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APPENDIX A

SUMMARY OF THE ORIGINAL DATA EMPLOYED IN THIS STUDY

This appendix summarizes in tabular form the worksheets sub-

mitted by the working group of the ASA Subcommittee to the National

Bureau of Standards for statistical analysis. Separate tables are

presented for deep-groove data from SKF, New Departure, and Marlin-

Rockwell Corporation (MoR,C.)j a table is also included for the

self-aligning data from SKF, These five tables (A-1 to A-5) are

followed by Table A-6 which gives a synopsis of the number of test

groups and the number of bearings for each company.

Tables A-1 to A-5 give the identifying material, size of test

group, the values for the quantities P, Z, D > and the estimates*

for L^q, L^q and the ’’Weibull slope” e. All of these variables

are directly observed or specified quantities except for the esti-

mates and £, These last three quantities are based on

statistical calculations which made use of the results of individual

endurance tests. These calculations are explained in APPENDIX B,

In addition to the above quantities. Tables A-1 to A-5 also

show the number of rows, and contact angle, Since these are

the same for all deep-groove bearings, namely, i® 1, o(* 0*^, they

are merely indicated in the title. However, for the self-aligning

bearings (SKF), this is not the case^ hence Table A-5 has two

additional columns for i and o^,

SKF has also furnished summary sheets that list the key

items for each test group, (deep-groove and self-aligning bear-

ings), and also show the computed ratio C/P, which appears in one

form of the life formula (see equation- (1) in the main text of

this report). The value of this ratio was obtained from the for-

mula

The estimates for L^q and L^q are given in millions of revolutions

for all companies except M,RoC, The life estimates for M, R, C, are

shown in hours, the same units in which the original endurance data

were given.

FOR THE US) OF THE ASk LOAD RATING GCMMITTEE ONLY, NOT FOR PUBLICATION





A-2

C* = f (i
C 3

The asterisk denotes that the approximation 0o7 was used for the

exponent of Z in place of the value 2/3 specified in A/P 1947

(page 32, equation 120) , These values are also included in Tables

A-1 and A-5 and were utilized in one aspect of the analysis covered

in this report, (see Appendix C, section 7),

The original data, as submitted, contained a few cases where

companies tested bearings manufactured by other companies „ Such

test groups are not included in the summary tables as these re-

sults confound differences in testing with differences in manu-

facturing,, Therefore these test results were not used in any of

the analyses. Thus, Table A-3, for Fafnir, omits 4 tests per-

formed on other manufacturers* bearings,” Table A-4, for M,R,C,,

omits 3 tests.

The six tables described above are followed by a specimen

worksheet, A sample of Weibull-function coordinate paper is also in-

cluded, This coordinate paper had been used for graphing the re-

sults of all the individual endurance tests and had accompanied the

worksheets submitted to the Statistical Engineering Laboratory,

The specimen worksheet was taken from the New Departure data be-

cause these sheets, being original ribbon copies, were in most

suitable form for reproduction. The worksheets for the other

companies showed substantially similar information, differing

only in matters of minor detail. Bearings marked *'0mitted” were

completely eliminated from consideration, as company representa--

tives explained that these were non-fatigue failures and should

not be regarded as part of the test group. As a result, the test

group in the case of the specimen sheet shown was taken to ^con-

sist of 23 bearings rather than the original number of 25, This

type of situation appeared rather infrequently, however.
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A-3

TABLE A-1

SUMMARY BALL BEARING DATA FOR SKF (Deep Groove), WITH COMPUTED

VALUES FOR L^^, L^^, AND WEIBULL SLOPE e (1=1, a = 0°)

Record

No.

Company

Reference No.

Year

of

test

Bearing

No.

Nuraber

in test

group

Load

lbs.

Z

Number

of balls

Ball dlan

in.

* /

1. C /P L
10 ^5o

e

Weibun

slope

1- 1 End. 150-Group 1 1936 6309 21* 1*21*0 8 n/i6 2.308 19.2 8U.5 1.27
1- 2 II 152- It 1 1937 6309 20 1*21*0 8 11/16 2.308 26.2 7h.2 i.a
1- 3 152 2 1937 6309 11* 1*21*0 8 11A6 2.308 11.1 68.1 l.Ol*
1- i* II 152 n 3 1937 6309 19 1*21*0 8 11A6 2.308 11.8 66.8 1.09
1- 5 n 152 n

1* 1937 6309 18 1*21*0 8 11A6 2.308 13.5 79.1* 1.06

1- 6 II 169 11 1 1938 6209 a 2530 9 1/2 2.1*01* 5.80 25.7 1.27
1- 7 n 170 1 1938 6309 28 1*21*0 8 IIA6 2.308 18.3 1*1*. 7 2.10
1- 8 n 170 2 1938 6309 27 1*21*0 8 UA6 2.308 5.62 73.2 .73
1- 9 n 171 n 1 191*0 6309 20 1*21*0 8 ]1A6 2.308 15.8 62.7 l.U
1-10 II 171 2 191*0 6309 22 1*21*0 8 UA6 2.308 8.70 a.6 1.20

1-11 n 171 II
1* 191*0 6309 19 1*21*0 8 11A6 2.308 11.6 160 .72

1-12 It la II 2 191*0 6207 15 191*0 9 7A6 2.1*63 20.6 71.1* 1.52
1-13 n la n 3 191*0 6207 15 191*0 9 7A6 2.1*63 11*.

5

88.2 l.Ol*
1-lli n 186 n 1? 191*0 6209 15 2536 9 1/2 2.399 12.1 33.1 1.87
1-15 II 186 6 191*0 6209 11* 2536 9 1/2 2.399 15.1 1*6.1* 1.67

1-16 " 186 II
7 191*0 6209 15 2536 9 1/2 2.399 u*.o 1*3.6 1.66

1-17 It 186 It 8 191*0 6209 11* 2536 9 1/2 2.399 19.3 5i.8 1.91
1-18 189 n 2 191*0 630? 26 1*21*0 8 IIA6 2.308 1*6.2 110 2.17
1-19 n 189 It 3 191*0 6309 11* 1*21*0 8 11A6 2.308 30.0 88.2 1.7U
1-20 n I9I4 n 1 191*2 6309 20 1*21*0 8 IIA6 2.308 21.1 57.a 1.89

1-21 II 19li It 2 191*2 6309 20 1*21*0 8 11A6 2.308 17.3 1*5.7 1.91*
1-22 II 196 II 2 191*2 6309 37 1*21*0 8 11A6 2.308 37.5 U8 1.61*
1-23 196 3 191*2 6309 36 1*21*0 8 UA6 2.308 20.3 77.1 •I.a
l-2li 196 6 191*2 6309 32 1*21*0 8 11A6 2.308 1*.03 li2.5 .80
1-25 It 198 II 3 19a 6307 28 251*1* 8 17/32 2.1*23 8.38 81*.7 .a

1-26 199 1 191*3 6308 23 3975 8 19/32 1.899 1.79 13.5 .93
1-27 200 1 191*2 6212 30 1*1*00 10 ?/8 2.221* 11.7 1*5.1 1.39
1-28 200 II 2 191*2 6312 31 6920 8 7/8 2.168 1*.15 15.8 I.a
1-29 211 2 191*3 6205 30 990 9 5A6 2.637 7.23 a.o 1.09
1-30 211 3 191*3 6305 30 1509 7 7A6 2.589 22.9 no 1.20

1-31 It 211 II
1* 191*3 6303 30 932 7 U/32 2.660 9.51* 31.6 1.57

1-32 217 n
1* 191*1* 6308 26 3180 8 19/32 2-.371* 6.28 23.0 1.1*5

1-33 " 217 It 5 191*1* 6308 29 3180 8 19/32 2.371* i*.a a.2 1.27
1-3U 219 It 1 191*1* 6218 33 861*0 10 7/8 2.073 1*.17 12.8 1.68
1-35 219 It 2 19l*U 6318 26 11*080 8 1-1/k 1.877 5.1*2 31.6 1.07

1-36 n 21*6 n 1 1951 6207 28 191*0 9 7/16 2.1*63 7.1*7 1*9.5 1.00
1-37 2l*6 2 1951 6207 31* 2330 9 7/16 2.051 1*.80 a .3 1.26
1-38 u 21*6 n 3 1951 6207 27 1550 9 7/16 3.083 11*.8 78.1* 1.13
1-39 21*6 "

1* 1951 6207 29 1165 9 7/16 1*.101 81*.9 1*60 i.ii
l-llO 21*6 II 5 1951 6207 27 2910 9 7/16 1.61*2 3.1*0 16.5 1.19

I-I4I n 2U6 " 6 1951 6207 27 3880 9 7/16 1.232 I.2I* 3.23 1.97
l-ii2 21*6 7 1951 6207 26 776 9 7/16 6.158 2a 951 1.37
l-i*3 F 669 - 1951 6326 30 19750 8 1-3A 2.150 3.

a

12.6 1.31
1-iili E6iiC l-TbS-Ser 3-1 6309a 30 2112 8 H/16 1*.633 89.1 1*86 i.n
l-li5 EtkC 1-" 6- n l*-2

c 6309a 30 1*221* 8 H'/16 2.316 15.2 lOl* .98

l-li6 E61jC 1-" 7- It 5-3 4 6309A 30 81*1*8 8 H/16 1.158 2.0I* 10.2 1.17
l-i*7 E6dX It- II 3-1 6309 30 2112 8 6/8 3.937 51.0 376 •9k
l-ii8 E6ia -•> 5_ l*-2 0 6309 30 1*221* 8 5/8 1.969 5.26 58.8 .78
1-U9- e6Ux -ti 6- n 5-3 6309 30 81*1*8 8 5/8 0.981* -883 api* 1.09
1-50 EbUEL -

191*1* 6309a 30 1*221* 8 IIA6 2.316 11*.8 57.1» 1.39
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TABLE A-2

SUMMARY BALL BEARING DATA FOR NEW DEPARTURE (Deep Groove), WITH COMPUTED

VALUES FOR L^^, L^q, AND WEIBULL SLOPE e (1=1, a=0°)

Record

No.

Company-

Reference No.

Year

of

test

Bearing

No.

Number

in test

group

Load

lbs.

z

Number

of balls

°a
Ball diam,

in.

"10 So

e

WeibudJ

slope

2- 1 L03-1 19U0 3L03 19 570 10 3A6 6.68 13 . 1* 2.72
2- 2 LOU-2 19lili 3L0i* 20 570 9 5A6 29.8 70.0 2.22
2- 3 LOU-3 19U6 3L0i* 23 580 9 1/1* 16.3 55.1 1.55
2- h L0U-3A 19li6 3L01* 23 580 9 1/1* 28.5 69.2 2.13
2- 5 L0U-3B 19li7 3L0l* 23 580 9 1/h 16.1* 1*9.3 1.71

2- 6 LOU-ti 19h3 3L01* 10 665 9 1/1* 10.3 1*0.1 1.50
2- 7 loU-Ua 19Uli 3L01* 10 665 9 1/1* 25.7 1*6.1* 3.19
2- 8 L05-1 19h2 3L05 19 580 10 1/h 9.55 39.6 1.32
2- 9 L05-2 19U6 3L05 33 620 10 l/U 17.9 62.1 1.51
2-10 L05-2A 19li7 3L05 15 620 10 1/1* 19.9 73.2 1.1*5

2-11 L05-2B 191*7 3L05 31 620 10 1/1* 12.9 50.1* 1.39
2-12 L05-3 1914* 3L05 19 625 10 1/1* 19.3 1*6.2 2.18
2-13 L05-U 191*1 3L05 17 720 10 1/1* 11.1 23.3 2 . 51*

2-lli L06-1 191*6 3L06 60 980 11 9/32 15.7 1*3.5 1.85
2-lS L06-1A 191*7 3L06 32 980 11 9/32 11.2 38.1 1 . 51*

2-16 L07-1 1950 3L07 1*9 600 11 ?A6 ia7 809 2.85
2-17 L07-2 191*9 3L07 60 600 11 5A6 216 709 1.58
2-18 L07-3 191*3 3L07 20 900 11 5A6 35.6 100 1.82
2-19 L07-U 191*6 3L07 67 1220 11 5A6 12.0 1*2.2 1.50
2-20 L07-UA 191*7 3L07 31* 1220 11 5A6 8.53 1*6.6 1.11

2-21 L07-5 191*0 3L07 20 1370 11 5A6 6.77 18.9 1.85
2-22 L07-6 1950 3L07 60 iia5 11 5A6 13.5 1*6.5 1.53
2-23 L07-7 1950 3L07 60 221*3 11 5A6 2.32 8.06 1.51
2-2h L08-1 191*2 3L08 20 720 12 5/16 36.7 lljl 1.1*0
2-25 LOC-2 191*6 3L08 55 1300 12 5A6 19.0 57.2 1.71

2-26 L08-2A 191*7 3L08 30 1300 12 5A6 19.5 60.6 1.67
2-27 LI0-1 191*1* 3L10 20 1650 11* H/32 17.0 7l*.l* 1.37
2-28 LlO-2 191*6 3L10 59 1760 11* 11/32 20.9 53.7 2.00
2-29 L10-2A 191*7 3L10 3i* 1760 11* H/32 9.56 1*0.7 1.30
2-30 Lll-1 191*0 3L11 20 2010 13 13/32 5.1*9 33.3 1.05

2-31 Lll-lA 191*0 3L11 9 2010 13 13/32 1.39 1*1*.

0

.54
2-32 Lll-2 191*1* 3L11 19 211*0 13 13/32 9.80 82.7 .88
2-33 U3-1 191*3 3L13 11 2630 15 13/32 5.19 51*.9 .80
2-3h L18-1 191*2 3L18 12 5900 11* 19/32 6.36 17.5 1.86
2-35 L18-1A 191*7 3L18 19 5900 11* 19/32 3.68 22.1 1.05

2-36 L22-1 191*7 3L22 20 8070 11* 23/32 8 . 31* 23.6 1.81
2-37 L22-2 191*2 3L22 12 8075 11* 23/32 6.78 36 . 1* 1.12
2-38 202-1 1938 3202 10 565 9 .210 9.27 18.1* 2.75
2-39 203-1

.

191*0 3203 23 720 8 9/32 18.2 56.9 1.66
2-hO 203-lA 191*0 3203 21* 720 8 9/32 22.8 56.2 2.09

Continued next page
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TABLE A-2, continued

SUWMARI BALL BEARING DATA FOR NEW DEPARTURE (Deep Groove), WITH COKPUTED

VALUES FOR 1^^, L^q, AND WEIBULL SLOPE e (i=l, a=0°)

Record

No^

Company-

Reference No.

Tear

of

test

Bearing

No.

Number

in test

group

Load

lbs.

Z

Number

of balls

°a
Ball diam.

in.

\o "50

e

Weibui;

slope

2-la 203-lB 191*0 3203 25 720 8 9/32 3.99 15.6 1.38
2-U2 203-lC 191*0 3203 21 720 8 9/32 9.07 29.1* 1,60
2-h3 203-lD 191*0 3203 25 720 8 9/32 7.11* 28.5 1.36
2-hh 203-lE 191*0 3203 25 720 8 9/32 12.5 26.1* 2.51
2-hS 203-lF i9ia 3203 25 720 8 9/32 18.8 1*8.7 1.98

2-k6 203-lG i9ia 3203 73 720 8 9/32 21.5 53.2 2.08
2-kl 20l*-lA 191*7 3201* 33 860 8 5A6 17.1 59.0 1.52
2-1*8 20l*-lB 191*8 3201* 8 860 8 5A6 15.2 87.6 1.08
2-1*9 205"1 191*3 3205 20 900 9 5A6 30.1 92.3 1.68
2-50 205-lA 191*1* 3205 38 900 9 5A6 15.0 1*7.6 1.63

2-51 205-2 191*5 3205 27 91*0 9 5A6 17.5 52.8 1.71
2-52 205-2A 191*7 3205 31* 91*0 9 5A6 ll*.l* 65.6 1.21*
2-53 205-3 1938 3205 10 1180 9 5A6 8.76 22.1 2.01*

2-51i 206-1 191*5 3206 30 1580 9 3/8 12.1 1*3.3 1.1*7
2-55 206-lA 19li'^ 3206 33 1580 9 3/8 17.2 61*.

6

1.1*2

2-56 206-IB 191*8 3206 8 1580 9 3/8 10.7 3l*.6 1.61
2-57 207-3 191*5 3207 31 2160 9 7A5 10.9 37.6 1.52
2-58 207-3B 191*7 3207 30 2160 9 7A6 12.7 53.7 1.30
2-59 207-1* 1938 3207 9 2200 9 1/16 3.73 1*3.5 .77
2-60 207-5 191*7 3207 30 21*80 9 1/16 16.6 78.3 1.21

2-a 208-13 1950 3208 1*0 131*0 9 15/32 180 275 I*. 1*1*

2-62 208-16 1937 3208 19 l66o 10 7A6 85.2 231* 1.86
2-63 208-18 19la 3208 19 1700 9 15/32 57.1 230 1.35
2-61* 208-20 1939 3208 21* 21*80 9 15/32 15.7 55.8 1.1*8
2-65 208-20A 1939 3208 25 21*80 9 15/32 27.1 97.8 1.1*7

2-66 208-20B 1939 3208 23 21*80 9 15/32 21.7 122 1.09
2-67 208-20C 1939 3208 28 21*80 9 15/32 13.2 1*2.3 1.62
2-68 208-20D 1939 3208 28 21*80 9 15/32 35.8 11*5 1.35
2-69 208-20E 1939 3208 20 21*80 9 15/32 12.7 3l*.7 1.87
2-70 208-2OF 191*1* 3208 20 21*80 9 15/32 10.1 27.8 1.87

2-71 208-20G 191*5 3208 20 2l*80 9 15/32 8.83 3l*.3 1.39
2-72 208-20H 1938 3208 10 21*80 9 15/32 16.5 60.3 1.1*5
2-73 208-201 191*2 32C8 11 2l*80 9 15/32 17.9 65.8 1.1*5
2-7li 208-20

J

191*3 3208 10 21*80 9 15/32 15.7 63.1 1.35
2-75 208-20K 191*3 3208 20 2l*80 9 15/32 10.8 1*2.1 1.38

2-76 208-20L 191*1* 3208 18 21*80 9 15/32 ll*.2 39.9 1.83
2-77 208-20M 191*1* 3208 18 21*80 9 15/32 19.0 67.8 1.1*8
2-78 208-20N 191*1* 3208 18 21*80 9 15/32 16.3 57.7 1.1*9
2-79 208-200 191*1* 3208 20 21*80 9 15/32 2.93 18.0 l.Ol*
2-80 208-20P 191*1* 3208 20 2l*80 9 15/32 5.69 25.1* 1.26

Continued next page
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TABLE A-2, continued

SUMMARY BALL BEARING DATA FOR NEW DEPARTURE (Deep Groove), WITH COMPUTED

VALUES FOR L^q, L^q, and WEIBULL slope e (i=l, a = 0°)

Record

No.

