1050 60 70 80	•655 •658 •660 •662	700 10 20 30 40	.194 .313 .432 .507 .551	1050 60 70 80	.617 .619 .621 .623

IJ

•

-130-

Spectral Directional Reflectance of the Ventral Side of the Leaves of the Trees Indicated for the Visible and Near Infrared Spectrum, 400 to 1080 Millimicrons. (See Appendix C; GE Graph Sheets Serial No. GE II-1207, -1208, -1209, -1210.)

	-	TELLOW	BIRCH		PIN CHERRY				WHITE ELM(1)			
	1	Ventra]	Side			Ventral	Side			Ventral	Side	
W Le	lave ength mµ	_R _λ _	Wave Length <u>mu</u>	_R _λ _	Wave Length mu	R _λ	Wave Length <u>mµ</u>	R _λ	Wave Length mu	R_{λ}	Wave Length <u>m</u> µ	R _λ
	400	0.039	750	0.296	400	0.037	750	0.626	400	0.073	750	0.309
	10	.039	60	.301	10	.038	60	.648	10	.076	60	.329
	20	.040	70	.311	20	.039	70	.660	20	.078	70	.339
	30	.041	80	.321	30	.041	80	.667	30	.082	80	.351
	40	.042	90	.331	40	.042	90	.670	40	.084	90	.362
	450	.042	800	• 342	450	.043	800	.674	450	.087	800	.372
	60	.042	10	• 354	60	.043	10	.677	60	.089	10	.382
	70	.042	20	• 366	70	.043	20	.679	70	.092	20	.392
	80	.042	30	• 377	80	.043	30	.682	80	.095	30	.402
	90	.043	40	• 389	90	.043	40	.681	90	.098	40	.411
	500	.044	850	.401	500	.044	850	.685	500	.100	850	.420
	10	.049	60	.414	10	.056	60	.686	10	.104	60	.430
	20	.062	70	.426	20	.079	70	.688	20	.109	70	.437
	30	.074	80	.439	30	.106	80	.689	30	.113	80	.445
	40	.081	90	.450	40	.118	90	.691	40	.118	90	.451
	550	.084	900	.465	550	.122	900	.693	550	.125	900	.459
	60	.084	10	.476	60	.115	10	.693	60	.131	10	.465
	70	.078	20	.488	70	.098	20	.692	70	.138	20	.470
	80	.071	30	.498	80	.081	30	.692	80	.145	30	.475
	90	.067	40	.507	90	.073	40	.691	90	.154	40	.481
	600	•065	950	•512	600	.068	950	•686	600	.161	950	.484
	10	•063	60	•518	10	.063	60	•682	10	.169	60	.489
	20	•058	70	•523	20	.056	70	•678	20	.178	70	.493
	30	•058	80	•531	30	.054	80	•677	30	.185	80	.495
	40	•054	90	•538	40	.050	90	•679	40	.195	90	.500
	650	.049	1000	•548	650	.045	1000	• 680	650	.203	1000	.502
	60	.046	10	•556	60	.041	10	• 684	60	.211	10	.503
	70	.043	20	•565	70	.039	20	• 685	70	.220	20	.504
	80	.043	30	•571	80	.039	30	• 685	80	.229	30	.504
	90	.054	40	•576	90	.049	40	• 685	90	.240	40	.503
	700 10 20 30 40	.110 .172 .228 .259 .281	1050 60 70 80	• 578 • 582 • 586 • 586	700 10 20 30 40	.112 .226 .361 .495 .578	1050 60 70 80	• 683 • 683 • 682 • 682	700 10 20 30 上0	.251 .262 .272 .290 .300	1050 60 70 80	•501 •500 •497 •496

ſ

2.I

Spectral Directional Reflectance of the Ventral Side of the Leaves of the Trees Indicated for the Visible and Near Infrared Spectrum, 400 to 1080 Millimicrons. (See Appendix C; GE Graph Sheets Serial No. GE-II-1207, -1208, -1209, -1210.)

