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SHRINKAGE STRESSES IN MASONRY WALLS
PROGRESS REPORT NO, 2

by

Svend D. Svendsen, D, Watstein and S, Levy

Abstract

The current progress report presents the development
of the elastic theory for stresses in a wall which
undergoes shrinkage while its lower edge is restrained
from shrinking by a rigid footing. The solution ob-
tained is represented by an infinite set of equations.
In the numerical solutions presented 9 the finite number
of equations and coefficients selected in each case was
such as to give adequate agreement between the given
boundary conditions and the computed boundary stresses
and displacements.

The numerical solutions were obtained for a wall having
a length of twice its height. Work is in progress for
walls in which the length and height are equal and in
which the length is four times the height. These solu-
tions are based on the assumption that the footing is
sufficiently rigid to prevent all shortening along the
attachment line, A numerical solution is also being ob-
tained for a wall having a length of twice its height,
with non-uniform footing restraint.

The theoretical results are being checked by noting
stresses in plaster and concrete models. The work thus
far has been confined to walls having a length of twice
the height, with two different degrees of restraint pro-
vided by footings of different sizes. The agreement be-
tween the theoretical and observed values of principal
stress at several selected points was fair. It was noted
that the agreement between the observed and computed
stresses improved for points further removed from the free
edge of the wall.

Further experimental work is being planned with models of
concrete containing internal strain gages to determine
strains in walls undergoing actual shrinkage.
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1. INTRODUCTION

A newly constructed masonry wall contains as a rule a
considerable amount of moisture * As the wall dries out, it
undergoes shrinkage whose magnitude depends on the type of
construction and the properties of the materials used, A
similar tendency to shorten is caused by thermal contraction
when the temperature on one or both sides of the wall de-
creases.

In most cases, however, the wall is only a part of a
larger structure and hence is not free to contract. It is
normally restrained by other parts of the construction, for
instance by adjoining walls and floors, and especially by
its own foundation. The foundation, which can be a basement
wall or a footing, is usually more rigid and has less tendency
to contract than the wall itself. The restraint, the magni-
tude of which primarily depends on the rigidity of the struc-
tural parts involved, causes stresses in the wall which
eventually may result in cracks.

The investigation described in this report is the first
part of a study of the distribution and intensity of shrink-
age stresses in contracting masonry walls restrained from
shortening at the foundation level. The study falls in two
parts s

(a) An experimental investigation of the stresses
carried out with wall models by the Structural Engineering
Section.

(b) A theoretical analysis of the problem and develop-
ment of mathematical expressions for the stresses in the
walls. This analysis is being carried out by the Engineer-
ing Mechanics Section.

The first steps of the study are described in Progress
Report No. 1, dated June 18, 19

2. EXPERIMENTAL TESTS WITH WALL MODELS

The shortening of walls due to shrinkage and thermal
contraction was assumed to be an entirely elastic deforma-
tion in this study. As the models for practical reasons
have to be made considerably smaller than the prototypes
(a scale of about 1/5 is used), it was necessary to employ
materials with a high degree of homogeneity and elasticity
for the models.
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In order to simplify the tests , they were confined to
those concerned with shrinkage and thermal contraction alone*
No vertical loads which would represent the loads from floors
roof and walls were applied* It was assumed that the effect
of such loads can be estimated and the resultant stresses com
puted through the principle of superposition.

It was further assumed that the foundation is very rigid
in comparison with the wall and that the bond between them is
sufficiently strong to prevent displacement of the wall rela-
tive to the foundation.

2*1* Materials and description of models

The first models described in Progress Report No* 1 were
made of a special rubber having a modulus of elasticity of
about 650 psi and a Poisson* s ratio of 0*5« The tests with
these models, however, did not give satisfactory results and
the rubber was accordingly replaced with plaster of Paris and
concrete in all subsequent work*

The plaster of Paris used was a high strength gypsum
known as Hydrocal. The proportions of the mix used in the
models reported herein, were 2*5 parts of plaster to 1 part
of water, by weight, and the compressive strength was about ,

L|.000 psi. This mix had a modulus of elasticity of 2.15 x 10°
psi and a Poisson's ratio of 0.28, as determined with sonic
resonance tests on 2=- by [}.-in. cylinders* Some preliminary
tests were made with other mixes ranging in proportions from
2.25-3.0 parts of plaster to 1 part of water. The values of
Young's modulus ^determined for these mixes varied from 1*7 x
10° to 2*3 x 10° psi and Poisson's ratio from 0*17 to 0.28.
In order to diminish the expansion of the plaster during the
setting time, some mixes were made with various amounts of a
special retarder added.

Two different mixes of concrete were used for models,
both made with a high early strength portland cement. One
of the mixes was proportioned, by weight, 1?2. 5^2.0 with
maximum size of gravel of 3/8 in .

