# NATIONAL BUREAU OF STANDARDS REPORT 

4412

FRACTIONAL FACTORIAL DESIGNS FOR THE $1 / 2^{\text {s }} \times 2^{\text {n }}$ SERIES FOR $n=12(1) 16$ AND $s=6,7,8$.
by

R. C. Burton,<br>F. L. Miller, Jr.,<br>and H. M. Pettigrew

NBS
U. S. DEPARTMENT OF COMMERCE NATIONAL BUREAU OF STANDARDS

NATIONAL BUREAU OF STANDARDS
A. V. Astin, Director

## THE NATIONAL BUREAU OF STANDARDS

The scope of activities of the National Bureau of Standards is suggested in the following listing of the divisions and sections engaged in technical work. In general, each section is engaged in specialized research, development, and engineering in the field indicated by its title. A brief description of the activities, and of the resultant reports and publications, appears on the inside of the back cover of this report.

Electricity and Electronics. Resistance and Reactance. Electron Tubes. Electrical Instruments. Magnetic Measurements. Process Technology. Engineering Electronics. Electronic Instrumentation. Electrochemistry.
Optics and Metrology. Photometry and Colorimetry. Optical Instruments. Photographic Technology. Length. Engineering Metrology.
Heat and Power. Temperature Measurements. Thermodynamics. Cryogenic Physics. Engines and Lubrication. Engine Fuels.
Atomic and Radiation Physics. Spectroscopy. Radiometry. Mass Spectrometry. Solid State Physics. Electron Physics. Atomic Physics. Nuclear Physics. Radioactivity. X-rays. Betatron. Nucleonic Instrumentation. Radiological Equipment. AEC Radiation Instruments.

Chemistry. Organic Coatings. Surface Chemistry. Organic Chemistry. Analytical Chemistry. Inorganic Chemistry. Electrodeposition. Gas Chemistry. Physical Chemistry. Thermochemistry. Spectrochemistry. Pure Substances.

Mechanics. Sound. Mechanical Instruments. Fluid Mechanics. Engineering Mechanics. Mass and Scale. Capacity, Density, and Fluid Meters. Combustion Controls.
Organic and Fibrous Materials. Rubber. Textiles. Paper. Leather. Testing and Specifications. Polymer Structure. Organic Plastics. Dental Research.
Metallurgy. Thermal Metallurgy. Chemical Metallurgy. Mechanical Metallurgy. Corrosion. Mineral Products. Porcelain and Pottery. Glass. Refractories. Enameled Metals. Concreting Materials. Constitution and Microstructure.
Building Technology. Structural Engineering. Fire Protection. Heating and Air Conditioning. Floor, Roof, and Wall Coverings. Codes and Specifications.
Applied Mathematics. Numerical Analysis. Computation. Statistical Engineering. Mathematical Physics.
Data Processing Systems. Components and Techniques. Digital Circuitry. Digital Systems. Analogue Systems.

Cryogenic Engineering. Cryogenic Equipment. Cryogenic Processes. Properties of Materials. Gas Liquefaction.

Radio Propagation Physics. Upper Atmosphere Research. Ionospheric Research. Regular Propagation Services.
Radio Propagation Engineering. Frequency Utilization Research. Tropospheric Propagation Research.
Radio Standards. High Frequency Standards. Microwave Standards.

# NATIONAL BUREAU OF STANDARDS REPORT <br> NBS PROJECT 

FRACTIONAL FACTORIAL DESIGNS FOR THE $1 / 2^{\mathrm{S}} \times 2^{\mathrm{n}}$ SERIES FOR $n=12(1) 16$ AND $s=6,7,8$.
by

R. C. Burton,<br>F. L. Miller, Jr.,<br>and H. M. Pettigrew<br>Statistical Engineering Laboratory

# U. S. DEPARTMENT OF COMMERCE NATIONAL BUREAU OF STANDARDS 

The publicatic unless permiss 25, D. C. Suc cally preparer

Approved for public release by the director of the National Institute of Standards and Technology (NIST) on October 9, 2015
lo or in part, is prohibited of Standards, Washington I a report has been specifilar report for its own use.

## FORENARD

This report brings together work on the construction of two-level fractional factorial designs begun during the summer of 1955 , and is an extension of the work of Clatworthy, Connor, and Zelen [I]. The experimental designs catalogued here may be useful in reducing the amount of experimentation for those experimental situations where the joint effects of many factors are to be evaluated.

This work is part of a continuing program of research on mathematical statistics and its applications carried out at the Statistical Engineering Laboratory, National Bureau of Standards for the Chemical Corps, U. S. Department of the Armm (NBS Project Number 11030-40-5118/52-I).

## C. Eisenhart

Chief, Statistical Engineering Laboratory
E. W. Cannon

Chief, Applied Mathematics Division National Bureau of Standards
Page
Introduction ..... 1
References ..... 13Classification of factorial designs according to fractional replication,number of factors, and number of experimental units per block.
Plan $\quad \frac{\text { Number of measurements }}{\text { required }}$
64.12 .8 ..... 64 ..... 14
64.12 .16 ..... 15
64.12 .32
64.12 .32 ..... 64
64 ..... 16
64.13 .8 ..... 12817
64.13 .16 ..... 12819
64.13 .3212820
64.13 .641282164.14 .8256
64.14 .16 ..... 256
64.14 .32 ..... 256
64.14 .64 ..... 256
64.14 .128 . ..... 256
128.12. 832
128.12.16. ..... 32
128.13 .8642224
2526128.13.16.64
128.13.32. ..... 64
32-2728
293030
31128.14 .8
128 ..... 33
128.14.16. ..... 128 ..... 35128.14.32.128128.14 .64.128
128.15 .8 ..... 256
128.15.16。 ..... 256
128.15.32. ..... 256
128.15.64. ..... 256
128.15.128256
256.13 .8
256.13 .16. 256.13.16.3232
256.14. 8
4664
256.14.16.64
256.14.32. ..... 64
256.15 .8 ..... 128
256.15.16. ..... 128
256.15.32。 ..... 1283636
3738
40
41
42
43
44647
49
50$256.15 .644^{\circ}$128
256.16.8256
256.16.16.256256256
256.16.64.256
256.16.128256
51
54
56
57
58
61
62
63
64

> Fractional Factorial Designs for the $\frac{1}{2^{s}} \times 2^{n}$ Series for $n=12(1) 16$ and $s=6,7,8$ by
> R.C. Burton, FoL. Miller, and H.M. Pettigrew

Introduction. This report is an extension of the catalogue of two-level fractional factorial replicate designs compiled by W.H. Clatworthy, W.S. Connor, and M. Zelen [I]. The designs are of the $2^{n}$ series, where $n$, the number of factors, ranges from 12 to 16 and each factor is at two levels. This report includes designs which are $1 / 64,1 / 128$, and $1 / 256$ of a full replication.

Each design has a designation $r_{0} n_{0} k_{0}$, where $\underline{r}$ is the replication, $\underline{n}$ the number of factors, and $k$ the number of experimental units per block. For example, plan 64.14 .8 refers to a $1 / 64$ replication of 14 factors in (32) blocks of 8 units each.

A main effect or interaction is said to be measurable if it is confounded only with higher-order interactions. In all designs, the main effects of each of the factors are confounded with interactions involving three or more factors. The information as to which two-factor interactions are not measurable is given for each design. Those two-factor interactions lost in choosing the fraction of treatment combinations are indicated under the heading "Without blocks。" Additional two-factor interactions lost as a result of blocking are given under the heading "With blocks."

In all designs, capital letters are used to refer to factors, their main effects, and interactions. The lower case letters are used to denote the various treatment combinations and indicate the levels of each factor applied; the
absence of a letter indicates application of the lower level of the given factor, and the presence of a letter indicates the application of the upper level of that factor. For example, in a design of five factors $A, B, C, D, E$ the treatment combination acd denotes the higher level of $A, C$ and $D$, and the lower level of $B$ and $E$. The symbol "(l)" denotes the treatment combination consisting of the low levels of all the factors. These are the usual conventions, cf. Cochran and Cox [2], Davies [3], and Kempthorne [4].

With each design is given the fundamental identity (denoted by I) used to choose a subset of the set of all possible treatment combinations. Also given are the block confounding relationships used to subdivide this subset of treatment combinations into experimental blocks. The equal signs are read, "is confounded with." Additional details concerning the construction and statistical analysis of the designs may be found in the references cited above.

In each design, all the treatment combinations of the first block are given explicitly. One treatment combination for every other block is given. This enables the remaining treatment combinations for any other block to be found by multiplying the first treatment of the block by all the treatment combinations in the first block. Multiplication, which is commutative, is defined such that $\mathrm{a} \cdot \mathrm{b}=\mathrm{ab}, \mathrm{a} \cdot \mathrm{a}=\mathrm{l}$, and $\mathrm{l} \cdot \mathrm{a}=\mathrm{a}$. For example, the treatment combinations in block 2 of plan 64.14 .8 are found by multiplying the corresponding treatments in block 1 by abfhkl:

## 2

| abfhkl | aghjmo |
| :--- | :--- |
| abcdfmn | acdgjklno |
| bceghln | cefhjkmno |
| bdegkm | defjlo |



These designs represent a considerable effort on the part of the authors to retain as many measurable two-factor interactions as possible while at the same time allowing main effects to be only confounded with three-factor or higher order interactions. The designs have been carefully checked but there is always a possibility of error. We would appreciate hearing from anyone who improves the designs or finds errors in them。

The authors wish to express their thanks to Mr. Marvin Zelen who supervised this project, and to Mrs. Mary E. McKinley and Miss Caroline Yick for their painstaking efforts in typing the manuscript for reproduction.

Conversion of Two-level Designs to Four Levels.
It is possible to adapt the two level designs in this catalogue to experiments in which the number of levels of the factors is a power of two, or where there is a mixture of levels each a power of two, such as experiments having some factors at two levels and some at four. To illustrate the conversion procedure, a $1 / 64$ replication of 14 factors at two levels will be converted to a completely randomized four-level design
involving seven factors．The fundamental identity in plan 64．14．8（and its resulting treatment combinations）will be used without regard to the grouping of treatments into blocks．

Let the seven new factors be denoted by $\alpha, \beta, \gamma, \delta, \theta, \phi$ and $\mathcal{Z}$ ，and the four levels of each new factor be called the Oth（lowest）level，the Ist level，the 2nd level，and the 3rd（highest）level．To show the conven－ tions used in writing the four－level treatment combinations，the following table has been made，（with the factors listed down the side and the levels across the top ）：

| Levels |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Oth |  | Ist | 2nd | 3 rd |
|  | $\alpha \mid \alpha^{0}=(1)$ | $\alpha^{\prime}=\alpha$ | $\alpha^{3}$ | $\alpha^{3}$ |
| \％ | $\beta \mid \beta^{\circ}=(1)$ | $\beta=\beta$ | $\beta^{2}$ | $\beta^{3}$ |
| N | $\left.\ddot{z}\right\|^{\ddot{p}}=(1)$ | $\psi^{\prime}=\psi$ | $y^{2}$ | $2^{3}$ |

The application of the Oth level of a factor $x$ is denoted by $x^{0}$ or（1）。 The application of the lst level of $x$ is denoted by $x^{\perp}$ ，or simply $x$ ， and the applications of the 2nd and 3rd levels of $x$ are denoted by $x^{2}$ and $x^{3}$ ，respectively。

The treatment combination（1）represents that treatment where all seven factors are at their lowest，or Oth，level。 For all other treatment combinations，the absence of a factor from the written treatment combination indicates that that factor is present in its lowest level，and the（1）is
not written in the treatment. As an example, the treatment combination $\alpha^{2} \gamma^{3} \delta \phi$ implies $\alpha^{2} \beta^{0} \gamma^{3} \delta^{1} \theta^{0} \phi^{1} \psi^{0}$, and represents the combination of the Oth levels of $\beta, \theta$, and $\psi$, the lst levels of $\delta$ and $\phi$, the 2nd level of $\alpha$, and the 3rd level of $\gamma$ 。 (It should be noted here that in the two-level designs capital letters were used to refer to the factors and their main effects and interactions, and lower case letters to treatment combinations, but in the four $=1$ evel designs a given letter can refer to any of these).

Now if the fourteen factors of the two-level design are thought of as "pseudofactors" of the proposed four-level plan, a correspondence can be set up by grouping the pseudofactors in pairs, one pair with each fourlevel factor. One way to group them would be $[A, B: \alpha]$, (read "A and B with $\left.\alpha_{11}\right),[C, D: \beta],[E, F: \gamma]$, etc. As will be seen later, however, this is not the best grouping in this case, and instead the following groupings have been used:

$$
\begin{array}{ll}
\mathrm{A}, \mathrm{~J}: \alpha & \mathrm{E}, \mathrm{~L}: \theta \\
\mathrm{B}, \mathrm{C}: \beta & \mathrm{K}, \mathrm{~N}: \varnothing \\
\mathrm{D}, \mathrm{G}: \% & \mathrm{~F}, \mathrm{M}: \gamma \\
\mathrm{H}, \mathrm{O}: \AA &
\end{array}
$$

Now a correspondence must be set up between the four-level treatment combinations and the treatment combinations of the pseudofactors. This is done as follows. The application of the oth level of factor $\alpha$ may be thought of as the application of the lower levels of both of the pseudofactors $A$ and $J$, the application of the lst level of $\alpha$ as the application of the upper level of pseudofactor $A$, the 2nd level of $\alpha$ as the upper level
of $J$, and the 3 rd and highest level as the upper levels of both $A$ and $J$. In other words, $\alpha^{\circ}$ or (1) in the four-level design will correspond to $2^{\circ} j^{\circ}$ or (l) in the two-level design, designating the lower level of both pseudofactors $A$ and $J, \alpha$ will correspond to $a, \alpha^{2}$ to $\dot{j}$, and $\alpha^{3}$ to 2j. This is done in a similar manner for the other factors, as has been done in the following table:

Four-level Treatments in Terms of Pseudofactors

|  |  | Levels |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Oth | 1st | 2nd | 3rd |
| $\begin{aligned} & \text { en } \\ & \text { O } \\ & \text { + } \\ & \text { U } \\ & \text { In } \end{aligned}$ | $\begin{aligned} & \alpha \\ & \beta \\ & \gamma \\ & \delta \\ & \theta \\ & \phi \\ & \gamma \end{aligned}$ | $\begin{aligned} & (1) \\ & (1) \\ & (1) \\ & (1) \\ & (1) \\ & (1) \\ & (1) \end{aligned}$ | $\begin{aligned} & \alpha=a \\ & \beta=b \\ & \gamma=d \\ & \delta=h \\ & \theta=e \\ & \phi=k \\ & \gamma=f \end{aligned}$ | $\begin{aligned} & \alpha^{2}=j \\ & \beta^{2}=c \\ & \gamma^{2}=g \\ & \delta^{2}=0 \\ & \theta^{2}=1 \\ & \phi^{2}=n \\ & \psi^{2}=m \end{aligned}$ | $\begin{aligned} & \alpha^{3}=a j \\ & \beta^{3}=b c \\ & \gamma^{3}=d g \\ & \delta^{3}=h 0 \\ & \theta^{3}=e 1 \\ & \phi^{3}=\mathrm{kn} \\ & \psi^{3}=\mathrm{fm} \end{aligned}$ |

Using this table we can "express" any four-level treatment combination in pseudofactors having two levels, and vice-versa. For example (1), representing the lower level of all fourteen pseudofactors, corresponds to the (1) representing the Oth level of the seven four-level factors; $\alpha \gamma^{3} \delta^{2} q$, representing the Oth level of factors $\beta, \theta$, and $\phi$, the lst level of factors $\propto$ and $\psi$, the 2nd level of $\delta$ and the 3 rd level of $\gamma$, corresponds to adgof, or adfgo. The two-level treatment combination abdefghl corresponds to $\alpha \beta \gamma^{3} \delta \theta^{3} \gamma$. This last translation can be done in either of two ways: either by taking each two-level letter in order and writing the corresponding four-level letter, $\alpha \beta \gamma \theta\left\{\gamma \gamma^{2} \delta \theta^{2}\right.$, and multiplying algebraically
giving $\alpha \beta \gamma^{3} \theta^{3} \mathrm{Z}$, or by noting the pairs that occur in the two-level treatment, in this case dg and el , and immediately writing the highest levels of the corresponding four-level factors, $\gamma^{3} \theta^{3}$.

Thus there is a one to one correspondence between the two-level and the four-level treatment combinations. Therefore the 256 two-level treatmint combinations, when "translated" into four-level combinations, will give the proper subset for the $1 / 64$ replicate of a $4^{7}$ factorial design.

One may either obtain all 256 treatments in terms of pseudofactors and then translate them one at a time into four -level terms, or translate only the treatments of the initial block and the block multipliers. If the latter method is used, multiplication by the block multipliers must follow these rules:

$$
\begin{aligned}
x^{0} \times x & =x \\
x^{0} \times x^{2} & =x^{2} \\
x^{0} \times x^{3} & =x^{3} \\
x \times x^{2} & =x^{3} \\
x \times x^{3} & =x^{2} \\
x^{2} \times x^{3} & =x \\
x \times x=x^{2} \times x^{3} & =x^{3} \times x^{3}=x^{0}=(1)
\end{aligned}
$$

Given below are the eight treatments in the initial block obtained by translating the treatments, (of the two-level design), and the second group of eight treatments found by multiplying by abfhkI $=\alpha \beta \delta \theta^{2} \phi \psi$ :

$$
\begin{array}{ll}
(1) & \alpha \beta \delta \theta^{2} \phi \gamma^{2} \\
\beta^{2} \gamma \theta^{2} \phi^{3} \psi^{2} & \alpha \beta^{3} \gamma \phi^{2} \psi^{3} \\
\alpha \beta^{2} \gamma^{2} \theta^{3} \phi^{3} & \beta^{3} \gamma^{2} \delta \theta^{3} \phi^{2} \\
\alpha \gamma^{3} \delta \theta^{3} \psi^{3} & \beta \gamma^{3} \theta \phi \psi^{2} \\
\alpha^{2} \beta \gamma^{2} \delta^{2} \theta^{2} \phi \psi^{3} & \alpha^{3} \gamma^{2} \delta^{3} \gamma^{2} \\
\alpha^{2} \beta^{3} \gamma^{3} \delta^{3} \phi^{2} \gamma & \alpha^{3} \beta^{2} \gamma^{3} \delta^{2} \theta^{2} \phi^{3} \\
\alpha^{3} \beta^{3} \delta^{2} \theta^{3} \phi^{2} \psi^{2} & \alpha^{2} \beta^{2} \delta^{3} \theta \phi^{3} \psi^{3} \\
\alpha^{3} \beta \gamma \delta^{3} \theta \phi & \alpha^{2} \gamma \delta^{2} \theta^{3} \gamma^{2}
\end{array}
$$

The block groupings here are used only as a convenient means of generating all 256 treatment combinations. The treatments are of course not grouped into blocks in this completely randomized design.