	HORNE	BEAM		SUGAR MAPLE(1)				SUGAR MAPLE(3)			
	Ventral	L Side		·	Ventral	Side			"Light Ventral	Brown" Side	
Wave Length mu	R _λ	Wave Length mµ	R _λ	Wave Length mu	R _λ	Wave Length mµ	R _λ	Wave Length mµ	R _λ	Wave Length mu	Rλ
400	0.025	750	0.394	400	0.036	750	0.624	400	0.051	750	0.442
10	.026	60	.420	10	.038	60	.634	10	.055	60	.454
20	.026	70	.432	20	.039	70	.642	20	.058	70	.462
30	.027	80	.441	30	.041	80	.645	30	.062	80	.471
40	.028	90	.449	40	.042	90	.648	40	.064	90	.480
450	.028	800	.457	450	.043	800	.650	450	.068	800	.487
60	.028	10	.465	60	.043	10	.653	60	.074	10	.494
70	.028	20	.473	70	.044	20	.654	70	.082	20	.499
80	.028	30	.480	80	.046	30	.657	80	.090	30	.505
90	.028	40	.487	90	.048	40	.656	90	.098	40	.510
500	.032	850	.494	500	.057	850	.658	500	.107	850	.515
10	.042	60	.500	10	.088	60	.659	10	.118	60	.519
20	.062	70	.506	20	.137	70	.662	20	.129	70	.524
30	.080	80	.513	30	.179	80	.663	30	.140	80	.527
40	.089	90	.518	40	.196	90	.663	40	.153	90	.530
550	.092	900	•524	550	.201	900	.667	550	.166	900	.534
60	.090	10	•528	60	.195	10	.668	60	.179	10	.537
70	.079	20	•532	70	.173	20	.667	70	.190	20	.539
80	.068	30	•536	80	.149	30	.667	80	.206	30	.542
90	.062	40	•539	90	.135	40	.667	90	.220	40	.544
600	• 059	950	• 543	600	.127	950	.665	600	•234	950	•545
10	• 055	60	• 546	10	.115	60	.662	10	•246	60	•549
20	• 049	70	• 548	20	.100	70	.660	20	•260	70	•550
30	• 048	80	• 552	30	.095	80	.660	30	•275	80	•552
40	• 044	90	• 556	40	.085	90	.662	40	•288	90	•554
650	.038	1000	•558	650	.066	1000	.664	650	.298	1000	•554
60	.034	10	•561	60	.054	10	.666	60	.300	10	•553
70	.030	20	•565	70	.040	20	.668	70	.303	20	•552
80	.030	30	•568	80	.040	30	.672	80	.325	30	•551
90	.043	40	•571	90	.077	40	.674	90	.357	40	•548
700 10 20 30 40	.113 .192 .268 .332 .371	1050 60 70 80	•574 •578 •580 •583	700 10 20 30 40	•204 •337 •451 •539 •593	1050 60 70 80	.676 .680 .681 .685	700 10 20 30 40	• 378 • 394 • 409 • 421 • 432	1050 60 70 80	•545 •543 •542 •542

Spectral Directional Reflectance of the Ventral Side of the Leaves of the Trees Indicated for the Visible and Near Infrared Spectrum, 400 to 1080 Millimicrons. (See Appendix C; GE Graph Sheets Serial No. GE II-1207, -1208, -1209, -1210.)

SI	UGAR MA Medium	PLE (4) Brown")	SUGAR MAPLE (5) "Dark Brown"				BALSAM POPLAR (1)			
Wave	Ventral	Side Wave		Wave	Ventral	. Side Wave		Wave	Ventral	Side Wave	
Length <u>mu</u>	R _λ	Length <u>mu</u>	R	Length	R _λ	Length <u>mu</u>	R	Length mu	R _λ	Length 	R _λ
400	0.055	750	0.335	400	0.051	750	0.223	400	0.052	750	0.647
10	.061	60	.347	10	.053	60	.242	10	.053	60	.670
20	.066	70	.358	20	.054	70	.254	20	.054	70	.682
30	.069	80	.371	30	.055	80	.268	30	.054	80	.689
40	.072	90	.380	40	.057	90	.281	40	.055	90	.694
450	• 074	800	• 388	450	.057	800	• 292	450	.056	800	.699
60	• 076	10	• 397	60	.058	10	• 306	60	.056	10	.704
70	• 077	20	• 404	70	.060	20	• 316	70	.057	20	.707
80	• 080	30	• 410	80	.060	30	• 327	80	.056	30	.709
90	• 082	40	• 417	90	.062	40	• 337	90	.057	40	.711
500	.085	850	. 422	500	.064	850	• 346	500	.058	850	•714
10	.090	60	. 428	10	.067	60	• 355	10	.067	60	•716
20	.095	70	. 432	20	.069	70	• 365	20	.090	70	•718
30	.100	80	. 436	30	.072	80	• 372	30	.118	80	•720
40	.108	90	. 440	40	.075	90	• 380	40	.133	90	•721
550 60 70 80 90	.116 .124 .131 .140 .149	900 10 20 30 40	• 445 • 447 • 450 • 454 • 455	550 60 70 80 90	.077 .080 .084 .086 .090	900 10 20 30 40	. 388 . 394 .400 .406 .410	550 60 70 80 90	.140 .137 .120 .104 .095	900 10 20 30 40	.724 .724 .723 .722 .722 .717
600	.159	950	.458	600	.093	950	.415	600	.090	950	.709
10	.169	60	.461	10	.098	60	.421	10	.084	60	.700
20	.180	70	.461	20	.101	70	.425	20	.077	70	.691
30	.190	80	.463	30	.106	80	.429	30	.074	80	.690
40	.201	90	.465	40	.112	90	.432	40	.070	90	.690
650	.213	1000	.466	650	.117	1000	.436	650	.063	1000	.694
60	.225	10	.466	60	.124	10	.436	60	.058	10	.698
70	.236	20	.467	70	.132	20	.437	70	.055	20	.703
80	.248	30	.467	80	.140	30	.436	80	.055	30	.704
90	.261	40	.463	90	.150	40	.435	90	.069	40	.704
700 10 20 30 40	•275 •288 •301 •313 •325	1050 60 70 80	.459 .457 .456 .456	700 10 20 30 40	.160 .171 .184 .200 .212	1050 60 70 80	.434 .434 .433 .433	700 10 20 30 40	•147 •269 •402 •531 •605	1050 60 70 80	.707 .707 .709 .710