;

the net water-cement ratio
was 0.58 and the slump in. Determined on three months old
6- by 12-In. cylinders, the compressive strength of this mix
was 8160 psi, the modulus of elasticity 5.82 x 10° psi and
Poisson's ratio 0.19. The corresponding values for the other
mix were? proportions 1 s3«1s 2.6 w/c ratio 0.53* slump
1 l/l| in., compressive strength 5800 psi, modulus of elasti-
city 5«67 x 10° and Poisson's ratio 0.16. This mix also
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contained Vinsol Resin in the amount of 0.006 percent by weight
of cement

.

The form and size of the concrete and plaster models are
shown in figure 1. To prevent curvature of the line where the
wall is attached to the foundation strip during the test, the
specimen was made symmetrical with a wall attached to each
side of the foundation strip. The size of the walls was the
same for all models, the length being twice the height, but
the foundation strip was made with two different cross sections,
3 l/2 in. by 4 I/I

4
. in. and 6 1/4 in. by 4 1/4 in. The rubber

models had the same form, but they were smaller, with 18 - by
9 “ by 1-in. walls and a 2- by 4“ by 22-in. foundation strip.

2, 2„ Test methods

It can be readily appreciated that a test procedure for
determining stresses in masonry walls caused by actual drying
shrinkage poses a number of experimental difficulties and takes
a long time to carry out. For this reason, the experimental
work in this study was confined to models in which shrinkage
stresses were simulated by a suitable loading procedure. The
analogy between the two testing methods is shown in figure 2 .

If the wall is placed on a footing which imposes no restraint
( 2a), the free shrinkage will cause a contraction which in an
exaggerated manner, is indicated by the dotted lines. A very
rigid foundation, representing 100 percent restraint, will
correspondingly cause the wall to deform in a manner similar
to that in 2b. If the foundation of the wall 2a, which was
permitted to shrink freely, is now replaced with a rigid one,
and this foundation is elongated by applying a tensile load,
the result will be as shown in 2c. For a correctly chosen
load, the longitudinal strains in walls 2b and 2 c will be
equal and the stresses in every point of the two walls will
be the same.

In view of the relatively low extensibility of plaster
and concrete, the models were actually loaded in compression
instead of tension. A high compressive load was applied and
the corresponding strains noted at various points were assumed
to correspond to 11 zero stress ’1 in the wall. Upon releasing
the load until only a nominal load was imposed on the footing,
the strains were again noted. Under the assumption that all
deformation were within the elastic range, this procedure gave
the same strains and stresses as a tensile load of the same
magnitude as the difference between the initial and final com-
pressive load.
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The strains and stresses in walls and foundations were
determined with bonded wire strain gages attached to the sur-
face* Both single gages and 3 element rectangular rosettes
were used, the latter giving the magnitude and direction of
the principal stresses* Figure 3 shows one of the plaster
models with some of the gages attached , placed in the testing
machine

.

The rubber models were tested with a tensile load ap-
plied to the ends of the foundation* The strains were deter-
mined by comparing the dimensions of a rectangular grid on
the strained and unstrained wall* These tests did not give
satisfactory results , partly because the modulus of elasti-
city of the rubber to a large extent varied with the stress
history of the specimen* Another source of error was the
fact that the grid did not provide markings which were pre-
cise enough or well enough defined* The fact that this test
method gave no information about the shearing deformations,
was also a serious disadvantage*

2*3» Wall with 3 l/2- by 4 l/i^-in* foundation (type I)

Several models with a foundation of this size were made,
all of them of plaster of Paris, but only one of the speci-
mens was given a complete test* Figure I), shows the distribu-
tion of bonded wire gages on this model, each station repre-
senting a gage on both front and back sides* Measurements
were only made on one of the two walls, the several gages on
the opposite wall being used only to check the symmetry of
loading*

Figure 5 gives curves showing the distribution of the
horizontal strain, averaged for both faces of the wall, in
planes 1 to 6 (figure l\.) for a load increment of 19*500 lb*
Curves 1 and 2 show the deformations of the foundation at
its centerline and at the top 3/1+ in* from the face of the
wall. The strains in these two planes agree surprisingly
well but they show that the wall was only partially re-
strained by the foundation from shrinking, A restraint of
100 percent would have produced uniform strains along the
entire length of the foundation, while in this case the
strains near the center of the wall were only \\$ percent of
the strains at the free ends* The strains given in figure 5
show that the non uniform strain distribution, although quite
marked, persisted only for a short distance from the corner.
The strains 1 in* above the foundation, represented by curve
3 were almost uniform over most of the length. The large
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difference between curve 3 and curves 1 and 2 near the ends
of the wall indicates , however^ that the shear stresses in
these areas must be very higho

The magnitude of the strains decreased rapidly with the
height above the foundation, and the variation of the strain
near the ends became less abrupt,, The top of the wall had
no contraction at all and a small expansion was recorded
near the centerline (curve 6),

Horizontal, vertical and principal stresses were com-
puted for points A to G (figure ^), The values given in
table 1 are these stresses divided by E xe m where E is the

modulus of elasticity for the wall material and e the strain
171

in the foundation at the center of the wall* The values are
in this way made independent of the properties of the material
and (to a certain degree) of the rigidity of the foundation.
All calculations are based on four different tests made over
a period of six months, and each point represents the average
of four different rosettes; a is the angle between the hori-
zontal axis and the principal tensile stress and cx/ the
angle between the axis and the principal shear stress. Ten-
sile stresses were taken as positive, and compressive stresses
as negative.