In the four-level designs, as in the two-level designs, the fundamental identity is used to determine what information is lost through confounding. In the two-level designs each main effect and each two-factor interaction, having only one degree of freedom, was either completely measurable or completely lost. In the four-level design, each of the seven main effects has three degrees of freedom and each of the twentyoone two-factor interactions has nine degrees of freedom. The three degrees of freedom for main effects can be broken up into three individual degrees of freedom, given by the "main effects" of the two pseudofactors and their "interaction", e.g. for $\propto$ by $A, J$, and $A J$. Similarly the nine degrees of freedom for each two-factor interaction can be broken up into nine individual degrees of freedom, given by multiplying the individual degrees of freedom of the main effects of the two factors, e.go, for $\alpha \beta$ by $(A, J, A J) x(B, C, B C)$ or $A B, A C, A B C, B J, C J, B C J, A B J, A C J$, and $A B C J$.

Each individual degree of freedom may or may not be measurable, so it is possible to have partial information on a main effect or twowfactor interaction. To determine which are measurable, the aliases of each are found from the fundamental identity. For example, by checking AJ through the.first few terms of the identity:

$$
\mathrm{AJ}=\mathrm{BCDJO}=\mathrm{BEFJLNO}=\mathrm{ACDEFJLN}=\ldots
$$

it is seen that it is confounded with BCDJO (from $\alpha \beta \gamma \delta$ ), BEFJLNO (from $\alpha \beta \delta \theta \phi \nsim$ ) and $A C D E F J N$ (from $\alpha \beta \gamma \theta \phi \beta$ )。 If AJ is checked through each remaining term of the identity, it will be found that in all cases its aliases are composed of three-factor or higher interactions. Therefore AJ is termed measurable。 Similarly, the other twenty individual degrees of freedom for main effects are measurable. However, when the degrees of freedom for the two-factor interactions are checked, it is found that some are confounded with each other and hence are not measurable. The following table shows what information is measurable, and how lost information is confounded:

Summary of Confounding in $1 / 64 \times 47$

| $\begin{aligned} & \text { Main } \\ & \text { effects } \end{aligned}$ | measurable degrees of freedom | Lost d.f. | confounded with: | from 2-factor interaction: |
| :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \alpha \\ & \beta \\ & \gamma \\ & \delta \\ & \theta \\ & \phi \\ & \gamma \end{aligned}$ | $\begin{array}{lll} \mathrm{A}, & \mathrm{~J}, & \mathrm{AJ} \\ \mathrm{~B}, & \mathrm{C}, & \mathrm{BC} \\ \mathrm{D}, & \mathrm{G}, & \mathrm{DG} \\ \mathrm{H}, & \mathrm{O}, & \mathrm{HO} \\ \mathrm{E}, & \mathrm{~L}, & \mathrm{EL} \\ \mathrm{~K}_{9} & \mathrm{~N}_{\mathrm{g}} & \mathrm{KN} \\ \mathrm{~F}, & \mathrm{M}_{9} & \mathrm{FM} \\ \hline \end{array}$ | none $"$ $"$ $" 11$ $"$ $"$ $"$ |  |  |
| 2-Factor interm actions |  |  |  |  |
| $\alpha \beta$ | $\mathrm{AB}, \mathrm{CJ}, \mathrm{ACJ}, \mathrm{ABCJ}$ | AC <br> ABC <br> BJ <br> BCJ <br> $A B J$ | EFFM DO DEGL EH FHM, KL | $\begin{gathered} \theta \gamma \\ \gamma \delta \\ \gamma \theta \\ \delta \theta \\ \delta \gamma, \theta \phi \end{gathered}$ |


| 2mFactor inter. actions | measurable <br> degrees of freedom | Lost dof. | confounded with: | from 2-factor interaction: |
| :---: | :---: | :---: | :---: | :---: |
| $\alpha \gamma$ | AG, DJ, AGJ, ADGJ | $A D$ <br> ADG <br> GJ <br> DGJ <br> ADJ | $\begin{aligned} & \text { BCO } \\ & \text { EK } \\ & \text { HKO } \\ & \text { BEL } \\ & \text { EHO } \end{aligned}$ | $\begin{aligned} & \beta \delta \\ & \theta \phi \\ & \delta \phi \\ & \beta \theta \\ & \delta \theta \end{aligned}$ |
| $\alpha \delta$. | AH, AHO, JO, AJO | AO <br> HJ <br> HJO <br> AHJ <br> AHJO | BCD <br> BCE <br> GK <br> BFM <br> DE | $\begin{aligned} & \beta \gamma \\ & \beta \theta \\ & \gamma \phi \\ & \beta \gamma \\ & \gamma \theta \end{aligned}$ |
| Q $\theta$ | AL, AEL, JL, AEJL | $A E$ $E J$ <br> EJL <br> AEJ <br> AJL, | CFM, DGK BCH BDG DHO BK | $\begin{aligned} & B \gamma, \gamma \phi \\ & \beta \delta \\ & \beta \gamma \\ & \gamma \delta \\ & \beta \phi \end{aligned}$ |
| $\propto \phi$ | AN, AKN, JN, JKN, $A J N, A J K N$ | AK AJK | $\begin{aligned} & \text { DEG } \\ & \text { GHO } \\ & \text { BL } \end{aligned}$ | $\begin{aligned} & \gamma \theta \\ & \gamma \delta \\ & \beta \theta \end{aligned}$ |
| a | $A F, A M, F J, J M, F J M$ AFJ, AJM | AFM AFJM | $\begin{aligned} & C E \\ & B H \end{aligned}$ | $\begin{aligned} & \beta \theta \\ & \beta \delta \end{aligned}$ |
| $\beta \gamma$ | $\begin{aligned} & \mathrm{BD}, \mathrm{BG}, \mathrm{CD}, \mathrm{CG}, \mathrm{BCG}, \\ & \mathrm{BCDG} \end{aligned}$ | $\begin{aligned} & \text { BDG } \\ & \text { BCD } \\ & \text { CDG } \end{aligned}$ | $\begin{gathered} \mathrm{EJL} \\ \mathrm{AO} \\ \mathrm{HL}_{2} \mathrm{FKM} \\ \hline \end{gathered}$ | $\begin{gathered} \alpha \theta \\ \alpha \delta \\ \delta \theta_{i} \phi \neq \end{gathered}$ |
| $\beta \delta$ | $\mathrm{BO}, \mathrm{BHO}, \mathrm{CO}, \mathrm{CHO}$ | 3 I <br> CH <br> BCH <br> BCO <br> BCHO | AFJM <br> DGL <br> EJ <br> AD <br> FKN | $\begin{aligned} & \alpha \gamma \\ & y \theta \\ & \alpha \theta \\ & \alpha \gamma \\ & \alpha \psi \end{aligned}$ |
| $\beta \theta$ | $\begin{aligned} & \mathrm{BE}, \mathrm{CEL}, \mathrm{BCL}, \\ & \mathrm{BCEL} \end{aligned}$ | BL <br> BEL <br> CE <br> CL <br> BCE | AJK <br> DGJ <br> AFM <br> DGH <br> HJ | $\begin{aligned} & \alpha \phi \\ & \alpha \gamma \\ & \alpha \psi \\ & \gamma \delta \\ & \alpha \delta \end{aligned}$ |


| 2-Factor inter* actions | measurable <br> degrees of freedom | Lost dof. | confounded with: | from 2-factor interaction: |
| :---: | :---: | :---: | :---: | :---: |
| $\beta \phi$ | BN, BKN, CN, CKN, BCK, BCN | $\begin{gathered} \mathrm{BK} \\ \mathrm{CK} \\ \mathrm{BCKN} \\ \hline \end{gathered}$ | AJL <br> DFGM <br> FHO | $\begin{aligned} & \alpha \theta \\ & \nu \% \\ & \delta \mu \end{aligned}$ |
| B | $\mathrm{BF}, \mathrm{BM}, \mathrm{CF}, \mathrm{CM} \text {, }$ BCM, BCFM | $\begin{aligned} & \mathrm{BFM} \\ & \text { CFM } \\ & \text { BCF } \end{aligned}$ | DGK, AE <br> HKNO | $\begin{aligned} & \alpha \hat{\alpha} \\ & \gamma \phi, \alpha \theta \\ & \delta \phi \end{aligned}$ |
| $\gamma \delta$ | $\begin{aligned} & \mathrm{DH}, \mathrm{GH}, \mathrm{GO}, \\ & \mathrm{DGO}, \mathrm{DGHO} \end{aligned}$ | DO <br> DHO <br> GHO <br> DGH | $\begin{aligned} & \text { ABC } \\ & \text { AEJ } \\ & \text { JK } \\ & \text { C } \end{aligned}$ | $\begin{aligned} & \alpha \beta \\ & \alpha \theta \\ & \alpha \phi \\ & \beta \theta \end{aligned}$ |
| $\nu \theta$ | DL, DEL, EG, GL | $\begin{aligned} & \text { DE } \\ & \text { EGL } \\ & \text { DEG } \\ & \text { DGL } \\ & \text { DEGL } \\ & \hline \end{aligned}$ | $\begin{aligned} & \text { AHJO } \\ & \text { KMN } \\ & \text { AK } \\ & \mathrm{CH} \\ & \mathrm{BJ} \\ & \hline \end{aligned}$ | $\alpha \delta$ <br>  <br> $\alpha \phi$ <br> BS <br> $\alpha \beta$ |
| $\gamma \phi$ | DK, DN, DKN, GN, DGN, DGKN | $\begin{aligned} & \text { GK } \\ & \text { GKN } \\ & \text { DGK } \end{aligned}$ | $\begin{gathered} \text { HJO } \\ \text { ELM } \mathrm{AE}, \mathrm{CFM} \end{gathered}$ | $\begin{gathered} \alpha \delta \\ \theta \psi \\ \alpha \theta, \beta \psi \end{gathered}$ |
| $r 火$ | $\mathrm{DF}, \mathrm{DM}, \mathrm{DFM}, \mathrm{FG}$, FGM, DFG, DGM | $\begin{gathered} \mathrm{GM} \\ \mathrm{DFGM} \end{gathered}$ | $\underset{\mathrm{CK}}{\mathrm{EKL}}$ | $\begin{aligned} & \theta \phi \\ & \beta \phi \end{aligned}$ |
| $\delta \theta$ | EHL, EO, LO, ELO, HLO, EHLO | $\begin{aligned} & \mathrm{EH} \\ & \text { EH. } \\ & \mathrm{EHO} \\ & \hline \end{aligned}$ | $\begin{gathered} \text { BCJ } \\ \text { CDG, FKM } \\ \hline \end{gathered}$ | $\begin{gathered} \alpha \beta \\ \beta \gamma, \phi \gamma \\ \alpha \gamma \end{gathered}$ |
| $\delta \phi$ | $\begin{aligned} & \mathrm{HN}, \mathrm{HKN}, \mathrm{KO}, \mathrm{NO}, \\ & \mathrm{KNO}, \mathrm{HNO} \end{aligned}$ | $\begin{gathered} \text { HK } \\ \text { HKO } \\ \text { HKNO } \end{gathered}$ | $\begin{aligned} & \text { FLM } \\ & \text { GJ } \\ & \text { BCF } \end{aligned}$ | $\begin{aligned} & \theta \psi \\ & \alpha \gamma \\ & \beta \psi \end{aligned}$ |
| $\delta \%$ | $\begin{aligned} & \mathrm{FH}, \mathrm{HM}, \mathrm{FO}, \mathrm{MO}, \\ & \mathrm{FMO}, \mathrm{HMO}, \mathrm{FHMO} \end{aligned}$ | $\begin{aligned} & \text { FHM } \\ & \text { FHO } \end{aligned}$ | $\begin{aligned} & \text { KL, ABJ } \\ & \text { BCKNN } \end{aligned}$ | $\begin{gathered} \theta \phi, \alpha \beta \\ \beta \phi \end{gathered}$ |



| 2-Factor interm actions | measurable degrees of freedom | Lost dof. | confounded with: | from 2-factor interaction: |
| :---: | :---: | :---: | :---: | :---: |
| $\theta \phi$ | EN, EKN, LN, KLN, EKL, ELN | $\begin{gathered} \mathrm{EK} \\ \mathrm{KL} \\ \mathrm{EKL} N \end{gathered}$ | $\begin{gathered} \mathrm{ADG} \\ \underset{\mathrm{GBM}}{\mathrm{ABH}, \mathrm{FHM}} \end{gathered}$ | $\begin{aligned} & \alpha \gamma \\ & \alpha \beta, \delta \psi \\ & \nu \psi \end{aligned}$ |
| $\theta r$ | $\begin{aligned} & \mathrm{EF}, \mathrm{EM}, \mathrm{FL}, \mathrm{LM}, \\ & \mathrm{EFL}, \mathrm{EFLM} \end{aligned}$ | $\begin{aligned} & \text { EFM } \\ & \text { FLM } \\ & \text { ELM } \end{aligned}$ | $\begin{aligned} & \text { AC } \\ & \text { GK } \\ & \text { GKN } \end{aligned}$ | $\begin{aligned} & \alpha \beta \\ & \delta \phi \\ & \nu \phi \\ & \hline \end{aligned}$ |
| $\phi \psi$ | $\mathrm{FK}_{\mathrm{K}} \mathrm{KM}, \mathrm{FN}, \mathrm{MN},$ FMN, FKMN | $\begin{aligned} & \text { FKM } \\ & \mathrm{FKN} \\ & \mathrm{KMN} \end{aligned}$ | $\begin{aligned} & \text { HL, CDG } \\ & \text { BCHO } \\ & \text { EGL } \end{aligned}$ | $\begin{aligned} & \delta \theta, B \gamma \\ & \beta \delta \\ & \gamma \theta \end{aligned}$ |

In general it is possible to adapt any two-level design of the form $2^{2 \mathrm{~m}}$ into a four-level design of form $4^{\mathrm{m}}$. The twoolevel factors should be paired off so as to furnish, if possible, all information on main effects, and then to provide as much information as possible on twoo factor interactions, as determined by the fundamental identity. (To illustrate the importance of proper choice, consider the term $A B$ 。 If we had grouped our letters $[A B: \alpha],[C D: \beta]$, etco, $A B$ would have been part of the main effect of factor $\alpha$, and the first term of the identity shows $A B$ to be confounded with $C D O$, part of a twowfactor interaction. Thus at least one degree of freedom for a main effect would not have been measurable.) Finally after pairing the twoolevel factors, the treatment combinations of the two-level design are translated into terms of the four-level factors.

[I] Clatworthy, W.H., Connor, W.S., and Zelen, Mo, Some Fractional Factorial Arrangements for Factors at Two Levels, National Bureau of Standards Report, (1954).
[2] Cochran, W.G. and Cox, G. Mi., Experimental Designs, John Wiley and Sons, Inc., New York, 1950.
[3] Davies, O.L. (editor), The Design and Analysis of Industrial Experiments, Chapter 10, Hafner Publishing Coo, New York, 1954。
[4] Kempthorne, 0 ., The Design and Analysis of Experiments, John Wiley and Sons, Inc., New York, 1952.


Plan 64.12.8. 1/64 replication of 12 factors in 8 blocks of 8 units each. Factors: A,B,C,D,E,F,G,H,J., K, L, M.
$I=\mathrm{ABCD}=\mathrm{ABEFL}=\mathrm{CDEFL}=\mathrm{ABGHL}=\mathrm{CDGHL}=\mathrm{EFGH}=\mathrm{ABCDEFGH}=\mathrm{ABJKL}=\mathrm{CDJKL}$
= EFJK = ABCDEFJK = GHJK = ABCDGHJK = ABEFGHJKL = CDEFGHJKL = ACEGJL
$=$ BDEGJL $=$ BCFGJ $=$ ADFGJ $=$ BCEHJ $=$ ADEHJ $=$ ACFHJL $=$ BDFHJL $=$ BCEGK
$=\operatorname{ADEGK}=\mathrm{ACFGKL}=$ BDFGKL $=\mathrm{ACEHKL}=$ BDEHKL $=$ BCFHK $=$ ADFHK $=A D L M=B C L M$
$=\mathrm{BDEFM}=\mathrm{ACEFM}=\mathrm{BDGHM}=\mathrm{ACGHM}=\mathrm{ADEFGHLM}=\mathrm{BCEFGHLM}=\mathrm{BDJKM}=\mathrm{ACJKM}$
$=$ ADEFJKLM $=$ BCEFJKLM $=$ ADGHJKLM $=$ BCGHJKLM $=$ BDEFGHJKM $=A C E F G H J K M ~$
$=$ CDEGJM $=$ ABEGJM $=$ ABCDFGJLM $=$ FGJLM $=$ ABCDEHJLM $=$ EHJLM $=$ CDFHJM
$=\mathrm{ABFHJM}=\mathrm{ABCDEGKLM}=$ EGKLM $=$ CDFGKM $=\mathrm{ABFGKM}=$ CDEHKM $=\mathrm{ABEHKM}$
$=$ ABCDFHKLM $=$ FHKLM.
Block confounding: $A B, A C, B C, C L, A B C L, A L, B L$.
Without blocks: All main effects, and all twoofactor interactions except the following are measurable:

| AB, | AC, | AD, | AL, | AM, |
| :--- | :--- | :--- | :--- | :--- |
| BC, | BD, | BL, | BM, | CD, |
| CL, | CM, | DL, | DM, | EF, |
| BG, | EH, | EJ, | EK, | FG, |
| FH, | FJ, | FK, | GH, | GJ, |
| GK, | HJ, | HK, | JK, | LM, |

With blocks: Same as above.