Company-

Reference No.

Tear

of

test

Bearing

No.

Number

in test

group

Load

lbs.

Z

Number

of balls

D
a

Ball diam.

in*

\o ^50

e

Weibull

slope

2- 81 208-20Q 191J^ 3208 28 2480 9 15/32 9.54 39.9 1.32
2- 82 208-20S 19IU* 3208 22 2480 9 15/32 12.6 55.7 lo27
2- 33 208-20T 19hh 3208 23 2480 9 15/32 5.10 37.5 .94
2- 8U 208-20U 19hh 3208 18 2480 9 15/32 16.0 53.7 1.56
2- 33 208-20V 19hh 3208 20 2480 9 15/32 1.98 22.1 .78

2-86 208-20W 19h5 3208 20 2480 9 15/32 5.65 28.8 1.16
2- 87 208-20X 19h5 3208 20 2480 9 15/32 12.8 43.6 1.58
2- 88 208-20T l9hS 3208 20 2480 9 15/32 9.84 32.3 1.59
2- 89 208-20Z 19hS 3208 20 2480 9 15/32 12.1 43.0 1.48
2- 90 208-20AA I9h5 3208 20 2480 9 15/32 5.48 40.8 .94

2- 91 208-20BB 19U5 3208 20 2480 9 15/32 6.64 25.3 1.41
2- 92 208-20CC 1945 3208 32 2480 9 15/32 13.9 41.9 1.70
2- 93 208-20DD 1946 3208 35 2480 9 15/32 9.02 45.4 1.17
2- 9h 208-20EE 1946 3208 34 2480 9 15/32 11.0 49.2 1.26
2- 95 208-20GG 1947 3208 31 2480 9 15/32 14.5 73.6 1.16

2- 96 208-20II 1944 3208 9 2480 9 15/32 5.91 37.2 1.02
2- 97 208-20JJ 1944 3208 10 2480 9 15/32 18.1 40.5 2.33
2- 98 208-20KK 1945 3208 10 2480 9 15/32 17.1 53.3 1.65
2- 99 208-20LL 1945 3208 10 2480 9 15/32 32.6 61.8 2.95
2-100 208-20NN 1945 3208 10 2480 9 15/32 24.1 66.2 1.87

2-ld 208-2000 1945 3208 20 2480 9 15/32 36.1 71.6 2.75
2-102 208-20PP 1946 3208 20 2480 9 15/32 63.3 104 3.82
2-103 208-20QQ 1946 3208 12 2480 9 15/32 14.4 59.0 1.33
2-lOii 208-20RR 1946 3208 11 2480 9 15/32 15.1 92.9 i.o4
2-105 208-20SS 1945 3208 10 2480 9 15/32 18.8 39.4 2.55

2-106 208-20TT 1950 3208 12 2480 9 15/32 5.63 34.7 i.o4
2-107 208-20UU 1950 3208 12 2480 9 15/32 7.23 34.5 i.21
2-108 208-20W 1951 3208 30 2480 9 15/32 16.7 71.8 1.29
2-109 208-20WW 1951 3208 63 2480 9 15/32 26.5 90.3 1.54
2-110 208-20XX 1950 3208 23 2480 9 15/32 8.35 49.1 1.06

2-m 208-21 1943 3208 19 3250 9 15/32 3.79 9.30 2.10
2-112 208-22 1937 3208 10 3470 10 7A6 9.05 36.6 1.35
2-113 208-23 1944 3208 20 4000 9 15/32 2.98 7.35 2.08
2-llii 209-1 1943 3209 19 2300 10 15/32 22.5 73.4 1.59
2-115 209-2 1938 3209 10 2730 10 15/32 3.82 31.7 .89

2-116 209-3 1946 3209 22 2660 10 17/32 6.55 20.8 1.63
2-117 210-3 1944 3210 20 2250 11 15/32 17.5 64.3 1.45
2-118 210-i* 1943 3210 16 2300 11 15/32 61.7 152 2.10
2-119 210-6 1945 3210 48 2840 11 15/32 18.6 42.7 2.27
2-120 210-6A 1947 3210 28 2840 11 15/32 21.6 66.3 1.68

Continued next page
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TABLE A-2, continued

SUMMARY BALL BEARING DATA FOR NEW DEPARTURE (Deep

VALUES FOR L^q, AND WEIBULL SLOPE e

Groove), WITH COMPUTED

(i=l, a = 0°)

Record

No.

Compa^s^

Reference No.

Year

of

test

Bearing

No.

Number

in test

group

Load

lbs.

z

Nuraber

of balls

Da

Ball diam.

in.

^10 "50

e

Weibull

slope

2-121 210-6B 19U7 3210 8 28U0 11 15/32 11.9 39.1 1.59
2-122 210-6C 19U8 3210 8 281iO 11 15/32 13.9 50.6 1.U6
2-123 210-7 19li3 3210 19 3200 n 15/32 7.80 33.1 1.30
2-12li 210-9 19l»4 3210 28 Uooo 11 15/32 3.55 13.9 1.38
2-125 210-10 19i*3 3210 19 Uooo U 15/32 9.U0 23.U 2.06

2-126 216-1 19li7 3216 23 6350 U 11A6 U.76 22.7 i.a
2-127 222-1 I9IJ4 3222 20 12000 11 1-1A6 3.23 9.86 1.69
2-128 222JJI 19hh 3222 20 12000 11 1-1A6 2.62 9.52 1.U6
2-129 222-2 19kh 3222 9 12700 8 1-1/2 7.89 39.7 1.17
2-130 222-3 19it9 3222 18 16500 11 1-1A6 U.93 20.U 1.33

2-131 222-3A 1950 3222 20 16500 11 1-1A6 6.26 16.2 1.98
2-132 302-1 1938 3302 8 565 7 5A6 37.3 103 1.85
2-133 302-2 19ljli 3302 20 900 7 5A6 lii.o 38.6 1.86
2-13li 305-3 1938 3305 10 1650 8 13/32 30.3 87.6 1.77
2-135 306-7 19hh 3306 20 2250 8 15/32 25.7 71.2 1.85

2-136 306-8 19h3 3306 20 2300 8 15/32 10.5 60.

u

1.07
2-137 306-9 19i4* 3306 19 3200 8 15/32 10.3 2U.I 2.21

2-138 306-10 19Ui 3306 19 Uooo 8 15/32 U.56 12.9 . i.a
2-139 307-7 1937 3307 10 1710 8 17/32 25.1 27U :19
2-lli0 307-8 1938 3307 9 2360 8 17/32 U8.8 26U 1.12

2-lla 307-9 1937 3307 10 2680 8 17/32 7.53 60.7 .90
2-lii2 307-10 1937 3307 11 3850 8 17/32 IU.9 62.6 1.32
2-1U3 313-1 19li7 3313 21 7760 8 29/32 ii.57 U3.U .8U
2-ll4ii 316-1 19U3 3316 12 9550 8 1-1A6 3.90 U0.7 .80

?-lU5 316-2 19U7 3316 a 9750 8 1-1A6 15.5 79.U 1.16

2-11^6 318-1 19U8 3318 16 nUoo 8 1-3A6 10.2 U3.9 1.29'

2-1U7 318-la 19L8 3318 20 iiUoo 8 1-3A6 U.71 16.9 1.U8
2J.U8 318-2 19U7 3318 18 11U20 8 1-3A6 10.1 3U.2 1.55

FOR THS Ua; OF THE A 5ft. LOAD RATING COMMITTEE ONLY, NOT FOR PUBLICATION
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table A-3

SlBaMAEY BALL BEARING DATA FOR FAFNIR (Deep Groove), WITH COMPDTED

VALUES FOR L^^^, L^, AND WEIBULL SLOPE e

(i = l, a = 0°)

Re oord

No.

Company

Reference No.

Year

of

test

Bearing

No.

Number

in test

group

Load

lbs.

z

Number

of balls

I'a

Ball di€Lm.

in.

ho ^50

e

Weibull

slope

3- 1 2J1-L-7 19U2 307 K 91* 1580 7 9/3.6 16.9 61*. 8 i-.^*o

3- 2 2l|-L-7-S-l-30^ 19U9 307 K 29 790 7 9/16 211 729 1.52
3- 3 2li-L-7-S-l 19U9 307 K 35 1185 7 9/16 71*. 1* 287 1.1*0
3- h 53-L-lli 19h0 208 K 29 1600 9 1/2 9.62 1*0.1 1.32
3- 5 53-L-lli-S-l 19hS 208Con- 10 1600 8 15/32 11.9 66.3 1.10

rad
3- 6 1U7-L-27 191*3 306 K 9 2275 7 17/32 13.8 58.0 1.31
3- 7 195-L-3li-S-2 A 191*6 207 K 13 251*0 8 15/32 2.38 n.3 1,21
3- 8 195-L-3U-S-2 B 191*6 207 K 12 251*0 8 15/32 2.38 11.5 1.19
3- 9 2l*2-L-ii2-A 191*9 M307KCR 12 1580 7 9/16 8.75 62.2 0.96
3-10 2li2-L-U2-B 191*9 307 K 12 1580 7 9/16 25.7 113 1.27

3^ 263-L-li6 191*7 MM208K 21* 1600 9 1/2 ll*.5 113 0.92
3-12 329-L-57 191*9 20l* K-a 12 610 8 5/16 26.8 65.6 2.10

TABLE A-U

SUMMARY BALL BEARING DATA FOR MARUN-ROCKWEU CORPORATION (Deep Groove),

WITH COMPUTED VALUES FOR L^^, L^, AND WEIBULL SLOPE e

(1=1, g = 0°)

Record

No.

Company

Reference No.

Year

of

test

Bearing

No,

Number

in test

group

Load

lbs.

Z

Number

of balls

Ball diaia.

in.

ho ^50

e

Weibull

slope

1*-1 16 191*6 207 S 19 1750 9 7/16 159 963 1.05

l*-2 19 1951 207 S 31* 1750 9 1/16 11,1 526 0,91*

l*-3 20 1951 207 S 56 1750 9 1/16 ^3 582 1.15

NOTES In T^LE A-ii the life estimates , L^q are in hours.

FOR THE U® OF THE LOAD RATING COMMITTEE ONLY, NOT FOR PUBLICATION
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TABLE A-5

STOMARr BALL BEARING DATA FOR SKF (Self^llgning), WITH COMPOTED

VALDES FOR L^^, L^g, AND WEIBDLL SLOPE e

Record

No.

Compaiigr

Beferenoe No.

Te»r

of

test

Besrleg

No.

Riunber

in test

groTip

Load

lbs.

Z

Nujober

of balls

D
ft

Bftll diftiti*

in.

i a C*/P ^0 "50 WeibuU

slope

5- 1 EdI 152-Qroup 5 1936 1309 27 1*21*0 15 1/2 2 9°25i 1.690 1*.90 11*. 7 1.72
5- 2 152 B 6 1936 1309 26 1*21*0 15 1/2 2 9®25' 1.690 5.68 16.8 1.73
5- 3 M 170 B 3 1938 1309 37 1*21*0 15 1/2 2 9°25' 1.690 8.1*3 28.8 1.53
5- ii 171 3 1939 1309 21 1*21*0 15 1/2 2 9°25' 1.690 1.85 16.1 0.87
5- 5 172 B 1 191*0 1309 35 1*21*0 15 1/2 2 9°25* 1.690 1.39 12.3 0.86

5- 6 172 B 2 191*0 1309 36 1*21*0 15 1/2 2 90251 1.690 0.716 8.21* 0.77
5- 7 172 B 3 191*0 1309 35 1*21*0 15 1/2 2 9°25' 1.690 0.91*2 9.98 0.80
5- 8 176 B 2 191*0 1312 30 701*0 16 5/8 2 8°33' 1.533 1.97 8.02 1.31*

5- 9 B 177 B 1 191*0 1315 30 10137 16 3A 2 8°26' 1.1*68 2.27 9.51 1.31
5-10 B 186 n 9 191*0 1309 17 1*21*0 15 1/2 2 90251 1.690 2.19 7.30 1.56

5-u B 188 fl 3-1* 191*1 2318 19 9266 13 1 1/8 2 li*° 6' 3.083 19.3 61.7 1.62
5-12 188 B _ 191*0 ia8 30 8360 19 5/8 2 6°23' 1.293 2.10 5.6U 1.91
5-13 189 B 1 191*0 1309 29 1*21*0 15 1/2 2 9025

1

1.690 9.10 23.6 1.98
5-llt n 192 B - 191*1 2215 30 6315 20 17/32 2 9O321 1.328 3.58 11.8 1.58
5-15 a 193 fl 1 191*0 . 1207 30 1760 16 5A6 2 8®l*i*' 1.690 1*.U8 17.0 IJ4I

5-16 n 193 n 2 191*0 1307 30 2601* 11* 13/32 2 9°18' 1.809 l*.oo 21.1 1.13
5-17 n 19U 1* 191*2 1309 31 1*21*0 15 1/2 2 9°25' 1.690 1.90 U.7 l.Oli
5-18 B 198 n 1 19la 2207 30 2216 11* 3/8 2 13°55' 1.819 1*.81 16.1* 1.51*
5-19 n 198 n 2 191*1 2307 30 31*96 n 17/32 2 17°7' 2.078 3.01 19.1* 1.01
5-20 n 203 B 1 191*2 2212 29 l*l*liO 18 15/32 2 10°31*' 1.1*1*5 5.78 23.1 1.36

5-a n 235 n _ 191*9 1309 59 1*21*0 15 1/2 2 9025

1

1.690 3.01 9.61, 1.62
5-22 ti 239 n 1 1950 1309 30 1*21*0 15 1/2 2 90251 1.690 2.25 10.8 1.20
5-23 B 2i*6 B U 1951 1207 26 1760 16 5A6 2 8°lil*t 1.693 1*.53 12.9 1.80
5-2U B 21*6 12 1951 1207 27 iiao 16 5A6 2 601*1* t 2.109 6.97 26.9 1.1*0

5-25 n 21*6 " 13 1951 1207 31 2110 16 5A6 2 8°lil*i 1.1*09 1.56 6.73 1.29

5-26 n 21*6 n 11* 1951 1207 25 1060 16 5A6 2 8°l*l*i 2.805 7.79 3l*.3 1.27
5-27 n 21*6 n 15 1951 1207 28 1060 16 5A6 2 801*1*1 2.805 12.1 1*1.3 1.53
5-28 n 21*6 n 16 1951 1207 29 795 16 5A6 2 8°1*1*' 3.71*0 1*2.2 U8 1.81*
5-29 £64(IL*Tb i;-Ser h 1309 30 1*221* 15 1/2 2 9®25' 1.697 5.89 li*.8 2.05
5-30 61*G1 " 3 B 3 1309 30 2112 15 1/2 2 90251 3.391* 31.2 122 1.38

5-31 6i*(a " 5 'n 5 1309 30 81*1*8 15 1/2 2 9025

1

0.81*8 0.625 1.56 2.06
5-32 61*S1 " 1 - 1309 30 1056 15 1/2 2 96251 6.789 166 1*77 1.78
5-33 61*CtL " 1 n - a 1309 30 1*221* 15 1/2 2 90251 1.697 9.09 30.6 1.55
5-3U 61*F2 " 1 n - 1 1309 30 528 15 1/2 2 9°25' 13.575 286 2100 0.91*

5-35 6i*n. " 6 1309 29 528 15 1/2 2 90251 13.575 171* 2720 0.69

5-36 61*F1 "
7

1. 2 i 1309 30 1056 15 1/2 2 9O251 6.789 120 563 1.22
5-37 61*F1 " 8 n 3 1309 30 2112 15 1/2 2 90251 3.391* 21*. 1* 130 1.12
5-38 61*F1 " 9 II

1* 1309 30 1*221* 15 1/2 2 9025

1

1.697 10.2 1*2.9 1.31
5-39 61*F1 " 10 n 5 1309 30 81*1*8 15 1/2 2 90251 0.81*8 0.1*59 1.60 1.51
5-1*0 61*<3

"
3 1939 1309 30 1*221* 15 1/2 2 9025* 1.697 1*.37 16.1* 1.1*2

FOR THE us; OF THE AS LOAD RATING COMMITTEE ONU, NOT FOR PUBLICATION
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TABLE A-6

RECAPITULATION OF TEST GROUPS OF BALL BEARING DATA

Compaiy and Bearing Type Number of
test groups

Total Number of
bearings in
test groups

DEEP GROOVE, Total 213

SKF $0 1239

New Departure
Extra light, Series 3LOO
Light , Series 3200
Medium, Series 3300

37
9U
17

3289

Fafnir* 12 291

Marlin-Rockwell Corporation 3 109

SELF-ALIGNING, SKF Only
•

liO 1196

Total, All Bearings 253 6lkh

Bearings of other manufacture not included. See text.