7

X. Russian Vegetation and Soil

Dr. E. L. Krinov [1] reported spectrophotometric data on 370 samples of Russian terrain, nine of which extended over the whole visible spectrum (400 to 750 millimicrons). The following 8 illustrations relate to 7 of these 9 samples, 5 samples of vegetation and 2 of soils. Figures 37 and 40 show reflectance plotted against wavelength. Figures 38 and 41 are segments of the CIE chromaticity diagram showing the chromaticities of the 7 samples of Russian terrain, and Figures 39 and 42 are plots of the Munsell renotations of the corresponding colors. The data used for these illustrations are listed in Tables XII and XIII and refer to the samples indexed in Table XI and in Appendix E.

Color differences between the two grasses and the two soils were evaluated by means of the Godlove color-difference formula, and are shown in Table XIV and Figure 43 in terms of NBS units.

Krinov published approximately 10,000 spectrograms from the remaining 361 specimens, but these spectrograms all omit the orange-red part of the spectrum (600 to 650 millimicrons), and many of them also omit the red and infrared parts of the spectrum (wavelengths greater than 700 millimicrons). For the present study only seven of the nine samples for which no interpolation or extrapolation of the data was necessary were used. The two specimens not used were the two "snows" (Krinov's object Nos. 337 and 354). It was considered that these spectrograms were photographed with some shadows included and that they did not represent the true nature of the spectral directional reflectance of snow.

Recently, Penndorf [13] reduced the eleven generalized types that Krinov had assembled as representative of his measurements of spectral directional reflectance, using C.I.E. Standard Source B, representative of noon sunlight. These eleven types consisted of four "bare areas and soils", of four "vegetative formations", and three "water surfaces, water bodies, and snow". These are described, tabulated, and illustrated in Belkov's translation of Krinov (pages 70-72; page 97, Table XI; and page 115, Figure 24) [1].

·

Π

¢.

Table XI

Identification of the natural formations in Russia reported by Krinov [1].

Specimen	Characteristics	Object Number
	VEGETATION	
BIRCH	Mature Forest, winter stage	6
PLAN TA IN	Individual Leaf (top surface)	147
GRASS	Near Road, dus ty	161
GRASS	Summer Green	164
FALLOW, Green	Flowering	166
	SOIL	
SOIL, Grey Podsol	Ploughed, dry	302
EARTH ROAD	Grey Podsol	322

10

)

• .

Figure 37.

Visible and near infrared spectral directional reflectance of the five types of vegetation reported by Krinov [1].

.

Figure 38.

Segment of the C.I.E. chromaticity diagram showing dominant wavelength, excitation purity, and chromaticity coordinates for standard source C of the five types of Russian vegetation computed from the data illustrated in Figure 37, and listed in Appendix E. The chromaticity coordinates together with the daylight reflectances are listed in Table XII.

Figure 39.

Vertical and horizontal projections of the colors of the five types of Russian vegetation illustrated in Figures 37 and 38. The upper diagram shows Munsell Value plotted against the Munsell Hue and Chroma points projected from the lower diagram. The Munsell data are listed in Table XIII.

Figure 40.

Visible and near infrared spectral directional reflectance of the two samples of Russian soil reported by Krinov [1].

.

.

.

·

C

Figure 41.

Segment of the C.I.E. chromaticity diagram showing dominant wavelength, excitation purity, and chromaticity coordinates for standard source C of the two types of Russian soil computed from the data illustrated in Figure 40 and listed in Table Appendix E. The chromaticity coordinates together with the daylight reflectances are listed in Table XII.

.