## Blocks:


$\frac{5}{\operatorname{acgh}}$
ad $\frac{7}{\operatorname{tg} g}$
$b c{ }^{8}{ }^{\mathrm{f} g}$


Plan 64.12.16. 1/64 replication of 12 factors in 4 blocks of 16 units each.
Factors: $\mathrm{A}_{9} \mathrm{~B}, \mathrm{C}, \mathrm{D}, \mathrm{E}, \mathrm{F}, \mathrm{G}, \mathrm{H}, \mathrm{J}, \mathrm{K}, \mathrm{L}, \mathrm{M}$ 。
I: Same as plan 64.12.8.
Block confoundings $A B, A C, B C$.
Without blocks: All main effects, and all two-factor interactions except the following are measurable:

$$
\begin{gathered}
\mathrm{AB}, \mathrm{AC}, \mathrm{AD}, \mathrm{AL}, \mathrm{AM}, \mathrm{BC}, \mathrm{BD}, \mathrm{BL}, \\
\mathrm{BM}, \mathrm{CD}, \mathrm{CL}, \mathrm{CM}, \mathrm{DL}, \mathrm{DM}, \mathrm{EF}, \mathrm{EG}, \\
\mathrm{EH}, \mathrm{EJ}, \mathrm{EK}, \mathrm{FG}, \mathrm{FH}, \mathrm{FJ}, \mathrm{FK}, \\
\mathrm{GH}, \mathrm{GJ}, \mathrm{GK}, \mathrm{HJ}, \mathrm{HK}, \mathrm{JK}, \mathrm{LM} .
\end{gathered}
$$

With blocks: Same as above.
Blocks:

| (I |  |
| :--- | :---: |
| efgh | coffhkl |
| ghjk |  |
| efjk | 3 |
| abcdehklm | acghl |
| abcdfgklm |  |
| abcdegjlm | 4 |
| abcdfhjlm | adfgk |
| abcd |  |
| abcdefgh |  |
| abcdghjk |  |
| abcdefjk |  |
| ehklm |  |
| fgklm |  |
| egjlm |  |
| thjlm |  |

Plan 64.12.32. 1/64 replication of 12 factors in 2 blocks of 32 units each.
Factors: $A, B, C, D, E, F, G, H, J, K, L, M$.
I: Same as plan 64.12.8.
Block confounding: AB.
Without blocks: All main effects, and all two-factor interactions except the following are measurable:

$$
\begin{aligned}
& \mathrm{AB}, \mathrm{AC}, \mathrm{AD}, \mathrm{AL}, \mathrm{AM}, \mathrm{BC}, \mathrm{BD}, \mathrm{BL}, \\
& \mathrm{BM}, \mathrm{CD}, \mathrm{CL}, \mathrm{CM}, \mathrm{DL}, \mathrm{DM}, \mathrm{EF}, \mathrm{EG}, \\
& \mathrm{EH}, \mathrm{EJ}, \mathrm{EK}, \mathrm{FG}, \mathrm{FH}, \mathrm{FJ}, \mathrm{FK}, \\
& \mathrm{GH}, \mathrm{GJ}, \mathrm{GK}, \mathrm{HJ}, \mathrm{HK}, \mathrm{JK}, \mathrm{LM} .
\end{aligned}
$$

With blocks: Same as above.
Blocks

$$
\begin{aligned}
& \quad \text { (I } \\
& \text { efgh } \\
& \text { ghjk } \\
& \text { efjk } \\
& \text { abcdehklm } \\
& \text { abcdfgklm } \\
& \text { abcdegjlm } \\
& \text { abcdfhjlm } \\
& \text { abcd } \\
& \text { abcdefgh } \\
& \text { abcdghjk } \\
& \text { abcdefjk } \\
& \text { ehklm } \\
& \text { fgklm } \\
& \text { egjlm } \\
& \text { fhjlm } \\
& \text { cdfhkI } \\
& \text { cdegkl } \\
& \text { cdfgjl } \\
& \text { cdehjI } \\
& \text { abefm } \\
& \text { abghm } \\
& \text { abefghjkm } \\
& \text { abjkm } \\
& \text { abfhkI } \\
& \text { abegkI } \\
& \text { abfgjl } \\
& \text { abehjl } \\
& \text { cdefm } \\
& \text { cdghm } \\
& \text { adefghjkm } \\
& \text { cdjkm }
\end{aligned}
$$



Plan 64.13.8. 1/64 replication of 13 factors in 16 blocks of 8 units each. Factors: $\mathrm{A}_{9} \mathrm{~B}_{9} \mathrm{C}_{9} \mathrm{D}_{9} \mathrm{E}, \mathrm{F}_{9} \mathrm{G}_{9} \mathrm{H}_{9} \mathrm{~J}_{9} \mathrm{~K}, \mathrm{~L}, \mathrm{M} 9 \mathrm{~N}$ 。

$$
\begin{aligned}
& I=A B C D=A B E F L N=C D E F L N=A B G H L=C D G H L=E F G H N=A B C D E F G H N=A B J K L \\
& =\text { CDJKL }=\text { EFJKN }=\mathrm{ABCDEFJKN}=\text { GHJK }=\mathrm{ABCDGHJK}=\mathrm{ABEFGHJKLN}=\mathrm{CDEFGHJKLN} \\
& \text { = ACEGJL = BDEGJL }=\text { BCFGJN }=\text { ADFGJN }=\text { BCEHJ }=\mathrm{ADEHJ}=\mathrm{ACFHJLN}=\mathrm{BDFHJLN} \\
& =\text { BCEGK }=\text { ADEGK }=A C F G K L N=B D F G K L N=A C E H K L=B D E H K L=B C F H K N=A D F H K N \\
& =A D L M N=B C L M N=B D E F M=A C E F M=B D G H M N=A C G H M N=A D E F G H L M=B C E F G H L M \\
& =\text { BDJKINN }=\mathrm{ACJKMN}=\mathrm{ADEFJKLM}=\text { BCEFJKLM }=\mathrm{ADGHJKLMN}=\mathrm{BCGHJKLMN}=\mathrm{BDEFGHJKM} \\
& =A C E F G H J K M=\text { CDEGJMN }=\text { ABEGJMN }=\text { ABCDFGJLM }=\text { FGJLM }=A B C D E H J L M N=E H J L M N \\
& =\text { CDFHJM }=\mathrm{ABFHJM}=\mathrm{ABCDEGKLMN}=\text { EGKLMN }=\text { CDFGKM }=\mathrm{ABFGKM}=\text { CDEHKMN } \\
& =\mathrm{ABEHKMN}=\mathrm{ABCDFHKLM}=\text { FHKLM. }
\end{aligned}
$$

Block confounding: $\mathrm{AB}, \mathrm{AC}, \mathrm{BC}, \mathrm{ABCFN}, \mathrm{CFN}, \mathrm{BFN}, \mathrm{AFN}, \mathrm{ABCDEFGJKLNN}, \mathrm{CDEFGJKLMN}$, BDEFGJKLMN, ADEFGJKLMN, DEGJKLM, ABDEGJKLM, ACDEGJKLM, BCDEGJKLM. Without blocks: All main effects, and all twoofactor interactions except the following are measurable:

$$
\begin{aligned}
& \mathrm{AB}, \mathrm{AC}, \mathrm{AD}, \mathrm{BC}_{9} \mathrm{BD}_{9} \mathrm{CD}, \\
& \mathrm{GH}_{9} \mathrm{GJ}, \mathrm{GK}, \mathrm{HJ}_{9} \mathrm{HK}_{9} \mathrm{JK} .
\end{aligned}
$$

With blocks: Same as above, except the two $\begin{aligned} & \text { foctor interactions FJ, GN, }\end{aligned}$ and $H M$ also are not measurable.

## Blocks:

| $\frac{I}{(I)}$ | $\frac{2}{g h j k}$ | $e_{i=1}^{3} j k$ | $\frac{4}{e f g h}$ |
| :---: | :---: | :---: | :---: |
| ehkIm |  |  |  |
| abcdfhjlm |  |  |  |
| abcdefjk |  |  |  |
| efgjln |  |  |  |
| fghjkmn |  |  |  |
| abcdeghmm |  |  |  |
| abcdgkln |  |  |  |
| $\frac{5}{\operatorname{cdf} j 1}$ | $\frac{6}{c d f h k l}$ | $\text { c } \frac{7}{d e g k l}$ | $\stackrel{8}{c \widetilde{d e h j} 1}$ |

Blocks (Continued):

$$
\begin{aligned}
& \text { acghl } \quad \frac{10}{9 c \frac{11}{j k l}} \quad \text { acefghjkl } \quad \frac{12}{e f 1} \\
& \text { adfhj } \frac{14}{\frac{14}{f(g k}} \quad \frac{15}{\text { adehk }} \quad \frac{16}{\text { adegj }}
\end{aligned}
$$

Plan 64.13.32. 1/64 replication of 13 factors in 4 blocks at 32 units each. Factors: A, B, C, D, E, F, G, H, J, K, L, M, N.

I: Same as plan 64.13.8.
Block confounding: $A B, A C, B C$.
Without blocks: All main effects, and all two - factor interactions except the following are measurable:

$$
\begin{aligned}
& \mathrm{AB}, \mathrm{AC}, \mathrm{AD}, \mathrm{BC}, \mathrm{BD}, \mathrm{CD}, \\
& \mathrm{GH}, \mathrm{GJ}, \mathrm{GK}, \mathrm{HJ}, \mathrm{HK}, \mathrm{JK}
\end{aligned}
$$

With blocks: Same as above.

## Blocks:

| (1) | efjk | $\frac{2}{c d f} \frac{2}{\mathrm{gjl}}$ |
| :---: | :---: | :---: |
| ehklm | fhjlm |  |
| abcdfhjilm | abcdehk. m |  |
| abcdefjk | abcd |  |
| efgjln | gkln |  |
| fghjkmm | eghmm |  |
| abcdeghmn | abcdfighjkmn |  |
| abcdgkln | abcdefigjln |  |
| ghjk | efgh |  |
| egjlm | fgklm |  |
| abcdfgklm | abcdegj1m |  |
| abcdefigh | abcdghjk |  |
| efohkln | hjln |  |
| fim | ejkmn |  |
| abcdejkmn | abcdfm |  |
| abodhjln | abcdefhkln |  |

ad $\frac{4}{f} h j$

Plan 64.13.64. 1/64 replication of 13 factors in 2 blocks of 64 units each.
Factors: $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{E}, \mathrm{F}, \mathrm{G}, \mathrm{H}, \mathrm{J}, \mathrm{K}, \mathrm{L}, \mathrm{M}, \mathrm{N}$.
I: Same as plan 64.13.8.
Block Confounding: AB.
Without blocks: All main effects, and all two ofactor interactions except the following are neasurable:

$$
\begin{aligned}
& \mathrm{AB}, \mathrm{AC}, \mathrm{AD}, \mathrm{BC}, \mathrm{BD}, \mathrm{CD}, \\
& \mathrm{GH}, \mathrm{GJ}, \mathrm{GK}, \mathrm{HJ}, \mathrm{HK}, \mathrm{JK} .
\end{aligned}
$$

With blocks: Same as above.

|  | Blocks: |  |  |
| :---: | :---: | :---: | :---: |
| (1) | efjk ${ }^{\frac{1}{k}}$ | cdfgjl | cdegkl |
| ehklm | fhjlm | cdefghjkm | cdghm |
| abcdfhjlm | abcdehklm | abghm | abefghjkm |
| abcdefjk | abcd | abegkl | abfgjl |
| efgjln | gkln | cden | cdfjkn |
| fghjkm | eghm | cdhklmn | cdefhjlmn |
| abcdeghmn | abcdfghjkmn | abefhjlmn | abhklm |
| abcdgkln | abcdefgjln | abfjkn | aben |
| ghjk | efgh | cdfhkl | cdehjl |
| egjlm | fgklm | cdefm | cdjkm |
| abcdfgklm | abcdegjlm | abjkm | abefm |
| abcdefgh | abcdghjk | abehjl. | abfhkl |
| efhkln | hj In | cdeghjkn | cdfghn |
| fmn | ejkmm | cdgj 1 mn | cdefgklmn |
| abcdejkrm | abcdfm | abefgklm | abgj1mn |
| abcdhjln | abcdefhkln | abfghn | abeghjkn |

$$
\stackrel{2}{\operatorname{acghl}}
$$

Plan 64.14.8. 1/64 replication of 14 factors in 32 blocks of 8 units each. Factors: $\quad \mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{E}, \mathrm{F}, \mathrm{G}, \mathrm{H}, \mathrm{J}, \mathrm{K}, \mathrm{L}, \mathrm{M}, \mathrm{N}, \mathrm{O}$ 。 $I=A B C D O=A B E F L N O=$ CDEFLN $=A B G H L O=$ CDGHL $=$ EFGHN $=A B C D E F G H N O=A B J K L$
$=$ CDJKLO $=$ EFJKNO $=\mathrm{ABCDEFJKN}=$ GHJKO $=\mathrm{ABCDGHJK}=\mathrm{ABEFGHJKLN}=$ CDEFGHJKINO
$=A C E G J L O=B D E G J L=B C F G J N=A D F G J N O=B C E H J=A D E H J O=A C F H J L N O=B D F H J L N$
$=$ BCEGKO $=$ ADEGK $=$ ACFGKLN $=$ BDFGKLNO $=\mathrm{ACEHKL}=$ BDEHKLO $=$ BGFHKNO $=\mathrm{ADFHKN}$
$=A D L M N=B C L M N O=B D E F M O=A C E F M=B D G H M N O=A C G H M N=A D E F G H L M=B C E F G H L M O$
$=$ BDJKMN $=$ ACJKMNO $=$ ADEFJKLMO $=$ BCEFJKLM $=A D G H J K L M N O=B C G H J K L M N ~=B D E F G H J K M ~$
$=$ ACEFGHJKMO $=$ ODEGJMNO $=$ ABEGJMN $=$ ABCDFGJLM $=$ FGJLMO $=A B C D E H J L M N=E H J L M N O$
$=$ CDFHJMO $=A B F H J M=A B C D E G K L M N O=$ EGKLMN $=$ CDFGKM $=A B F G K M O=C D E H K M N$
$=A B E H K M N O=A B C D F H K L M O=F H K L M$.
Block confounding: $\mathrm{ABEO}, \mathrm{BCK}$, ACEKO , $\mathrm{ABCM}^{2}$, CEMO, AKM , BEKMO, $\mathrm{ACLO}, \mathrm{BCEL}$, ABKLO, EKL, BLMO , AELM , GKLMO, ABCEKLM , $\mathrm{AE}_{9} \mathrm{BO}$, $\mathrm{ABCEK}, \mathrm{CKO}$, BCEM, ACMO , EKM, ABKMO, CELO, ABCL, BEKLO, AKL, ABELMO, IM, ACEKLMO, BCKLM.

Without blocks: All main effects and all two $m$ factor interactions are measurable。

With blocks: Same as above, except that the following two factor interactions are not measurable: $\mathrm{AE}, \mathrm{BJ}, \mathrm{BO}, \mathrm{CN}, \mathrm{DH}, \mathrm{FG}, \mathrm{LM}, \mathrm{JO}$.

## Blocks

| (1) | $\frac{2}{2} f_{h k l}$ | ${ }_{\text {cdjkm }}^{3}$ | $\frac{4}{a b c \frac{4}{d f h j} 1 \mathrm{~m}}$ |
| :---: | :---: | :---: | :---: |
| cdhklmn |  |  |  |
| acefgkn |  |  |  |
| adefghlm |  |  |  |
| bfgjklmo |  |  |  |
| bcdfoghjno |  |  |  |
| abcejlmno |  |  |  |
| abdehjko |  |  |  |


| $x_{x}^{5}$ | $\frac{6}{a b h k] m}$ | cdipikn | $\underset{a b c \stackrel{8}{d h} j 1 n}{ }$ |
| :---: | :---: | :---: | :---: |
| $\stackrel{9}{\mathrm{~g} h \mathrm{hjk}}$ | $\frac{10}{a b \overline{f g} j 1}$ | $\frac{11}{c d g h m}$ | $a b \frac{12}{c d f g k l m}$ |
| $\frac{13}{\text { fghjkmn }}$ | $a b \frac{14}{g j 1 m m}$ | $\frac{15}{c d f g n}$ | $a b \frac{16}{c d g k \ln }$ |



|  | Blocks (Continued) |  |  |
| :---: | :---: | :---: | :---: |
| $\mathrm{abc} \frac{17}{\operatorname{deg} h m}$ | $\text { cde } \frac{18}{\overline{f g k} \mathrm{~mm}}$ | $\frac{19}{\text { abeghjkn }}$ | $\frac{20}{e f g j 1 n}$ |
| $a b c \frac{21}{\operatorname{def} g h}$ | $\text { cdegkI } \frac{22}{}$ | $a b e \frac{23}{f^{\prime g} h j k m}$ | $\text { eg } \frac{24}{j 1 m}$ |
| $a b c \frac{25}{\mathrm{dej} \mathrm{~km}}$ | $\text { cde } \frac{26}{f h j 1 m m}$ | $\frac{27}{a \overline{b e n}}$ | $\frac{28}{e f(n k n}$ |
| $a b c \frac{29}{\operatorname{def} j k}$ | $\frac{30}{c d e h j 1}$ | $\frac{31}{a b e f m}$ | $\frac{32}{\mathrm{e} k \mathrm{k}} \mathrm{~m}$ |

Plan 64.14.16. 1/64 replication of 14 factors in 16 blocks of 16 units each. Factors: A,B,C,D,E,F,G,H,J,K,L,M,N,O.

I: Same as plan 64.14.8.
Block confounding: ABEO, BCK, ACEKO, ABCM, CEMO, AKM, BEKMO, ACLO, BCEL, ABKLO, EKL, BLMO, AELM, CKIMO, ABCEKLM.

Without blocks: All main effects and all two-factor interactions are measurable. With blocks: Same as above, except the following two-factor interactions are not measurable:

CN, JO。
Blocks:

|  |  | 2 |
| :---: | :---: | :---: |
| (1) | abfhkl | cdjkm |
| cdhklm | abcdfm |  |
| acefgkn | bceghln |  |
| ,adefghlm | bdegkm |  |
| bfgjklmo | aghjmo |  |
| bcdfghjno | acdgjklno |  |
| abcejlm | cefhjkmno |  |
| abdehjko | defjlo |  |


| ${ }_{f^{m}}^{\frac{3}{n}}$ | $\operatorname{cdf} \frac{4}{j k m}$ | $\frac{5}{g \bar{h} j k}$ | $c \frac{6}{6 g h}$ |
| :---: | :---: | :---: | :---: |
| $\operatorname{fgh} \frac{7}{h k m n}$ | $\stackrel{8}{c d f}$ | ${ }_{\text {abcdeghmm }}^{\frac{9}{}}$ | $\text { abe } \frac{10}{g_{j k n}}$ |
| $a b c \frac{11}{d e f g h}$ | $\text { abe } \frac{12}{f g h j k m}$ | $\mathrm{abcdej} \frac{13}{\mathrm{emm}}$ | $\frac{14}{a b e n}$ |
|  | $a b c \frac{15}{\operatorname{def} j k}$ | $\frac{16}{a b e f m}$ |  |

Plan 64.14.32. 1/64 replication of 14 factors in 8 blocks of 32 units each. Factors: A, B, C, D, E, F, G, H, J, K, L, M, N, O.

I: Same as plan 64.14.8.
Block confounding: ABEO, BCK, ACEKO, ABCM, CEMO, AKM, BEKMO.
Without blocks: All main effects and two-factor interactions are measurable. With blocks: Same as above.

Blocks:

|  |  | 2 |
| :---: | :---: | :---: |
| (1) | cdjkm | fm |
| cdhklmn | hjln |  |
| acefgkn | adefgjmn | 3 |
| adefghlm | acefghjkl | ghjk |
| bfgjklmo | bcdfglo |  |
| bcdfghjno | bfghkmo | 4 |
| abcejlmno | abdeklno | fightimm |
| abdehjko | abcehmo |  |
| abfthkl | abcdfhjlm | 5 |
| abcdfmn | abfjkn | abcdeghmn |
| bceghln | bdeghjkIm |  |
| bdegkm | bcegj | 6 |
| aghjmo | acdghko | abcdefgh |
| acdgjklno | aglmno |  |
| cefhjkmno | defhno | 7 |
| defjlo | cefkimo | abcdejejkmn |
|  |  | abcdefjk |



Plan 64.14.64. 1/64 replication of 14 factors in 4 blocks of 64 units each.
Factors: $A, B, C, D, E, F, G, H, J, K, L, M, N, O$.
I: Same as plan 64.14.8.
Block confounding: ABEO,BCK,ACEKO.
Without blocks: All main effects and all two factor interactions are measurable.

With blocks: Same as above.