FOR THE Uffi OF THE A5<1 LOAD RATING COMMITTEE ONLY, NOT FOR PUBLICATION
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SPECIMEN WCRKSHEEI

Referen No o L04-3A Table Ordered According to
Bearing Mfgo by New Departure Endurance Life
Bearing Tested by New Departure
Date of Test 8-26-46
Bearing Noo 3IX)4 Brg. Endurance Type of
Load 580 R.L. Noo Millo Revs. Failure Remarks
Speed 2000 r.p.m.

16
10

5

19
9

11
15
12
20
18
13
1

17.88
28.92
33.00
41.52
-42tl^

,

45.60
48 .48
51.84
51.96

55.56
67.80

Ball
Ball
Ball
I.R.
Ball

Lubrications Type Jet Oil
Frequency

Ball Noo and Dia„ 9 - 1/4"
Contact Angle O'"

Groove Radius

s

Inner Ring
Outer Ring

D8J.X

Ball
Ball
Ball
I.R.

I.R.

Ball

Number of Rows 1
Bore 20 mm.
OoDo 42 mm.
Lot Size 25 Taken on 23

Bearing temperature measured on outer
ring at point of maximxam load L 68.64

68.64
Aft ftft -

Ball
L.Bore
Disc,
Ball
Ball
I.R.
I.R.

Disc,
Ball
0 T?

Material: Type 6
Source

25
22
17
7

Rockwell Hardness of;

Inner Ring
84.12
93.12
98.64

105.12
105.84
127.92
128.04
173.40 ^

Outer Ring 61 .

Balls 23

24
21
8

14

Ball Failure 13 52^
Inner Ring Failure s 20^ Disc.
Outer Ring Failure ] U%

Test life in 10^ revolutions:
Median 6B,

Mean 71.
B-10 29.

Slope of Curve 2.23

Test No,
Lot

3183
71

FOR THE USE OF THE ASA LOAD RATING CCMMITTHI CMJ, NOT F(® PUBLICATION
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SAMPLE OF WEIBULL FUNCTION COORDINATE PAPER

BEARINGS TESTED- PERCENT
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APPENDIX B

EVALUATION OF L . , , A^ID V/EIBULL SLOPE e
10 5o\ -

BY USE OF ORDER STATISTICS

This is a technical appendix designed to present the

mathematical and statistical bases for estimating, for each

test group, the values of L^q and L^^ for use in the regres-

sion analysis discussed in Appendix C. Estimation of the

Weibull slope e is also considered.

1 . The V7eibull distribution

As noted in the main text of the report, the funda-

mental basis for estimation of L-,„, L-„, and e for each
-LO ^0 —

individual test group was the assumption that the proba-

bility distribution of fatigue lives of individual bearings

wi thin a given test group could be represented by a

"Weibull distribution".-::- This means that the observed

fatigue lives of all the bearings in a test group of, say,

n bearings constitute a random sample of n Independent

observations fromi a distribution whose cumulative (from

above) distribution function (hereafter denoted by c.d.f.)

So named for W. V/eibull (cf. [ 1^], pages 16 ff . )

,

who

is considered to be one of the first to study it exten-

sively.

FOR THE USE OF THE kSk LOAD RATING COMMITTEE ONLY, NOT FOR PUBLICATION
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i s'

‘

(Bl)
S (L )

= Prob |f atiguc >

= exp[-(L/a)®] , 0 < L < oo

where a and e are the two parameters to be fitted. They

are related to L and in a manner to be explained sub-
10 50

sequentl;y (see equation (B2a)). The function S(L) is also

termed the "survivorship" function. This distribution is

one of three limiting types to which the distribution of

the smallest member of a sample under general conditions

tends as the sample size is increased indefinitely.

(Another of the types will be discussed in the following

section.) This matter was first studied chiefly by Fisher

and Tippett [ 3 ] and for this reason the type (Bl) is some-

times referred to as Fisher- lippe tt Type III. (A complete

treatment of such limiting "extreme -value distributions"

from the m.odern vieT^.rpoint m.ay be found in G-nedenko [^].)

Actually, an approximation is involved here, as the

number of cycles, L, can take only integral values. How-

ever, in the application with which this report is con-

cerned, L is generally of the order of millions. Therefore

it is felt that use of a continuous instead of discrete

probability dis tribution introduces no appreciable error.
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Inhere are two reasons for choosing the Heihull distri-

bution (Bl) as the underlying probability distribution for

fatigue life: (a) theoretical, ami (b
)
empirical.

(a) The theoretical basis for the choice lies in the

assumption that fatigue is an "extreme-value" phenomenon,

related in some manner to the strength at the vreakest point

in the material under stress. The theoretical reasoning

which proceeds from this assumption is mentioned by a

number of authors, and is given explicitly, for example,

by Freudenthal and Gumbel in [Ij], pages 316 to 318 • It

leads precisely to the form (Bl) (see equation (2,9) l^i

[ 4 ])

.

It is recognized that this statistical approach has

not received universal acceptance. The present report is,

however, not concerned with the relative merits of the

various theories of fatigue, but merely with consequences

of a reasonable choice from among them,

(b) T'e practical application of the Wei bull distrl-

button received extensive attention by P. i/^elbull in [16],

where he showed that a (more general) distribution of the

type (Bl) represented certain fatigue-life data quite

satisfactorily. Other treatments have discussed the suita-

bility of this distribution. In addition, a report by

L. G. Johnson vihile also dealing m th a more general

form of the Wcibull distribution, concludes (page l\.) "from
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several large lots of ball bearing [fatigue] failures"

that "they support the theory of a ¥eibull distribution

very well." Finally, there is in addition the concrete

fact that inspection of the special "Weibull" plots accom-

panying each of the worksheets indicates that many can be

fitted satisfactorily by a straight line representing a

Weibull distribution, as explained below.

The manner in vjhich these plots, called. "Weibull

plots", are constructed is described in detail by Johnson

in [9]* A sample of Weibull -func ti on coordinate paper

used for this purpose is included in Appendix A above.

The essence of the method is that equation (Bl ) may be

converted, by taking logarithms tvjlce, into -s:-

(B2) e(ln L) - (e In a) = ln[ln(l/S)] ,

where "In" denotes "natural logarithm", l.e., with base

€ = 2 , 71828 ... . From equation (Bl) and the definitions

of and when L = S(L) = . 9 O; and vihen

L = '^^
0

’ “ . 50 * These values substituted in equation

(B2) give

e(ln - e(ln a) = In [ In

(

1/. 90 ) ]
- - 2,25037

(B2a)

e (In L^q) - e(ln a) = In [ In

(

1/

.

50 ) ]
= - 0.36651

It will be recalled that the natural logarithm (base £ )

is related to the ordinary logarithm (base 10) by

In a = 2.3025051
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L , and . The right-hand numerical
10 50

be denoted by y > 1 ^ > respectively.
.90 .50

may be written

values will later

Equation (B2)

ex - a’ - J ,
where

(B3)
X = In L, a' = e In a, y = ln[ln(l/S)] .

These correspond to the two scales shoxm on the Weibull-

function coordinate paper in Appendix A, Ihe variable x,

with unrestricted values, corresponds to the horizontal

scale ''Bearing life", having a logarithmic grid. The vari-

able is represented through the percentage surviving, S,

or rather through the (vertical) scale for "Bearings

tested - percent" = percent failed = 1 - S = F, vjhich can

vary only between 0 and 1. This scale also has non-uniform

graduations, given by the Iterated logarithm in (B3)*

The Weibull distribution is thus seen to be equivalent

to a straight line relation, vjI th "Weibull slope" e, between

the logarithm of fatigue life and an associated quantity

y depending only on its relative rank when the fatigue

lives are arranged in ascending order. Thus, goodness of

fit of the straight line (B3) is equivalent to goodness

of fit of a Weibull distribution to the fatigue lives L of

an individual test group.

For these reasons the Weibull distribution was adopted*
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2 . The extreme-value distribution

a. Relation to Weibull distribution

A by-product of the preceding discussion is that

it appears that the logarithms of lives, rather than the

lives themselves, are the natural units in terms of which

to carry out the analysis. This idea has been adopted

even by those who do not make use of the Weibull distri-

bution either because they are unav/are of its existence or

because they do not feel it fits their data. Such authors

advocate the use of "log life", but they maintain that

this quantity is normally distributed. For example, a ten-

tative draft (Ransom [14]) of statistical recommendations

in connection with fatigue testing for the use of the

A.S.T.M. Committee E-9 on Fatigue, adopts this logarithmic

basis and presents a number of procedures suitable for the

case of a normal distribution. Study of such sources

suggests that one important reason for recommending the

(log) normal is that there already exists a body of vjell-

developed procedures for this distribution, and that this

is less true for other distributions.

If the Weibull distribution is adopted for life, L,

then the variate x = In L cannot be taken as normal, x- In

fact, it has the c.d.f., obtained from (Bl),x-;:-

cf. Weibull [16], pages 29-35
».

cf. Freudenthal and Gumbel [1|]^ equations (2.5)? (2.6),

( 2 . 8 ), ( 2 . 9 ).
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G(x) = ?rob [in (life )
> = PPob[llfe

(bIi ) , , > /
-1

= P (6 )
= exp (-a 6 )

= cxp[-f ] ,

-00 < X < oo .

This c.d.f. has the form

(b5)

G(x) = <^(y) = oxp(-6^) ^
vrhero

y = (x-u)/p, -00 < X < 00 ,

and

(36) u = In a
, p = l/e

are its two parameters. The dis tribution ^ (y )

,

considered

as a distribution of the "reduced variable" y, has the

standardized parameters u = 0, p =1, and is called the

"reduced distribution".

The form (B5 ) is another of the three asymptotic

distributions of extreme (smallest) values, sometimes

designated as Pi sher-Tippe tt Type I , This distribution

has been studied extensively chiefly by Professor E. J.

Gumbel, a pioneer in the field of extreme values (e.g.,

[6, 7 , 8]). Its full designation is "the asymptotic

distribution of smallest values", and it is closely related

to the one for largest values usually treated. Either of

these is a distribution of extreme values. However, since

only the one for smallest values will be applied in this
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report, the "ex trene-value distribution" will be taken to

refer to the smalles t-values case, unless otherwise

specified

.

From the above discussion it appears that procedures

relevant to the extreme-value distribution (B5) rather

than the normal distribution are called for. Fortunately,

a mathematical basis for such procedures was recently

developed by one of the authors of this report, and has

been described in detail, Lleblein [11].

There were additional considerations which led to the

use of methods based upon the extreme-value distribution

rather than a method based on fitting a straight line

equation of the type (B3) by a least squares mxethod.

In fitting equation (B3) the variable x = In L is

obtained from the known data. However the variable y,

measured through the percentage failing, F, presents diffi-

culties. The problem of hovj to plot F is knovjn as the

problem of "plotting position". Solution of this problem

is essential to the use of least squares since least

squares requires pairs of data (x,
, y^ ) , i=l,2,.,.,n,

whereas, the observations provide only the x^ directly.

The values
y^

needed can only com.e from the plotting

positions adopted for F.

.

It is clear that values, F. , of the plotted variable,

F, must som.ehow be related to the rank order of the bear-

ings as they fail. Thus, for the first bearing that falls
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out of a test group of 10, we have = 10 percent failed.

However, plotting the value .10 on the vertical scale on

the ¥eibull coordinate paper, or, in general, plotting of

the cumulative ratio f/n, where f is the rank order of

failing in a test group of n, is not recommended. Plotting

of this simple ratio h 0.s serious theoretical drawbacks.

These are indicated by Johmson in [9]> page 6, and more

fully discussed by Gumbel in [8], page llj , where he advo-

cates the plotting position of f/(n+l).-::- However, even

this is open to objection. Dr. Bradford F. Kimball,

another of the present-day experts in the field of extreme-

value analysis, has maintained in private correspondence

with one of the authors of this report that this plotting

position is subject to bias for some purposes, and recom-

mends still another, less simple, plotting position related

to the means of order statistics tabulated in Lleblein and

Salzer [ 12 ]. This, however, also raises certain diffi-

culties. Numerous other plotting positions have been tried

and discarded throughout the past several decades, and the

search for a satisfactory solution is still continuing,

a paper on the subject having appeared as recently as

December (see Chernoff and Lieberman [ 1 ]). The

This plotting position was also used by Welbull in [15

]

(cf. equation (73) and the vertical scale in Figures 3 and
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controversy over choice of plotting position thus by no

means can be regarded as settled.

Another difficulty with the use of least squares is

that as usually used it fails to take into complete account

the number remaining intact in incompleted tests. Since

many of the test groups contained intact bearings, it was

desirable to have a method vjhich could take the number

intact into account. Finally, it is to be noted that the

successive points are not independent, since they repre-

sent the observed lives in increasing order. A correct

use of least squares procedures vjould have to take into

account all the intercorrelations. This, however, is not

done in the usual application of ’’the method of least

squares” .

It was therefore deemed preferable to adopt an

approach that obviated the necessity of choice among a

number of controversial procedures. For this purpose the

order statistics approach mentioned above and outlined

below was already at hand as an objective basis upon which

to develop the analyses necessary for determining the life

estimates for individual test groups.

The method adopted depends on the use of order sta-

tis tics , defined as the set of observations in a sample

when arranged in increasing or decreasing numerical order.
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If the lives for a test group of n bearings are in

increasing size-order, so are their natural logarithms.

Hence the test in general yields a set of order statistics

= In L^; where

(B7) 1 ^2 - * * • - ^k+1 ^ * * • 1 " k < n ,

and k is the rank of the last bearing that fails before

the test is stopped, the remaining (n-k) remaining intact.

The potential lives x, x , vjhich would have been^ k+1 n

observed had the test been run to completion, are unavail-

able.

The k values x^ , x^,..., x, in (B?) constitute a12 k

censored sample . This is defined as one vjhere the total

number of observations (n) is known but information is not

available concerning some of them. The statistical method

used in this study for estimating rating life or

median life was to find a linear function of the order
hO

statistics of the censored sample, of the form

k
T = 2 w. X. ,

j=i

with weights w^ , which would in repeated samples (i) have

the true population value as its long-run average, and

(li) have sm.allest sampling fluctuation about this popula-

tion value. An estim.ating function with the first of these'

two properties is called unbiased

;

one having also the
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second is said to have minimum variance (from among the

cHass of such unbiased linear estimators). The search

for such "optimum" estimators is an im.portant part of the

statistical determination of an underlying population.

The development in [11] yielded procedures for obtain'

ing such estimators in the special case where all failures

can be observed, i.e., k = n. What was needed in the

present case was research directed to generalizing such

results to the case k < n. An outline of this latter work

was presented by one of the authors at the 17th Annual

Meeting of the Institute of Mathematical Statistics in

December 195^ • The abstract was circulated to memibers of

the Am.erlcan Standards Association working group on ball

bearings and is included at the end of this Appendix for

convenience

.

b. Description of extreme-value distribution

A description of the extreme-value distribution

(b5) together with an interpretation of its parameters in

terms of life estimates (or rather their logarithms) is

essential to an understanding of the application of the

method of order statistics in this report. It will be

seen that the problem, of estimating life is equivalent

to that of estimating the parameters u and p.

The parameters of the extreme-value distribution (B^)

are depicted in Figure 1. The quantity u is the position
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of the mode or highest point of the (frequency) distri-

bution. The quantity j3 is a scale parameter, analogous

to the standard deviation a in the case of the normal

distribution. In fact, p is /G/'k. (or, about 3/k) times

the standard deviation of the extreme-value distribution.

Although the tvro parameters u, p completely specify

the distribution, it is very useful to introduce related

quantities of the form

(b8) t = u + py

which are linear combinations of the parameters u and p

and may thus also be regarded as parameters when known

values are later assigned to y. Introduction of _t malces

it possible to estimate u and p simultaneously. Thus if

t can be obtained as a + by with a, b knox-jn and y arbi-

trary, then we can read off at once the values u = a,

P = b.

The parameter ^ has another highly important mieaning.

In Figure 1 the area F under the distribution to the right

of the ordinate erected at t represents the probability

that a value larger than ^ will occur. Thus t is a function

of F and may be x-ri?itten t as shown; it is designated the

"upper (lOOF)-percentage point" of the distribution. For

example, if F = .90^ then t = t represents a value of

X = In L vjhich will be exceeded by 90 percent of the
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population. This is associated xd.th rating life

(life exceeded by 90 percent of bearings) by the relation

(B9) ^.90 ^10 ^10 "

whore x represents life in logarithmic units. Similarly,

for median life,

(BIO) = in Lgg .

Since the t’s are regarded as parameters of the distribu-

tion, so also are x^^ and ^-^d therefore L^q and

These are not, of course, all Independent.

In general, we have the percentage point t v/hich,
P

expressed In terms of the original parameters u and p, may

be written in the form (b8):

(B8»

)

tp = u + pyp ,

where y is a quantity, depending only on the probability

P, determined as follows. We have from (b8')

(Bll
) yp = (tp-u)/p ,

i.e., y is the value of (x-u)/p when x takes the value

tp. But by definition of the probability F, in view of

(35) and (Bll),

(B12) F = ProbJ"x > t^l = G(t^) = $(yp) = exp(-6 ^) .
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Thus, solving for y , we obtain
r

(B13) j = In {-In F) ;

P

this is the reduced variable corresponding to the proba-

bility F, and may be obtained by a simple change in sign

from Table 2 of [13]

>

which tabulates the function

-In (-In ,

where ^ ,
a probability, takes on values from 0 to 1 . Thus,

(Bill)

for F = . 90 , 7-p
= - 2.25037 ;

for F = . 50 , y = - 0.36651 .

F

The above discussion shows that both x^q and x^q

(rating and median lives in logarithmic units) may be

determined once the general percentage point (BIO) is

estimated by giving the two particular values (Bll|.) to y
F

c , Conversion from largest to smallest values

The methods and numerical results developed in

[11] were for problems, such as maximum gust-loads on air-

planes, that required the (extreme-value ) distribution of

largest values. In order to adapt this material to the

distribution of smalles t values (b5) required here, the

relationships of sjvnmetry involved in the reversal of

direction must be examined with considerable care. To

avoid confusion, it is necessary to use subscripts L and S
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to distinguish between quantities related to the largest-

value distribution from those related to the smallest-values

case. No generality will be lost by use of reduced variates

and distributions throughout. Thus, in (B^), x will be

replaced by the reduced variate y, and, for typing ease,

the symbol G(y) will be used instead of ^(y)

:

(Bli|a) G(x) = $(y) = exp(-£^) .