Figure 42.

Vertical and horizontal projections of the colors of the two types of Russian soil illustrated in Figures 40 and 41. The upper diagram shows Munsell Value plotted against the Munsell Hue and Chroma points projected from the lower diagram. The Munsell data are listed in Table XIII.

1

1

Ī

Figure 43.

Color differences computed from the Godlove color-difference formula, converted into NBS units, between the types of grass and soil reported for Russia by Krinov [1].

l

1]_

. .

·

· ·

Table XII

-149-

Russian Vegetation and Soil

Chromaticity Coordinates and Daylight Reflectances for C.I.E. Source C of the Vegetation and Soil Studied.

Specimen	Chroma Coordi 	aticity inates y	Daylight Reflectance $\underline{\Upsilon(\%)}$	
	Russian Vegetati	on		
BIRCH, MATURE FOREST Winter Stage Object #6*	0.341	0.333	8.8	
PLANTAIN, INDIVIDUAL LEAF Top Surface Object #147*	•336	.400	10.5	
GRASS, NEAR ROAD Dusty Object #161*	• 353	• 377	7.3	
GRASS Summer Green Object #164*	•333	.498	8.0	
FALLOW Green, Flowering Object #166*	• 374	.409	6.1	
	Russian Soil			
SOIL, GREY PODSOL Ploughed, Dry Object #302*	•350	•347	5.2	
EARTH ROAD Grey Podsol Object #322*	• 342	• 345	10.1	

1

Table XIII

Russian Vegetation and Soil

Munsell Renotations and ISCC-NBS Color Designations of the Vegetation and Soil Studied,

Specimen	Munsell Renotations	ISCC-NBS Color Designations				
	Russian Vegetation					
BIRCH, MATURE FOREST Winter Stage Object #6*	6.3YR 3.4/1.0	Brownish Gray				
PLANTAIN, INDIVIDUAL LEAF Top Surface Object #147*	5.9GY 3.8/3.2	Moderate Olive Green				
GRASS, NEAR ROAD Dusty Object #161*	9.1Y 3.2/2.0	Grayish Olive				
GRASS Summer Green Object #164*	7.6GY 3.3/6.3	Moderate Olive Green				
FALLOW Green, Flowering Object #166*	9.5Y 2.9/2.8	Grayish Olive				
	Russian Soil					
SOIL, GREY PODSOL Ploughed, Dry Object #302*	0.71 2.7/1.2	Dark Grayish Yellowish Brown				
EARTH ROAD Grey Podsol Object #322*	2.4¥ 3.7/1.2	Brownish Gray				

-151-

Table XIV

Color Difference Computed from the Godlove Color-Difference Formula, Converted into NBS Units, Between (1) the Two Types of Grass, and (2) the Two Types of Soil, Computed from Data Published by Krinov [1].

Specimen	Color Difference
(1) Two Sets of Grass	
GRASS	23.5
(2) Two Sets of Soil	
SOIL	20.0

100

1

1

1

]

]

]

]

]

]

.

.

.

· ·

-

I

1

]

]

]

]

]

]'8

]

]

]

1

Appendix E

Spectral directional reflectance data of Russian vegetation and soil obtained from published data of Krinov [1] .

Russian Vegetation

Spectral Directional Reflectance of Three Types of Vegetation given by Krinov [1] for the Spectral Region 400 to 900 Millimicrons.

BIRCH, MATURE FOREST Winter Stage			PLANTAIN, INDIVIDUAL LEAF Top Surface				GRASS, NEAR ROAD Dus ty				
Wave Length <u>m</u> u	Objec	Wave Length 	R	Wave Length mu	<u>R</u> λ	#147* Wave Length 	<u></u>	Wave Length <u>mu</u>	<u>R_λ</u>	t #161* Wave Length 	R
400 10 20 30 40	0.072 .073 .074 .074 .074	750 60 70 80 90	0.100 .100 .100 .101 .102	400 10 20 30 40	0.060 .060 .060 .060	750 60 70 80 90	0.452 .464 .472 .478 .482	400 10 20 30 40	0.031 .035 .036 .045 .045	750 60 70 80 90	0.380 .385 .390 .391 .392
450 60 70 80 90	.073 .072 .071 .070 .070	800 10 20 30 40	.103 .104 .105 .106 .107	450 60 70 80 90	.058 .057 .056 .054 .053	800 10 20 30 40	.485 - - -	450 60 70 80 90	.044 .043 .044 .043 .045	800 10 20 30 40	.392 .391 .391 .390 .390
500 10 20 30 40	.071 .073 .077 .080 .082	850 60 70 80 90	.108 .109 .110 .110 .110	500 10 20 30 40	.054 .060 .096 .122 .136	850 60 70 80 90		500 10 20 30 40	.049 .054 .058 .075 .083	850 60 70 80 90	. 384 . 376 . 364 . 355
550 60 70 80 90	.087 .090 .091 .095 .098	900	.110	550 60 70 80 90	.142 .140 .126 .105 .093	900	-	550 60 70 80 90	.081 .081 .083 .082 .074	900	-
6 0 0 10 20 30 40	.100 .101 .101 .102 .102			600 10 20 30 40	.087 .082 .076 .070 .064			600 10 20 30 40	.071 .072 .074 .070 .069		
650 60 70 80 90	.101 .100 .100 .100			650 60 70 80 90	.056 .052 .052 .056 .070			650 60 70 80 90	.068 .070 .076 .090 .118		
700 10 20 30 40	.100 .100 .100 .100 .100			700 10 20 30 40	.132 .300 .344 .400 .424			700 10 20 30 40	.150 .218 .320 .360 .371		