## Blocks

| (1) | acegkm | $\stackrel{2}{g h j k}$ |
| :---: | :---: | :---: |
| cdhklm | adeghln |  |
| acefgkn | bgjklno | $\underline{3}$ |
| adefghlm | bcdghjmo | abcdeghmn |
| bfgjklmo | abcefjlo |  |
| bcdfghjno | abdefhjkmno | 4 |
| abcejlımo | abhklmn | abcdejkmn |
| abdehjko | abcd |  |
| abfhkl | bcefghlm |  |
| abcdfinn | bdefgkn |  |
| bceghln | afghjno |  |
| bdegkm | acdfgjklmo |  |
| aghjmo | cehjko |  |
| acdgjklno | dejumno |  |
| cefhjkmmo | cdfjen |  |
| defjlo | fhjlm |  |
| cdjkm | adegj |  |
| hjln | aceghjklmn |  |
| adefgjm | bcdglmno |  |
| acefghjkl | bghko |  |
| bcdfglo | abdefklmo |  |
| bfghkmno | abcefhno |  |
| abdeklno | $a b c d h j l n$ |  |
| abcehmo | abjkm |  |
| abcdfhjlm | bdefghjkl |  |
| abfjkn | bcefgjmn |  |
| bdeghjklmn | acdfghkrmo |  |
| bcegj | afglo |  |
| acdghko | dehmo |  |
| aglmno | ceklno |  |
| defhno |  |  |
| cefklmo |  |  |
| fnn |  |  |
| cdfhkl. |  |  |

Plan 64.14.128. 1/64 replication of 14 factors in two blocks of 128 units each.
Factors: A, B, C, D, E, F, G, H, J, K, L, M, N, O.
I: Same as plan 64.14.8.
Block confounding: ABEO.
Without blocks: All main effects and two-factor interactions are measurable.
With blocks: Same as above.

## Blocks

| (1) | 1 | Blocks |  | $\frac{2}{a b c d e g h n n}$ |
| :---: | :---: | :---: | :---: | :---: |
| cdhklmn | abcd | gk ]n | abghm |  |
| acefgkn | bcefghlm | adefhkm | bdefl |  |
| adefghlm | bdefgkn | acefl | bcehkmn |  |
| bfgjklmo | afghjno | bcdfhjklo | acdfjmno |  |
| bcdfghjno | acdfgjklmo | bfojmo | afhjklo |  |
| abcejlmno | cehjko | abdeghjlno | degjkmo |  |
| abdehjko | dejlmno | abcegjkmo | ceghjlno |  |
| abfhkl | cdfjkn | abcdfgklm |  |  |
| abcdfimn | fhjlm | abfghn |  |  |
| bceghln | adegj | bdelmn |  |  |
| bdegkm | aceghjklmn | bcehk |  |  |
| aghjmo | bcdglmo | acdjo |  |  |
| acdgjklno | bghko | ahjklmo |  |  |
| cefthjkmno | abdefklmo | defgjkno |  |  |
| defjlo | abcefhno | cefghjlmo |  |  |
| cdjkm | abcdhjln | fghjkmn |  |  |
| hjln | abjkm | cdfgjl |  |  |
| adefgjmn | bdefghjkl | acehjm |  |  |
| acefghjkl | bcefgjmn | adejkln |  |  |
| bcdfglo | acdfghkmno | bhlno |  |  |
| bfghkmo | afglo | bedkmo |  |  |
| abdekIno | dehmo | abcefghklo |  |  |
| abcehmo | ceklno | abdefgmno |  |  |
| abcdfhjlm | ghjk | abgjlm |  |  |
| abfjkn | cdgjlm | abcdghjk |  |  |
| bdeghjklmn | acefhjn | bcefjklm |  |  |
| bcegj | adefjkim | bdefhjn |  |  |
| acdghko | bfhlmo | afkno |  |  |
| aglmo | bcdfkno | acdfolmo |  |  |
| defhno | abceghklmno | cego |  |  |
| cefklmo | abdego | deghklmo |  |  |
| fmn | abfgjl | cdfghn |  |  |
| cdfhkl | abcdfghjkmn | fgklm |  |  |
| acegkm | bcejkln | adehk |  |  |
| adeghln | bdehjo | acelmn |  |  |
| bgjklno | akmo | bcdhjkImno |  |  |
| bcdghjmo | acdhlno | bjo |  |  |
| abcefjlo | cefgmno | abdefghjlmo |  |  |
| abdefhjkmno | defghklo | abcefgjkno |  |  |
| abhklmn | cdghm | abcdgkln |  |  |

Plan 128.12.8. 1/128 replication of 12 factors in 4 blocks of 8 units each. Factors: $A, B, C, D, E, F, G, H, J, K, L, M$. $I=A B E G=A C E F=B C F G=D E F G=A B D F=A C D G=B C D E=A D H K=B D E G H K=C D E F H K$ $=\mathrm{ABCDFGHK}=\mathrm{AEFGHK}=\mathrm{BFHK}=\mathrm{CGHK}=\mathrm{ABCEHK}=\mathrm{BCHJ}=\mathrm{ACEGHJ}=\mathrm{ABEFHJ}=\mathrm{FGHJ}$ $=\mathrm{BCDEFGHJ}=\mathrm{ACDFHJ}=\mathrm{ABDGHJ}=\mathrm{DEHJ}=\mathrm{ABCDJK}=\mathrm{CDEGJK}=\mathrm{BDEFJK}=\mathrm{ADFGJK}$ $=A B C E F G J K=C F J K=B G J K=A E J K=A B K L=$ BGKL $=$ BCEFKL $=$ ACFGKL $=A B D E F G K L$ = DFKL = BCDGKL = ACDEKL = BDHL = ADEGHL = ABCDEFHL = CDFGHL = BEFGHL $=$ AFHL $=$ ABCGHL $=$ CEHL $=$ ACHJKL $=$ BCEGHJKL $=$ EFHJKL $=$ ABFGHJKL $=$ ACDEFGHJKL $=\mathrm{BCDFHJKL}=$ DGHJKL $=\mathrm{ABDEHJKL}=$ CDJL $=\mathrm{ABCDEGJL}=\mathrm{ADEFJL}=\mathrm{BDFGJL}=\mathrm{CEFGJL}$ $=\operatorname{ABCFJL}=\mathrm{AGJL}=\mathrm{BEJL}=\mathrm{CDGHJM}=\mathrm{ABCDEHJM}=\mathrm{ADEFGHJM}=\mathrm{BDFHJM}=\mathrm{CEFHJM}$
$=\operatorname{ABCFGHM}=\operatorname{AHJM}=$ BEGHJM $=$ ACGJKM $=$ BCEJKM $=$ EFGJKM $=$ ABFJKM $=$ ACDEFJKM
$=\operatorname{BCDFGJKM}=\mathrm{DJKM}=\mathrm{ABDEGJKM}=\mathrm{BDGM}=\mathrm{ADEM}=\mathrm{ABCDEFGM}=\mathrm{CDFM}=\mathrm{BEFM}=\mathrm{AFGM}$
$=\operatorname{ABCM}=$ CEGM $=\mathrm{ABGHKM}=$ EHKM $=$ BCEFGHKM $=\mathrm{ACFHKM}=\mathrm{ABDEFHKM}=$ DFGHKM
$=$ BCDHKM $=$ ACDEGHKM $=$ ABCDGHJKLM $=$ CDEHJKLM $=$ BDEFGHJKLM $=$ ADFHJKLM
$=$ ABCEFHJKLM $=$ CFGHJKLM $=$ BHJKLM $=$ AEGHJKLM $=$ BCGJLM $=$ ACEJLM $=$ ABEFGJLM
$=$ FJLM $=$ BCDEFJLM $=$ ACDFGJLM $=$ ABDJLM $=$ DEGJLM $=$ ADGKLM $=$ BDEKLM $=$ CDEFGKLM
$=$ ABCDFKLM $=$ AEFKLM $=$ BFGKLM $=$ CKLM $=$ ABCEGKLM $=$ GHLM $=$ ABEHLM $=$ ACEFGHLM $=$ BCFHLM
$=$ DEFHLM $=$ ABDFGHLM $=A C D H L M=B C D E G H L M$.
Block confounding: $\mathrm{DG}, \mathrm{DH}_{3} \mathrm{GH}$ 。
 measurable.

With blocks: Same as above.
Blocks
(I)
abcklm
bdghlm
acdghk
acefjk
befjlm
abcdefghjklm
defghj

Plan 128.12.16. 1/128 replication of 12 factors in 2 blocks of 16 units each.
Factors: A,B,C,D,E,F,G,H,J,K,L,M.
I: Same as plan 128.12.8.
Block confounding: DG。
Without blocks: All main effects, but no two-factor interactions, are measurabier

With blocks: Same as above.
Blocks
(I)
abcklm
bdghlm
acdghk
acefjk
befjim
abcdefghjklm defghj
hjkl
abchjm
bdgjkm
acdgjl
acefhl
befhkm
abcdefgm
defgkl

Plan 128.13.8. $1 / 128$ replication of 13 factors in 8 blocks of 8 units each.

Factors:: $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{E}, \mathrm{F}, \mathrm{G}, \mathrm{H}, \mathrm{J}, \mathrm{K}, \mathrm{I}, \mathrm{M}, \mathrm{N}$.

```
I = ABCD = ABEFL = CDEFL = ABGHL = CDGHL = EFGH = ABCDEFGH = ABJKL
    = CDJKL = EFJK = ABCDEFJK = GHJK = ABCDGHJK = ABEFGHJKL = CDEFGHJKLI
    = ACEGJL = BDEGJL = BCFGJ = ADFGJ = BCEHJ = ADEHJ = ACFHJL = BDFHJL
    = BCEGK = ADEGK = ACFGKL = BDFGKL = ACPHKL = BDEHKL = BCFHK = ADFHK
    = ADLM = BCLM = BDEFM = ACEFM = BDGHM = ACGHM = ADEFGHLM = BCEFGHLM
    = BDJKM = ACJKM = ADEFJKLM = BCEFJKLM = ADGHJKLM = BCGHJKLM = BDEFGHJKMM
    = ACEFGHJKM = CDEGJM = ABEGJM = ABCDFGJLM = FGJLM = ABCDEHJLM = EHJLM
    =CDFHJM = ABFHJM = ABCDEGKLM = EGKLM = CDFGKM = ABFGKM = CDEHKM
    = ABEHKM =ABCDFHKLM = FHKLM = EFGHJKLMN = ABCDEFGHJKLMN = ABGHJKMNN
    = CDGHJKMNN =ABEFJKMN =CDEFJKMN =JKLMN =ABCDJKLMN =ABEFGHMN
    = CDEFGHMN = GHLMNN =ABCDGHLMN = EFIMNN = ABCDEFLMN = ABMN = CDMN
    = ACFHKMN = BDFHKMN = BCEHKLMN = ADEHKLMN = BCFGKLMN = ADFGKLMMN = ACEGKMN
    = BDEGKMN = BCFHJLMN = ADFHJLMN = ACEHJMNN = BDEHJMN = ACFGJMN = BDFGJMN
    = BCEGJLMN = ADEGJLMN =ADEFGHJKN = BCEFGHJKN = BDGHJKLNN = ACGHJKLN
    = BDEFJKLN =ACEFJKLN. = ADJKN = BGdKN = BDEFGHLN = ACEFGHLN = ADGHN
    = BCGHN = ADEFN = BCEFN = BDLNN = ACLN = CDFHKLN =ABFHKLN = ABCDEHKN
    = EHKN = ABCDFGKN = FGKN = CDEGKLNN = ABEGKLN = ABCDFHJN = FHJN = CDEHJLN
    = ABEHJLN = CDFGJLN = ABFGJLN = ABCDEGJN = EGJN.
```

Block confoundingः $A B, A C ; B C ; C L, A B C L, A L$, $B L$ 。
Without blocks: All main effects and the following twoofactor interactions are measurable.
$\mathrm{AE}, \mathrm{AF}, \mathrm{AG} ; \mathrm{AH}, \mathrm{AJ}, \mathrm{AK}, \mathrm{BE}, \mathrm{BF}, \mathrm{BG}$, $\mathrm{BH}, \mathrm{BJ}, \mathrm{BK}, \mathrm{CE}, \mathrm{CF}, \mathrm{CG}, \mathrm{CH}, \mathrm{CJ}, \mathrm{CK}$, $\mathrm{DE}, \mathrm{DF}, \mathrm{DG}_{9} . \mathrm{DH}_{9} \mathrm{DJ}, \mathrm{DK}, \mathrm{EL}$. $\mathrm{EM}_{9} . \mathrm{FL}_{9}$ FM; $\mathrm{GL}, \mathrm{GM}, \mathrm{HL}, \mathrm{HM}_{\mathrm{M}} \mathrm{JL}, \mathrm{JM}, \mathrm{KL}_{\mathrm{g}} \mathrm{KM}$ 。

With blocks: Same as above.
Blocks:

| $\frac{1}{(I)}$ | $\frac{2}{a b c d}$ | $\stackrel{3}{\text { cdflhkl }}$ | $\underset{\text { abfhkl }}{\frac{4}{2}}$ |
| :---: | :---: | :---: | :---: |
| efgh |  |  |  |
| ghjk |  |  |  |
| efjk |  |  |  |
| abcdehklmn |  |  |  |
| abcdfgkImn |  |  |  |
| abcdegjlmn |  |  |  |
| abcdfhjlmn |  |  |  |


| 5 | 6: | 7 | 8 |
| :---: | :---: | :---: | :---: |
| bdegkm | acegkm | bcefghlm | adefghlm |

Plan 128.13.16. $1 / 128$ replication of 13 factors in 4 blocks of 16 units each.

Factors: A, $\mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{E}, \mathrm{F}, \mathrm{G}, \mathrm{H}, \mathrm{J}, \mathrm{K}, \mathrm{I}, \mathrm{M}, \mathrm{N}$ 。
I: Same as plan 128.13.8.
Block confounding: $A B, A C, B C$ 。
Without blocks: All main effects and the following two factor interactions are measurable.
$\mathrm{AE}, \mathrm{AF}, \mathrm{AG}, \mathrm{AH}, \mathrm{AJ}, \mathrm{AK}, \mathrm{BE}, \mathrm{BF}, \mathrm{BG}$, $\mathrm{BH}_{9}, \mathrm{BJ}_{9}, \mathrm{BK}, \mathrm{CE}, \mathrm{CF}, \mathrm{CG}, \mathrm{CH}, \mathrm{CJ}_{9}, \mathrm{CK}_{9}$ $D E_{9} \mathrm{DF}_{9} \mathrm{DG}_{2} \mathrm{DH}_{2} \mathrm{DJ}_{2} \mathrm{DK}_{9} \mathrm{EL}_{9} \mathrm{EM}_{9} \mathrm{FL}_{2}$


With blocks: Same as above.
Blocks:

| $\frac{1}{(1)}$ |  | $\frac{3}{\text { bdegkm }}$ | $\underbrace{4}_{\text {bcefghlm }}$ |
| :---: | :---: | :---: | :---: |
| efgh |  |  |  |
| ghjk |  |  |  |
| efjk |  |  |  |
| abcdehklmn |  |  |  |
| abcdfgklmn |  |  |  |
| abcdegjlmn |  |  |  |
| abedfhjlmn |  |  |  |
| abed |  |  |  |
| abcdefgh |  |  |  |
| abedghjk |  |  |  |
| abcdefjk |  |  |  |
| ehklmn |  |  |  |
| fgklmn |  |  |  |
| egjlmn |  |  |  |
| fhjlmn |  |  |  |



Plan 128.13.32. $1 / 128$ replication of 13 factors in 2 blocks of 32 units each.

Factors: A, B, C, D, E, F, G, H, J, K, I, M, No
I: Same as plan 128.13.8.
Block confounding: $A B$ 。
Without blocks: All main effects and the following two factor interactions are measurable.
$A E, A F, A G, A H, A J, A K, B E, B F, B G$, $\mathrm{BH}, \mathrm{BJ}, \mathrm{BK}, \mathrm{CE}, \mathrm{CF}, \mathrm{CG}, \mathrm{CH}, \mathrm{CJ}, \mathrm{CK}$, $\mathrm{DE}_{9}, \mathrm{DF}_{9}, \mathrm{DG}_{9}, \mathrm{DH}, \mathrm{DJ}, \mathrm{DK}, \mathrm{EL}, \mathrm{EM}, \mathrm{FL}$, FM, GL, GM, HL, $\mathrm{HM}_{9}$, JL, $\mathrm{JM}_{2} \mathrm{KL}$, KM。

With blocks: Same as above.

## Blocks:

| $\frac{1}{(1)}$ |  | 2. bdegkm |
| :---: | :---: | :---: |
| efgh | cdefmn |  |
| ghjk | cdghmn |  |
| efjk | cdefoghkom |  |
| abcdehklmn | cdjkmn |  |
| abedfgklmn |  |  |
| abcdegjlmn |  |  |
| abcdfthjlmn |  |  |
| abcd |  |  |
| abedefgh |  |  |
| abcdghjk |  |  |
| abcdefjk |  |  |
| ehkimn |  |  |
| $f \mathrm{fklm}$ |  |  |
| egjlmn |  |  |
| fhjlmn |  |  |
| edfhkl |  |  |
| cdegkl | . |  |
| cdfgjl |  |  |
| cdehjl |  |  |
| abefmn |  |  |
| abghmn |  |  |
| abefghjkmn |  |  |
| abjkmn |  |  |
| abfhkl |  |  |
| abegkI |  |  |
| abfgjI |  |  |
| abehjl |  |  |



Plan 128.14.8. 1/128 replication of 14 factors in 16 blocks of 8 units each. Factors: A, B, C, D, E, F, G, $\mathrm{H}, \mathrm{J}, \mathrm{K}, \mathrm{L}, \mathrm{M}, \mathrm{N}, \mathrm{O}$ 。
$I=A B C D=A B E F L=C D E F L=A B G H L=C D G H L=E F G H=A B C D E F G H=A B J K L=C D J K L$
$=\mathrm{EFJK}=\mathrm{ABCDEFJK}=\mathrm{GHJK}=\mathrm{ABCDGHJK}=\mathrm{ABEFGHJKL}=\mathrm{CDEFGHJKL}=\mathrm{ACEGJL}$
$=$ BDEGJL $=$ BCFGJ $=$ ADFGJ $=$ BCEHJ $=$ ADEHJ $=A C F H J L=B D F H L=B C E G K=A D E G K$
$=$ ACFGKL $=$ BDFGKL $=$ ACEHKL $=$ BDEHKL $=$ BCFHK $=A D F H K=A D L M=B C L M=B D E F M$
$=$ ACEFM $=$ BDGHM $=$ ACGHM $=$ ADEFGHLM $=$ BCEFGHLM $=$ BDJKM $=$ ACJKM $=$ ADEFJKLM
$=$ BCEFJKLM $=$ ADGHJKLM $=$ BCGHJKLM $=$ BDEFGHJKM $=$ ACEFGHJKM $=$ CDEGJM $=$ ABEGJM
$=\operatorname{ABCDFGJLM}=$ FGJLM $=\mathrm{ABCDEHJLM}=$ EHJLM $=\mathrm{CDFHJM}=\mathrm{ABFHJM}=\mathrm{ABCDEGKLM}$
$=$ EGKLM $=$ CDFGKM $=$ ABFGKM $=$ CDEHKM $=$ ABEHKM $=$ ABCDFHKLM $=$ FHKLM $=$ EFGHJKLMNO
$=$ ABCDEFGHKKLMNO $=$ ABGHJKMNO $=$ CDGHJKMNO $=$ ABEFJKMNO $=$ CDEFJKMNO $=$ JKLMNO
$=$ ABCDJKLMNO $=$ ABEFGHMNO $=$ CPEFGHMNO $=$ GHLMNO $=$ ABCDGILNNO $=$ EFLMNO
$=$ ABCDEFLMNO $=$ ABMNO $=$ CDMNO $=A C F H K M N O=B D F H K M N O=$ ECHKLMNO $=$ ADEHKLNNO
$=$ BCFGKLMNO $=$ ADFGKLMNO $=$ ACEGKNNO $=$ BDEGKMNO $=$ RCFHJLMNO $=$ ADFHJLMNO
$=$ ACEHJMNO $=$ BDEHJMNO $=$ ACFGJMNO $=$ BDFGJMNO $=$ BCEGJLMNO $=$ ADEGJLMNO
$=$ ADEFGHJKNO $=$ BCERGHJKNO $=$ BDGHJKLNO $=$ ACGHJKLNO $=$ BDEFJKLNO $=$ ACEFJKLNO
$=A D J K N O=$ BCJKNO $=$ BDEFGHLNO $=$ ACEFGHLNO $=A D G Z N O=B C G H N O=A D E F N O$
$=$ BCEFNO $=$ BDLNO $=$ ACLNO $=$ CDFHKLNO $=$ ABFHKLNO $=$ ABCDEHKNO $=$ EHKNO
$=$ ABCDFGKNO $=$ FGKNO $=$ CDEGKLNO $=$ ABEGKLNO $=$ ABCDFHJNO $=$ FHJNO $=$ CDEHJLNO
$=$ ABEHJLNO $=$ CDFGJLNO $=$ ABFGJLNO $=$ ABCDEGJNO $=$ EGJNO.
Block confounding: $A B, A C, B C, C L, A B C L, A L, B L, G O, A B G O, A C G O, B C G O, C G L O, A B C G L O$, AGLO, BGLO.