The magnitude and direction of the principal tensile
and compressive stresses are also shown in figure 6, Even
though there are not enough data for a complete stress pic-
ture, the figure gives some interesting indications. The
principal tensile stresses are highest just above the founda-
tion, decreasing rapidly with the height near the edges and
somewhat slower near the center. The stresses are nearly
horizontal at the centerline and approach an upward direction
with the distance from this line. If the stresses become large
enough to cause cracks, they appear first at the bottom of the
wall at right angle to the direction of the principal tensile
stresses,

2»l\.o Wall with 6 1/Ip- hy 4 l/lp-in. foundation (type II)

Attempts were made to increase the restraint in the wall
by increasing the size of the foundation to 6 l/Lp— by I4. I/I4. in.
Several models of this type were cast, both of plaster of Paris
and concrete with the size of the wall being the same as before.
This proved, however, to be a more difficult task than expected,
as most of these models developed cracks before testing or dur-
ing the loading of the specimen. The cracks occurred most
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frequently at the bottom edge of the wall* but they also ap-
peared in the foundation just below the wall*

In the plaster of Paris specimens the cracks were obvi-
ously due to the expansion of the material during the setting
period while the strength was still very low* This expansion
increased with the cross section and consequently was much
larger for the foundation than for the wall* This caused a
difference in strain along the boundary * and the wall had a
tendency to crack at the bottom edge where it was sharply re-
strained from expansion by the mold* Attempts were made to
diminish the expansion by using different amounts of a plaster
retarder in the mix* This did not help* however* as the re-
tarder only postponed the starting time of setting without
decreasing the size of the deformation* Part of the expansion
in plaster of Paris was thermal* and accordingly an attempt
was made to cool the foundation with ice during its initial
setting period* In this way it was possible to prevent cracks
at the bottom edge of the wall* but the cooling seemed to in-
crease the internal stresses and the tendency of cracking in-
side the foundation.

The cracks in the concrete models were probably due to a
combination of thermal expansion during the first day's curing
in the mold and the shrinkage of the specimen after it was
taken out of the fog chamber. The thin wall dried out and
shrank much faster than the foundation* and the shrinkage
stresses in it developed in the same manner as in a restrained
prototype. As shown in figure 6* these stresses may cause
cracks which are almost horizontal at the bottom edge of the
wall below and to the left of point A. In order to decrease
the size of these stresses* models were made of a leaner mix
with lower w/c ratio and given a longer curing time in the fog
chamber* The results were somewhat better in that no visible
cracks were observed* but the strain measurements were quite
erratic and pointed to the existence of cracks in the interior
of the models*

Figure 7 shows the foundation strains for a plaster model
and a concrete model of this type* The irregularities of the
curves* especially the difference in strain between the two
ends of each foundation are probably due to internal cracks.
In figure 8* the degrees of restraint of the two types of
foundations are compared. The strain values are averaged for
the left and right side* and they are given in percent of the
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strain at the free ends. It will be seen that the restraint
at the centerline of the wall has increased from ]_|_6 percent
for the small foundation to 65 = ?0 percent for the large.
The latter is probably still less than the restraint provided
by the foundation of actual masonry walls.

During the tests , some of the models were inadvertently
loaded to failure , with the rupture occurring in the wall.
The failure was due to cracks following one or both of two
different patterns. One type of cracking developed below
the wall and well within the foundation and was apparently
caused by tensile stresses both in the plane of the wall and
those forming a small angle with that plane. The other type
of crack followed an almost elliptical curve in the wall,
starting from the bottom corners . This type of crack can be
explained from the stress picture shown in figure 6. These
stresses are the result of a tensile load| a compressive
load would change the sign and thus give tensile stresses per™
pendicular to those caused by a tensile load. A crack due to
compression of the specimen will consequently have a tendency
to follow the direction of the stress arrows in figure 6.