* See Reference [1]

]

1

]

ויו

]

]

]

Russian Vegetation

Spectral Directional Reflectance of Two Types of Vegetation given by Krinov [1] for the Spectral Region 400 to 900 Millimicrons.

1 -

	GRA	ISS		FALLOW				
Summer Green				Green, Flowering				
Wave Length mu	R	Wave Length mu	R _λ	Wave Length mu	_R _λ	Wave Length mu		
400 10 20 30 40	0.010 .013 .014 .014 .018	750 60 70 80 90	0.495 .630 .740 .798	400 10 20 30 40	0.021 .014 .019 .021 .025	750 60 70 80 90	0.156 .156 _ _	
450 60 70 80 90	.020 .022 .024 .026 .037	800 10 20 30 40		450 60 70 80 90	.027 .028 .032 .031 .033	800 10 2 0 30 40		
500 10 20 30 40	.053 .078 .097 .107 .114	850 60 70 80 90		500 10 20 30 40	.036 .047 .050 .063 .070	850 60 70 80 90		
550 60 70 80 90	.115 .110 .096 .073 .053	900	-	550 60 70 80 90	.072 .070 .068 .066 .062	900	-	
600 10 20 30 40	.045 .047 .048 .040 .025			600 10 20 30 40	.062 .060 .061 .058 .060			
650 60 70 80 90	.007 .000 .013 .028 .052			650 60 70 80 90	.060 .072 .095 .123 .148			
700 10 20 30 40	.088 .150 .245 .347 .420			700 10 20 30 40	.152 .154 .157 .156 .156			

* See Reference [1]

Russian Soil

Spectral Directional Reflectance of Two Types of Soil given by Krinov [1] for the Spectral Region 400 to 900 Millimicrons.

-

l

S 01	IL, GRI	EY PODS	DL	EAR TH ROAD					
F	loughe Object	ed, Dry t #302*		Grey Podsol Object #322*					
Wave Length mu	R _λ	Wave Length mu	R _λ	Wave Length mu	R	Wave Length mu	R _λ		
400 10 20 30 40	0.037 .040 .041 .043 .041	750 60 70 80 90	0.122 .155 .192 .212 .222	400 10 20 30 40	0.081 .079 .078 .077 .076	750 60 70 80 90	0.167 .180 .191 .202 .213		
450 60 70 80 90	.037 .035 .035 .038 .040	800 10 20 30 40	.228 .230 .230 .229 .225	450 60 70 80 90	.076 .076 .077 .080 .083	800 10 20 30 40	.223 .233 .242 .250 .257		
500 10 20 30 40	• 043 • 047 • 049 • 050 • 049	850 60 70 80 90	•220 	500 10 20 30 40	.087 .090 .093 .098 .099	850 60 70 80 90	.263		
550 60 70 80 90	• 049 • 050 • 055 • 059 • 060	900	-	550 60 70 80 90	.100 .101 .105 .108 .110	900	-		
600 10 20 30 40	• 060 • 060 • 060 • 060			600 10 20 30 40	.111 .112 .112 .112 .111				
650 60 70 80 90	.060 .061 .065 .069 .074			650 60 70 80 90	.113 .124 .139 .149 .157				
700 10 20 30 40	.079 .083 .089 .094 .103			700 10 20 30 40	.161 .162 .161 .157 .156				

* See Reference [1]

XI. Summary

Visible and near infrared measurements of spectral directional reflectance have been made on some selected leaves of trees in the Annapolis, Maryland, and Washington, D. C., areas in the United States of America and in the Ottawa, Ontario, area of the Dominion of Canada on a General Electric recording spectrophotometer at the National Bureau of Standards for the spectral region 400 to 1080 millimicrons. These recordings have been illustrated and tables of data are included as well as graphs and tables of chromaticity coordinates, daylight reflectances, Munsell renotations, and ISCC-NBS color designations. In addition, color differences in terms of the NBS unit of color difference have been computed between similar leaf specimens and between the ventral and the dorsal sides of the same leaf specimens. Similar reductions are reported and illustrated for some natural formations in the USSR as determined and reported by Krinov [1].