Without blocks: All main effects, and all two-factor interactions except following are measurable:

$$
\begin{aligned}
& \mathrm{AB}, \mathrm{AC}, \mathrm{AD}, \mathrm{AL}, \mathrm{AM}, \mathrm{BC}, \\
& \mathrm{BD}, \mathrm{BL}, \mathrm{BM}, \mathrm{CD}, \mathrm{CL}, \mathrm{CM}, \\
& \mathrm{DL}, \mathrm{ZM}, \mathrm{EF}, \mathrm{EG}, \mathrm{EH}, \mathrm{EJ}, \\
& \mathrm{EK}, \mathrm{FG}, \mathrm{FH}, \mathrm{FI}, \mathrm{FK}, \mathrm{GH}, \\
& \mathrm{GJ}, \mathrm{GK}, \mathrm{HJ}, \mathrm{HK}, \mathrm{JK}, \mathrm{LM} .
\end{aligned}
$$

With blocks: Same as above, except that the two -factor interactions GO and $H N$ also are not measurable:

Blocks:

| $\frac{1}{(\bar{I})}$ | $\frac{2}{n 0}$ | $a b \frac{3}{c} d$ | $a b c \frac{4}{d n o}$ |
| :---: | :---: | :---: | :---: |
| efjk |  |  |  |
| abcdehkImn |  |  |  |
| abcdfhjlm |  |  |  |
| efghno |  |  |  |
| ghjkno |  |  |  |
| abcdfgklmo |  |  |  |
| abcdegjlmo |  |  |  |



Plan 128.14.16. 1/128 replication of 14 factors in 8 blocks of 16 units each. Factors: A,B,C,D,E,F,G,H,J,K,L,M,N,O.

I: Same as plan 128.14.8。
Block confounding: $A B, A C, B C, C L, A B C L, A L, B L$.
Without blocks: All main effects, and all two factor interactions except the following are measurable:

$$
\begin{aligned}
& \mathrm{AB}, \mathrm{AC}, \mathrm{AD}, \mathrm{AL}, \mathrm{AM}, \mathrm{BC}, \\
& \mathrm{BD}, \mathrm{BL}, \mathrm{BM}, \mathrm{CD}, \mathrm{CL}, \mathrm{CM}, \\
& \mathrm{DL}, \mathrm{DM}, \mathrm{EF}, \mathrm{EG}, \mathrm{EH}, \mathrm{EJ}, \\
& \mathrm{EK}, \mathrm{FG}, \mathrm{FH}, \mathrm{FJ}, \mathrm{FK}, \mathrm{GH}, \\
& \mathrm{GJ}, \mathrm{GK}, \mathrm{HJ}, \mathrm{HK}, \mathrm{JK}, \mathrm{LM}
\end{aligned}
$$

With blocks: Same as above.

## Blocks:

| $\frac{1}{(\bar{I})}$ | $\frac{2}{a b} \frac{1}{c} d$ | $\stackrel{3}{c} \frac{3}{h k l}$ | $\stackrel{4}{a b f\left(\frac{1}{h k l}\right.}$ |
| :---: | :---: | :---: | :---: |
| efjk |  |  |  |
| $a b c d e h k l m n$ |  |  |  |
| abcdfhjlm |  |  |  |
| efghno |  |  |  |
| ghjkno |  |  |  |
| abcdfgklmo |  |  |  |
| abcdegjlmo |  |  |  |
| no |  |  |  |
| efjkno |  |  |  |
| abcdehklmo |  |  |  |
| abcdfthjlmo |  |  |  |
| efgh |  |  |  |
| ghjk |  |  |  |
| abcdfgklmn |  |  |  |
| abcdegjlmn |  |  |  |



Plan 128.14 .32 . $1 / 128$ replication of 14 factors in 4 blocks of 32 units each. Factors: A,B,C,D,E,F,G,H,J,K,L,M,N,O.

I: Same as plan 128.14.8.
Block confounding: $A B, A C, B C$.
Without blocks: All main effects, and all two $\begin{gathered}\text { factor interactions except }\end{gathered}$ the following are measurable:

$$
\begin{aligned}
& \mathrm{AB}, \mathrm{AC}, \mathrm{AD}, \mathrm{AL}, \mathrm{AM}, \mathrm{BC}, \\
& \mathrm{BD}, \mathrm{BL}, \mathrm{BM}, \mathrm{CD}, \mathrm{CL}, \mathrm{CM}, \\
& \mathrm{DL}, \mathrm{DM}, \mathrm{EF}, \mathrm{EG}, \mathrm{EH}, \mathrm{EJ}, \\
& \mathrm{EK}, \mathrm{FG}, \mathrm{FH}, \mathrm{FJ}, \mathrm{FK}, \mathrm{GH}, \\
& \mathrm{GJ}, \mathrm{GK}, \mathrm{HJ}, \mathrm{HK}, \mathrm{JK}, \mathrm{LM}
\end{aligned}
$$

With blocks: Same as above.
Blocks:

| (1) 1 | abcd | $c d f \bar{h} k l$ |
| :---: | :---: | :---: |
| efjk | abcdefjk |  |
| abcdehklmn | ehklm | 3 |
| abcdfhjlm | fhjlmn | bdegkmno |
| efghno | abcdefghno |  |
| ghjkno | abcdghjkno |  |
| abcdfgklmo | fgklmo | bcefghlmo |
| abcdegjlmo | egjlmo |  |
| no | abcdno |  |
| efjkno | abcdefjkno |  |
| abcdehklmo | ehklmo |  |
| abcdfhjlmo | fhjlmo |  |
| efgh | abcdefgh |  |
| ghjk | abcdghjk |  |
| abcdfgklmn | fgklm |  |
| abcdegj1m | egjlm |  |

Plan 128.14.64. 1/128 replication of 14 factors in 2 blocks of 64 units each.
Factors: A, B, C, D, E, F, G, H, J, K, L, M, N, O。
I: Same as plan 128.14.8.
Block confounding: $A B$.
 following are measurable:

$$
\begin{aligned}
& \mathrm{AB}, \mathrm{AC}, \mathrm{AD}, \mathrm{AL}, \mathrm{AM}, \mathrm{BC}, \\
& \mathrm{BD}, \mathrm{BL}, \mathrm{BM}, \mathrm{CD}, \mathrm{CL}, \mathrm{CM}, \\
& \mathrm{DL}, \mathrm{DM}, \mathrm{EF}, \mathrm{EG}, \mathrm{EH}, \mathrm{EJ}, \\
& \mathrm{EK}, \mathrm{FG}, \mathrm{FH}, \mathrm{FJ}, \mathrm{FK}, \mathrm{GH}, \\
& \mathrm{GJ}, \mathrm{GK}, \mathrm{HJ}, \mathrm{HK}, \mathrm{JK}, \mathrm{LM}
\end{aligned}
$$

With blocks: Same as above.

## Blocks:

| (1) | abcd | cdffhkl. | abfhkl |
| :---: | :---: | :---: | :---: |
| efjk | abcdefjk | cdehjl | abehjl |
| abcdehklmn | ehklmn | abefm | cdefmn |
| abcdfhjlmn | fhjlmn | abjkm | cdjkmn |
| efghno | abcdefghno | cdegklno | abegklno |
| ghjkno | abcdghjkno | cdfogjlno | abfgjlno |
| abcdfgklmo | fgklmo | abghmo | cdghmo |
| abcdegjlmo | egj1mo | abefghjkmo | cdefghjkmo |
| no | abcdno | cdfhklno | abfhklno |
| efjkno | abcdefjkno | cdehjlno | abehjlno |
| abcdehklmo | ehklmo | abefmo | cdefmo |
| abcdfhjlmo | fhjlmo | abjkmo | cdjkmo |
| efgh | abcdefgh | cdegkl | abegkl |
| ghjk | abcdghjk | cdfgjl | abfgjl |
| abcdfgklmn | fgk 1 m | abghm | cdghmn |
| abcdegjlm | egjlmn | abefghjkm | cdefghjkm |

```
Plan 128.15.8. 1/128 replication of 15 factors in 32 blocks of 8 units each.
Factors: \(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{E}, \mathrm{F}, \mathrm{G}, \mathrm{H}, \mathrm{J}, \mathrm{K}, \mathrm{I}, \mathrm{M}, \mathrm{N}, \mathrm{O}, \mathrm{P}\) 。
\(I=A B E G N=A C E F N P=B C F G P=D E F G O=A B D F N O=A C D G N O P=B C D E O P=A D H K O\)
    \(=\) BDEGHKNO \(=\) CDEFHKNOP \(=\) ABCDFGHKOP \(=\) AEFGHK \(=B F H K N=C G H K N P=A B C E H K P\)
    \(=\mathrm{BCHJNOP}=\mathrm{ACEGHOP}=\mathrm{ABEFHJ} O=\). FGHJNO \(=\mathrm{BCDEFGHJNP}=\mathrm{ACDFHJ} P=\mathrm{ABDGHJ}\)
    \(=\) DEHJN \(=\) ABCDJKNP \(=\) CDEGJKP \(=\) BDEFJK \(=\) ADFGJKN \(=\) ABCEFGJKNOP \(=\) CFJKOP
    \(=\) BGJKO \(=\) AEJKNO \(=\) ABKLOOP \(=\) EGKLNOP \(=\) BCEFKLNO \(=\) ACFGKLO \(=\) ABDEFGKLP
    \(=\) DFKLNP \(=\) BCDGKLN \(=\) ACDEKL \(=\) BDHLP \(=\) ADEGHLNP \(=\) ABCDEFHLN \(=\) CDFGHL
    \(=\) BEFGHLOP \(=\) AFHLNOP \(=\) ABCGHLNO \(=\) CEHLO \(=\) ACHJKLN \(=\) BCEGHJKL \(=\) EFHJKLP
    \(=A B F G H J K L N P=A C D E F G H J K L N O=B C D F H J K L O=D G H K K L O P=A B D E H J K L N O P\)
    \(=\) CDJLNO \(=\) ABCDEGJLO \(=\) ADEFJLOP \(=\) BDEGJLNOP \(=\) CEFGJLN \(=\) ABCFJL \(=\) AGJLP
    \(=\) BEJLNP \(=\) CDGHJMO \(=\) ABCDEHJMNO \(=\) ADEFGHJMNOP \(=\) BDFHJMOP \(=\) CEFHJM
    \(=\) ABCFGHJMN \(=\) AHJMNP \(=\) BEGHJMP \(=\) ACGJKM \(=\) BCEJKMN \(=\) EFGJKMNP \(=\) ABFJKMP
    \(=\operatorname{ACDEFJKMO}=\) BCDFGJKMNO \(=\) DJKMNOP \(=\) ABDEGJKMOP \(=\) BDGMNP \(=\operatorname{ADEMP~}\)
    \(=\operatorname{ABCDEFGM}=\mathrm{CDFMN}=\mathrm{BEFMNOP}=\mathrm{AFGMOP}=\mathrm{ABCMO}=\) CEGMNO \(=\mathrm{ABGHKMNOP}\)
    \(=\) EHKMOP \(=\) BCEFGHKMO \(=\) ACFHKMNO \(=\) ABDEFHKMNP \(=\) DFGHKMP \(=B C D H K M=A C D E G H K M N\)
    \(=\operatorname{ABCDGHKLLMP}=\) CDEHJKLMNP \(=\) BDEFGHKLMN \(=A D F H K L M=A B C E F H J K L M O P\)
    \(=\) CFGHKKLMNOP \(=\) BHJKLMNO \(=\) AEGHJKLMO \(=\) BGGJLMOP \(=\) ACEJLMNOP \(=\) ABEFGJLMNO
    \(=\) FJLMO \(=\) BCDEFJLMP \(=\) ACDFGJLMNP \(=\) ABDJLMN \(=\) DEGJLM \(=\) ADGKLMNO \(=\) BDEKLMO
    \(=\) CDEFGKLMOP \(=\) ABCDFKLMNOP \(=\) AEFKLMN \(=\) BFGKLM \(=\) CKLMP \(=\) ABCEGKLMNP
    \(=\) GHLMN \(=\) ABEHLM \(=\) ACEFGHLMP \(=\) BCFHLMNP \(=\) DEFHLMNO \(=\) ABDFGHLMO \(=\) ACDHLMOP
    = BCDEGHIMNOP.
    Block confounding: A'BD, ACF, BCDF, ABCE, CDE, BEF, ADEF, FJ, ABDFJ , ACJ , BCD J',
    \(\mathrm{ABCEFJ}, \mathrm{CDEFJ}, \mathrm{BEJ}, \mathrm{ADEJ}, \mathrm{EH}, \mathrm{ABDEH}, \mathrm{ACEFH}, \mathrm{BCDEFH}, \mathrm{ABCH}, \mathrm{CDH}, \mathrm{BFH}, \mathrm{ADFH}, \mathrm{EFHJ}\),
    ABDEFH , ACEHJ, BCDEHJ, ABCFHJ, CDFHJ, BHJ, ADHJ 。
    Without blocks: All main effects and all twoofactor interactions are
    measurable。
```

With Blocks: Same as above, except the following two factor interactions are not measurable.

$$
\mathrm{AP}, \mathrm{BG}, \mathrm{CM}, \mathrm{DO}, \mathrm{EH}, \mathrm{EL}, \mathrm{FJ}, \mathrm{HL}, \mathrm{KN} \text { 。 }
$$

Blocks:
 cefhjklmn adefhjlop acdkmop bcdfgjmo bdeghkino abceghlmp abfojknp

bdghilm
$\frac{10}{\text { adelm }}$
$\frac{11}{\text { adehjkm }}$ $\operatorname{cegjm}$

13
abegh
dgknp
$a b c d \frac{21}{\ln n p}$ cdehImp
aegklmp aeghjmp cde ${ }^{28} \mathrm{kmn}$ abde $\frac{29}{\text { ehknp }}$
acdghk
$\operatorname{acdg}^{3} 1$ $\frac{4}{4 j k I}$

bc $\frac{14}{d e k}$ $\frac{15}{\text { bcdehj }}$ abe $\frac{16}{\underline{g} k I}$
$\frac{18}{\text { achnp }}$ $\frac{19}{a c j k \ln p}$ d ghjInp bhkIm $\frac{22}{22}$ $\frac{23}{\text { bjmp }}$

24 abcdghjkmnp bdg ${ }^{7} \mathrm{~km}$ $\stackrel{8}{\mathrm{abchjm}}$ ceghklm


Plan 128.15 .16 . $1 / 128$ replication of 15 factors in 16 blocks of 16 units each.
Factors: $A, B, C, D, E, F, G, H, J, K, I, M, N, O, P$.
I: Same as plan 128.15.8.
Block confounding: $A B D, A C F, B C D F, A B C E, C D E, B E F, A D E F, F J, A B D F J, A C J$, BCDJ, ABCEFJ, CDEFJ, BEJ, ADEJ.

Without blocks: All main effects and all two-factor interactions are measurable.

With blocks: Same as above, except the two-factor interactions EJ and FJ are not measurable.

## Blocks:

| 1 | 2 | 3 | 4 |
| :---: | :---: | :---: | :---: |
| (1) | acdgjl | abcklm | bdgjkm |
| cefhjklmn |  |  |  |
| adefhjlop | 5 | 6 | 7 |
| acdkmnop <br> bedfajmo | ceghklm | adehjkm | abegh |
| bdeghklno | 8 | 9 | 10 |
| abceghlmp. | bcdehjl | dgknp | acjklnp |
| abfgjknp <br> acdghk |  |  | acjkinp |
| adefgjlmn | 11 | 12 | 13 |
| cefgjklop | abcdglmp | bjmnp | cdehlmnp |
| ghmnop |  |  |  |
| abfhjkmo | 14 | 15 | 16 |
| abcelno | aeghjmnp | abdehknp | bceghjklnp |
| bedfhjnp |  |  |  |

Plan 128.15.32. 1/128 replication of 15 factors in 8 blocks of 32 units each. Factors: $A, B, C, D, E, F, G, H, J, K, L, M, N, O, P$.

I: Same as plan 128.15.8.
Block confounding: ABD, ACF, BCDF, $A B C E, C D E, B E F, A D E F$.
Without blocks: All main effects and all two-factor interactions are measurable.

With blocks: Same as above.
Blocks:

| $\frac{1}{(1)}$ | 2 abcklm | $\frac{3}{\text { ceghkIm }}$ | $\stackrel{4}{\text { abegh }}$ |
| :---: | :---: | :---: | :---: |
| cefhjklmn |  |  |  |
| adefhjlop | 5 | $6$ |  |
| acdkmnop | dgknp | abcdglmnp | cdehlmnp |
| bdeghkl no |  |  |  |
| abceghlmp |  |  |  |
| abfgjknp |  |  |  |
| acdghk |  |  |  |
| adefgjlmn |  |  |  |
| cefgjklop |  |  |  |
| ghmnop |  |  |  |
| abfthjkmo |  |  |  |
| abcelno |  |  |  |
| bdeklmp |  |  |  |
| bcdfhjnp |  |  |  |
| acdgjl |  |  |  |
| adefghkmn |  |  |  |
| cefghop |  |  |  |
| gjklmnop |  |  |  |
| abflmo |  |  |  |
| abcehjkno |  |  |  |
| bdehjimp |  |  |  |
| bedfklnp |  |  |  |
| hjkl |  |  |  |
| cefmn |  |  |  |
| adefkop |  |  |  |
| acdhjlmnop |  |  |  |
| bcdfghkImo |  |  |  |
| bdegjno |  |  |  |
| abcegjkmp |  |  |  |
| abfghlnp |  |  |  |

Plan 128.15.64. 1/128 replication of 15 factors in 4 blocks of 64 units each.
Factors: $A, B, C, D, E, F, G, H, J, K, L, M, N, O, P$.
I: Same as plan 128.15.8.
Block confounding: $A B D, A C F, B C D F$ 。
Without blocks: All main effects and all two factor interactions are measurable。

With blocks: Same as above.