Both of these crack patterns are evident on the nearest
wall of the model shown in figure 9»

2.5. Comparison of computed and observed stresses

Both the theoretical and the experimental part of the
study are far from complete and furnish* at the present time,
no basis for a valuation of results. In table 2, however,
the theoretical and experimental stress values are given for
the three locations A, E, and G, (see figure 6), on a model
with foundation 3 l/2- by l\. l/lp in. Figure 10 shows a com-
parison of the size and direction of the principal tensile
stress in these points. The theoretical values are computed
for a completely rigid foundation while the restraint during
the experimental tests was only 6 percent. Even so, the
stresses and directions seem to be in good agreement for E and
G. The location of A is very close to both the foundation and
the edge of the wall, and rather large discrepancies were to
be expected for this point.
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2 060 Plans for future tests

As it seems to be very difficult to get a greater degree
of restraint by casting the specimens integrally with a suffi-
ciently rigid foundation* other methods will be tried in the
future tests, A possible solution is indicated in figure 11 ,

The double wall and the foundation strip is cast as a slab
with uniform thickness and with bolt holes along the strip,,
When this slab is cured* the rigidness of the foundation will
be increased by attaching a steel bar to each side of the
strip and bolting slab and bars firmly together,, Special care
has to be taken to prevent any movement between slab and bars
during the test 0

By using this method* it should also be possible to deter-
mine stresses due to actual shrinkage , In this case internal
strain gages will be used in the wall and the steel bars have
to be attached while the slab is still saturated with moisture.
The shrinkage stresses can then be determined by readings of
the gages while the slab Is drying. Walls with different ratio
of height to length will be tested.

Several test specimens of the type described above were
cast and tests are in progress.

3 , ELASTIC THEORY FOR STRESS IN WALL
RESTING ON A FOOTING

The construction of the wall is assumed to be such that*
if it were unrestrained* it would shrink uniformly as it dries
out. It is assumed that the footing restrains the shrinkage
of the bottom of the wall. The equations will be derived in
sufficiently general form to apply not only to the case of a
footing sufficiently stiff to prevent all shortening and bend-
ing along the attachment line* but also to the case of a foot-
ing which is deformed by the shrinkage of the wall.

3,lo Equations for interior wall

The interior of the wall can be considered
tic slab which obeys the customary equations of
We then have the equation*

(See page 25 *

dx
eq (26)*

-x ,2 4*A , - =
dX*cfy*

of ref

6
O

1)

to be an elas-
elastici ty.

(1)
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The stress function 4> in equation (1) is a function that,
in a system of rectangular coordinates x and y in the plane of
the wall, gives

crx
- = stress in x - direction

cJ”y
=6 3

(pjdj<
2 = stress in y - direction

Txy
~ ~ (5

2
<})/dX. dy ~ shear stress

3o2„ Boundary conditions

The boundary conditions at the top of the wall, y s b,

figure 12, are

foyW -o
( 2a)

An artificial boundary condition outside the wall along y » o
is included to obtain a convenient separation of even and odd
terms in the final equations

foy )y-o (2b)

Along the sides x « o and x ® a, the boundary conditions are

(bx )/ = o, a ^ *
,) = o ( 3

)

Along the bottom of the wall, y ~ b/2, displacement boundary
conditions apply. For a footing sufficiently stiff to prevent
all shortening and bending, the conditions are

and (V) ^ 6/2 = O

( k )

(5)

where S/E is the jahirt" shortening/ due to shrinkage and E is
Young’s modulus. The vertical displacement is v.
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3»3 Solution

No single expression satisfying equation (1) and the
boundary conditions , equations (2) and (5)* could be found.
It was decided, therefore, to obtain a solution in the form
of a series of expressions, each of which would identically
satisfy equation (1) and the sum of which could be made to
satisfy the boundary conditions (2) to (5>) to any desired
degree of accuracy. A comparison of the boundary values
computed from the solution with the given values could then
form a ready means of judging the adequacy of the solution.

Numerous expressions can be found to satisfy equation
(1). In order to have a rapidly convergent solution, it is
desirable that the expressions selected separate into groups,
each of which primarily affects the stress along only one
boundary. In each group it is desirable that the first
term give a general picture of the stress, the first two
give a somewhat finer picture, and so on.

The expressions selected for the solution apply every
where in the plane except at x s o, a, 2a, ..<><, and y - o,

b/2, b, ... and can be written as

(6a)

where

,
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The k, JLf t, p, and s coefficients are determined by the bound-
ary conditions., An alternative form which is useful for deter-
mining stresses and displacements in the region o<x<a, b/2<y<b
is

a = y JLt6 km \ £<r>h 2 y S/n mTT*
r l&ma

{ cosh am ff

A

. & cosA nr' irb~
j

a
M* /, 3...

V
2CL 2asr) 9 f

t
3 s.. ^ 2CL 8d

+ T. f~
s'nA -h^ CosA^ Q-^)

}

~t~ ^ _JT*Q . J £/nh
"C ZyL S/n/t ) \

S/n
' a 60*A 1 *

S/n ”2lDL
CL

8b

y- ZT-^4— /A y

7Ti - a /_ (a “*) /2y _ A
' /6~ Pm

co,*‘ mr£-
P

(T" )

/ 2cl SenA
' rmrb cost) snrrb.

cos* vshO-j )

co5/> rr^6-

SZCL

sen mnjit..
cu

+ rzih. (i-tys-i)**, *PzVt±}]

/6ma,

rr>: /
}
3... Sin&y 2 mir6__

2o.