From this, the ("cumulative from above") distribution of

smallest values is

(B15 ) Prob^Yg >
yj

= ^3(7) = exp(-c^) , -00 < y < 00 ,

where Yg denotes the reduced smallest value. The correspond-

ing distribution of largest values is (Gurnbel [8], page 21,

equation (I))

(B16 ) Probj’Y^ > y} = H^(y) =1 - Prob^Y^ < y^
= 1 - exp(-£"^) ,

-00 < y < 00 •

Comparison with (Bl5 ) shows that

(B17 ) G-g(y) = 1 - H^(-y) .

The corresponding relation for the density functions is

obtained by differentiation, with g„(y) = G'(y), and
S S

\(y) = H^(y):
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(Bl8) g (y) = h (-y) .

O ij

Hence the two distributions are merely mirror images of

each other. The moments of the distributions then follow:

(B19) B Eg(y*) = // y ggCy) =f i-j'

)

h^(y')dy= •

-OO '^-00

Thus, in particular, the means differ in sign, and the

variances arc identical:

(B20) y,5 = -r = .

These values are given, for example, in [8], page 23,

equation ( 3 . 27 ).

Finally, there are needed the corresponding relation-

ships betvxeen the order statistics for the two distributions.

Since the smallest-value distribution is a reversal of the

largest-value distribution, it is natural to reverse the

arrangement of the order statistics as well. This will

turn out to give simpler results. Thus we are Interested

in the i^^ order statistic in the series

(B21) S: y» > y’ > ... > y.' > ... > y’ ,1— —
:i.
— “n

A prime on order statistics or on functions of them (such

as u, V, h, in what follows) will be used as a reminder

that the order is descending , not ascending. Thus in Tables

B-1, B-2, B-3 the absence of primes indicates that the order

statistics are in increasing order,
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(B21) is the analogue of the series

(B22) (L)
: y < < . . . < y. < . . . < y

1 — — — 1 — — n

of order statistics in the large s t-value case. V/henever

a distinction is necessary the subscripts S or L will be

used x^ri th the y' s .

The first task is to express the distribution of the

i member of (S), with density function denoted by u’ .(y)>
S , 1

in terms of the density function, v . (y), of the correspond-
ij j 1

ing i^^ member of L. According to Wilks [1?], page 16,

equation (16) , and in view of the definitions of symbols

in (B15), (B16),

i-1

(B23)
[l-HT-(y)] [H^(y)]

,n-i

B (i ,n-i+l)

where 1-H,. (y) is used in place of P(x^^^) of the reference

and B denotes the (comiplete) Beta function.

The reference cited gives the density function for

order statistics in ascending order. For the case of

descending order, it is only necessary to replace i by

n-i+1 in the cited equation, giving

(B2l|) u' (y) = —£
;

L 8 (y)
B(n-i+l,i) S

Substituting (Bl?) and (Bl8) there is obtained

FOR THE us: OF THE A5^ LOAD RATING COMMITTEE ONLY, NOT FOR PUBLICATION





B-19

(B25) u’ . (y) =
0,1

h (-y) = V (-y) ,

B (n-i+1, i

)

by (B23) and the fact that the Beta function is symmetric

in its arguments. Thus, the density functions for the

order statistics are related in precisely the same manner

as those for the original populations, namely, by merely a

change of sign in the variable
,
provided the sequence of

the order statistics is reversed .

Equation (B2^) yields immediately the following rela-

tions for the (pure) moments, covariances, and variances

of the order statistics, analogously to (B19)*

In words, these relationships are quite simple: the even

moments remain the same; the odd moments change only in

sign. This holds true for the order statistics as well

as for the original extreme-value distributions.

It is to be remembered that the primed quantities,

involving S are for order statistics in descending order;

(B26)
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those- wi thout priir:es , involving L, are for order statistics

in ascending order.

The above development shows that the numerical results

for moments of order statistics previously obtained in [11]

for the large s t-value case can be used here for smallest

values -without any substantive change.

3 . Method of order statistics

a. For small samples

Returning to the order statistics method for cen-

sored samples, the problem may be stated as follows. An

independent random sample of n items from, the distribution

of smallest values is taken, of which only the k smallest

values can be observed. In vievj of the preceding discussion,

it is desirable in the theoretical development to deal with

the order statistics in descending order:

(B27) (x» > x» > . . . > x» > )
x» > ... > x« ,

1 — 2 — — n-k — n-k+1 — — n

x^rhere the parentheses denote the (n-k) (largest) unobserv-

able values, and the remaining k values are kno-wn. Primes

will be used to denote descending order to distinguish from

ascending order vjhich vjill occur in the later parts of this

section.

From the k knox-jn values it is desired to determine an

es tim.ator

(B28) T' ,
= w»x»

,
_ + w'x'

, ^ +
n,k 1 n-k+1 2 n-k+2

+ w ' X ’
,k n

k < n
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(i.e,, determine the weights w'. ) of the general parameter

(B29) ^

of the extreme-value population (b5)> such that T' in (B28

)

is (i) unbiased and (ii) of minimum variance. Mathematic-

ally, this means respectively, that

(B30) E(T») = t ,
F

where E denotes mathematical expectation, and

(B31) Var(T') = a minimum

subject to the above condition.

From (b5 ) y

(B32) X = u + py

where y is the reduced variable and x the observed variable.

The corresponding relation for the order statistics x^ and

7^ is

(B33) x\ = u + pyi , j = n-k+1 ,n-k+2, . . . ,n ,

J J

where

(B3I1-)

and

x» ^
>

n-k+1 — ^n-k+2
> x»— n

(B35) V J >
•^n-k+1 - ^A-k+2 ^ •^n
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From (B33) it follows that

(B36) Eg(x».) = u + pEg(yj) ,

since u and' p, though unknown, are constants not subject

to sampling variation ^^7hen the operation of expectation is

performed. Fae values E^(y*. ) may be obtained with the ai'd

of the table in [12]. This table gives the values of E (y’

)

L ^

where the order statistics y^ are in descending order (as

indicated by the prime); the means needed in (B36) are

therefore obtained as

(B37) E (yi
)

= - E (y' )

S L '^n-s+1^

The reference gives the values of E (y') for r = 1 (1 )min (n, 26 )

,

E r

n =1(1)10(5)60(10)100.

The relation (b30) gives, in view of (b28) and (b36),

k
(B38) E(T') = Z wt[u+pE(y' )] = t = u + py .

]=]_ J n-K-fj r p

This is required to be an identity for all values of the

parameters u, p. Equating their coefficients gives the

two conditions on the weights wl

:

j

k
E wt. = 1

j=l ^

(B39)
k
2 (Ey

' T ,
.)w». = y„ ,

j=l
n-k+j' J

"
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where the numerical values Ey»
, .

. may be obtained from
^n-k+j

[12] as already indicated.

For the variance condition (B31)> we have, in view

of (B28),

2 .2 2
k k

(bI]-0) a„(T’) = 2 w‘. a (x' ^ .) + 2 2 w*w'.a(x» . ,x
» )

s' ^
j n-k+j' .^-1 1 j n-k+i" n-k+j'

j=l i=l

From. (B33) we have

2 2 2 .2

(Bill)

a (xl) = (3 a (yl) = p o

a(x»,x') = p^a(y',y') = p^o’
r s r s rs

Hence the condition (B31) becomes

(bI]2)

2 2 2 Cn)’ 2
Var(T») = [2w». o»

, .
+ 22'w.»w'.o«

, . ,
.]3 = V, ' p

j n-k+j 1 j n-k+i,n-k+j k ^

= minimum subject to (B30).

Ihis is a constrained minimum nroblem for variation in

the unknovm w., and is equivalent to finding the (uncon-
1

strained) minimum of

J J ^

cl J

where X-j^, Lagrange multipliers. Since p >0 is

constant, though unknown, this is the same as minimizing
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(Bljll-) M =
M.

— = Sa' , ,
.w >. + ZE’o'

,

.wjw»
2 n-k+j j n-k+i,n-k+j i j

?.(2wt.-l) + p[2(Ey^_^_j_^.)w». - y^]

2
where X = X-]_/[3 >

~ • Setting the derivatives

with respect to wl,
y

dividing by 2 gives

with respect to wl, j=l,2,,,.,k, equal to zero and
J

2 ^
w' 4- w- + A + . = 0

iA ....
J

— 1. f 2 f ^k «

For each fixed value of k < n these are k linear equations

which, with the two in (B39)> form a sim.ul taneous system

of (k+2) equations in the (k+2) unknowns w’ ,w* , . . . ,w *

,

12 k

X, Ihe values of X and
p

are useful as a check, since,

if (b 4-5) is multiplied by w. and summed for j=l,2,..,,k,
J

the result is, in view of (B39) and (b[|2) ,

(b1i6)
(n)

’

k,min
V: '

.

+ X + pY„ = 0
'F

that is , we should have

(Bli?) Tr (n) ’ _ .

k,min P^F

The minimum value V.
(n)'

. will be denoted by Q1 ,k,min ^,k
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In general , there will be a set of (k+2) linear

equations to solve for each k=2, . . . , n . To avoid cumber-

some notation the case k = n will be discussed first and

the case k < n then referred to in terms of it.

(i ) Case k = n. For k = n. the matrix of coeff i-

cients and right-hand ’ constant terms" of and (B39)

is the (n+2) x (n+3) matrix

a *

11
0 ’

12
• • • o ^

In
1 Ey 0

o’
21

a '

22
• o o Q ^

2n
1 Ey^ 0

(b1|8) =

•

•

•

•

•

o

•

•

•

•

•

•

•

•

•

•

•

•

o »

nl
a’ ^n2

... a ’

nn 1 Ey'
•^n

0

1 1 ... 1 0 0 1

Ey*3_ Ey^ ... 0 0

Ihe ordinary (n+2) x (n+2) matrix of coefficients, without

the constant terms, will be denoted by o If P denotes

the vector column of constant terms, then

(B49) r„] ,

and the linear system of (n+2) equations may be denoted
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(b50)

where Wf denotes the column vector of the (n+2) unknowns

Before solving the set of equations (B^O) its coeffi-

cients must be evaluated. The means Ey'. have been tabu-
- J

lated, as already mentioned. The variances and covariances

involve complicated integrals that have been evaluated in

terms of simpler functions, Lieblein [10]. The numerical

values of the coefficients are shown in Table B-1 for

n = 2 to n = 6 . While this table is primarily for the

smalles t-value case, it can also be used for the larges t-

value case in the manner indicated. In the smallest-

value case the order-statistics ane in descending order,

and therefore primed. The means E„(yi) are for the
O 1

£malle st-value case, a fact denoted by the subscript S.

In the larges t-value case the order is the reverse,

ascending, but the same column can be used for the means

The (n+2) solutions of (B50) are all expressible

linearly in terms of the comnonents of Thus the solu-

tions all take the form

, , . ,w^,X, p.

E- (y,

)

provided all signs ape reversed:
1j X

E^(yi)
= - E^(yp .
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w ' = + b ’ y
j j j F

(b5D \ = + d'j
1 IP

p
= =2 +

Substituting these w'. in (bIi2) gives an expression of the
J

form

may be found from Table B-2 in a manner to be discussed

under the case k < n. The coefficients B^, of

0^ and the values 0^ evaluated at P = .90, .^0,

found from Table B-3»

The solution of the system of equations became

increasingly lengthy for increasing values of n, with

correspondingly diminishing yield in the number of decimal

places. On the other hand, the "efficiency” of the result

(see below) increased as n increased, so that at n = 6 it

had reached useful levels for prac.tical purposes, Por

these reasons calculations were not pushed beyond n = 6

in the present study. Methods for larger values of n

will be taken up subsequently.

(352 )
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Table B-3 shows that as sample size increases from

n = 2 to 6 (in the case k = n) , the variance diminishes

as regards the percentage-point parameters t for P = .90

and * 50 , i.e., t = ^ = In L ^ and t = = In .
' F 10 10 F 50 50

This is a common characteristic of the behavior of esti-

mators for increasing sample size. Another method whereby

estimators maybe compared is through their "efficiency”.

Efficiency is a measure intended to provide a con-

venient standard of comparison for estimators. This is

done for two estimators to be compared by dividing the

variance of each into a theoretically specified variance,

known as the "Cram^r-Rao lower bound". Further

details in the case of complete samples where k = n, as

here, m.ay be found in [11], pages 1 I4. and 1^; values of

are also indicated in this reference in Table Ill(a).

Table B-4- shows the efficiency values so obtained,

for the case k = n, n = 2 to 6 , as regards the order-

statistics estimators for the parameters = In

^=50
= ^50-

These values show that as regards the efficiency,

starting with under 70 percent for n = 2, increases rapidly

until 89 percent, out of a possible maximum 100 percent,

is reached for n = 6* A 90“P©^cent efficient estimator is

generally considered to be very good. As regards x^q

(P = . 50 ) j the efficiency is well above 95 percent for all
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the values of n, sind for n = 6 exceeds 99 percent. In

view of results of this nature, and because of the heavy ccsnpu-

tations necessary, calculations were not carried beyond

n = 6 in [11 ]

.

The above applies to estimation of the parameters x^^

and which it will be recalled are the logarithms- of

the actual life estimates L^q, It is believed that

efficiency of the method of order statistics in obtaining

estimates of actual life L-j^q, L^q is probably not unreason-

able, in view of its high efficiency in estimating the

logarithms, x^^, x^^.

(ii) Case k < n . For the case k < n, the procedure

is very similar. One starts with a (k+2) x (k+3) order

matrix derived from in (b1i8) by striking out the

first (n-k) rows and columns. Thus, when k = n - 1, the

matrix of the linear system in (n+1) variables to be

solved is

(B53) =

°zz

Ey^

a^n 1 Ey^ 0

a ’

nn
Ey'

n

0 0

Ey^ 0 0

0
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etc. until when k = 2 it becomes

(b54) Jt =^2

a ' a’
n-l,n-l n-l,n

o'
n,n-l

a '

nn

Ey,
n-1

Ey
n

Ey.
n-1

Ey'
n

0 0

0 0

0

0

representing a set of 4- equations in I4. unknowns.

This procedure is convenient for high-speed automatic

computation, since the master matrix can be read in

for each n, and the matrix for each value of _k then ob-

tained by the machine from the one for the preceding value

by successively deleting rows and columns starting with

the first row and columno It is thus not necessary to

feed in the n-1 separate matrices (corresponding to

k = 2,3,...,n) for each value of n. The resulting weights

w». and variances Q* ,
were obtained in similar manner to

J n,k - -

those for k = n in (B^l)^ (b52). These, it will be recalled,

are primed quantities, associated with descending order of

the order statistics. Since, however, the observations,

X, for successive failures naturally arise in ascending

order, it is more useful for actual application, in

contrast to theoretical development, to tabulate the

FOR THE ua: OF THE LOAD RATING COMMITTEE ONLY, NOT FOR PUBLICATION





B-31

weights and covariances for the order statistics in

ascending order. This has been done in Table B-2, giving

the weights w^ = a^ + h^y^ , and in Table B-3> giving the

2variances = Ajp + Bjp + C for the estimators T^ ^

formed with the above vjeights , and also these variances

evaluated as regards the parameters x = In ^

,

X = In The relationships of these unprim.ed

quantities (smallest values--ascending order) to the

primed ones (smallest values--descending order) of the

previous theoretical development is merely a reversal of

the order throughout, as indicated by subscripts: i.e.,

every aj is changed to the corresponding a^ . and

similarly for bj and w^ . The variances Q remain unchanged,

by the following reasoning. Since the reversal of order

changes xl into x . . , that is x* > x» _ > .,. > x>

into x-^ > ^ ^ ^2 — ^1’ ^hich is the same as

the sum of square terms in the variance of

< X-, in Tables B-2 and B-3^ it follows that

^,k = 2 wt X,

J n-k+j

in (bI+0) becomes
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X • 0 •

of T
]

sum.

3

2 2
the corresponding sum 2 w a (x ) in the variance

r=l ^ ^

k
= 2 w.x and similarly for the cross-product

,k 1 j

Thus all variances Q remain unaffected.
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b. Extension to larger samples

The key to handling samples of more than six items is to

break them up into independent samples of 6 with a remainder sub-

group, if necessary, of from 2 to 5 items. Since, however, the

endurance data were arranged in increasing order of life, independ-

jsnt random subgroups could not be obtained by simply taking groups

of 6 in the (numerical)order in which they appeared on the work-

sheets. It was therefore first necessary to randomize the endur-

ance lives on each data worksheet. This .was accomplished by use

of random numbers which were generated in the electronic computer

(the SEAC) as needed.

Such randomization is not desirable when it can be avoided,

as it may lose information embodied in the order of the bearings

under test. It is therefore reedmmended that whenever a group of

bearings are placed upon test machines for simultaneous testing^,

a record should be kept of their order of placement, or order of

manufacture, or some other meaningful order that could be considered

to be random. Then the fatigue lives will also represent a series

in random order, and 'it is in this order that the endurance data

should be available for analysis. If any need should occur for

ordering the fatigue lives in increasing length, this can then be

obtained, but the original order will be available if needed.

The original order will not be necessary, however, if calcu-

lations of the weights, etc, would be extended up to the number

of bearings in a test group, such as n = 20, In that case it would

not be necessary to use subgroups and the sample could be treated

as a whole.