## Blocks:

(1) cefhjklmn adefhjlop acdknnop bedfgjmo bdeghkino abceghlmp abfgjknp acdghk adefgjlmn cefgjklop ghmnop abfhjkmo abcelno bdeklmp bedfhjnp


| 2 | 3 | 4 |
| :---: | :---: | :---: |
| ceghkim | dgknp | cdehlmp |

Plan 128．15．128。 $1 / 128$ replication of 15 factors in 2 blocks of 128 units each．

Factors：$\quad \mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{E}, \mathrm{F}, \mathrm{G}, \mathrm{H}, \mathrm{J}, \mathrm{K}, \mathrm{L}, \mathrm{M}, \mathrm{N}, \mathrm{O}, \mathrm{P}$ 。
I：Same as plan 128．15．8．
Block confounding：ABD．
Without blocks：All main effects and all two－factor interactions are measurable。

With blocks：Same as above．
Blocks：


Plan 256．13．8。 1／256 replication of 13 factors in 4 blocks of 8 units each．

Factors：$\quad \mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{E}, \mathrm{F}, \mathrm{G}, \mathrm{H}, \mathrm{J}, \mathrm{K}, \mathrm{I}, \mathrm{M}, \mathrm{N}$ 。

```
\(I=A B C E G H J K M N=A D F G J N=B C D E F H K M=A E F K L N=B C F G H J L M=D E G J K L\)
    \(=A B C D H L M N=A C F H J K M N=B E F G=C D G H K M=A B D E J N=C E H J L M=A B G K L N\)
    \(=A C D E F G H L M N=B D F J K L=A B C D F G H K M N=D E F J=B C H J K M=A E G N=B C D E G H L M\)
    \(=A D J K L N=A B C E F H J M N=F G K L=B D G J=A C D E H K M N=A B F N=C E F G H J K M\)
    \(=A B D E F G J K L \mathbb{N}=C D F H L M=B E K L=A C G H J L M N=A D E G H J L N=B C D K L M=E F H L\)
    \(=A B C F G J K L M N=D F G H J K=A B C D E F T N T=A H K N=B C E G J M=C D F F G K L M=A B D F H J L N\)
    \(=\mathrm{ACEJKL} M \mathrm{~N}=\mathrm{BGHL}=\mathrm{ACDGMN}=\mathrm{BDEHJK}=\mathrm{CFJM}=\mathrm{ABEFGHKN}=\mathrm{BCEFJKLM}\)
    \(=\operatorname{AFGHLN}=\mathrm{ABCDEGKLMN}=\mathrm{DHJL}=\mathrm{ABCJMN}=\mathrm{EGHK}=\mathrm{BCDFGM}=\mathrm{ADEFHJKN}\)
    \(=\mathrm{ABEHLN}=\mathrm{CGJKLM}=\mathrm{BDEFGHJ}=\mathrm{ACDFKL} M \mathbb{N}=\mathrm{BFHK}=\mathrm{ACEFGJMN}=\mathrm{ABDGHJKN}\)
    \(=C D E M=A\) EFGHJKLMN \(=B C F L=D E H K M=A B C D G J L N=G H J M=A B C E K N=A D F H M N\)
    = BCDEFGJK = CEEL \(=\) ABHJKLMN \(=\) ACDEFJLN \(=\) BDFGHKLM \(=A C F G K N ~=B E P H J M\)
    \(=C D J K=A B D E G H M N=B C D E J=A D G H K M N=A B C E F G L N=F H J K M=A B C D F J K N\)
    \(=\) DEFGFM \(=\) BCGK \(=\) AEHJMN \(=A B D E F H K M I N=C D F G J L=B E G H J K L M=A C L N=B D H M\)
    \(=A C D E G J K N=A B F G H J M N=C E F K=D F K M=A B C D E F G H J N=A G J K M N=B C E H=A D E L M N\)
    \(=\mathrm{BCDGHJKL}=\mathrm{EFGJLM}=\mathrm{ABCFHKLN}=\mathrm{ACDHJN}=\mathrm{BDEGKM}=\mathrm{CFGH}=\mathrm{ABEPJKMN}\)
    \(=\mathrm{CDEFHJKL}=\mathrm{ABDFGLMN}=\mathrm{ACEGHKLN}=\mathrm{BJLM}=\mathrm{ABCGHN}=\mathrm{EJKM}=\mathrm{BCDFHJ}\)
    \(=\mathrm{ADEFGKMN}=\mathrm{BCEFGHK}=\mathrm{AFJLMN}=\mathrm{ABCDEHJKLN}=\mathrm{DGLM}=\mathrm{BFGJKM}=\mathrm{ACEFHN}\)
    \(=\mathrm{ABDKIN}=\mathrm{CDEGHJ}=\mathrm{ABEGJLMN}=\mathrm{CHKL}=\mathrm{BDEFLM}=\mathrm{ACDFGHJKLN}=\mathrm{AFHJ}\)
    \(=\operatorname{BCEFGKMN}=\) DGHN \(=\mathrm{ABCDEJKM}=\) EHJKLN \(=\mathrm{ABCGLM}=\mathrm{ADEFGHKL}=\) BCDFJLMN
    \(=\) CKMN \(=\) ABEGHJ \(=\) ACDFGJKM \(=\) BDEFHN \(=\) ACEFLM \(=\) BFGHJKLN \(=\) CDEGJLMN
    \(=A B D F K L=B C D G J K M N=A D E H=A B C F K M=E F G H J N=A B C D E F G J L M=D F H K L N\)
    \(=B C E L M N=A G H J K L=A B D F G H=C D E F J K M N=B H J N=A C E G K M=B D E G H K L N=A C D J L M\)
    \(=\mathrm{ABEFHJKL}=\mathrm{CFGLMN}=\mathrm{DEFGLN}=\mathrm{ABCDFHJKLM}=\mathrm{AEJL}=\mathrm{BCGHKLMN}=\mathrm{ADGK}\)
    \(=\) BCDEHJMN \(=\) FJKN \(=\) ABCEFGHM \(=\) ACDEGHJKLM \(=\) BDLN \(=\) CEFHLLMN \(=\) ABFGJL
    \(=\) CDFGHJMI \(=A B D E F K=A C H M=\) BEGJKN \(=A B C E H K M=G J L N=B C D E F G H J K L M N\)
    \(=\mathrm{ADFL}=\mathrm{BCFHMN}=\mathrm{AEFGJK}=\mathrm{ABCDGHJM}=\mathrm{DEKN}=\mathrm{BEFJN}=\mathrm{ACFGHKL} M=\mathrm{ABDEGL}\)
    \(=\mathrm{CDHJKL} M \mathrm{~N}=\mathrm{ABJK}=\mathrm{CEGHMN}=\mathrm{BDFGKN}=\mathrm{ACDEFHJM}=\mathrm{EGKL} M \mathrm{MN}=\mathrm{ABCHJL}\)
    \(=\) ADEFJKLM \(=\) BCDFGFLN \(=\mathrm{AFGM}=\mathrm{BCEFHJKN}=\mathrm{DJNN}=\mathrm{ABCDEGHK}=\mathrm{ACEFGHJL}\)
    \(=\mathrm{BFKLMN}=\mathrm{CDEHLN}=\mathrm{ABDGJKLM}=\mathrm{CGHJKN}=\mathrm{ABEM}=\mathrm{ACDFHK}=\mathrm{BDEFGJMN}\)
    \(=A B C D E F H L=D F G J K L M N=B C E G H J L N=A K L M=B C D H K N=A D E G J M=A B C F G H J K\)
    \(=\mathrm{EFTN}=\mathrm{BDEJKL} M N=\mathrm{ACDGHL}=\mathrm{ABEFGKL} M=\mathrm{CFHJLN}=\mathrm{ABDFJM}=\mathrm{CDEFGHKN}\)
    \(=\mathrm{BGMN}=\mathrm{ACEHJK}=\mathrm{ADHJKM}=\mathrm{BCDEGN}=\) FGHKMN \(=\mathrm{ABCEFJ}=\mathrm{DEFHJLMN}=\mathrm{ABCDFGKL}\)
    \(=\mathrm{AEGFL} M=\mathrm{BCJKLN}=\mathrm{CDFN}=\mathrm{ABDEFGHJKM}=\mathrm{ACGJ}=\mathrm{BEHKMN}=\mathrm{ACDEKL}=\mathrm{BDGHJMN}\)
    \(=\) CEFGJKLN \(=\mathrm{ABFHLM}=\) BCFGJN \(=\mathrm{AEFHKM}=\mathrm{ABCD}=\) DECHJKMN \(=\mathrm{ABCEGJKL}\)
    \(=\mathrm{HLMN}=\mathrm{BCDEFKLN}=\mathrm{ADFGHJLM}=\mathrm{ABGHKM}=\) CEJN \(=\mathrm{BDFHJKMN}=\mathrm{ACDEFG}\)
    \(=\operatorname{BEFGHLMN}=\mathrm{ACFJK}=\mathrm{ABDEHJLM}=C D G K L N\) 。
```

Block confounding： $\mathrm{FG}_{9} \cdot \mathrm{GH}$ ， FH 。
Without blocks：All main effects，but no two－factor interactions，are measurable．

With blocks：Same as above．

Plan 256.13.8。 (Continued).

## Blocks:

$$
\begin{aligned}
& \quad \stackrel{1}{(I)} \\
& \text { abcdefghjklmn }
\end{aligned}
$$

Plan 256.13.16。 1/256 replication of 13 factors in 2 blocks of 16 units each.

Factors: $\quad \mathrm{A}, \mathrm{B}_{9} \mathrm{C}, \mathrm{D}, \mathrm{E}, \mathrm{F}_{\mathrm{F}}, \mathrm{G}, \mathrm{H}, \mathrm{J}, \mathrm{K}, \mathrm{I}, \mathrm{M}, \mathrm{N}$.
I\& Same as plan 256.13.8.
Block confounding: FG。
Without blocks: All main effects, but no two-factor interactions, are measurable.

With blocks: Same as above.

## Blocks:

```
1 2
(1)
eghjkm
abcdefghjklmn
adjmn
bcefghkl
cdfghn
abejklm
acfghjm
bdekln
fgjkln
abcdehm
adrigklm
bcehjn
cdhjkl
abefgmn
achklmn
bdefgj
```

Plan 256．14．8．1／256 replication of 14 factors in 8 blocks of 8 units each．

Factors：$A, B, C, D_{9} . E, F, G, H, J, K, I, M, N, O$ ．
$I=A B C E G H J K M N O=A D F G J N O=B C D E F H K M=A E F K L N O=B C F G H J L M=D E G J K L$ $=\mathrm{ABCDHLMNO}=\mathrm{ACFHJKMNO}=\mathrm{BEFG}=\mathrm{CDGHKM}=\mathrm{ABDEJNO}=\mathrm{CEHJLM}=\mathrm{ABGKLNO}$
$=\mathrm{ACDEFGHLMNO}=\mathrm{BDFJKL}=\mathrm{ABCDFGHKMNO}=\mathrm{DEFJ}=\mathrm{BCHJKM}=\mathrm{AEGNO}=\mathrm{BCDEGHLM}$
$=\mathrm{ADJKLNO}=\mathrm{ABCEFHJLMNO}=\mathrm{FGKL}=\mathrm{BDGJ}=\mathrm{ACDEHKMNO}=\mathrm{ABFNO}=\mathrm{CEFGHJKM}$
$=A B D E F G J K L N O=C D F H L M=B E K L=A C G H J L M N O=A D E G H J L N O=B C D K L M=E F H L$
$=\mathrm{ABCFGJKLMO}=\mathrm{DFGHJK}=\mathrm{ABCDEFMNO}=\mathrm{AHKNO}=\mathrm{BCEGJM}=\mathrm{CDEFGKLM}=\mathrm{ABDFHJLNO}$
$=\mathrm{ACEJKLMNO}=\mathrm{BGHL}=\mathrm{ACDGMNO}=\mathrm{BDEHJK}=\mathrm{CFJM}=\mathrm{ABEFGHKNO}=\mathrm{BCEFJKL} M$
$=A F G H L N O=A B C D E G K L M N O=D H J L=A B C J M N O=E G H K=B C D F G M=A D E F H J K N O$
$=A B E H L N O=C G J K L M=B D E F G H J L=A C D F K L M N O=B F H K=A C E F G J M N O=A B D G H J K N O$
$=C D E M=A E F G H J K L M N O=B C F L=D E H K L M=A B C D G J L N O=G H J M=A B C E K N O$
$=A D F F H N O=B C D E F G J K=C E G L=A B H J K L M N O=A C D E F J N O=B D F G H K L M=A C F G K N O$
$=\mathrm{BEFHJM}=\mathrm{CDJK}=\mathrm{ABDEGHMNO}=\mathrm{BCDEJ}=\mathrm{ADGHKL} \mathrm{MNO}=\mathrm{ABCEFGL} N O=F H J K L M$
$=\mathrm{ABCDFJ}$ INO $=\mathrm{DEFGHM}=\mathrm{BCGK}=\mathrm{AEHJMNO}=\mathrm{ABDEFHKLMNO}=\mathrm{CDFGJL}=\mathrm{BEGHJKLM}$
$=A C L N O=B D H M=A C D E G J K N O=A B F G H J M N O=C E F K=D F K M=A B C D E F G H J N O$
$=$ AGJKMNO $=\mathrm{BCEH}=\mathrm{ADELMNO}=\mathrm{BCDGHJKL}=$ EFGJIM $=\mathrm{ABCFHKL} O=\mathrm{ACDHJNO}$
$=\mathrm{BDEGKM}=\mathrm{CFGH}=\mathrm{ABEFJKMNO}=\mathrm{CDEFHJKL}=\mathrm{ABDFGLMNO}=\mathrm{ACEGHKLNO}=B J M$
$=\mathrm{ABCGHNO}=\mathrm{EJKM}=\mathrm{BCDFHJ}=\mathrm{ADEFGKMNO}=\mathrm{BCEFGHKL}=\mathrm{AFJLMNO}=\mathrm{ABCDEHJKLNO}$
$=$ DGLM $=$ BFGJKM $=\mathrm{ACEFHNO}=\mathrm{ABDKMNO}=\mathrm{CDEGHJ}=\mathrm{ABEGJLMNO}=\mathrm{CHKL}=\mathrm{BDEFLM}$
$=A C D F G H J K L N O=A F H J=B C E F G K M N O=D G H N O=A B C D E J K M=E H J K L N O=A B C G L M$
$=A D E F G H K L=B C D F J L M N O=C K M N O=A B E G H I=A C D F G J K M=B D E F H N O=A C E F L M$
$=$ BFGHJKLNO $=$ CDEGJLMINO $=\mathrm{ABDHKL}=\mathrm{BCDGJKMNO}=\mathrm{ADEH}=\mathrm{ABCFKM}=$ EFGHJNO
$=A B C D E F G J L M=D E H K L N O=B C E L M N O=A G H J K L=A B D F G H=C D E F J K M N O=B H J N O$
$=\mathrm{ACEGKM}=\mathrm{BDEGHKL} \mathrm{NO}=\mathrm{ACDJLM}=\mathrm{ABEFHJKL}=\mathrm{CFGLMNO}=\mathrm{DEFGL} N O=A B C D F H J K L M$
$=\mathrm{AEJL}=$ BCGHKLMNO $=\mathrm{ADGK}=\mathrm{BCDEHJMNO}=\mathrm{FJKNO}=\mathrm{ABCEFGHM}=\mathrm{ACDEGHJKLM}$
$=$ BDLNO $=$ CEFHKLMNO $=\mathrm{ABFGJL}=$ CDFGHJMNO $=\mathrm{ABDEFK}=\mathrm{ACHM}=\mathrm{BEGJKNO}$
$=A B C E H K L M=G J L N O=B C D E F G H J K L M N O=A D F L=B C F H M N O=A E F G J K=A B C D G H J M$
$=\mathrm{DEKNO}=\mathrm{BEFJLNO}=\mathrm{ACFGHKL} M=\mathrm{ABDEGL}=$ CDHJKLMNO $=\mathrm{ABJK}=$ CEGHMNO
$=\mathrm{BDFGKNO}=\mathrm{ACDEFHJM}=\mathrm{EGKLMNO}=\mathrm{ABCHJ}=\mathrm{ADEF} \mathrm{JKL} . M=\mathrm{BCDFGHL} \mathrm{NO}=\mathrm{AFGM}$
$=$ BCEFHJKNO $=$ DJMNO $=A B C D E G H K=A C E F G H J L=B F K L M N O=C D E H L N O=A B D G J K L M$
$=$ CGHJKNO $=\mathrm{ABEM}=\mathrm{ACDFHK}=$ BDEFGJMNO $=\mathrm{ABCDEFHL}=$ DFGJKLMNO $=$ BCEGHJLNO
$=A K L M=B C D H K N O=A D E G J M=A B C F G H J K=E F M N O=B D E J K L M N O=A C D G H L$
$=A B E F G K L M=$ CFHJLNO $=$ ABDFJM $=$ CDEFGHKNO $=$ BGMNO $=A C E H J K=A D H J K M$
$=$ BCDEGNO $=$ FGHKMMO $=$ ABCEFJ $=$ DEFHJLMNO $=A B C D F G K 工=A E G H L M=B C J K L N O$
$=$ CDFNO $=\mathrm{ABDEFGHJKM}=\mathrm{ACGJ}=\mathrm{BEHKMNO}=\mathrm{ACDEKL}=\mathrm{BDGHJLMNO}=\mathrm{CEFGJKLNO}$
$=A B F H L M=B C F G J N O=A E F H K M=A B C D=$ DEGHJKMNO $=A B C E G J K L=H L M N O$
$=$ BCDEFKLNO $=$ ADFGHJLM $=A B G H K M=$ CEJNO $=B D F H J K M N O=A C D E F G=B E F G H L M N O$
$=\mathrm{ACFJKL}=\mathrm{ABDEHJLM}=\mathrm{CDGKLNO}$ 。
Block confounding： $\mathrm{FG}_{\mathrm{g}}, \mathrm{GH}, \mathrm{FH}, \mathrm{DJ}, \mathrm{DFGJ}, \mathrm{DGHJ}, \mathrm{DFHJ}$ 。
Without blocks：All main effects and the following two factor interactions are measurable：


With blocks: Same as above.
Blocks:
$\underset{(1)}{I}$
abcdefighjklmn
adjmn
bcefghki
no
abcdefoghjklmo adjmo
bcefoghkino
5
cdefojmm
$\frac{6}{\text { eghjkm }}$
efhlnn
$\stackrel{8}{\substack{8 \\ \text { cdeglm }}}$

Plan 256.14.16. $1 / 256$ replication of 14 factors in 4 blocks of 16 units each.