Some of the leaves of this report were studied directly for other purposes, and the results are recorded here for ready reference as a start towards collection of the complete information required for reliable interpretation of aerial photographs.

XII. Bibliography

- [1] E. L. Krinov, Spectral reflectance properties of natural formations, Aero Methods Laboratory, Academy of Sciences, USSR, translated by G. Belkov, Nat. Res. Council of Canada, Tech. Trans., TT-439 Ottawa, 1953.
- [2] H. J. Keegan, J. C. Schleter, and W. A. Hall, Jr., Spectrophotometric and colorimetric change in the leaf of a white oak tree under conditions of natural drying and excessive moisture, NBS Report No. 4322 to WADC, Sept., 1955.
- [3] H. J. Keegan, J. C. Schleter, W. A. Hall, Jr., and G. M. Haas, Spectrophotometric and colorimetric study of foliage stored in covered metal containers, NBS Report No. 4370 to WADC, November, 1955.

]

- [4] H. J. Keegan, J. C. Schleter, W. A. Hall, Jr., and G. M. Haas, Spectrophotometric and colorimetric study of the fading of dyed papers and cardboards under natural daylight, NBS Report No. 4438 to WADC, December, 1955.
- [5] A. C. Hardy, A new recording spectrophotometer, J. Opt. Soc. Am. 25, 305 (1935); also A. C. Hardy, History of the design of the recording spectrophotometer, J. Opt. Soc. Am., 28, 360 (1938).
- [6] J. L. Michaelson, Construction of the General Electric recording spectrophotometer, J. Opt. Soc. Am. 28, 365 (1938).
- K. S. Gibson and H. J. Keegan, Calibration and operation of the General Electric recording spectrophotometer of the National Bureau of Standards, J. Opt. Soc. Am. 28, 372 (1938).
- [8] H. J. Keegan and K. S. Gibson, On the use of working standards of didymium and Vitrolite glasses for spectrophotometric measurements, J. Opt. Soc. Am. 34, 770 (1944).
- [9] Proceedings, Eighth Session, Commission Internationale de l'Eclairage, Cambridge, England, pp 19 to 29, Sept. 1931.
- [10] S. M. Newhall, D. Nickerson, and D. B. Judd, Final report of the OSA subcommittee on the spacing of the Munsell colors, J. Opt. Soc. Am. 33, 385 (1943).
- [11] K. L. Kelly and D. B. Judd, The ISCC-NBS method of designating colors and a dictionary of color names, NBS Circular C553, November, 1955.
- 12] I. H. Godlove, Improved color-difference formula with applications to the perceptibility and acceptability of fading, J. Opt. Soc. Am. 41, 760 (1951).
- [13] R. Penndorf, Colors of natural objects, J. Opt. Soc. Am. 46, 180 (1956).

-157-

Appendix F.

Copies of the five work requests authorizing the studies on American and Canadian leaves herein reported are included in this appendix together with some notes by Dr. O'Neill on the specimens. It will be noted that the first two of these work requests also authorize measurements of photographs of these leaves and the final request authorizes measurements of some additional leaves, but these measurements for one reason or another were not made. It has been deemed desirable on this account to make a single report of the completed parts of the work authorized by all five requests.

.

·

6

F

The following are copies of the original work requests which resulted in the present report. Also included are some notes by Dr. O'Neill accompanying the work requests.

* * * * *

Serial Number 2.1 WADC-4/52.

October 16, 1952

"Determine spectrophotometric curves of leaves to match with or compare with color fidelity and gray tones of the same leaves as registered on Ansco, Magenta, and Cyan by overcast sky-light:

1. Green white oak leaves (Quercus alba L.) cf. exposures 83, 84, and 85, i.e. as registered on tricolor, magenta, and cyan films.

2. Red dogwood leaves (Cornus florida L.) cf. exposures 86, 87, and 88.

3. Brown glossy black oak leaves (Quercus velutina Lam.) typical of thick, deciduous, coriaceous leaves when browned. cf. exposures 89, 90, and 91.