In the present investigation, however, subgroups were neces-

sary, as indicated. Each subgroup was treated as a random sample

by the methods already developed for size 6 or less. That is, a

’’sub-estimator” was calculated for each subgroup and the results

averaged to produce an over-all sample estimator.
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An estimator, both for the individual subgroup and for the

overall sample^ was obtained for each of 4 population quantities

s

^.90 ^le
- in - u + ,

(B55)

^,50
“ ^50 “ ^50 “ ^ ^c50^

For subgroups, these four parameter estimates are given by (caret

denotes ’’estimate of”)

k
^ \

u " i5; ®i*i

(B56) *10
• " + y,9o

y.90
- -2,25037

^ k

' ^ i£i ‘>1*1 '

*50
"

'‘'n.k^SOj- + y_50 %

, y^5Q* “•0^36651;,

where < Xg < ••• < Xj^, 2 < k < n < 6, are the logarithms of the

actual observed lives in a subgroup arranged in ascending order,

the a^ and b^^ are read directly from Table B-2, and y and y

were given in (Bl^). For the overall sample estimator, the sub-

estimators T are merely averaged, as already noted,
n, jc

For later use (APPENDIX C) the variance of the overall esti-

mator T and its relation to sample size will be considered here.

Consider first the case of a complete sample—no intact bearings

are present because the test is run to completion. Let n be the

sample size. There are two cases, according as (i) n < 6, or

(il) n > 6.

(i) n < 6. Table B-3 gives the numerical variances,

and Q^Qt n •> 2 to 6. These values are plotted in Figure 2 on

double-logarithmic paper. The values for are seen to lie on

a straight line of slope unity. This shows that in this case,

variance Is ilnversely, proportional to sample size . For the other

case, Q^q> a straight line also gives a reasonably good fit, and

its slope appears to differ only a little from unity. Hence the

underlined statement is approximately applicable here too.
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(ii) D > 6 o Larger samples are broken up into subgroups

and an overall estimator formed by taking a weighted average of

the sub-estimators as already described , It will now be shown

that the underlined rule holds here as wells If the variances

of a set of independent quantities formed for different-size sam-

ples varies inversely with sample size, so also does the vari-

ance of a weighted average of the set, weighted by sample size.

L^t T denote the given set of quantities formed for sample

size n., i = l,2,,o,,t and let the variances, by assumption, be

(T ) n
i » 1.2^ ^ y o o ^ ^

where A is independent of sample size. Denote the weighted aver-

age by
t /n. \ t

T = T , n.
n i“l N n. ' n.^ i*=l i

n,

Then, since the are independent,

2

a® (f^) - 2 0* (T^ )

i.e,, the variance of formed for a sample of n is also inversely

proportional to sample size n.

Thus the desired relationship is demonstrated, to a reason-

able approximation, for complete samples of any size.

When a sample contains intact bearings, so that we have k

observed lives out of n, k is defined to be the "effective** sample

size. Study of the variances in Table B-3, along the lines of

that above for complete samples, indicates that for incomplete

or censored samples, variance varies approximately as effective

sample size, provided the number of intact bearings remains the
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sameo To the extent that the number intact varies in the differ-

ent subgroups of an over-al,! sample the relationship of variance

to sample size would depart from that in the more simple situa-

tion, However it is felt that in most of the cases the relation-

ship, variance inversely proportional to effective sample size,

holds siif f iciently to be adopted as a working rule. In that case,

the weights used in the regression analysis, which are proportional

to the reciprocal of the variance, would merely be effective sam-

ple size. However, in the interests of simplicity, the total

actual, rather than effective sample size was used in weighting.

But since the actual weights used in APPENDIX C were obtained by

reducing by a factor of five, it was felt that the difference be-

tween effective and actual sample size would not significantly

affect the analysis.

Two complete runs were made on the SEAC for each of the 253

test groups of data and the two results were averaged for each

group, giving values of the averages

(B56) u,
90

= In L
lo- se

In L
50

From these, the values of L10^ L
50

were obtained from a table

of exponentials and the Weibull slope e ® 1/^ obtained as a con-

sequence of formula (65) An example showing the steps in calcu-
1

lation of L^q, e is discussed below.

In determining the number of runs necessary to minimize the

variation due to randomization, the following considerations come

into play. The effect of randomizing the individual results within

a test group is to introduce an additional source of variability.

Consider the average value In (o,r In L^q, etc,), an estimate'

which is made up of (say) r values of In (or In etc,),

each value obtained from a different randomization of the same

data within a test group. Then the variance of this com-

bined estimate is made up of two additive components as follows
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4-

b
r
r

The component is the sampling variance^ namely^ the variance

if randomization were not necessary (such as if the individual

test results had already been given in some order considered ran-

dom)^ is the variance introduced by randomization^ It is to

be noted that as r increases (many randomizations) the component

of variation due to randomization, decreases, whereas 0
^

is not affectedo

For these purposes, only ragh approximations were necessary,

and they were obtained by making a few trial runs on each of sev-

eral sets of data, giving “ 0o4, « 0o5o Thus02 « 0o5,
r

«= 0 o4 4- ——
. ,r *

which gives the following approximate values of the standard de=

viation, 0 , for 1, 2, and 3 randomizations or runss:

Percentage improve-
r 0 ment over single run

1 0 0 95

2 08I
14 - 15 per cent

3 o 75
^jfi

® 21 per cent

This indicates that the greatest improvement in precision came

from making a second run, and the additional improvement from a

third run did not^ seem to be worth the effort 0

c

,

Worked example

The example that will be given to illustrate the fore-

going procedures will be the one that was worked out as a ’’test

problem” for the SEAC before using the full set of data. The

test group selected for this -purpose was that designated ’’Record
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NOo 1-1” in Table A-1, for SKF deep groove bearings. The test

group consisted of 24 ball bearings. Bearing No, 6309, of which

4 remained intact when the test was discontinued. The details

of the computation for obtaining values of ^
50 ^ Weibull

slope e from the test group of data are contained in Table B“5

and described in the steps below.

The endurance lives in observed (increasing) order are

listed in column (1), The arrows indicate the four "run-outs”,

or ”intacts”, whose testing was discontinued at the number of

million revolutions indicated. All that is known about these

four bearings is that their fatigue lives exceeded the values

shown.

Step 1. Randomization . The order of endurance lives in

column (1) was randomized by use of a set of random numbers gen-

erated in the SEAC as part of the computation work. The result

is shown in column (2) of Table B-5,

Step 2, Subgroups , The lives in randomized order were

divided, as shown by the lines of separation, into subgroups of

size n = 6, the maximum size for which the order^sta t ist ics

weights had been computed.* Each subgroup was then prepared for

the application of the order-statistics method by rearranging in

increasing order (column (3)). Natural logarithms were theu

taken as in column (4).

Step 3. Weights , Each subgroup was regarded as consisting

of k actual observations out of a censored sample of n. It

happened here that n was 6 for every subgroupi k took the values

6, 5, 6, 3, These values are shown in the subscripts T , written

in column (4), and they determined the weights a^ and b^ to be

selected from Table B-2. These weights are represented in columns

(5) and (6),

Since sample size 24 is an exact multiple of n ^ 6, it so

happened that there was no "remainder subgroup". This will not

usually be true, but the procedure is identical for other values

of n, differing merely in the numerical weights to be used.
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Step 4o Cross-products , The cross-products

k k

T ,
= .2, a. x.j .2, b. x. were then evaluated and placed

n,k 1=1 1 1=1 11
as shown for each of the subgroups

o

Step 5o Estimates , A simple arithmetic average of the four

values was taken for each of the two columns (5) and (6), and de-

noted by ^ ^ > respect ively o These are the order-

statistics estimates of the two parameters u, /8 of the extreme-

value distribution which represents the underlying Weibull dis-

tribution.

The reciprocal of /fi yields the Weibull slope e * 1.32497. (A)

The logarithmic life estimates were given by following linear

combinations of the estimates u and using the given values of

^. 90 " ^. 50
°

“In • u -2.25037 y® = 2.982305 (B)

x-Q = In Lqq “ u -0,36651 P - 4,404120 (C)

/V

TJhe rating life “ antllog (base €> “ 19,2333,

/\

The median life “ antilOjg (x^q) (base €) * 81,7872,

These three values (A), (B), (C) represent the outcome of the

calculation. Convenient methods of finding confidence intervals

for the population parameters L^q discussed in APPENDIX D,

In the full-scale computing
•
program^ calculations were carried

out by the SEAC to a larger number of places than is shown in the

table for presentation purposes. In general, however, the number

of places shown here should be adequate.

The values L^q, and e shown here differ slightly from

those recorded in Table A-1. The reason is that after all calcu-

lations for all companies were completed, an entirely independent

FOR THE USE OF THE A6/1 LOAD RATING COMMITTEE ONLY, NOT FCR PUBLICATION





B"40

second calculation was run using different random numbers, and

therefore giving another set of values. This not only served as

a check on the first run, but also made it possible to eliminate

much of the variation in results due to randomization by averag-

ing the two determinations in the manner already mentioned. It

may be of interest to compare the results of the two runs in this

examples

ho ^50 e

1st run 19,73 81,79 1.325”

2nd run 18,62 87o31 1,219

recorded
value

(Table A-1)
19,2 84.5 1,27

It should be noted that the recorded value was not obtained as a

simple average of the two runs shown. The average was taken of

their logarithms or reciprocals. The recorded values therefore

represent the geometric mean in the case of and and the

harmonic mean in the case of the Weibull slope e.
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SYNOPSIS OF APPENDIX B

1 4 The Weitaull distrltiutlon

This distribution is described and two types of reasons are

discussed for choosing this as the underlying population for

fatigue life of ball bearings,

2 o The extreme-value distribution

aV Relatiop to Weibull distribution

This relation is the consequence of a simple logarithmic

transformation. The reasonableness of the extreme«va liie distri-

bution (for logarithm of life) is discussed in comparison with

the use of the normal distribution by some authors. Reasons are

also discussed for the use of this distribution as a basis for

estimating life in preference to a ’’least squares” type of pro-

cedure commonly used

,

b. Description o f extreme-value distribution

Here are discussed several useful parameters (not all inde-

pendent) of this distribution and their relationship to the con-

cepts rating life^ and median life^ ^50°

c , Conversion from largest to smallest values

This discussion is necessary in order to be able to make

immediate use of previous results in extreme-value analysis. By

a careful choice of orientation of the order statistics^ i,e,, to

rank them in descending order for smallest values and in ascending

order for largest values, it becomes possible to take advantage of

very simple relations between the distributions of largest and of

smallest values and their related order statistics. This solves

the problem for the case of complete or uncensored samples,

3 , Method of order statistics

a. For small samples (i,e,, n < 6)
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SYNOPSIS (Con t
' d

)

For a censored sample (k < n), the minimization procedure is

described that yields the "optimum'’ (this term is defined in the

body of Appendix) estimators of the various quantities (parameters)

of interest r p ^ In In For purposes of tabulation

for convenience in applications, the necessary weights and vari-

ances for the estimators are rearranged so that they can be used

with the observations in increasing ordero The relevant tables,

B-1 to B-4, are explained in detailo

b. Extension to larger samples (n > 6)

For larger samples than 6 the procedure is to act as though

one had started with the appropriate number of separate samples

each of size 6 or less, make the required calculations upon each,

and average the results. Care should be taken that the separate

samples should be independent. This is not the case, for example,

when the over-all sample is already arranged in ordei^ in which

case randomization is necessary. This situation should be avoided,

whenever possible.

It is also shown, for use in APPENDIX C, that with minor ex=

ceptions, variance varies inversely with sample size, and this

relation is a good general working rule,

_ c , Worked example

A complete example is worked through in detail, taken from

an actual test group in the data, and the results of the various

steps shown in a concise table, together with the final outcomes.
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ABSTRACT

"Estimation from ’Censored® Samples of Extreme Data,” Jo Lieblein
National Bureau of Standards

In a previous report (NACA Technical Note 3053, [11]), the
author has obtained unbiased rainimum=variance order statistics
estimators of an arbitrary linear function of the two parameters
of the extreme-value distribution with Codofo P(x) ®

exp[ ”exp[ “ (x-u)/^ ]], These estima^tors are "optimum”* within the
class of all linear functions of the order statistics of a sample
of given size n. The present paper extends these methods, to-
gether with the necessary tables, to the case of a "censored"
sample, defined as one where the total number of observations is
known but full information is not available with regard to some
of them. For example, in fatigue testing, the test may be dis-
continued before all test’ specimens have failed, so that the en-
durance lives for the "intacts” are not available. The method
is applied to an example of fatigue-life testing of ball bear-
ings.
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TABLE B=2

Weights for the order-statistics estimator for the parameter

tp=‘u+ p7p of the extreme-value distribution (smallest values) from a

censored sample of n= 2 to 6j where only the k smallest values are known

^1 £ ^2 £ £ ^k^

— + bj

k = 2 to n

n k X2 X3 ""5 ^6

2 2

1

e 0836269
- .72131^7^

.9163731

.72131+75

3 2

3
b^
1

» »3777001
- c 8221012

oOQl966h
- e37lt725l

1«3777001
.8221012

*2557135
- .2558160

,6563201
,6305lai

h 2

3

h

b^
1

a.

- .706319U
- a 869011+9

- .08010^7
- *1411+3997

.0713800
- ,21+8796^

1.7063191+

.869011+9

.0601+316
- .3258576

0I536799
'- .2239192

1.019671+1

.71+02573

,26391+26
- *0859035

.5109975

.5586192

5 2

3

h

5

- ,9^98627
- .896281+0

- .210111+1

- .1+31+3U19

- .01^3832
- .27303U2

.0^83502
- .181+1+826

1.9598627
.896281+0

- 0O86023I
- .36I+2I+63

.051961+2
- .21+991+29

.1088236
- .1816561+

1.2961372
.7985882

0I520750
- .11+91091+

.1676091
- .1301+531+

.81131+1+0

.6720865

.21+62831
- .0065351+

,1+18931+1

.5031278

6 2

3

k

5

6

-1.16^5650
- .911+13^8

“ *3153968
- 0 1+1+6601

8

- .0865378
- .285861+7

0 0057311
- .20151+31

«Ol+88669
- .11+58072

2.1655650
.911+1358

- .2031+315
- .38861+92

- .0280531+
- *2651+739

.01+65729
- .1972753

.0835221
- .11+95332

1.5188283
.8352510

.061+9390
- .1858756

0IOO2523
- .15360I+O

.1210527
- .1267277

l.Ql+96521

.737211+2

,1722781+
- .061+5891+

.1656192
” *0731937

.6751653

.6170118

.2251+909

.0359868
.3551+1+81

.1+592751
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TABLE B»3

inVariance Q„ , B of order-statistics estimator T , , given
11^ K* 11^ iC

Table B-2, and its numerical values ” S.0^ ^n
”
^^0

for estimators of parameters t^pQ=Xj_Q =ln Lq_q, t^^Q=x^Q=ln L^q g

r

respectively, for a censored sample of n=2 to 6* Variances in units of p

“n,k
= Ay| + B:

5
,+c*

x^^X2-£_..«£3Cj^, k = 2ton

n k A B C
S.0 %0

2 2 »65951i67 *06U3216 *7118571; 3.975015 ,708021

3 2 « 9160386 ,1;682U6^ .818365U 2,952920 .682735

3 ,U028637 - ,02ii7719 *3U1;7117 2*260033 .U67327

h 2 1,33U0189 *7720298 *8670220 2 *250056 ,881+572

3 -li331^73 0II80273 *3922328 1.888278 .399329

o293U587 - *03^6903 *2252828 l*590l;60 .31+9150

5 2 Ic7891720 1 *0115^91+ ,895oU62 1*769068 1.167910

3 0^293953 c 235371+0 *ia68l55 1*580861 ,la2852

U c29l8lii2 *0385708 *2537913 l,i;03U58 .297633

.23139S3 “ 0O339905 0I666U72 1*228307 ,278697

6 2 2o2iji;0055 1*208221^8 *9132926 I.h31l6k 1,1+81035

3 »6529li09 *33321^88 J1321160 1*31^381 ,1+66709

ii o3237l8^ 0I020223 *2697162 l*230l;30 ,285165

*2236063 *0105329 *1861069 1,118677 *21+0885

6 c1911738 - *0313731 *1319601 l*00061;li ,231897

For 0^^, 7p
= ”2.2^037 | for

Q^g
366^1 .
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TABLE B~l4.

Efficiency of order-statistics estimator of

logarithmic life x^q = In and x^q = In L^q

for complete samples (k=n) of size n=2 to 6

n
Efficiency (in percent) with respect to

^0 " ^0 xjo = In Ljo

2 67o2 97.U

3 78,8 98'o3

h 8ii,0 98o7

$ 87oO 98o9

6 89cO 99a
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TABLE B-5

Escainple showing use of order statistics method of computing values

of L^q, e from endurance data for a given test group

»

Test Group No<» 1-1, SKF (Deep Groove) Bearing No, 6309

Endurance, million revs.

Observed
Order

Randomized
Order

Ascending
Order

Within
Subgroups

Natural
Logarithms

X.
1

Weights

a, b.
1

(1 ) (2 ) (3 ) (U) (5 ) (6)

6o0

8.6

17.8

18.0

27

33.^

119.0

138.0

llj.6,0

Ig^O

27.^

69.0

27.5 x^ = 3.31ia9 0,0ii8867 -0.1ii5807

69.0 X2 = li. 231^11 ,083522 - .1U9533

119.0 X3=ii, 77912 ,121053 - 0I26728

I380O X|^ = 1^.92725 ,165619 - .07319U

1U6 0 0 x^=U. 98361 .225U91 .035987

151.0 =5.01728

k

.355Uii8 .li59275

k

’'6,6
* = 1*0 817310, 2b. Xj = 0,U00992

( 1 1

50.

^

51.

^

69.0

7k.