Sen
CL

(6b)
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In equation (6a) and (6b) the summations involving the co-
efficients km and.J?m primarily affect the stresses on the top
of the wall, the summations involving the t coefficients pri
marily affect the stresses on the sides of the walls and the
summations involving the coefficients pm and sm primarily
affect the stresses at the bottom of the wallo

The stress in the x direction is obtained from

( 7 )

as

Ox = r /ea* Sin mrrx fst/?A Sn?A zq (/
G>

] cosA
s snrrA t> CosA m-rrS

BO. BCL

___ 4-g, cosA*2^ (/--£*)
}

'"V'A cosA 02ZZ&
|

ACL I

5 ZCA22A

m-t, 3 *.

.

g* ^ \-_siaA^L+ 2*. cos*. 6-f)
I S/slAs smrA A $/nA niTTh

££l

- ^ e
T*b(/- s£-) I

mrrb 3, //iA mTfb
j

BCL >

+ r 7r*-r/a-

/C> A 3 t

+ r 7T4-

/6az
m-/ 3„..

.

/°r

n sis) -—g-

Sin .sr>rrg_

cu

nrry
c03A z /iTTa

2X Q-&)
cz ^osA S/Z&-

<c A

*91 if
-cosA
co^A

*%%?(/ - i]
1

cogA cl
agu‘0' :

t).

CO£A Cl
20.

rrA.

_ ASo. stnhcLXI

wrrh cosh

+ y.JL-*m6- o^ £— /6a3 s'tnA
zCinA,
2.0.

(
(b"t)^A ^A-&fe~$*nhmgr

i-(J£ ~k)

. _<:cl

/rtrrb
cosA sv/rA fj$,. %)+%& co^

(8 )

m- >,3. -

.
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The stress in the y direction is similarly

Oy = \ J r̂n s/'n snZDL- f- 3tnA /J£P* _ ^y. b/nA lia^
y ^— /6a. 3 c<~

^
cos/ 3 /t/rrA A> c.osA aj jtA

m=/
t
2— Z-CL 2. cl

A y~ stn /r)/rjL.L^AaA IiSSL—^L co^A t^rT
3
- (/-rs*’ ) )

/6 a.3 **-
j S///A

s op rrb b s/aA arrrb I

ay-/, 3 ... ,2cl 2d.

/ X
-

77*/)ci f a -/’/ry- / b/I/A /
.

2£_ <">/ ~yj)

/— /66> 3 b
I cosA 2

cirra. ^ cosA aTCcq
/>-/, 2

,
3

}
...

COSA A/Ca
2b

,
A7/a

COSA) 26
///TO.

(/-¥)
cosA nrfcc

2b

-f- } Tit & s/n
/6a2 n̂i CL

At=/
f
3 . . .

\rr,,.A $g*Q-f*) /4V _/)
1 cosA 3 ///orb v h ' cosA cr>rrb
1 2CL 2 CL

2ct ^ o/aA 2a
a?/rb cosA //mb

20.

j- y
77 ^//y6 g <,//) ci

• aiax

/6 a 3

m=/,3 ...

salA 2cm/6
2a

fjj l\ s/aA mTrb_ (_£_ _j/ \

\ b 2 ) a. ( 2 b )

(9)



The shearing stress is obtained from

Tx Y
= _

<5/c5 Y
( 10 )

as

TtXY = Y~ ir*/nh- y cos furry. (- cosb^a^ s
cosh so. (/~2r) _ s/oA 2a 0 "if)

/6 a 3 rr>
\cos,A £ninb_ 6 co^/i m/rb. rrirfb cash mrrb.

2CL 2 CL 2a
rrtffb casb rn rrb.

2d

„ . mKb-/, £¥.)
bci cnsb £,c>- w b /

mrrb strib

fMTf y » w7fy~Jt) s. ^ v
cosb_d -i- JLy~ sjob^Sd^ill^—
stnb£mr/£> b Slab mrrb.

f dim-/, 2X \ .
. y

/.^ 2X))

/ > jrfnd_/ rr * a/rr
j
-casbb _j_ 2X cosA £6 (/„* . I— 2b s/f?A.^_6

' /6 6 s b
I
cosbs arm a. cosA mra nrfa cosA niro— I

r) -
/, 2

t
3 • • * ' 2b 26 2b >

/. Y-Z± (s/nA^a* (~t ~f)^4?*_/) (/-&)
)

/6a z &
(

cosA & mrrb & ' cosA d2JZ£- f

m = /t 3 20. 2a I

((%-£)
cos/i^ (§-£W-i-&7T*/rt6

/6 a 3

m =/, 3 . . .