I : Same as plan 256.14.8.
Block confounding: $\mathrm{FG}_{9} \mathrm{GH}_{9} \mathrm{FH}$ 。
Without blocks: All main effects and the following two-factor interactions are measurable:

| $\mathrm{CO}, \mathrm{DN}, \mathrm{DO}, \mathrm{EN}_{2} \mathrm{EO}$, <br> $\mathrm{FN}_{\mathrm{g}}, \mathrm{FO}_{9} \mathrm{GN}_{9} . \mathrm{GO}, \mathrm{HN}$, <br> $\mathrm{HO}_{2} \mathrm{JN}_{2} \mathrm{JO}_{2} \mathrm{KN}_{9} \mathrm{KO}_{2}$ <br> $\mathrm{LN}, \mathrm{LO}, \mathrm{MN} . \mathrm{MO}, \mathrm{NO}$ |
| :---: |
|  |  |
|  |  |
|  |  |
|  |  |

With blocks: Same as above.

## Blocks:

Plan 256.14.32. $1 / 256$ replication of 14 factors in 2 blocks of 32 units

I: Same as plan 256.14.8.
Block confounding: FG。
Without blocks: All main effects and the following two ${ }^{\text {factor }}$ interactions are measuable:

|  |
| :---: |
|  |  |
|  |  |
|  |  |
|  |  |

With blocks: Same as above.
Blocks:

| $\frac{1}{(1)}$ |  | $\stackrel{2}{\text { cdefjkmn }}^{2}$ |
| :---: | :---: | :---: |
| abcdefoghklmn | bcehjn |  |
| adjmn | fgjkio |  |
| bcef ghki | abcdehmno |  |
| no | adf'gklmno |  |
| abodef ghjklmo | bcehjo |  |
| adjmo |  |  |
| bcefghklno |  |  |
| cdfghn |  |  |
| abejklm |  |  |
| acfighjm |  |  |
| bdekin |  |  |
| edfgho |  |  |
| abejklmno |  |  |
| acfoghjmno |  |  |
| bdeklo |  |  |
| cdhjel |  |  |
| abefgmn |  |  |
| achklmn |  |  |
| bdefgj |  |  |
| cdhjklno |  |  |
| abefgmo |  |  |
| achklmo |  |  |
| bdefgjno |  |  |
| fgjkln |  |  |
| abcdehm |  |  |
| adfgklm |  |  |

Plan 256.15.8. $1 / 256$ replication of 15 factors in 16 blocks of 8 units each. Factors: A,B,C,D,E,F,G,H,J,K,L,M,N,O,P。 $I=\operatorname{ABCEGHJKMNO}=$ ADFGJNP $=$ BCDEFHKMOP $=$ AEFKLNP $=$ BCFGHJLMOP $=$ DEGJKL
$=$ ABCDHLMNO $=$ ACFHJKMNO $=$ BEFG $=$ CDGHKMOP $=$ ABDEJNP $=$ CEHJLMOP
$=$ ABGKLNP $=$ ACDEFGHLMNO $=$ BDFJKL $=$ ABCDFGHKMNP $=$ DEFJOP $=$ BCHJKM $=$ AEGNO
$=$ BCDEGHLM $=$ ADJKLNO $=$ ABCEFHJLMNP $=$ FGKLOP $=$ BDGJOP $=A C D E H K M N P=A B F N O$
$=$ CEFGHJKM $=$ ABDEFGJKLNO $=$ CDFHLM $=$ BEKLOP $=$ ACGHJLMNP $=$ ADEGHJLNOP
$=$ BCDKLMP $=$ EFHLO $=$ ABCFGJKLMN $=$ DFGHJKO $=$ ABCDEFYN $=A H K N O P=B C E G J M P$
$=$ CDEFGKLMP $=$ ABDFHJLNOP $=$ ACEJKLMN $=$ BGHLO $=A C D G M N=B D E H J K O=C F J M P$
$=$ ABEFGHKNOP $=$ BCEFJKLMO $=$ AFGHLN $=$ ABCDEGKLMNOP $=$ DHJLP $=A B C J M N O P$
$=$ EGHKP $=$ BCDFGMO $=$ ADEFHJKN $=$ ABEHLN $=$ CGJKLMO $=$ BDEFGHJLP $=A C D F K L M N O P$
$=$ BFHKP $=$ ACEFGJMNOP $=$ ABDGHJKN $=$ CDEMO $=$ AEFGHJKLMNP $=$ BCFLOP $=$ DEHKLM
$=\operatorname{ABCDGJLNO}=G H J M=A B C E K N O=A D F H M N P=$ BCDEFGJKOP $=$ CEGLOP $=$ ABHKKLNNP
= $\operatorname{ACDEFJLNO}=$ BDFGHKLM $=$ ACFGKNO $=$ BEFHJM $=$ CDJKOP $=$ ABDEGHMNP $=$ BCDEJL
$=A D G H K L M N O=A B C E F G L N P=$ FHJKLMOP $=A B C D F J K N P=$ DEFGHMOP $=$ BCGK
$=\operatorname{AEHJMNO}=\mathrm{ABDEFHKLMNO}=$ CDFGJL $=$ BEGHJKLMOP $=\mathrm{ACLNP}=$ BDHMOP $=$ ACDEGJKNP
$=$ ABFGHJMNO $=$ CEFK $=$ DFKMO $=$ ABCDEFGHJN $=$ AGJKMNOP $=$ BCEHP $=$ ADELMNOP
$=$ BCDGHJKLP $=$ EFGJLMO $=$ ABCFHKLN $=A C D H J N=$ BDEGKMO $=$ CFGHP $=A B E F J K M N O P$
= CDEFHJKLP $=$ ABDFGLMNOP $=$ ACEGHKLN $=$ BJLMO $=$ ABCGHNOP $=$ EJKMP $=$ BCDFHJO
$=A D E F G K M N=B C E F G H K L O=A F J L M N=A B C D E H J K L N O P=D G L M P=B F G J K M P$
$=\operatorname{ACEFHNOP}=\mathrm{ABDKMN}=$ CDEGHJO $=$ ABEGJLMN $=$ CHKLO $=$ BDEFLMP $=$ ACDFGHKLNOP
$=$ AFHJOP $=$ BCEFGKMNP $=$ DGHNO $=$ ABCDEJKM $=$ EHJKLNO $=$ ABCGLM $=$ ADEFGHKLOP
= BCDFJLMNP $=$ CKMNP $=$ ABEGHJOP $=$ ACDFGJKM $=$ BDEFHNO $=$ ACEFLM $=$ BFGHJKLNO
$=$ CDEGJLMNP $=$ ABDHKLOP $=$ BCDGJKMNO $=$ ADEH $=$ ABCFKMOP $=$ EFGHJNP
$=$ ABCDEFGJLMOP $=$ DFHKLNP $=$ BCELMNO $=$ AGHJKL $=$ ABDFGH $=$ CDEFJKMNO $=$ BHJNP
$=$ ACEGKMOP $=$ BDEGHKLNP $=$ ACDJLMOP $=$ ABEFHJKL $=$ CFGLMNO $=$ DEFGLN

```
\(I(\) Continued \()=A B C D F H J K M O=A E J P=B C G H K L N N O P=A D G K P=B C D E H J I N O P=F J K N\)
    \(=\mathrm{ABCEFGHMO}=\mathrm{ACDEGHJKLMO}=\) BDLN \(=\) CEFHKLMNOP \(=\mathrm{ABFGJLP}=\mathrm{CDFGHJMNOP}\)
    \(=\mathrm{ABDEFKP}=\mathrm{ACHMO}=\) BEGJKN \(=\mathrm{ABCEHKLMP}=\) GJLNOP \(=\) BCDEFGHJKLMN \(=\mathrm{ADFLO}\)
    \(=\mathrm{BCFHMN}=\mathrm{AEFGJ} K O=\mathrm{ABCDGHJMP}=\mathrm{DEKNOP}=\mathrm{BEFJLNOP}=\mathrm{ACFGHKLMP}=\mathrm{ABDEGIO}\)
    \(=\) CDHJKLMN \(=\mathrm{ABJKO}=\) CEGHMN \(=\) BDFGKNOP \(=\mathrm{ACDEFHJMP}=\) EGKLMNO \(=\mathrm{ABCHJL}\)
    \(=\mathrm{ADEFJKLMOP}=\mathrm{BCDFGHLNP}=\mathrm{AFGMOP}=\mathrm{BCEFHJ} K N P=D J M O=A B C D E G H K\)
    \(=\mathrm{ACEFGHJL}=\mathrm{BFKLMNO}=\) CDEHLNP \(\approx\) ABDGJKLMOP \(=\) CGHJKNP \(=\mathrm{ABEMOP}=\mathrm{ACDFHK}\)
    \(=\) BDEFGJMNO \(=\) ABCDEFHLOP \(=\) DFGJKLMNP \(=\) BCEGHJLNO \(=A K L M=B C D H K N O\)
    \(=A D E G J M=A B C F G H K O P=E F M N P=B D E J K L M N P=A C D G H L O P=A B E F G K L M\)
    \(=\) CFHJLNO \(=A B D F J M=C D E F G H K N O=B G M N P=A C E H J K O P=A D H J K M P=B C D E G N O P\)
    \(=F G H K M N=A B C E F J O=D E F H J L M N=A B C D F G K L O=A E G H L M P=B C J K L N O P=C D F N O P\)
    \(=A B D E F G H J K M P=A C G J O=B E H K M N=A C D E K I O=B D G H J L M N=C E F G J K L N O P\)
    \(=\mathrm{ABFHLMP}=\) BCFGJN \(=\mathrm{AEFHKMO}=\mathrm{ABCDP}=\) DEGHJKMNOP \(=\mathrm{ABCEGJKIP}=\) HLMNOP
    \(=B C D E F K L N=A D F G H J L M O=A B G H K M O=C E J N \approx B D F H J K M N O P \approx A C D E F G P\)
    \(=\) BEFGHLMNOP \(=\) ACFJKLP \(=\) ABDEHJLMO \(=\) CDGKLN
```

Block confounding： $\mathrm{AK}, \mathrm{EK}, \mathrm{AE}, \mathrm{ACEK}, \mathrm{CE}, \mathrm{AC}, \mathrm{CK}, \mathrm{BC}, \mathrm{ABCK}, \mathrm{BCEK}, \mathrm{ABCE}, \mathrm{ABEK}, \mathrm{BE}, \mathrm{AB}, \mathrm{BK}$ 。 Without blocks：All main effects and all twoofactor interactions except the following are measurable：

$$
\begin{aligned}
& A D, A E, A H, A K, A L, ~ A M, \\
& \mathrm{BC}, \mathrm{BD}_{9} \mathrm{BE}_{9} \mathrm{BF}_{9} \mathrm{BG}_{9} \mathrm{BK}_{9} \\
& \mathrm{BL}_{9} \mathrm{BN}_{2} \mathrm{CE}_{2} \mathrm{CF}, \mathrm{CG}, \mathrm{CJ} \text {, } \\
& \mathrm{CK}_{9} \mathrm{CN}_{2} \mathrm{DE}_{9} \mathrm{DH}_{2} \mathrm{DL}_{9} \mathrm{DN} \text {, } \\
& \mathrm{EF}, \mathrm{EG}_{9}, \mathrm{EH}_{9} \mathrm{EN}, \mathrm{EK}_{9} \mathrm{EN}, \\
& \mathrm{FG}, \mathrm{FJ}_{2}, \mathrm{FK}_{9} \mathrm{FN}_{2} \mathrm{GH}_{2} \mathrm{GJ}_{2} \\
& \mathrm{GK}_{9} \mathrm{GM}_{9} \mathrm{HJ}_{9} \mathrm{HM}_{9} \mathrm{JK}_{9} \mathrm{JM}_{9} \\
& \mathrm{JN}_{2} \mathrm{KL}, \mathrm{KM}_{9} \mathrm{KN}_{9} \mathrm{LM}_{9} \mathrm{LN} \text { 。 }
\end{aligned}
$$

With blocks：Same as above，except that the following two factor inter－ actions also are not measurable：

$$
A B, A C, A F, A G
$$



## Blocks:



Plan 256．15．16． $1 / 256$ replication of 15 factors in 8 blocks of 16 units each． Factors：A，B，C，D，E，F，G，H，J，K，L，M，N，O，P。

I：Same as plan 256．15．8．
Block confounding： $\mathrm{AK}, \mathrm{EK}, \mathrm{AE}, \mathrm{ACEK}, \mathrm{CE}, \mathrm{AC}, \mathrm{CK}$ ．
Without blocks：All main effects，and all twoofactor interactions except the following are measurable：

$$
\begin{aligned}
& A D, A E, A H, A K, A L, A M, \\
& \mathrm{BC}, \mathrm{BD}, \mathrm{BE}, \mathrm{BF}, \mathrm{BG}, \mathrm{BK} \text {, } \\
& \mathrm{BL}_{9} \mathrm{BN}_{9} \mathrm{CE}_{2} \mathrm{CF}_{9} \mathrm{CG}_{9} \mathrm{CJ}_{2} \\
& \mathrm{CK}_{9} \mathrm{CN}_{9} \mathrm{DE}_{9} \mathrm{DH}_{9} \mathrm{DL}_{9} \mathrm{DN}_{9} \\
& \mathrm{EF}_{9} \mathrm{EG}_{9} \mathrm{EH}, \mathrm{EJ}, \mathrm{EK}, \mathrm{EN}_{9} \\
& \text { FG, } \mathrm{FJ}, \mathrm{FK}, \mathrm{FN}, \mathrm{GH}, \mathrm{GJ} \text {, } \\
& \mathrm{GK}_{9} \mathrm{GM}, \mathrm{HE}, \mathrm{HM}_{9} \mathrm{JK}, \mathrm{JM} \text {, } \\
& \mathrm{JN}_{9} \mathrm{KL}_{2} \mathrm{KM}, \mathrm{KN}_{9} \mathrm{IM}_{9} \mathrm{IN} \text { 。 }
\end{aligned}
$$

With blocks：Same as above except that the following twowactor interactions also are not measurable：

$$
A C, A F
$$

Blocks：
（I）
bcfeflm
bcehjn
efh $\stackrel{4}{\square} m$
abcdefghjklm
dhlmp
abcéfgjknp
abcdefghko
jlmo
abcefgklmop
dhjnop
bdgho
acefjklmio
bglmop
acdefhjknop
acefk
bdghjImn
acdefhklmp
bgjnp

Blocks (Continued):


Plan 256.15.32. 1/256 replication of 15 factors in 4 blocks of 32 units each. Factors: A, B, C, D, E, F, G, H, J, K, L, M, N, O, P。

I: Same as plan 256.15.8.
Block confounding: AK,EK,AE.
Without blocks: All main effects, and all two-factor interactions except the following are measurable:

$$
\begin{aligned}
& \mathrm{AD}, \mathrm{AE}, \mathrm{AH}, \mathrm{AK}, \mathrm{AL}, \mathrm{AM}_{9} \\
& \mathrm{BC}, \mathrm{BD}, \mathrm{BE}, \mathrm{BF}, \mathrm{BG}, \mathrm{BK}, \\
& \mathrm{BL}, \mathrm{BN}, \mathrm{CE}, \mathrm{CF}, \mathrm{CG}, \mathrm{CJ}, \\
& \mathrm{CK}, \mathrm{CN}, \mathrm{DE}, \mathrm{DH}, \mathrm{DL}, \mathrm{DN}, \\
& \mathrm{EF}, \mathrm{EG}, \mathrm{EH}, \mathrm{EJ}, \mathrm{EK}^{2} \mathrm{EN}, \\
& \mathrm{FG}, \mathrm{FJ}, \mathrm{FK}, \mathrm{FN}, \mathrm{GH}, \mathrm{GJ}, \\
& \mathrm{GK}, \mathrm{GM}, \mathrm{HJ}, \mathrm{HM}, \mathrm{JK}, \mathrm{JM}, \\
& \mathrm{JN}, \mathrm{KL}, \mathrm{KM}, \mathrm{KN}, \mathrm{LM}, \mathrm{LN} .
\end{aligned}
$$

With blocks: Same as above.

## Blocks:

| $\left.\frac{I}{\bar{I}}\right)$ | boseran | $b c e^{\frac{2}{h j n}}$ | ${ }_{a b c a f l n}^{3}$ | $\frac{4}{a d e f h j I}$ |
| :---: | :---: | :---: | :---: | :---: |
| abcdefghjklmn | adegikn |  |  |  |
| dhlmp | bodfinjp |  |  |  |
| abcefgjknp | aegklmnp |  |  |  |
| abcdefghko | adeghjklmo |  |  |  |
| jlımo | befno |  |  |  |
| abcefgkImop | aegjkop |  |  |  |
| dhjnop | bedfhlmnop |  |  |  |
| bdgho | odforhlmo |  |  |  |
| acefjklmmo | abekno |  |  |  |
| bglmop | cfotop |  |  |  |
| acdefhjknop | ab'skimnop |  |  |  |
| acefk | abejklm |  |  |  |
| bdghjlmn | contm |  |  |  |
| acdefhklmp | abulus 1 p |  |  |  |
| bgjnp | cfommp |  |  |  |

Plan 256.15.64. 1/256 replication of 15 factors in 2 blocks of 64 units each.
Factors: A,B,C,D,E,F,G,H,J,K,L,M,N,O,P.
I: Same as plan 256.15.8.
Block confounding: AK.
Without blocks: All main effects, and all two ofactor interactions except the following are measurable:

$$
\begin{aligned}
& \mathrm{AD}, \mathrm{AE}, \mathrm{AH}, \mathrm{AK}, \mathrm{AL}, \mathrm{AM}, \\
& \mathrm{BC}, \mathrm{BD}, \mathrm{BE}, \mathrm{BF}, \mathrm{BG}, \mathrm{BK}, \\
& \mathrm{BL}, \mathrm{BN}, \mathrm{CE}, \mathrm{CF}, \mathrm{CG}, \mathrm{CJ}, \\
& \mathrm{CK}, \mathrm{CN}, \mathrm{DE}, \mathrm{DH}, \mathrm{DL}, \mathrm{DN}, \\
& \mathrm{EF}, \mathrm{FG}, \mathrm{EH}, \mathrm{EJ}, \mathrm{EK}, \mathrm{EN}, \\
& \mathrm{FG}, \mathrm{FJ}, \mathrm{FK}, \mathrm{FN}, \mathrm{GH}, \mathrm{GJ}, \\
& \mathrm{GK}, \mathrm{GM}, \mathrm{HJ}, \mathrm{HM}, \mathrm{JK}, \mathrm{JM}, \\
& \mathrm{JN}, \mathrm{KL}, \mathrm{KM}, \mathrm{KN}, \mathrm{LM}, \mathrm{LN} .
\end{aligned}
$$

With blocks: Same as above.