0

7h.O

89.0

(150.0 )-»>

8,6

51.5

89.0

109.0

6,0

6,0 Xj^ =1,79176 0,005731 -0.2015U3

8,6 Xg = 2,15176 .0ii6573‘ - .197275

51.5 X3=3.9ia58 ,100252 - ,1536oU

89.0 X|^ =itoU8861i

x^ = U.61935

(^6)

,172278 - ,06^589

109.0

(150,0 >>

.675165 ,617012

k k

^
“ hohh6363s = 1,213655

109.0

118.0

119.0

138.0

1111.0

lUU.o

7U.0

118,0

lia.o

18,0

33.5

llUi.O

18.0

33.5

7ii.O

118,0

liil.O

IUI4..0

X]_ = 2,89037

X2 = 3.51155

=ii,30i|07

X|^=U, 77068

x^ = li„9U876

x^ = U, 96981

6,6

k
Sa^x-«
( 1 ^

Same as for

first subgroup

k
U, 628081, 3d^x^ = O.619I440

Continued next page
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TABLE B-5, continued

Example showing use of order statistics method of computing values

ho’ ho’
from endurance data for a given test group.

Test Group No, 1-1, SKF (Deep Groove) Bearing No. 6309

Endurance, million revs.

Natural
Logarithms

WeightsObserved
Order

Randomized
Order

Ascending
Order

Within
Subgroups

a.
1

b.
1

(1) (2) (3) ih) (5) (6)

lli6«0

(iSo.o^-

iSi.o

(153.0)

-*

(153.0)

-

(153.0)-

17.8

(15340)-

(153.0)-

(153.0)-

50.5

7lt.O

17.8 = 2.87920 -0.315397 -0.14i6602

^0c5 Xg =3.92197 - ,203ii32 - .3886U9

7U.0 x^=l;. 301^07 1.518828 . 835251

(I53 o0>> (x^)

(153 oO)-^ (x^)

(I53o0h (x^)

k k
T, f Sa.x. = U. 831197, 2b. x, = 0.78W53
6,3 I

1 1 '
/ 1 1

T^ = U.680738 Tg = 0.7^1^735

SUMMARY

= u = U, 680738 Tg = p = 0.75ii735 e = 1/p = 1<,32U97

y = -2.25037
.90

y ^Q- "0.36651

= In = u + p = 2„9823C^, I^O = 19o7333

= In L^q = u + y^^Q p = U.liOiiiao, L^q = 81.7872
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Density

function,

g(x)

-

G'(x)

Figxjre 1. General form of extreme-value distribution (for smallest

values) showing relationship of parameters t^, x^Q = ln L^q>

and x^Q = In l^q, to u and p

.
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Figure 2o Relationship of variances and to sample

size n for n = 2 to 6 (double-logarithmic scale )o

0^^
is variance of estimator of = In

is variance of estimator of = In

2
(All Q*s are in units of p .)
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APPENDIX C

EVALUATION AND ANALYSIS OF THE UNKNOWN PARAMETERS IN THE LIFE
EQUATION WITH RESPECT TO COMPANIES AND BEARING TYPES

1

Summary

Equation (2) of the main text^ namely

rf
*1 *2

Z D
c a

.1 cos c/

^3 ^

]
L ?

expresses the dependence of fatigue-life L on the design character^

istics of the bearing (Z, D , i, andot), the bearing load P, and

the ’’workmanship factor” f This appendix outlines the statis-^

tical methods that were used (a) to determine ’’best” empirical

values for the parameters f^. a^, ag# and p of this life formula

(b) to derive the associated intervals of uncertainty, and (c) to

answer various questions about the values of these parameters, from

the basic endurance data furnished to us by the Committee, which

are summarized in APPENDIX Ao These methods are applied separately

in each case to the rating life ,) and median life va

derived from the basic endurance tests data as described in APPEN=

DIX B,

Section 1 outlines, and summarizes the application of the

statistical methods used to determine best empirical values, and

intervals of uncertainty, for the parameters f^, a^, 2L
2 » and p

in the case of deep-groove bearings , for which i cos o( « 1, so

that the parameter a^ may be ignored o Section 6 gives the corres-

ponding analysis for the case of self^aligning bearings , for which

i cos <o< varies, so that a^ may not be ignored.

Sections 2=5 outline the statistical analyses employed to

answer various questions about the values of f , a^^, P

the deep“groove bearings of SKF, New Departure, and Fafnir, In

particular, section 2 gives the analysis employed to determine
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whether values of these four parameters are the same for the bear-

ings of the three companies o This analysis is carried out separ-

ately for rating life and median life and the postulated

’’complete between-companies homogeneity” is not supported in either

instanceo Section 3 gives the analysis appropriate to determining

whether the data are consistent with the supposition that the value

of p is the same for the three companies (regardless how the values

of the other parameters may differ)^ this analysis is applied to

the L, ^ and data, with an affirmative conclusion in both in-
10 oo

stances. It is concluded further that the data are consistent

with the supposition that this common value for p is equal to 3.

Section 4 presents the analysis employed to determine whether

the values of the parameters f^, a^, and p are the same for

the three types of deep-groove bearings (Extra light, Light, and

Medium) for which New Departure data were available. A negative

conclusion is reached. These data are then reanalyzed to deter-

mine whether they are consistent with the supposition that p ^ 3

for each of the three types^ regardless of differences in the other

parameters. An affirmative conclusion is reached in this case.,

Section 5 has to do (a) with the extent to which the and

LgQ values for deep=groove bearings of SKF, New Departure, and

Fafnir are consistent with the supposition that the values of

a^, and p are 2/3, 1.8, and 3, respectively, as given in A/P 1947;

and (b), with the determination of more precise values for f^ in

those cases in which the foregoing supposition is supported.

Finally, Section 7 presents an analysis of the consistency of
0 7 18 7the serai-empirical values for C ^ f Z ® D * (i cos o( ) ^ currently

used by SKF, with the values derived from the SKF data for

deep-groove and self-aligning bearings by the method of APPENDIX B. *
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1 o Determination of ”best” values for the parameters and their

associated intervals of uncertainty .

As shown in Section III of the main text, if (natural) log=

arithms are taken of both sides of the life equation (equation 2),

the resulting equation expresses the (natural) logarithm of rating

life L- (or median life Le,^) as a linear function of the (natural)
lU ou

logarithms of the characteristics of the bearing (Z, D , i, ando<),

and the bearing load P, with coefficients that are simple functions

of the ’’workmanship factor” f^, and the exponents a^, and

p, Fui*thermore, in the case of deep^groove bearings, i »= 1 and

= 0° throughout, so that the terra in In (i cos cA ) vanishes

identically, irrespective of the value of a^. Consequently for

deep”groove bearings, the logarithmic form of the life equation is

(C-1) Y = b^ + bj^ x^ + bg Xg + bg x^

where
r
Y » In L

In Z

(C-2) “S x« * In D
^ \a

X
3

In P

and
f

b
0 p In f ®

C P

(C-3) <

b
2

V

are unknown constants to be estimated from the data»
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The variables Xg, and x^ are fixed variates » Their values

are uniquely determined by the design of the bearing and the bear<=

ing loads that are used in the tests o The variable Y, on the other

hand, denotes the mean values of In or In L^q, for the popu=

lation of all bearings with characteristics x^ and Xg, tested at

load Xgo

In the practical situation Y is never known, but must be de^

termined from the results of endurance tests „ The methods used for

obtaining such estimates of Y from endurance=test data are given

in APPENDIX Bo To distinguish Y from an empirical estimate of it,

the estimate will be denoted by the lower case letter y«

Generally speaking, an estimate y is a random variable, having

a probability distribution that depends on x^, x^, and x^» We

assume that the mean of this distribution is Y « Y (x^, X2> ^3)^

and that its dispersion, or more precisely, its variance, is in-=

versely proportional to the number of bearings (w) in the test

group from which the estimate y y (x^, x^^ w) is derived,

that is

mean of y ^ Y

variance of y ® ,

io©«, standard deviation ® ©//w*

where denotes some positive constant and w is the number of

bearings in the test group.

The statistical methods used to estimate the unknown param-

eters b^, b^, bg, and b^ from the data^e termed regression tech=

niques. The books by Anderson and Bancroft [l]*, Dixon and Massey

[3], Hald [5], Kempthorne [6], Mood [7], and Wilks [9] give exten=

(C»4)

Numbers in square brackets refer to references at the end of

this Appendix,
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sive discussion of these techniques » For completeness some of the

techniques and rationale of regression analysis bearing on the

work enbodied in this report are summarized below» More detailed

discussions can be found in the above references

o

Estimation

The problem of estimating the unknown parameters in the life

equation can be stated as follows s Given independent observations

^loC^

from n test groups (cK ® 1, 2, o.o, n) where is the estimate

of In L^q or In logarithms of the bearing

characteristics Z and is the logarithm of the load, and

w^ is the number of individual bearings tested for cst th test

groupi to estimate the values of the parameters b^, b^, bg^ and

b^, in equation (C“l) using some optimum method of estimationo

Estimates for the b. (i 0, 1, 2, 3) which are free of

systematic error and have smaller variances than any other linear

unbiased estimates are obtained by minimizing the quadratic form

(C=5) Q “ ^0 ^1 ^ 10^-

“ ^2 ^2cS
“ ^3 ^

with respect to each of the b^ (i 0, 1, 2, 3)»*

Estimates having these properties are usually termed minimum

variance unbiased estimates , and the proof of the fact that the

procedure used here leads to such estimates is sometimes referred

to as the Gauss-Markof f theorem. Its relation to Gauss* develop=

ment of the Method of Least Squares is given by Plackett [8],
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C-6

The resulting equations defining the parameter estimates are

termed the normal equations and can be written in the form*

(C-6)

where

(C-7)

(C-8)

and X

If the coefficient matrix normal equations is

not singular, then unique solutions will exist for the b^o These

can be written as
%

3
(C— 9) b^ “ jSq for i ® 0, 1, 2, 3o

where c^^ (i, j « 0, 1, 2, 3) are the elements of the inverse ma=

trix to
1 1

a^^
||

.

00

TV

*>0 + ^01
A
*^1 + ^02

A
^2 + ®03

A
b -

go

10

A
^0 + ^11

A
+ ^12

A
»2 + ^13 ^3 * ^1

20
A

'’o
+ ^21

A

•’i
+ ^22

A
^2 + ^23 '‘‘’3 - g2

30

A
^0 + ^31

A

•’l
+ ^32

A
b2 + ^33 ^3 ^3

n
i, j ~ 0, 1, 2 , 3.

n

gi “ ^ yot i * 0, 1, 2, 3o

*= 1 for all o4 ,

A caret (^) is used here to distinguish the fact that the solu=

tions of the normal equations are estimated values of the parameters

and not the parameters themselves

»
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The variances and covarances for the b*s are estimated by

(C-10)

variance b^ ® s^ i

/'A o . I .

covariance i T J

0, 1, 2, 3o

0, 2^ 3,

where the quantity is an estimate of the constant in the

second of equations C=4o If one defines the residual sum of squares

b-y

S

n 3^2
otSi V <y»i. - iSo *’i

^

which also can be written in the alternative form

(C-ll) S - y|, - Jo b. gj ,

then the optimum estimate of is

(C-12) s2 - n̂=4

The quantity (n=4) is the rank of the quadratic form S and is

called' the degrees of freedom associated with So

The above method of estimation does not depend on y^ having

a particular assumed probability distributiono All that is neces=

sary to specify about the probability distribution of y^^ is that

it possess a finite mean and variance. The solution of the normal

equations (C-6) has the property that the weighted sum of squares

of the deviations about y^ will be a minimum. This is a so-called

’’least square” property of the solutions, but it is only a conse-

quence of the method and is not the justification for using this

method of estimationo The Justification for the method is that

this is the only one which results in minimum variance unbiased

estimates for the b^ (i ® 0, 1, 2, 3),
^

!
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Values for (i ® 0, 1^, 2 j, 3) g and hence for and p, can

be obtained using either the In or In values for , In

all cases where the a^ and p have been obtained for rating life

(Liq)^ another set of parameters have also been calculated for

median life (Lqq)o

Intervals of uncertainty and inferences
l

The methods so far discussed for finding estimates of unknown
^

i

parameters need no assumption as to the form of the underlying prob?

I^ility distribution of y^^ o However something more must be as=

sumed about the distribution of y^ if (a) one wishes to place an

interval about an estimate of a parameter that will include the

"true” (or population) value of the parameter with given assurance;,

or (b) if one desires to make inferences about the parameters of

the life equation for the population from which the bearings are a

sample.

Although the endurance lives for individual bearings may follow

a Weibull distribution;, the distribution of y^^ will not be of this

form. However the estimate y^ (cf . APPENDIX B) is an average of

several independent estimates, each based on linear functions of

six or less order statisticso Hence by the central limit theorem,

the distribution of the estimate will be approximated by a nor=

mal distribution when n is large (cf. Cramer [2], p. 213). The

statistical tests of significance used in this report are not greatly

affected by moderate departures from normality. Therefore for

making all inferences, it will be further assumed that the estimate

follow a normal distribution.

The intervals of uncertainty calculated for each parameter are

95 per cent confidence limits (equivalent to the usual ''’'two-slgma”

limits) which were referred to in the main text. Confidence limits

for the parameter p ^ =b^ can be calculated using conventional

methods. However, the confidence limits for a^, a^, and ag are

somewhat more complicated. The method used her® for this purpose
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C=9

is sometimes referred to as Fieller's theorem (ef o Finney [4]^ p»

27), The main result states that confidence intervals for the

are the roots of a quadratic equation, which for the problem con^

sidered here, can be written as

(C-13) [p2 " t2 c^3 +20 Qp b^ = t^ c^^ s^J

+ [b| ~ t2 s^J « 0

^ <1

where p = -b^ and t^ is the square of ’’Student's t” (tabulated in

most statistical texts) for the degrees of freedom associated with

S2.

In order to make inferences about the parameters with respect

to the different companies or bearing types, certain statistical

tests of significance were used in this report. These are all

based on a test statistic F, termed the variance ratio or F^ratio,

which takes the form

F

where and Qg are quadratic forms calculated from the data and

2^1, If
2

"the respective ranks of the quadratic forms. The ex=

plicit expressions for and Q2 depend upon the particular hy-=

pothesis being tested. The subsequent sections which employ a

variance ratio statistic also give the explicit expressions for

the two quadratic forms.

The distribution of the variance ratio is tabulated in ,most

statistical texts for the case where the hypothesis tested is

true. This distribution depends only on the degrees of freedom

of the numerator and denominator, i,eo, V and If the hy-=

pothesis being tested is true, then the calculated variance ratio

will deviate from unity in accordance with the tabulated distribu=

tion. However, if the hypothesis is false, then the variance ratio
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will be substantially greater than unity, and the "more false" the

stated hypothesis, the larger the value for the variance ratio.

Thus when the hypothesis tested is false, this will be detected by

an abnormally large F^ratio,

Since the calculated variance ratio is based upon the re=

suits of endurance tests which themselves are subject to consider^

able variability, the ca,lculated variance ratio may exceed unity

by chance even if the hypothesis in question is true , In order to

objectively determine if a calculated variance ratio is significantly

greater than unity, one selects a critical value of F from tables

of the variance ratio distribution, such that there is only a small

probability of the calculated variance ratio exceeding the critical

value from purely chance causes. The critical value for F used in

all variance ratio tests here, has been selected such that there is

only a probability of 0,05 of its being exceeded by a calculated

variance ratio from purely chance causes. This critical value will

be denoted by F extensive discussions of these

procedures are found in Kempthorne [6], Chapter 5.

All statistical tests of significance to test relevant hypothec

sis have been carried out both for rating life and median

life (Lgp).

2 , Analysis to determine whether companies have common values for

all the pammeters in the life equation (deep^groove) o

This section deals with the details of estimating the valyes

of the parameters in the life equation for each company. Further-=?

more a statistical analysis is made to determine whether the com-=

panies have common values for all the parameters in the life equa=

tion. The F'^ratio (equation C=19), which is used to test this

hypothesis, is obtained from the following procedures?

First, a single set of parameters b^ (i ^ 0, 1, 2, 3) is ob<=

tained by fitting all the data, irrespective of company, to the
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C^ll

logarithmic life equation and then calculating the resulting resi=

dual sums of squares S (equation C-17) having 206 degrees of free-

dom. If the hypothesis of common values for all the parameters is

not "true, then a better fit to the data can be made by fitting the

life equation separately to each company., These calculations re=

suit in the individual residual sums of squares Sp and

(equation C”16) having 46, 144, and 8 degrees of freedom respec-

tively, Thus the total residual sums of squares (S^ + Sg + S^)

will have 46 + 144 + 8 ® 198 degrees of freedom. Then the differ-^

is also a quadratic form having 206 = 198 ® 8 degrees of freedom.

If a substantially better fit was obtained by fitting a separate

life equation to the data for each company, as compared to a single

life equation, the difference between the two residual sums of

this difference is statistically significant the variance ratio

(C-19) is employed.

Mathematical formulation

It will be convenient to adopt the following notations let

the superscript u ® 1, 2, 3 refer to SKF, New Departure, and Fafnir
(u)respectively. Also, for each manufacturer, let b^ for i^0,l,2,3

refer to the estimates of the parameters in equation (C-1). and
/ \ / \ ^

*ij ^ ^i
^ denote the sums of cross products defined in (C=7) and

(C"8)o* Then the normal equations which give the parameter esti-

mates for the uth company are

Since it is only the ratio of the number of observations which is

important for weighting, the weights s ^sed in the calculation of

the sums of cross products have been taken as integral multiples

of 5| e,gc if the number of bearings in a test group is 26 (say)

then w - 5, This is the way the weights were taken in all analyses.

ence between S and (S^ + Sg + i,e,.

To determine whether
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C’-12

(C-14) jIq (1 - 0, 1, 2, 3)

and the estimates for the parameters a^ (i 0, 1, 2) and p, in

the life equation, are obtained from the relations given by (C-3)

,

These results are summarized in Tables Va, Vb and II respectively

in the main text.