/vrrx.

cos <2

Stab 3mV

6

2a

~Q— Sir)A
mrrb

mzzb-. (-JL
)
~ Ak~ sinA -d/zA (JL

)a \ g, 6 / mrrh & K t> 2 /
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At the lower edge of the wall, it is desirable to know
the vertical displacement v. This was found by substituting
the value of <p from equation (6b) into

V =
(12)

where E is Young's modulus, P is Poisson’s ratio, and the in-
tegration function has been taken as zero since it merely re-
presents a rigid body rotation* The resulting expression for
(v)

k/2 ab the l°wer e(^ge °T the wall is

(V) y= b/2
/-^i> 7/ 36 sin '22££-{^Qs/i /~J? I

£ — /6 0 2 Q- \sinA 2 mrr£> /-/-)) mrrt suoA mm
aa

/6 0 ‘

/j3..

.

2d 2a.

+4L 77 3a
S66*

n- 2,#.,.

/ COS -^22ZL
./2H6

Sis?A 2>

cosA £ /rrra
JjL.
a

. U2L£- /, 2K \
Si/?A 22 ( / a )

2 0
CO5A

-A-JZA-
' nrra

flTTa _ / , 2.7 \

cosA 26 \ ! a )

cosA s?rrcL

26

+ A- -£L_ ^ st-„^
+ /

sn- / *
» ' * •

7“ *r*6

/6o z

• <222^-
Stsi O-

St/)A j22/E£L
2a.

/ / ~7~ \)
~7~

mrrS
s/nA d?rr6-

m -
/, 3.

(13 )
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The strain at the lower edge of the wall is found from
the general equation

**~-k ^-^y) - f (£*--
* ff) U4)

Substituting the value (j) from equation ( 6b) into equation
(II4.), the strain (€x )y„ b/2

al°ng lower edge of the wall is.

/2220L
a

4-a
nirrh cosb norrb

~Za3

2Ltna-
/6

# -
.< 3. ,

,

fn
• ,/3*DL

5/nn £»

Zb '

. . s
jstnA 2b C / a.

cosA nrrcL _

2b

*/]?& cos/) WO
/?7Ta. cosA c>7Tci_

Zb

+±L 3Z1
£: /6a 2 Prn S/s? 6™32L

CL

(/+?)
cosbs snub

2a.

0- 9) S/siA

rrmb cosA sntrb

2/x

miiL
2a.

1

+
~E ^ -31:,

3a_a
Sen S/s? 222ZZ2L

a
tn= /

} 3 .

Os)
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The boundary conditions ((X-) v«.^ - - o, equation (3),
A. X— 0^0

(CT ) = <?, equation (2a), and (O' ) = o* equation (2b),
y y- d y= o

are automatically satisfied by the expressions used in either
equations (6a) or ( 6b )

„

Substituting the appropriate value

for (T
) in the second of equations (2a), expressing thexy y=b

resulting equation as a Fourier series involving cosine terms,
and equating the coefficients of the cosine terms to zero
gives a set of equations involving k, A, t, p, and s coeffi-
cients. Repeating the above process with the second of equa-
tions (2b) and combining the resulting equations with those
obtained earlier gives

0 •
s-

*>">

n odd

m n />;

(l6)

and,

°= ii*rte ff4 ' COsecA*^gpl Jrr, -h-*§£ cosect^g-

i-
/

/— cosA /?77r6

za

-j- cosecA 2 Sm 5
I efayLHtf)

ct even

(17)
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When the boundary condition in the second of equations
(3) is similarly used one obtains from those equations corres-
ponding to even cosine functions , n even,

° = tn-t-A
/??=/, 3... ('no -/ aa

(18 )

and from those corresponding to odd cosine functions , n odd,

o = tr±aL l-ZA.
/66 s \nrra

sec/i 2 /y7rp-
26 ^ 6b \ n̂+ /-

' /M- /

[r) /Cr> ^ C l) £
4rr.

I/n

07 -/, 3 ...

(19)

When the boundary condition in equation ( Ip ) is applied
and the resulting equation* including the constant term S/E,
is expressed as a Fourier series involving sine terms,
equating the coefficients of the successive sine terms to
zero gives

4S _ j / ,

,

.i) 3/nA fq~~ 4

&

">7r /6a 3
]

W ' cos.6 z /7)7t6 ™n6 cos>/? /nrrt
m 7r 3$™

4a.2

.{2±L , ,

-/) s 7/£/a/n

(m £/6

/f)z /n zO \
r? a )

(20 )
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When boundary condition equation (5) is used with equa-
tion ( 13 ) and the coefficients of the successive sine terms
are equated to zero one gets

mn6 / -) \

L. 2a O-V)
/? 2 /?/7T& rmfh £/r>/) /rjrrt>

&CL SCI

4m*.6 /6a*
f

s/o

7/
36

/6a3
/+)?

sia/i e m?r6
SCI

j- 2d 0-$} /rjJT̂ 1 V- 5 f-tj* fa
2
cl ~ #//*'§')

7
r»rr6

CO™ 2* /^^Z_ na(m a£+/i*&.y
ri = 2,4-..