## Blocks:

|  | - |  |  |
| :---: | :---: | :---: | :---: |
| (1) | bcfijlm | bcehjn | criturn |
| abcdefghjklm | adeghkn | adfgklm | a.bedgjk |
| dhlmp | bcdfhjp | bedejlmp | defnp |
| abcefgjknp | aegklmnp | afghkp | abochjelmp |
| abcdefghko | adeghjkimo | adffgjkno | abedjkl.mno |
| jlımo | bcino | bcehlmo | efhjo |
| abcefgklmop | aegjkop | afghjk $\mathrm{mm}_{\text {mop }}$ | abeshknop |
| dhjnop | bcdfhlmnop | bcdeop | defjlmop |
| bdgho | cdfeghjimo | cdegjno | bdergimno |
| acefjklmo | abekno | abfhklmo | achjko |
| bglmop | cfgjop | ceghjlımop | befghnop |
| acdefhjknop | abdehkImnop | abdfkop | acdjklmop |
| acefk | abejklm | abfhjkn | \% chklmn |
| bdghjlmm | cafoghn | cdeg 1 m | bidefgj |
| acdefhklmp | abdehjo | abdfj $k$ Immp | acdknp |
| bgjnp | cferchnn | ceghp | iefohjlmp |

Plan 256.16.8. 1/256 replication of 16 factors in 32 blocks of 8 units each. Factors: A,B,C,D,E,F,G,H,J,K,L, M, $\mathrm{N}_{9} \mathrm{O}, \mathrm{P}, \mathrm{S}$ 。
$I=$ ABCEGHJKMNOS $=$ ADFGJNP $=$ BCDEFHKMOPS $=$ AEFKLNPS $=$ BCFGHJLMOP $=$ DEGJKLS
$=$ ABCDHLMNO $=$ ACFHJKMNO $=$ BEFGS $=$ CDGHKMOP $=$ ABDEJNPS $=$ CEHJLMOPS $=$ ABGKLNP
$=\operatorname{ACDEFGHLMNOS}=$ BDFJKL $=A B C D F G H K M N P=$ DEFJOPS $=B C H J K M=A E G N O S=B C D E G H L M S$
$=$ ADJKLNO $=$ ABCEFHJLMNPS $=$ FGKLOP $=$ BDGJOP $=$ ACDEHKMNPS $=A B F N O=$ CEFGHJKMS

- $\operatorname{ABDEFGJKLNOS~}=$ CDFHLM $=$ BEKLOPS $=$ ACGHJLMNP $=$ ADEGHJLNOP $=$ BCDKLMPS $=$ EFHLO
$=$ ABCFGJKLMNS $=$ DFGHJKOS $=$ ABCDEFMN $=$ AHKNOPS $=$ BCEGJMP $=$ CDEFGKLMP
$=\mathrm{ABDFHJLNOPS}=\mathrm{ACEJKLMN}=\mathrm{BGHLOS}=\mathrm{ACDGMNS}=\mathrm{BDEHJKO}=$ CFJMPS $=\mathrm{ABEFGHKNOP}$
$=$ BCEFJKLMO $=$ AFGHLNS $=$ ABCDEGKLMNOP $=$ DHJLPS $=$ ABCJMNOPS $=$ EGHKP
$=$ BCDFGMOS $=$ ADEFHJKN $=$ ABEHLN $=$ CGJKLMOS $=$ BDEFGHJLP $=A C D F K L M N O P S$
$=\mathrm{BFHKPS}=\mathrm{ACEFGJMNOP}=\mathrm{ABDGHJKNS}=$ CDEMO $=$ AEFGHJKLNNP $=$ BCFLOPS $=$ DEHKLM
$=$ ABCDGJLNOS $=$ GHJMS $=$ ABCEKNO $=$ ADFHNNPS $=$ BCDEFGJKOP $=$ CEGLOP
$=$ ABHJKLMNPS $=$ ACDEFJLNO $=$ BDFGHKLMS $=$ ACFGKNOS $=$ BEFHJM $=$ CDJKOPS
$=\operatorname{ABDEGHMNP}=\mathrm{BCDEJL}=\mathrm{ADGHKLMNOS}=\mathrm{ABCEFGLNP}=$ FHJKLMOPS $=\mathrm{ABCDFJKNPS}$
$=$ DEFGHMOP $=$ BCGKS $=$ AEHEMNO $=$ ABDEFHKLMIVO $=$ CDFGJIS $=$ BEGHJKLMOP $=$ ACLNPS
$=$ BDHMOPS $=$ ACDEGJKNP $=$ ABFGHJMNOS $=$ CEFK $=$ DFKMO $=$ ABCDEFGHJNS $=A G J K M N O P$
$=\mathrm{BCEHPS}=\mathrm{ADELMNOPS}=\mathrm{BCDGHJKLP}=$ EFGJLMOS $=\mathrm{ABCFHKLN}=A C D H J N=B D E G K M O S$
$=$ CFGHP $=$ ABEFJKMNOPS $=$ CDEFHJKLPS $=$ ABDFGLMMNOP $=$ ACEGHKLNS $=$ BJLMO
$=A B C G H N O P=E J K M P S=B C D F H J O=A D E F G K M N S=B C E F G H K L O S=A F J L M N$
$=\mathrm{ABCDEHJKLNOPS}=\operatorname{DGLMP}=$ BFGJKMP $=$ ACEFHNOPS $=\mathrm{ABDKMN}=$ CDEGHJOS
$=$ ABEGJLMNS $=$ CHKLO $=$ BDEFLMPS $=$ ACDFGHJKINOP $=$ AFHJOP $=$ BCEFGKMNPS $=$ DGHNO
$=$ ABCDEJKMS $=$ EHJKLNOS $=$ ABCGLM $=$ ADEFGHKLOPS $=$ BCDFJLMNP $=$ CKMNP $=A B E G H J O P S$
$=\operatorname{ACDFGJKM}=$ BDEFHNOS $=\mathrm{ACEFLMS}=$ BFGHIKLNO $=$ CDEGJLMNPS $=\mathrm{ABDHKLOP}$
$=$ BCDGJKMNO $=$ ADEHS $=$ ABCFKMOP $=$ EFGHJNPS $=$ ABCDEFGJLMOPS $=$ DFHKLNP
* BCELMNOS $=$ AGHJKL $=$ ABDFGH $=$ CDEFJKMNOS $=$ BHJNP $=$ ACEGKMOPS $=$ BDEGHKLNPS
$=$ ACDJLMOP $=$ ABEFHJKLS $=$ CFGLMNO $=$ DEFGLN $=$ ABCDFHJKLMOS $=$ AEJLP

```
I (Continued): BCGHKLMNOPS = ADGKPS = BCDEHJMNOP = FJKNS = ABCEFGHMO
    = ACDEGHJKLMO = BDLNS = CEFHKLMNOP = ABFGJLPS = CDFGHJMNOPS = ABDEFKP
    = ACHMOS = BEGJKN = ABCEHKLMP = GJLNOPS = BCDEFGHJKLMN = ADFLOS = BCFHNNS
    = AEFGJKO = ABCDGHJMPS = DEKNOP = BEFJLNOP =ACFGHKIMPS = ABDEGLO
    = CDHJKLMNS = ABJKOS = CEGHMN = BDFGKNOPS = AGDEFHJMP = EGKLMNO = ABCHJISS
    = ADEFJKLMMOP = BCDFGHLNPS = AFGMOPS = BCEFHJKNP = DJMNOS = ABCDEGHK
    = ACEFGHJL = BFKLMNOS = CDEHLNP = ABDGJKLMOPS = CGHJKNPS = ABEMOP = ACDFHKS
    = BDEFGJNNO = ABCDEFHLOP = DFGJKIMNPS = BCEGHILNO = AKLMS = BCDHKNOS
    = ADEGJM = ABCFGHJKOPS = EFMNP =BDEJKLNNP = ACDGHLOPS = ABEFGKLM = CFHJLNOS
    = ABDFJMS = GDEFGHKNO = BGMNPS = ACEHJKOP = ADHJKMP = BCDEGNOPS = FGHKMN
    = ABCEFJOS = DEFHJLNNS = ABCDFGKLO = AEGHLMPS = BCJKLNOP = CDFNOP
    = ABDEFGHJKMPS = ACGJO = BEHKMNS = ACDEKLOS = BDGHJLMN = CEFGJKLNOPS
    = ABFHLMP = BCFGJN = AEFHKMOS = ABCDP = DEGHJKMNOPS = ABGEGJKLPS = HLMNOP
    = BCDEFKLNS = ADFGHJLMO = ABGHKMO = CEJNS = BDFHJKMNOP = ACDEFGPS
    = BEFGHLMNOPS = ACFJKLP = ABDEHJLMOS = CDGKLN.
```

Block confounding: CE,CF,EF,DFG, CDEFG, CDG, DEG, OS, CEOS, CFOS, EFOS, DFGOS,
CDEFGOS, CDGOS, DFGOS, LM, CELM, CFLM, EFLM, DFGLM, CDEFGLM, CDGLM, DEGLM, LMOS, CELMOS,
CFLMOS, EFLMMOS,DFGLMOS, CDEFGLMOS, CDGLMOS, DEGLMOS.
Without blocks: All main effects, and all two-factor interactions except
the following are measurable:

$$
\mathrm{CE}, \mathrm{CF}, \mathrm{CK}, \mathrm{EF}, \mathrm{EK}, \mathrm{FK} .
$$

With blocks: Same as above, except that the following two factor interactions also are not measurable:

$$
\mathrm{BN}, \mathrm{CP}, \mathrm{DH}, \mathrm{EP}, \mathrm{FP}, \mathrm{GJ}, \mathrm{KP}, \mathrm{LM}, \mathrm{OS} \text { 。 }
$$

| $\stackrel{I}{(\bar{I})}$ | $\stackrel{2}{b c e f g h z l}$ | $\sum_{j \ln \mathrm{mo}}^{3}$ | $\frac{4}{\text { bcefghj }} \frac{4 m o}{}$ |
| :---: | :---: | :---: | :---: |
| bdghjlmn |  |  |  |
| cefgjklmops |  |  |  |
| bcdefhknops |  |  |  |
| acdefhklmp |  |  |  |
| abcefgjknp |  |  |  |
| adghjos |  |  |  |
| ablmnos |  |  |  |


adjmn
$\frac{10}{\text { bdfhkm }}$
$\frac{14}{\operatorname{acegjn}}$
18 cfglmp $\frac{17}{1 m}$

21
abdehjkp
defnp $\frac{25}{\operatorname{fn}} \quad$ bedghkInp
abcghjklmp $\underset{\text { aefjmp }}{29}$
abcghimop
32

Plan 256.16.16. 1/256 replication of 16 factora in 16 blogls of 16 maits each.
Factors: $A, B, C, D, E, F, G, H, J, K, L, M, N, O, P, S$.
I: Same as plan 256.16.8.
Block confounding: $\mathrm{CE}, \mathrm{CF}, \mathrm{EF}, \mathrm{DFG}, \mathrm{CDEFG}, \mathrm{CDG}, \mathrm{DEG}, \mathrm{OS}, \mathrm{CEOS}, \mathrm{CFOS}, \mathrm{EFOS}, \mathrm{DFGOS}$, CDEFGOS, CDGOS, DEGOS .

Without blocks: All main effects, and all twoodector ixteractions except the following are measurable:

$$
\mathrm{CE}, \mathrm{CF}_{,} \mathrm{CHK}_{9} \mathrm{EF}_{9} \mathrm{EK}_{9} \mathrm{FK}
$$

With blocks: Same as above, except the twowector intergetion as also is not measurable.

Blocks:
(1)
bdghjunes
ceffgklmops
bedefhknops acdet゚hklmg abcefog jeap adghjos ablmos bcefghkl cdef jkme bhjmops dglnops abdgmp ahjlay abcdef jklos acefighkmos
 $\frac{6}{\text { cdegijno }}$ ล. ${ }^{7}$ cdeglm

8
abfibikImo

$$
\frac{20}{20}
$$

11
abdehjkp

$$
\stackrel{9}{\text { cfgIm }} \stackrel{9}{ }
$$


$\frac{15}{25}$
$\frac{15}{\text { aboghknop }}$

Plan 256.16.32. 1/256 replication of 16 factors in 8 blocks of 32 units each.
Factors: $A, B, C, D, E, F, G, H, J, K, L, M, N, O, P, S$.
I: Same as plan 256.16.8.
Block confounding: CE,CF,EF,DFG, CDEFG, CDG,DEG。
Without blocks A All main effects, and all twomactor interections exeept the following are measurable:

$$
\mathrm{CE}, \mathrm{CF}, \mathrm{CK}_{,} \mathrm{EF}, \mathrm{EK}_{,} \mathrm{FK}_{0}
$$

With blocks: Same as above。
Blocks:
(1) bdghjomn cofg jklmops bodofhknops acdefhklmp abcefgjknp adghjos ablmnos beofghkI ellef jkmo
bhjmops dglnops abdgmp ahjlng abcdefjklos acefghkmos

of $\frac{5}{5}$ Imp


6 abdehjkp

ј120
bdgho
cefogmps
bedefijikimy
acdofihjkep
abcefgelmop
gdghl mas
มbร
beafigh jomino
©dofle
bhlaps
dg jmps
abdgjinoy
ahmon
abcdelimuas
soefoghikls

$$
\frac{4}{a b i n j k \pi}
$$

dofnp
aboghjkIzap

Plan 256.16.64. 1/256 roplioation of 16 factors is 4 blocke of 64 units each.
Factors: $A, B, C, D, E, F, G, H, J, K, L, M, N, O, P, S$.
I: Same as plan 256.16.8.
Block confounding: $\mathrm{CE}, \mathrm{CF}, \mathrm{EF}$.
Without blocks: All main offects, and all twoofactor interactions except the following are measurable:

$$
\mathrm{CE}_{,} \mathrm{CF}_{,} \mathrm{CK}_{9} \mathrm{EF}, \mathrm{EKK}_{,} \mathrm{FK}_{0}
$$

With blocks: Same as above.

## Blocks:

$$
1
$$

(1) jıquo bdghjimm cefgjklmops bodefhknops acdefhklmp abcefgjkap adghjos ablimnos bcefghkl cdef jkmn bhjmops dginops abdgmp ahjinp abodef jklos acefghlomnos
bdgho ceftghops bedefhjklmps a.edefhjknop abcefgklmop adghlmns abjs beefghjkmoo cdefklo bhlnps dgjups abdgjlnop ahmop abedeflemas acefghjkl:

Sbodefigis jiviru
200空
sibdhonos
\&gj1mops
bgjnp
dhimp
beefkimaos
cdofghjkos
edjum
abghz
acdergkenops
abcefihjkmops
cestziklnp
bedefigkap
ghamos
bdjıos
ebsderghko \&ocijklmo abdhjlmps agups bglmop dhjnop bcefjks cderghk 11ans ad10 abgh jmo acdefog gmps abcefhklnps cofhkmop bodefgjklnop ghyls bdinss

Plan 256.16.128. 1/256 replication of 16 factors in 2 blocks of 123 units each.
Factors: $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{E}, \mathrm{F}, \mathrm{G}, \mathrm{H}, \mathrm{J}, \mathrm{K}, \mathrm{I}, \mathrm{M}, \mathrm{N}, \mathrm{O}, \mathrm{P}, \mathrm{S}$ 。
I: Same as plan 256.16.8.
Block confounding: CE.
Without blocks: All main effects, and all twoofactor interactions except the following are measurable:

$$
\mathrm{CE}, \mathrm{CF}, \mathrm{CK}, \mathrm{EF}, \mathrm{EK}, \mathrm{FK} .
$$

With blocks: Same as above.

## Blocks:

(1) bdghjlmn cefgjklmops bcdefhknops acdefhklmp abcefgjknp adghjos ablmnos bcefghkl cdefjkm bhjmops dglnops abdgmp ahjlnp abcdefjklos
acefghkmos jlmno
bdgho cefgknps bcdefhjklmps acdefhjknop abcefgklmop adghlmns abjs bcefghjkmno cdefklo
bhInps
dgjmps
abdgjlnop
ahmop abcdeftknns acefghjkls

1
abcdefghjklmn acefk abdhnops
agjlmops
bgjnp
dhlmp
bcefklmnos
cdefghjkos
adjmn
abghl
acdefgkinops
abcefhjkmops
cefhjklnp
bcdef'gkmp
ghmnos
bdjlos
abcdefghko
acefjkimno
abdhjl mps
agnps
bglmop
dhjnop
bcefjks
cdefghklms
adlo
abghjmno
acdefgjkmps
abcefhklnps
cefhkmop
bcdefgjkinop
ghjis
bdmns

| cdegla | abihjkn |
| :---: | :---: |
| bcehju | adfgklm |
| dfojkops | abeeghlmiops |
| bfghklmops | acdejops |
| afghkp | bedejlmmp |
| abdfjklimp | ceghp |
| acehjlmoz | bdfgknos |
| abedegnos | fhjklmos |
| bdfhkm | acegjinn |
| fgjkln | abcdehm |
| bedeghjlops | afthnops |
| cemmops | abdfghjklops |
| abceIp | dfighjkmnp |
| acdeghjmrp | bfklp |
| abfgjkmos | cdehlnos |
| adfinkinos | bcegjuos |
| cdegjno | abthklmo |
| bcehlmo | adffgjkno |
| dfiklmnps | abceghjps |
| bf ghjkps | acdelmmps |
| afghjklmmop | bedeop |
| abdfkop | ceghjlmap |
| acehns | bdfgjklms |
| abcdegJIms | flukes |
| bdfhjklno | acegmo |
| fgkmo | abcdehjıno |
| bedeghmips | afjklps |
| cejilps | abdfeghkmnps |
| abcejmnop | dfghklop |
| acdeghlop | bfejkmnop |
| abfgklns | cdehjms |
| adfhjkms | beeglns |

2
cfglmp

## THE NATIONAL BUREAU OF STANDARDS

## Functions and Activities

The functions of the National Bureau of Standards are set forth in the Act of Congress, March 3, 1901, as amended by Congress in Public Law 619, 1950. These include the development and maintenance of the national standards of measurement and the provision of means and methods for making measurements consistent with these standards; the determination of physical constants and properties of materials; the development of methods and instruments for testing materials, devices, and structures; advisory services to Government Agencies on scientific and technical problems; invention and development of devices to serve special needs of the Government; and the development of standard practices, codes, and specifications. The work includes basic and applied research, development, engineering, instrumentation, testing, evaluation, calibration services, and various consultation and information services. A major portion of the Bureau's work is performed for other Government Agencies, particularly the Department of Defense and the Atomic Energy Commission. The scope of activities is suggested by the listing of divisions and sections on the inside of the front cover.

## Reports and Publications

The results of the Bureau's work take the form of either actual equipment and devices or published papers and reports. Reports are issued to the sponsoring agency of a particular project or program. Published papers appear either in the Bureau's own series of publications or in the journals of professional and scientific societies. The Bureau itself publishes three monthly periodicals, availablc from the Government Printing Office: The Journal of Research, which presents complete papers reporting technical investigations; the Technical News Bulletin, which presents summary and preliminary reports on work in progress; and Basic Radio Propagation Predictions, which provides data for determining the best frequencies to use for radio communications throughout the world. There are also five series of nonperiodical publications: The Applied Mathematics Series, Circulars, Handbooks, Building Materials and Structures Reports, and Miscellaneous Publications.

Information on the Bureau's publications can be found in NBS Circular 460, Publications of the National Bureau of Standards (\$1.25) and its Supplement ( $\$ 0.75$ ), available from the Superintendent of Documents, Government Printing Office. Inquiries regarding the Bureau's reports and publications should be addressed to the Office of Scientific Publications, National Bureau of Standards, Washington 25, D. C.