To test the hypothesis that all parameters in the life equation

are the same for each company is equivalent to the hypothesis that

(C"15) b^^^ « b^^^ - b^^^ for i - 0, 1, 2, 3,

Define the residual sum of squares for the uth company by

3

u

n
w

<3<*1 uc< ^ uc< i®0 i
s„ b5“> for u * 1, 2, 3

3 n
,u

u*l o(2l ^uoC '"uc< i»0 ‘'i ^iin b, g. ^ ^i “ uSi
(u)

(C-16)

and let

(C-17)

where (i « 0, 1, 2, 3) are the estimates obtained from the solu”

tions of the normal equations without regard to company differences,

i o 6 •

,

(C=18)
3

jSo L a<“>u«l IJ

A
b.
J

3

uSl g
Cu)

(i - 0, 1, 2, 3),

Then the variance ratio for testing the hypothesis given by (C=15)

is

(C»19) F ^
(S - S-, = Sg = S3>/8

(S^ + + S3 )/l98

and the critical F value is F (8, 198) ^ 1,98
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Numerical calculations

Cu ^
The numerical values for a. . are shown in Tables C“l, C=2,

(u)
and C”3 where the a>. are given as a triangular array^, e» g,,

^J

(C"20)

.(U)
00

a<u)
^01

gCu)
^02

a(u)
^03

^11
a<u)
^12

gCu)
^^13

(^)
^22

„ (u)
^23

aM^33
/ \ u

The values for g^'^ (i * 0, 1, 2, 3) and w^ (u ® 1, 2, 3)

are summarized in Tables C-4 and C-5 for and L^q respectively o

Table C=6 summarizes the values for S and s^ (u * 1» 2« 3)o

The values of the F statistic (equation C=19) calculated from

the quantities given in Table C=6 are

(C-21)

for F 3,32

for oo

olO
F » 3,98

These calculated F values are both larger than the critical value^

F Qg (8, 198) * 1»98| actually' the probability is less than OoOOOS

of having an F-ratio as large as those above from purely chance

causes. Thus from the above statistical tests of significance, the

conclusion is reached that the three companies do not have common.

values for all the parameters in the life equation.
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TABLE C-1. VALUES OF a^V FOR SKF

2^2.0000000 ^33.20922lU

1129.678133

-I25.90880U9

-267.6U98233

86.370U2375

TABLE C-2. VALUES OF FOR NEW DEPARTURE
10

668.0000000 1516,872777 -598 . 268U700

3U59

.

7U5o6o -1362 . 35029ii

617.5688586

TABLE C-3. VALUES OF aP^ FOR FAFNIR
10

58.00000000 116.8290299 -37.23287li85

235 . 9119681 -=75 .38686387

2^,72718606

2052,028218

U3U0.65715U

-98l.0l|609i4l

16816

0

I8212

5027,9850it2

111^20.85716

-U337.1i75983

38223.151^68

1+22 , 3706781

851,2083966

-27O 0 8359778

3082.07961+3
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TABLE C-i;.

n
(u)

SUMMARY OF g. ^ AMD > w
1 fina=l

ua
BY COMPANIES FOR L, ^ua 10

SKF New Depart\ire Fafnir

§0 ^96.2960159 1757.380696 17lt. 9101606

1260.7hl$hh 3990.060572 3U9.25i|179i|

§2 -3IO.U200596 -l631.0011Ui3 -109.6707l|12

U763. 812166 13016.178U3 1255.U35105

y^ 1721.123970 5206.398336ii 602.1702114)4
ua

('nD ^ 9
TABLE C-$, SUMMARY OF g> AND j; BY COIffANIES FOR L^^

a=l

SKF New Departure Fafnir

®0 987.7087610 2605-650712 258.9632205

h 2087.560362 5916.33193)4 519.2863296

-506.II25I459 -2367.253I498 -163,5201590

b 79)48.14714829 191453.9075)4 1869.950560

•^ua
ia8i. 969283 10613.239803 1220.597660

FCE THE us; CF THE kOk LOAD RATING COMMITTEE ONLY, NOT FOR PUBLICATION





C-16

TABLE C«6, SYNOPSIS OF CALCULATIONS TO DETERMINE WHETHER

COMPANIES HAVE COMMON VALUES FOR ALL PARAMETERS IN LIFE EQUATION

Degrees
of

freedom

ho ^50

S S2
u u

S
u u

Companies
combined 206 446,684633 348.285324

SKF 46 102.552212 89.734079

New Depo 144 285.121962 201.935797

Faf nir 8 6.160858 8,357822

sum 198 393.835032 1.9891 300,027698 1.5153

Difference 8 52.849601 6,6062 48.257626 6.0322

F

(equation C =-14)
6.6062 „ oo
179891

6.0322 „ QQ
T75T53 "
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3, Analysis to determine whether companies have a common

The previous analysis resulted in the conclusion that

the parameters in the life equation are different for each

company. However, this does not exclude the possibility

that all companies may have a common p, even though the

a^ (i = 0, 1, 2) differ from, company to company. This

section discusses the analysis made to determine whether

the compsinies have a common value for the exponent p. The

analysis given here consisted of the following procedure:

First the logarithmic life equation (C-22), having a

common value of p, but allowing the a^ to vary for each

company, was fitted to all the data, and the resulting

residual sum of squares, ' (equation C-25 ) having 200

degrees of freedom^ calculated . The total residual sum

of squares from fitting the life equation separately to

each company (allowing p to vary in addition to the a^

)

is given by (S^ + $2 + S^) having I98 degrees of freedom

(cf. section 2 of this Appendix), Then the reduction in

the residual sum of squares achieved by using a different

200 - 198 = 2 degrees of freedom. To test whether this

reduction in the residual sums of squares is statistically

significant, the variance ratio (C-26) is employed.
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C-18

M a tl'' e r- at i c al forFal a tion

Ihe logarithmic life equation, having a common value

for the exponent p, can be written for the test group

in the u^^ company as

fC-22) Y = xf > + b'^> + b'“)
ua o 1 la 2 2a 3 3a

for a=l, 2, ... , n^; u=l, 2, 3

Note that although each comipany has the same parameter

andin the above equation, the parameters b^^^ , b^^^

(u)
are different for each of the three companies. Thus

there are 10 different parameters (i.e., b.
(u)

1 = 0 , 1 , 2 ;

u = 1, 2, 3 and b^ ) to be estimated from the data.

The normal equations for estimating these parameters

are

(C-23)

2 b'"> . h = (1=0,1, 2; u=l,2,3)
-j =0 ^ J J 1 b b 1

3 2

2 2 ^ .

u=l j=0 ^ ^

„ ^ (u) (u) ('

2 2 a,, / b ,
^ + a^^ b^ =

g^

where

3 (u)

b3 = ,,1 b3 ’ S3 = ®3
U=1

(u)

Thus the set of equations given by (C-23) is a system

of 10 linear equations In 10 unknowns. Once the solutions
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c-19

are obtained, the estimates for a^ (i = 0 , 1 , 2 ) in the

life equation are calculated from the relationship

(C-2lj) = - h i = 0,1,2; u = 1,2,3.

The residual sums of squares (denoted by S’ ) associated

with fitting the life formula (C-22) to the data is given

by

(C-25) S'
3
z

u=l

u 2
Z W Y

^ ua-^ua
a=l

3 2
- Z Z
u=l i=0

Then to test the hypothesis that the companies have

a common value of p, regardless of the values for the

other parameters in the >life equation, the variance ratio

(S’ - S, - - S
(C-26) F = ± 2

(S^ + Sg + s )/198

having 2 and I98 degrees of freedom is used. The critical

P value is F ( 2 , 198 )
= 3.0i^.

Numerical calculations

All the quantities needed for the normal equations

(C-23) are sumraarlzed in tables C-1, 2, 5* The

values of S’ for both ^ and are
10 50
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•
•

01
—

1

'
S> = 393.2728I17 d.f. = 200

. So*
S’ = 301.687871 d.f. = 200

Thus the calculated F values (using equation C-26)

give

(C-28)

[

P = 0.51,8

Since both variance ratios are smaller than the

critical value F (2,198) = 3 .OI4 ., the conclusion drawn

from this statistical analysis is that the data support

the hypothesis of a common value of p for the three com-

panies . This holds both for rating life and median

life (L^q)

•

Th® values for the common p are given in

From theory, the calculated value for the F-ratlos can

never be negative. Tlie reason for the negative value of F

for L^q is that the value for the numerator of (C-26) is

only accurate numerically to one decimal place on account

of round off errors arising from the solution of the normal

equations (C-23) . Thus if the hypothesis of a common p

value is true, then the F-ratlo will not be large and round

off errors may effect the resulting calculation. Alterna-

tively, if the null hypothesis was false, then the calculated

F-ratio would be larger then 3»o4 8he round off error

should be of no consequence.
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table I of the main text. ^e values for the rem.aining

constants in the life equation a. (i = 0, 1, 2) are found

from the relations (C-2li) , These results are summarized

in tables iVa and IVb of the main text.

1|. Analysis to determ.ine whether three Wew Dep arture

bearing type

s

, i.e., Extra light. Light, and Medi um,

have common values for all the parame ters in the life

equation (deep-groove)

The analyses, discussed in previous sections, dealt

with determining whether where are differences in the para-

meters of the life equation between companies. This

section Investigates (a) whether three different bearing

types made by New Departure have common values for all

the parameters in the life equation, and (b) whether the

exponents p calculated for each bearing type are consistent

with the value of p = 3

•

Ihe analysis for (a) is similar ’to the analysis made

in section 2 of this appendix; i.e., separate life equations

were fitted to each bearing type and the resulting residual

sum of squares was compared with the residual sum of squares

arising from fitting a single equation to all New Departure

data, irrespective of bearing type. The variance ratio for

statistically testing (a) is given by equation (C-32).
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The analyses for (b) vjas governed by the following

considerations. If the true (or population) value of the

exponent p is p = 3? regardless of bearing type, then the

estimates for p obtained by fitting a separate life equa-

tion to each bearing type should not differ from p = 3 by

more than the dispersion inherent in the endurance lives

of the bearings. The agreement of the values of p estimated

for each bearing type vjith p = 3 is tested for statistical

significance by the variance ratio C-33*

Mathematical formulation

The ll|.8 test groups from. New Departure can be divided

into three bearing types corresuonding to 37 groups for

Extra light, 9^-1 groups for Light, and 17 groups for Medium

bearings. Let the bearing type be denoted by v = 1,2,3 for

Extra light. Light, and Medium type bearings, respectively.

Also define

(C-29) J

ij a=l

1 va la '^va

i, j
= 0,1 ,2,3; v=l,2,3

i = 0,1, 2, 3; V = 1,2,3

where n^ is the number of test groups for bearing type v.

Then the normal equations, which determine the estimates

for the parameters in the logarithmic life equation, are
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i
(V) ^(V) _ (V)

Zj O . — Ijr

.

•=o -'J •'

i = 0,1, 2, 3; V = 1,2,3.

jGius for each bearing type, the values for the pararreters

a. (\ = 0,1,2) and p in the life equation can i-e es tij-'atcd

fror the relations

/ (v

)

a.
1

A (v)

^i

,A (v)

°3

a(v) (v)
p = - b

3

th
Therefore the residual surs of squares for the v bearing

type i

s

n

(0-31) / H
0=1

yVO "^vo

^ ^ (v ) (v

)

- z. b. 0.
’

i=0
V = 1,2,3

having ''n^~)|) degrees of freedom. Ihoi'’ the hyr^o thesis of

corrmon parameters for the three bearing t:/pes can be tested

by the variance ratio

(0-32)
(.

(1) .(2) o(3)- O
F =

k-/

(s + s + s ^^^
) /136

)a)

having a critical value of F ^ (8 , 136 )
= 2.01.

. 05

Now since the analysis given in section 3 of this

a.ppendix reached the conclusion that all companies have a
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common value for p, and since this value (cf. table I of

main text) with its associated uncertainty includes the

value p = 3 given in A/P 19k-7 f it seems desirable to also

test a second hypothesis that the values of p for each of

the bearing types is consistent with p = 3» The F-ratio

for this hypothesis is given by

(C-33) F = ^
)/136

where the p
(v)

(v = 1,2,3) refer to the estimates of p

(V)
obtained for each bearing type; and (v = 1,2,3) is

the element occurring in the last row, last column of the

inverse miatrix to (v = 1,2,3) The critical value

for the variance ratio (C-33) is F . (3,136) = 2.67.
. 05

Numerical results

The estimates of (i = 0,1,2) and obtained

from the solutions of the normal equations (C-30) are

summarized in tables Via, VIb, and Til in the main text,

respectively. Tables C-7, 8 and 9 summarize the values for

(v)
A. in the form of a triangular array. Table C-10 and

(v )
^2

C-11 summarize the values for G. and 2 w ^
1 va*'va

a—

1

The
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TABLE C-7. VALUES OF FOR EXTRA LIGHT BEARINGS
J

21ii. 0000000

(1 )

^18.1383081;

12^8.277638

-2i;8. 9295851

-597.8263023

300.7637617

1506,575333

3661.658351

-1725.381891

10693. ii6018

TABLE C-8. VALUES OF FOR LIGHT BEARINGS

1;01. 0000000 889.3252551

1975.516399

325.2355955

715.331;5135

2911.2929935

3083.03l;363

6852.91;8565

-2li33. 705085

23862.08756

FOR MEDIUM BEARINGSTABLE C-9.

53.00000000

VALUES OF a|^^

109<.U09213lt

225.9510228

-2li.l0328938

-U9.189U7836

22,51210338

l;38.3753li62

906,2502l;25

-178.3890070

3667o6069k0
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(v ) 2
TABLE C-10. SUMMARY OF G'‘V AND

3!^ ^
BY BEARING TYPE FOR

Extra Light Light Medium

°0 602 . 0iLli3335 1027.110445 128.2559173

1451.867253 2273.867843 264.3254755

^2 -710.5400693 -854.1381299 -66.32324354

°3 4148.761977 7826.050226 1041.366231

^ W
va va

1984.783747 2885.087835 336.5267544

TABLE C-11.

n

SUMMART OF and ^ ‘ w BY BEARING TYPE FOR L^q

Extra Light Light Medium

s 862.7854631 1537.980372 204.8848770

h 2087.149852 3406.325505 422.8565766

G
2

-1006.992510 -1263.434071 -96.82691696

^3 6004.772590 11767.86813 1681,266822

> 2S w y
a=l va-'va 3709.734322 6081.616419 821.8890620
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C-2?

calculations for the variance ratio (C-32) are suminarized

in table C-12.

TABLE C-12. SYNOPSIS OF CALCULATIONS TO DETERMINE WHETHER
ALL BEARING TYPES HAVE COMMON PARAMETERS IN
LIFE EQUATION (NEW DEPARTURE ONLY)

Type of
Bearing

Degrees
of

Freedom

ho %0

s(v) g(v)^

All types
combined

ilA" 285.121962“ 201.935797"

Extra light 33 68;558298 ‘ 33;016973
Light 90 i7lj; 325939 131 .-142017
Medium 13 II.537I48O 8.505638

Sum 136 251^.421716 1.8707 172.664628 1.2696

£)ifference 8 30.700246 3.8375 29.271169 3.6589

F
(equation (\j10

3-8375 _ 2.05
1.6707 ^ itllt=2-88

From table C-6

Corresponding to the hypothesis that the three

bearing types have the same parameters in the life equation,

the calculated variance ratios (c-32) yield

L

(C-3k)
10

L
50*

F = 2.05

F = 2,88

Since the critical F value I3 F (8,136) = 2,01,

both the L^q and L^q calculated variance ratios are statis-

tically significant, although the L^^ value is "just barely"

significant. Therefore, one would conclude from the above

F-ratios that the parameters do differ between bearing types.
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However this does not exclude the possibility that the

values for the exponent p are consistent with the value

p = 3 . Substituting the appropriate quantities in equation

(C-33) results in

(C-35)

where

'

T P = 1.18

F = 2.32

= 0.5329I1

= 0.107395

= O.3967W1-

Thus since both of the above calculated P-ratios

are less than the critical value, F ^ (3,138) = 2.6?, the
.05

conclusion can be made that the values of p are consi stent

with p = 3 different bearing types , although possibly

some (or all) of the other parameters in the life form.ula

(i.e., a^ (i = 0,1,2) may differ among the different

be arl ng type s

.

The values for (i = 0,1,2; v = 1,2,3) arising

from the analysis by ball bearing types have very large

confidence limits (intervals of uncertainty) . This is

mainly due to the fact that an 'analysis restricted to one
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bearing type is essentially an analysis on bearings having

almost the same values for Z and D . In order to estimate
a

the with good precision, it is necessary to have

results for bearings having wide variations with respect

to Z and D . Thus the estimates for a. based on all bear-
o. IL

ing types for New Departure (tables IVa, IVb, or Va, Vb

)

have substantially smaller confidence intervals as com-

pared to the intervals based only on a single bearing type.
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5, Determination of assuming values a^ ® 2/3, a
2

^ 1«8, p * 3;

and the analysis, both by company and bearing type to deter-

mine whether these assumed parameter values are consistent

with the given data (deep°groove) ,

The values for the parameters a^, a^, and p given in A/P 1947

are
a^ “ 2/3^ ag ^ 1.8, p = 3,

If these parameter values are valid for the data at hand, then more

precise estimates for the "workmanship” parameter a^ (or f^) can be

made for each company or bearing typCo These will generally have

better precision compared to the estimates of a^ made when the

other parameters in the life equation are simultaneously estimated

alpng with a^o This section considers the problem of verifying

whether the A/P 1947 parameter values, given above, are valid for

the given data, and for those cases where this is true, estimates

of a^ (or f ) are obtained assuming these A/P 1947 values for the
o c

other parameters.

The procedure for determining whether the values - 2/3,

ag “ 1.8, p => 3. are valid for a given classification of the data

(with respect to a company or bearing type) is to fit the data to

the life equation using the assumed values for a^, agi and p.