It should be noted that each of equations (16) through
(21) represents an infinite set of equations * With a finite
number of coefficients, only a finite number of these equa-
tions can be satisfied* In the subsequent numerical solu-
tions, we will include, starting with the lowest, as many of
equations (l6) as we have k coefficients, as many of equations
( 17 ) as coefficients, as many of equations ( 18 ) as even
1 coefficients, as many of equations ( 1 9 ) as odd t coeffi-

cients, as many of equations (20) as s coefficients, and as
many of equations (21) as p coefficients. The resulting
solution, of course, will not satisfy the omitted equations
and to that extent will not satisfy the given boundary con-
ditions* By including a sufficient number of coefficients,
however, the difference can be made quite small* A check on
this point can readily be obtained by comparing a plot of
the given boundary conditions with that of the boundary con-
ditions satisfied* Where the difference is negligible from
an engineering point of view, the solution is adequate.

3* Ip, Numerical examples

The computations were done both with conventional hand-
computing machines and, where it seemed advisable, with SEAC,
the NBS high speed electronic digital computer. SEAC was
particularly useful in solving the large sets of simultaneous
equations for the values of the coefficients*

Poisson’s ratio has some effect on the answer because of
the displacement boundary conditions at the bottom of the wall.
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Experience with other related problems indicates that this
effect should be small. In the solution given here the
value l)=0o3 was used.

3*4-. 1* Wall with length twice height

For such a wall, a r b, two solutions were obtained. In the

first of these, 9 coefficients were used kl* &!> t
l ? t

2 9

/, , p-,, s , s , and s^. The corresponding nine equations are

given in table 3 together with the values of the coefficients
resulting from the solution. In the second solution, i|0 coef-

ficients were used. Their values are given in table Lj..

The degree to which these solutions satisfy the given
boundary conditions can be judged from figure 13? for the free
boundaries x- 0, x= a, y=b, and from figure 1

4

- for the re-
strained boundary, b/2» The agreement appears to be excel-
lent for both solutions with the 4.0-term solution giving some
superiority close to the corner attached to the footing. The

agreement for the IqO-term solution at distances from the corner
exceeding 7 percent of the wall height is within 20 percent of
the shrinkage strain S/E for the strain along the footing,
within 3 percent of the shrinkage shortening Sa/E for the ver-
tical displacement at the footing, and within 13 percent of
the shrinkage stress S along the free walls.

The shearing stress in the wall at the footing for the

14.0-term solution is shown in figure 15» This stress is zero
at the center, positive on the right half of the wall, and
negative on the left half. In the center half of the wall,
the stress varies nearly linearly. In the end quarters, the
stress increases somewhat more rapidly and then in the last
10 percent of the wall length drops to a low value. The maxi-
mum shearing stress is less than 0.9S.

The stresses at three locations near one corner of the
wall are given in table 3 (a) for the 9"term solution and

3 (b) for the l^O-term solution. The maximum stresses for the
two solutions agree within 3 percent for the point at .0312a
and within 1 percent for the points at .14.03a and . 24-95a.
The maximum shear stresses in the two solutions agree within
24- percent for the point at .0312a, within 20 percent for the
point at „l4-03a, and within 7 percent for the point at . 24-95a.
The directions of the maximum^ stresses agree within 29° for
the point at .0312a, within 1° for the point at . l4-03a, and
within 5° for the point at . 24-95a.
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For all three points of the lj.0 - terra solution and for the
two points farthest from the corner in the 9-term solution,
the minimum stress is much smaller than the maximum stress in
absolute value. In no case does the stress exceed the shrink-
age stress S in magnitude. The maximum stress is directed
approximately towards the bottom corner of the wall,

3. 4® 2, Wall with length twice height,
non-uniform footing restraint

In the tests it was found that the strain along the foot-
ing was larger near the wall ends than it was at the center.
This was attributed to the use in the tests of a finite ratio
of footing cross-sectional area to wall cross-sectional area
rather than the infinite ratio in equation (Iq), The distribu-
tion of (£ ) in the test is shown in figure 16, The

y-b/2
numerical solution with 4O coefficients is being repeated with
boundary condition ( Lj. ) replaced by the curve in figure 16, The
computation is about one-half complete,

3 . 4 ® 3 ® Wall with length and height equal

A numerical solution is being obtained for a wall whose
length and width are equal, b- 2a, The solution makes use
of 60 coefficients. The simultaneous equations for the coeffi-
cients have been coded for solution on SEAC, The work in this
case is therefore about one half complete,

3.1|.l4-» Wall with length four times height

The work on this wall has been started and is about 10
percent done.
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Table 1 . --Principal stresses in points A to G
Plaster Model No. 1 (Type I)
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Table 2 . --Comparison of computed and experimental values
Plaster Model No. 1 (Type 1)

' Method
Point' of

t t

Ox O'Y ,
Txy

A

E
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,£"*£/*
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CX

5 ~ t

Umax , \J s?7/n

x
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Table 3.—Wall with length twice height, first solution, 9
coefficients

.