4. Bright yellow hickory leaves (Carya tomentosa (Lam.) Nutt.) cf. exposures 92, 93, and 94.

5. Russet beech leaves (Fagus grandifolia Ehrh.) cf. exposures 95, 96, and 97."

"To enable us to set up a standard objective procedure for judging films for intelligence and reconnaissance. One factor and a fundamental factor is color fidelity. The series of photographs mentioned above 83 - 97 shows the field entirely taken up by a single or a very few leaves of as uniform a color as could be found at this time. The curve of each leaf can be compared with that curve shown on the film. Preceding this set of photographs are numbers 50 to 82 which also show the performance of the same films on this cloudy day when registering our standard color patches."

* * * * *

Serial Number 2,1 WADC-5/52.

October 17, 1952

"Determine spectrophotometric curves of Red Dogwood leaves corresponding to photographs 131 tricolor, 132 magenta in emulsion, and 133 cyan in emulsion, taken in direct sunlight at 8-inch focus so as to show only the leaves in the entire field. Similarly Yellow hickory leaves in the same series comparable in every detail, Nos. 134, 135, and 136. Also Green white oak leaves photographed on exposures 137, 138, and 139. Also Reddish white oak leaves photographed on exposures 140, 141, and 142. Also glossy black oak leaves photographed on exposures 143, 144, and 145. These are the leaves actually photographed so that this affords a means of testing color fidelity on Ansco Daylight (tricolor or three-dye) emulsion, and special emulsion with magenta only and special emulsion with cyan only."

"This will enable us not only to check or estimate color fidelity as to

leaves but also by comparison with photographs, of the series 98 to 132 to fit in with data on the color patches set up as standards for judging any future films to be tested in this or any other similar research. Yesterday's studies enable the whole series to be compared with similar series made with overcast sky. In this way comparisons as to effect of skylight and of sunlight can be made at numerous points. A table showing all the data of the films, etc. will be supplied separately as soon as the films have been processed."

. . .

Serial Number 2.1 WADC-8/52

"Spectrophotometric study (400 to 1080 mµ) of colored leaves. These leaves are the "last leaves of Autumn" and were picked after there was a killing frost." (The leaves were given the following color names by Dr. O'Neill to denote the fall coloration: Tulip tree "yellow", Dogwood "red and green", Beech "russet brown", Beech "yellow", Scarlet Oak "red", White Oak "red brown", and Aspen "blackening".)

* * * * *

Serial Number 2.1 WADC-19/53

"Spectrophotometric study of Spring red leaves. Measure the spectral directional reflectance of leaves of Spanish Hazelnut and Purpleleaf Plum (including 'green sport' and intermediate leaves of the Hazelnut)."

* * * *

Serial Number 2.1 WADC-20/53

"Study of early foliage in the subarctic deciduous forest, also dead overwintered leaves on the ground". "Shipment of leaves received from J. M. Robinson, 451 Riverdale Avenue, Ottawa, Ontario, on May 14, 1953. Mailed in Ottawa on May 11, 1953. Delayed in Customs which passed them free. They arrived in fairly good condition. We unpacked, sorted, and flattened them out as soon as received. May 10, 1953 9 A.M. Ottawa. Green leaves: Betula lenta, yellow birch; Fagus sylvatica, beech; Tilia americana, basswood; Populus tremuloides, quaking asp; Quercus borealis, red oak; Acer rubrum L., red maple; Populus balsamifera L., balsam poplar ("cottonwood"); Acer saccharum, sugar maple; Prunus pennsylvanica, pin cherry; Betula papyrifera March, white birch (canoe birch); Acer saccharum, sugar maple; and Ostrya virginiana, hornbeam.

Autumn Dead Leaves (used for packing, showing the brown shades of the leaves on the ground at this time): Acer saccharum, sugar maple; and Ulmus americana, elm."

* * * *

"Leaves picked 11:00 near Ottawa, May 18, 1953 by Robinson. Record

April 22, 1953

May 14, 1953

November 3, 1952

of leaves received from J. M. Robinson, 451 Riverside Avenue, Ottawa, Ontario. Received 11:00 Saturday May 23, 1953 (placed in refrigerator at noon. Taken to NBS on Monday, 9:30 May 25, 1953)."

"Balsam poplar or cottonwood. Populus balsamifera L. (erroneously P. tacamahaca Mill. of authors). Black leaves show that these turn black when clipped off and used for camouflage at this season of the year. Spectrophotometric curves of pale green under (dorsal) side of leaves, and green top (ventral) side of leaves requested. Blackened leaves are superficially similar to the blackened leaves of pear trees, as they normally turn in fall or when attacked in spring by pear-blight. (Result of tannin and iron)."

"Bitternut hickory. Carya cordiformis. Hopelessly wilted. Turned very dark brown. State of these leaves shows that this species leafs out later than preceding species."

"Large-tooth aspen. Populus grandidentata Michx. Leaves densely white tomentose dorsally (canescent-lanate), bright green ventrally. Catkins showing "cotton" on ripening fruit."