Thus there is only one unknown parameter, a^, in the life equation

to be estimated. Then the resultant residual sum of squares, de-

noted by R (equation C=42), can be calculated having (n=l) degrees

of freedom. Alternatively, the life equation can be fitted to the

data such that all the unknown parameters are simultaneously esti=

mated. The residual sum of squares from this latter fit, S, will

have (n-4) degrees of freedom. Then if the A/P 1947 parameter values

are not consistent with the given data, R will be appreciably larger

than S, The variance ratio (C=43) is used to determine if the dif=

ference between these two residual sura of squares, i.e,, (R=S)

having (n-1) - (n=4) ® 3 degrees of freedom, is statistically signifi-=

cant

.
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taathematical formulation

Let n be the number of test groups within a particular classic

f ication (either by company or bearing type) , Then assuming the

Values a^ “ 2/3, ag ® 1»8, and p ^ 3, the logarithmic life equa-

tion for the o<th test group can be written as

(C-36)

where

(C-37)

(o^ ® 1, 2, o*«, n).

“3c<‘^

The resulting normal equation for estimating a^ is

(C-38)

nn w y

0^=1
’3” “ c^«l

0 n
2, w .

=1 o<

which also can be written as a function of the sums of cross pro-

ducts g^, a^j, e.go,

(C-39)
g0

0 '00 "I ^01 + lo8 a
^2 “ a^^

Hence the variance fox this estimate of a^ is

(C»40)

where

(C-41)

variance a
0

s

9a
00

R 9USi
HTT n - I

®00 ^0

The residual sum of squares, R having (n^l) degrees of freedom,

can also be written as a function of the sums of cross products, 6ogo,
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C=32

(C-42) R
n

^ ocSl
"

"g
- 1.2 gg + J g.

g ^11 ^22 ^33 *" ^12

g ^13 ^23 " ^00 ^0
j

In the analyses made in the preceeding sections^ the ball bear-

ing data have been analyzed with respect to individual companies or

bearing types. It thus seems desirable to determine whether the

data within these classifications support the hypothesis that

a^ “ 2/3, ag = 1»8, p = 3 as given in A/P 1947, The variance ratio

used to test this hypothesis is

(C 43^ F (R”S)/3
(C-43) F - s7(n-4) '

where for testing within companies

for SKF

S =
t ^2 Dep,

Sg for Fafnir

^defined by equation (C-16)
and given in Table C=6

(u ) fv

)

and for testing within bearing types, replaced by ,

( 1 ) for Extra light

for Light

g(3) Medium

> defined by equation (C-31)
and given in Table C=12

and R (equation C“42) refers to the calculated residual sum of

squares 'within the particular classification.
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Numerical calculations

Table C-13 summarizes with respect to SKF, New Departure, and
A

Fafnir the values of a^, R, the calculated F=ratio (equation C-=43),

and the critical F valueo Table C”14 summarizes the same quantities

for the Extra light, Light, and Medium type bearings made by New

Departure

o

The results of this analysis show that the values a^|^ ® 2/3,

ag * lo8, and p * 3 are consistent for rating life (L^^q) data with

respect to each of the three companies,. However for median life

(Lsq)# these assumed parameter values are only consistent for the

SKF datao

The results for the same analysis made on the three different

bearing types, indicate that the A/P 1947 parameter values are

only consistent with the Extra light and Light bearing with respect

to median life (Lt-^)cou
Note that the analysis for New Departure (ignoring bearing

types) showed that the assumed values for the parameters are con=

sistent with the L^q data, however, a finer analysis by bearing

typ^; revealed that these values are not valid for Medium type

bearings. This apparent inconsistency stems from the fact that the

analysis for New Departure, taken as a whole, is dominated by those

bearing types having the larger number of test groups, it,e^ Extra

light. Light,

The estimates for f^ assuming a^ ^ 2/3, 32 ® 1=8, and p « 3,

are summarized in Table VII of the main text for rating life »

This summary also includes the value of f^ for MoR,C, computed

from only three test groups, (Because of the small number of test

groups, it was not possible to verify whether the A/P 1947 param=

eter values are valid for these data,)
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TABLE C”13. SUMMARY OF COMPUTATIONS (BY COMPANIES) TO

TEST HYPOTHESIS THAT DATA ARE CONSISTENT WITH ASSUMED

VALUES » 2/3, = 1,8, » 3.

^10 ^50 Crit=
ical

FCompany R F a«=lnf^
0 c

R F

SKF 8.4205 102.539286 -0.06* 8.9382 94.367916 0.79 2.80

New Dep, 8.5021 287.613198 0.42 8.9254 217.560672 3.71 2 . 65

Fafnir 8.1001 8.375562 0.96 8,5832 8.488584 9.92 3.59

: TABLE C=14. SUMMARY OF COMPUTATIONS (BY BEARING TYPE) TO

I

TEST HYPOTHESIS THAT DATA ARE CONSISTENT WITH ASSUMED

|l VALUES = 2/3, a^ - 1.8, a^ - 3,

^10 ^50 Crit =

ical
FiType a^“lnf

0 c
R F a =lnf

0 c
R F

Extra Mght 8.4575 73.821978 0,84 8.8636 44.883126 3.95 2 « 86

Light 8.5236 181^28312 1,17 8.9482 141.731604 2.42 2,70

Medium 8,5203 271014247 5.81 9.0022 18,905517 5.21 3.24

Negative value due to rounding computations.

FOR THE us; OF THE ASH LOAD RATING COMMITTEE ONLY, NOT FOR PUBLICATION





C=35

6» Determinat ion of the parameter values for self-aligning bear-

ings (SKF) *

This section deals with finding estimates of the parameters in

the life equation for self “aligning bearings using data from 40 test

groups of SKF self ^aligning bearings. The only difference between

this and the deep-groove case is that the self -aligning bearings
« 3

require the additional term (i cosoC) in the life equation. Thus

the logarithmic life equation can be written as

(C-44) - bg + b^ X2^+ bg Xg^+ x^ fa-1,2,

where b^ (i = 0, 1, 2, 3) and (1 ® 1, 2, 3) have the same mean-

ings as for deep-groove bearings and b^ ® (pa^)# ^ In (i cos a).

The normal equations for estimating the b^ (i ® 1, 2^ 3, 4) are

* A
(C-45) a^j b - (1 - 0, 1, 2, 3, 4)

where

n

ij 0^=1 oc lot

n (n ® 40)

A
Estimates for a^ (i ® 0, 1, 2, 3) can be obtained from the b^

,

using the relations

for i - 0, 1, 2

All the notation used in this section will refer to the self

aligning bearings only, unless otherwise specified.
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c-’Se

The appropriate intervals of uncertainty for the a. can be calcu=>

lated using Fieller’s theorem (as given in equation C-=13)e Where

s^ is taken to be

(C-47)
ocSl ^ 0 Si

35
-

The estimates for the a^ together with their associated inter=

vals of uncertainty are summarized in Table VIII of the main texto

The values for a.
.

(i,j * 0, 1, 2, 3, 4) are summarized in Table
^J n

C“15o Table C-16 gives the values for and g^ (i ® 0, 1,

2, 3 , 4) both for L^q and

TABLE C-15. VALUES OF a. . FOR SELF-ALIGNING BEARINGS (SKF ONLY)

238e00000000 648„7845195

1770c460480

-172c0909813

-472.2281104

156.9382746

1911o497205

5211o817531

-1362.806927

15486.38403

161.5118702

440.3712025

-116.8392512

1297.119642

109.6145790
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TABLE C°X6. SUMMARY OF AND (i«0, 1 , 2 , 3,4

)

SELF-ALIGNING BEARINGS (SKF ONLY)

^10 ^50

418o8179296 765.4465183

1139c 906247 2082.557309

-308*8485452 -554.0338357

S3
3158.390004 5923.501002

^4 284.2203906 519.3826284

1285.621913 3058.794005
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7. Analysis to determine whether values for dynamic capacity

consistent with data.

'Ihc liie equation can be written in the alteri^iat ive form

(cf. equation 1 of main text)

where the constant C is the basic dynamic capacity. Taking log-

arithms of both sides of equation (C=48) results in an alternate

form of the logarithmic life equation, i.e.

This section deals with the problem of determining whether the

"semi-empirical** values of C in current use by SKF contain a bias.*

For t)iis purpose, the SKF data included values for (C/P), both for

deep-groove and self-aligning bearing, where '

The rationale guiding this analysis was that if the values of

C, in current use by SKF, are free from a bias or systematic error,

then the interval of uncertainty (95 per cent confidence limit) for

p based on equation (C=49), vwould overlap the intervals of uncer-

tainty for p obtained from Sections 2 and 6 of this Appendix .where

no a priori values for the parameters were assumed. If the confi-

dence intervals do not overlap, then one would suspect that the

values for (C/P), and hence C, currently used by SKF contain some

type of bias.
_ y ~

SKF was the only company which included values of (C/P) with

their raw data.

Q-7—;

(i cos o<) '
) in current use by SKF are

(C-48) L - (C/P)P

(C-49) Y P X

where

Y = In L, X ® In (C/P)
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(C=50)

The estimate of p using equation (C~49) is

n
2, w y. X.

o< oC ^ at
P n

y I TO V ^
<S«1 ^oL^di

and the variance of p is estimated by

(C-51)

where

(C-52)

variance (p)
- n
( 2_ w

'iV»1

- (p>* USi
n;~“r5

Confidence intervals for the parameter p are then given by

(C“53) P i ^ •/ (variance

where t is the appropriate value taken from Student's table having

(n«l) degrees of freedom.

Substituting the numerical values with respect to deep=groove

bearings
(1*2.0

equations (C<=50) and CC=-51) results in

(C»54)

and

(C=55)

P
573,7085232

variance

2,84

(94ol64039)/49
2C52'; 3(346^33

0.009488

Using the same equations but substituting the numerical values

for self“aligning bearingi 10

(C“56)

and

(C-57)

A
P

506.902149
2T^';T4H¥7

only) results in

2,35

variance 2I^7T4TT4T 0,011485

FOR THE USE OF THE kSk LQkD RATING COMMITTEE ONLY, NOT FOR PUBLICATION



»*

r



C°40

Table C"17 compares the above results with those obtained in

Sections 2 and 7 of the Appendix « ;

TABLE C"17, COMPARISON OF VALUES FOR ^

‘ A
P

Using (C/P)
No a priori
values f«pir C

deep groove 2o84 + 0.19 3„00 + 0.64

self=aligning (L^q) 2o34 + 0.22 1.77 + 0.46

It is clear from Table C=17 that the values of ^ using the

variate (C/P) show good agreement with those values calculated

without making assumptions as to the nature of Co Hence there is

no indication of a bias in the use of the semi-°empirical valued

for H which SRF is currently employing

»
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APPENDIX D

NON-PARATffiTRIC C0:MFIDENCE INTERVALS FOR

The purpose of this Appendix is to indicate a

method of obtaining confidence intervals for L^q, L^q

that does not depend on the underlying functional form

of the distribution of fatigue lives, is simple to

employ, and is independent of any particular estimates

of L^q, L^q. On the other hand, because it requires

so little inform.ation, the method will generally yield

rather wide limits, unless the sample size is very

large,, This method is termed non-par ame trie because

it does not depend on a specific type of distribution

(such as Weibull, log-normal, etc.) »

Description of method

Let the n observed fatigue lives for a test group

of bearings (including "in tacts") be ranked in increas-

ing order and denoted by x^ < 0.0 <x. < ..o <x^,— 1 — n

The confidence intervals are of the form (x ,x )

»

Table D-1 shows, for given size n, the ranks r and s of

the X' s which will enclose the unknown population value,

L^Q^wlth probability approximately 95 percent. Similarly^

table D-2 gives the ranks for determining confidence

Intervals for L^q. An example will make this clear.
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Ihe data in the specimen Worksheet, Appendix A,

having n = 23 bearings are taken for illustration.

This worksheet is summarized as Record No. 2-Ii_ in

Table A-2. The number of bearings in the test group

is n = 23 . To calculate the confidence intervals

for rating life enter table D-1 with n = 23 and

read r = 0, s = 5 ~ 0.92?. This means that

the .927 confidence interval for L^q is given by

the interval between 0 and the 5th smallest observa-

tion, i.e., X. = [|-2cl2. Hence with probability ,

5 - -

the interval (0,I;2.12) will contain the population

value of

To calculate a confidence interval for the median

life L^q, enter table B~2 with n = 23 and read r = 7>

s = 17 , and = Oo965o This means that the .9^5

confidence interval for is given by (x._^,x^^) =7^ 17

(l|Sol.|8, 93ol2)
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It is interesting to note that the estimates of

L and L , 28.5 and 69 «2 respectively, calculated on
10 50

the assumption of an underlying Weibull distribution,

both fall within the above non-parame trie confidence

limits

.

Mathematical formulation

Let < ^2 — * “ “ < be an ordered sample of n

observations from some population having the probability

density function f(x). Define ^7

(D-1) p =

that Is^ if p = l/lO, then L-j^q is that value exceeded by

90 percent of the population; and if p = l/2, then L^q is the

value exceeded by 50 percent of the population. Then

the Interval determined by the r^^ and s ordered

observations define a confidence interval such that

•00

f(x) dx (0 1 )

(loop)

(D-2) Prob|^x^ <
^(loop) - ^s}

“ ^(lOOp)

where

(D-3)
(loop) (i)p^(l-p)

n-i

i=r
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Equation (D-2) is read as "the probability that

the interval (x ,x ) includes the true value, L
, (loop)

is P, ", Tables D-1 and D-2 which refer to
(loop) 10

and respectively, list values of r and s for
50 — —

n = 6 ( 1 ) 50 , and selected higher values of n corre-

sponding to the larger size test groups included in

the original data.

An outline of the derivation of equation (D-2)

can be found in Mood [l], page 388 ff, and Wilks [ 3 ],

p. ll| ffo

Discussion

Note that in order to calculate the non-parame trie

confidence intervals for or , it is not necessary

for all the n bearings to be tested to fatigue failure.

Referring to the Specimen Worksheet in Appendix A, the

test could have ceased after the ^th bearing failed^ if

all that was desired was a confidence interval for L

However, the problem of finding a suitable non-

10

parametric estimate for (or L^^) has not yet been

satisfactorily solved. An obvious device is to say

that X. estimates the (i/n)-percent point,, e,.g,, for L^q

and L^q, i = n/lO, n/2_ respec tlvel'y; some workers use

Xj_ as an estimate for the -ps^cent point--a procedure
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which is rigorously correct only for the rectangular

dis trihu tion; still others use -i—si. in place of _i— »

n n+1

Which, if any, of these procedures may be correct for

ball bearing fatigue data would be a .subject for future

research. Below are summarized the results of the above

procedures applied to the aforementioned worksheet in

Appendix A.

'10

'50

Method of
Appendi x B

28,5

69.2

Non-parametric
Confidence

i/n i/ (n+1 ) (i-|-)/n Intervals

30,li| 30.55 32cl8

68.22 67.80 67.80

(0,Il2,12)

(I|.8.[|8,93ol2)

To obtain these results, interpolation has been used as

illustrated by the following example. For n = 23 , if the

”(l/n)” procedure is used to estimate the . 10-percent point

Lio> then i/23 = ,10, i = 2.3, giving Xj = "^
2 . 3

"

estimate. The quantity in quotes is merely a shorthand ex-

pression for the interpolated value between X2 ^3
*

^
= o7 ^2 + .3x3 = 3 O.II4.
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TABLE D-=l NON^PARAMETEIC CONFIDENCE INTERVALS FOR L^^

Sample
size

n r

1

s p̂10

Sample
size

n r s

T

P
10

6 0 3 o984 31 1 8 ,952

7 0 3 ,974 32 1 8 ,954

8 0 3 ,962 33 1 8 , 955

9 0 3 .947 34 1 8 , 955

10 0 3 ,930 35 1 8 0 955

11 0 4 ,982 36 1 8 ,954

12 0 4 ,974 37 1 8 ,952

13 0 4 ,966 38 1 8 .950

14 0 4 0 956 39 1 8 ,947

15 0 4 i944 40 1 8 ,943

16 0 4 ,932 41 1 8 .939

17 0 5 ,978 42 1 8 ,934

18 0 5 ,972 43 1 9 , 965

19 0 5 , 965 44 1 9 ,962

- 20 0 5 ,957 45 1 9 ,959

21 0 5 ,948 46 I 9 , 956

22 0 5 ,938 47 1 9 ,952

23 0 5 ,927 48 1 9 ,947

24 0 6 ,972 49 1 9 ,942

25 0 6 ,967 50 2 10 ,942

26 0 6 ,960 55 2 10 ,934

27 0 6 ,953 60 2 11 ,954

28 0 6 ,945 67 2 13 , 95*

29 1 7 ,931 94 3 15 , 95*

30 1 8 ,950

These values are based on using a normal approxima=
tion for large samples.

FCB THE us: CF THE AS/L LOAD RATING COMMITTEE ONLYj NOT FOR PUBLICATION



J

t

X\i



TABLE D-2. W0W-PARAI4ETRIC COLTFIDENCE INTERVALS FOR
50

(ADAPTED PROM FAIR, [2])

Ssimple

Size
n

r s ^30

Sample
Size
n

r s ^50

6 1 6 29 9 21 ;976
7 1 7 ;984 30 10 21 ;957
8 1 8 «992 31 10 22 o'97l

9 2 8 ;961 32 10 23 o98o
10 2 9 ;979 33 11 23 "965
11 2 10 ,988 34 11 24 o976
12 3 10 .961 35 12 2k .959

3 11 ;978 36 12 25 o971
3 12 .987 37 13 25 "953

15 h 12 .965 38 13 26 0 966
16 k 13 ;979 39 13 27 "976
17 5 13 .951 40 14 27 o962

• 18 5 Ik o979 4l 11+ 28 <.972
19 5 15 o98i 42 15 28 "956
20 6 15 ;9S9 43 15 29 .968
21 6 16 i973 16 29 o95i
22 6 17 .983 ¥ 16 30 . 96 l|

23 7 17 -.965 46 16 31 "974
24- 7 18 o977 47 17 31 .960
25 8 18 ;957 48 17 32 o97l
26 8 19 .971 49 18 32 "956
27 8 20 -.981 50 18 33 "967
28 9 20 ,%k

55 20 36 ^970

60 22 39 "973

67 26 k2 •950

94 38 56 "95"

This value is based on normal approximation for large

samples

„
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