0 s 0.4£8l39k
1 y 0o25t 1 y- O 2251+70p 1

0 * 0<,2^k1 -h OJp58l39t 1 y- 0,25px /- 0.03p
3

0 * 2 <>[]_67l|01p
1

y- lo56886l7
1 y 0.012^66t2 y-1.4l7290s 1

0 = 0.27lpL56p
3

- 0.217495t
2

- 0.288723s
3

o = 0.155848^ -y o.o4t
2

- o.o6o8o7s
1

0 = 0.08^ y 0.200208t
2 - 0.08s

1 - 0.035503 s
3

- 0.011891

1.273240Sa2 = - 0.196395^ - 1.727l8lt
1 - 3.745349p

x
- 7-75l569s

1

0.4244l3Sa2 = 0.503350^ - 1„046393p
3

- 7-75l569s
3

0.254648Sa2 = 0.474500t
1 - 7.75l569s

3

EQUATIONS

SOLUTION

k
x
/Sa2 = -0.049880

/-j/Sa2 = -0.071428

t-j/Sa2 * -0.071269

t
2
/Sa2 = -0.077826

P x
/Sa2 = 0.180376

P
3
/Sa2 3 0.000905

s-j^/Sa
2 3 -0.234265

s
3
/Sa^ = -0.059486

s^/Sa2 s -0.037214

Remaining coefficients taken as zero.



Table Li.,- -Wall with length twice height , second solution, I4.0

coefficients

.

k
1
/Sa2 = “0 059389251 t

io/Sa2
= -.011612346

ko/Sa2 = .012303806 t 12/Sa
2 = .008939071

k^/Sa2 - .003772472 t^/Sa2 ^ -.005983598

k?/Sa
2 = .001304913 t l 6/Sa2 = .004767099

ip/Sa2 = -.075968510 P1/Sa2
= .188439011

/
3
/Sa2 = .010713538 P

3
/Sa2 = -.003551489

i^/Sa2 = .005101076 p^/Sa2 = -.163158134

/
?
/Sa2 = .001912432 P7

/Sa2 = -.354876034

t-j/Sa2 = -.061716726 P 9/Sa
2 = ".555787489

t
3
/Sa2 = -.000280045 Pn/Sa2 ~ -.759714680

t^/Sa2 = .027934929 Pl 3
/Sa2 = -.963912395

t
7/Sa

2 = -.024216724 Pl5/Sa
2 = -1.167365113

t
9
/Sa2 = .022785816 s 7/Sa

2 = -.242707516

tlx/Sa
2 = -.018657394 s 3

/Sa2 = -.063090690

t 13/Sa
2 = .015630606 s^/Sa2 = -.029900727

t
15/Sa

2 = -.012683033 s
7
/Sa2 = -.012157563

t2/Sa
2 = -.082028509 s

9
/Sa2 = -.001303778

t^/Sa2 = .059449535 sn/Sa2 ~ .005902147

t
6
/Sa2 --= -.025981647 s

13
/Sa2= .010951224

tg/Sa2 = .019490944 Si5/Sa2 = .014630406

Remaining coefficients taken as zero
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TYPE i: t = 3 +

type n: t = 65"

FIG. I DIMENSIONS AND FORM OF WALL MODELS
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Fig. 3 - A plaster model with gages in a testing machine
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FIG. 6 PRINCIPAL STRESSES IN PLASTER MODEL NO. I (TYPE I)
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Fig. 9 - View of plaster model of type II showing the
crack pattern developed in a compression test.





a. COMPUTED VALUES. 9 -TERM SOLUTION.

b. COMPUTED VALUES. 40-TERM SOLUTION.

C. EXPERIMENTAL VALUES.

C

4

FIG. 10 COMPARISON OF COMPUTED AND EXPERIMENTAL VALUES
OF PRINCIPAL STRESSES AT POINTS A, E, AND G.





FIG. II WALL MODELS WITH STEEL FOUNDATION





y

Fig. I2~ Coordinate sgstem for theoretical

analgsis. Top of wall along
y

= b,

bottom along
g

= b/2
,
one side along

x=0, and the other along x-a.
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Strain

5 a

Vertical displacement

o
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— — — Given boundary
conditions

+ 9 coefficient solution

o 40 coefficient solution

Fig. 14 ~ Agreement of boundary vcdues in solutions

with given boundarg cond it ions along footing.





o 40 -term solution

. 15 - Variation of shear stress in

wall along base of footing.





Wall

Fiq. 16 ~ Strain distribution along footing -

(a) boundary condition for rigid footing,

section 2.4.1; (b) boundary condition for

test footing, section 2.4.2.
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