"Quaking or tembling asp or aspen. (Populus tremuloides L. (commonest tree in North America). Leaves only relatively paler green dorsally than ventrally. Apparently this and P. balsamifera leaf out a few days earlier than P. grandidentata)."

"Butternut. Juglans cinerea L. Catkins had turned black. Like the bitternut, this tree leafs out later than the poplars."

"Staghorn sumac. Rhus typhina L. Leaflets very young. Paler green but only slightly paler on ventral than dorsal side. Probably leafs out a little sooner than bitternut and butternut, but later than poplars."

"White or american elm. Ulmus americana L. Now in full leaf but these nearly all fallen off."

"Red maple. Leaves fully out. Note that these leaves are not densely chalky white as are those of the Maryland red maple. They are only slightly paler green dorsally."

"Juneberry. Amelanchier. Leaves fully out. Only slightly paler dorsally. A bush, "Saskatoon"."

"Ironwood. Hop-hornbeam. Ostrya virgiana. Leaves not quite fully out. Slightly paler green dorsally."

"Sugar maple fully out. Acer saccharum."

"Quercus borealis only one quarter leafed out, hopelessly wilted and dark."

"Q. macrocarpa. Same as above in all respects, hopeless and dark."

"Tilia americana. Basswood. Fully out, equally green on both sides."

"Betula papyrifera Marshall. White or canoe birch. Fully out. Slightly paler ventrally. Fully leafed out."

"Betula lutea. Fully leafed out, badly wilted and darkened."

"Ulmus rubra. (Slippery elm ? not with us. U. cinerea is ours). About half leafed out. Later than U. americana. Badly wilted and leaves all fallen off."

"Pin cherry. Prunus pennsylvamica. Hopelessly wilted, past blooming, leaves fully out."

"Fraxinus americana. White ash. Badly wilted; like the other cpd leaves, these leaflets appear relatively late."

"Sent to Bureau of Standards. Many of these were too badly wilted to be of use. May 25, 1953."

* * * * *

Supplementary Identification.

"Spanish hazelnut, Corylus avellana L.; Hornbeam, Carpinus betulus L.; Balsam poplar, Populus balsamifera L.; Basswood, Tilia americana L.; Pin cherry, Prunus pennsylvanica L.; Large tooth poplar, Populus grandidentata Michx.; Sugar maple, Acer saccharum Marsh.; Trembling aspen, Populus tremuloides Michx. (Quaking aspen is more common than trembling aspen); Yellow birch, Betula lutea Michx."

* * * * *

Supplementary Identification.

"Aspen, Populus grandidentata Michx.; Plum, Prunus Pissardi Hort."

* * * * *

June 2, 1954

March 2, 1956

THE NATIONAL BUREAU OF STANDARDS

Functions and Activities

The functions of the National Bureau of Standards are set forth in the Act of Congress, March 3, 1901, as amended by Congress in Public Law 619, 1950. These include the development and maintenance of the national standards of measurement and the provision of means and methods for making measurements consistent with these standards; the determination of physical constants and properties of materials; the development of methods and instruments for testing materials, devices, and structures; advisory services to Government Agencies on scientific and technical problems; invention and development of devices to serve special needs of the Government; and the development of standard practices, codes, and specifications. The work includes basic and applied research, development, engineering, instrumentation, testing, evaluation, calibration services, and various consultation and information services. A major portion of the Bureau's work is performed for other Government Agencies, particularly the Department of Defense and the Atomic Energy Commission. The scope of activities is suggested by the listing of divisions and sections on the inside of the front cover.

Reports and Publications

The results of the Bureau's work take the form of either actual equipment and devices or published papers and reports. Reports are issued to the sponsoring agency of a particular project or program. Published papers appear either in the Bureau's own series of publications or in the journals of professional and scientific societies. The Bureau itself publishes three monthly periodicals, available from the Government Printing Office: The Journal of Research, which presents complete papers reporting technical investigations; the Technical News Bulletin, which presents summary and preliminary reports on work in progress; and Basic Radio Propagation Predictions, which provides data for determining the best frequencies to use for radio communications throughout the world. There are also five series of nonperiodical publications: The Applied Mathematics Series, Circulars, Handbooks, Building Materials and Structures Reports, and Miscellaneous Publications.

Information on the Bureau's publications can be found in NBS Circular 460, Publications of the National Bureau of Standards (\$1.25) and its Supplement (\$0.75), available from the Superintendent of Documents, Government Printing Office. Inquiries regarding the Bureau's reports and publications should be addressed to the Office of Scientific Publications, National Bureau of Standards, Washington 25, D. C.

