Prelimanary geport
On
COAPTTY HTG THE ANALTSIS OF VAREAMCE
by
J. M. Cancron
Statistical Rrgineering Laboratozy

to
Chemical Corps Biological Laboratortes Caky Detaxicko *axylax

NBS

This report is issued for in eny form, either in whi from the Office of the Di:

Approved for public release by the Director of the National Institute of Standards and Technology (NIST) on October 9, 2015
reprinting, or reproduction ission in writing is obtained lington 25, D. C.

COBTPTM TMG

168
及。閣。Cmeror

 Set up coricsponding to cach of the possible combinatione of the tua

Desigmation Ot
observation \quad Level of factor

Once this column of data is in the machine a column of "Suns differences" also contaning 2^{n} values is obtained from it by cgralating the $8^{\text {n-1 }}$ sums of successlve pairs of observations lollowed by the $2^{\text {百 }-1}$ diferences between the elements of the same pairs. Thus 1or $=3$ me have

Observatioms	Ist "Sums ard Dilferences"
$\mathrm{X}_{0} 00$	$\mathbb{X}_{000}+X_{100}$
${ }^{\text {m }} 100$	$\mathbb{K}_{010} * \mathbb{X}_{110}$
${ }^{*} 010$	$\mathrm{S}_{001}+\mathrm{X}_{101}$
${ }^{8} 110$	$8_{011} \overbrace{}^{8111}$
x_{001}	8000-8100
K_{101}	$\mathrm{X}_{010}-\mathrm{x}_{110}$
- 011	$\mathbb{K}_{001}-X_{101}$
X_{111}	$\mathrm{T}_{011} \mathrm{~F}_{111}$

The same process is repeated on the tirst column of "sums ama diflerences" to form a sccond colum of "马ums and differencesp\% and
 "sume and differences" is obtained.
 divided by 2^{n} corresponds to a single degree of rreedom in che amalysin Cs vardance. The single degrees of freedom for the several man effeck ane interactions come out in the followimg sequence

The entries in the n-th colum of "sums and difiemences" divided by 2^{n-1} gives an estimate of the average difterence betmeen the levels of a factor.

Computatronal checks.

1. The sum of the entries in the n-th column of "Sums differences" is equal to $2^{n} x_{0} 0000 \ldots 0$. 3 .e. 2^{n} times the leading element in the data as presented to the machine
2. The sum of the squares of the eatries in the n-th column is equal to $2^{\text {n }}$ times the sum of squares of the elements of the original column of observations.

\qquad
*. note that this value is
Checks: (0) $\sum D=2^{n} x_{0000} \quad 960=2^{4}(60)$
(2) $\frac{\sum D^{2}}{2^{n}}=\Sigma x^{2} \quad 757,1.76=2^{4}(47,001)$
3. Analysis of variance of the $3^{\text {II }}$ factorial designs

Let the observations be presented according to the scheme shomn here Por $n=4$ 。

Designation of observatios
X_{0000}
X_{1000}
X_{2000}
X_{0100}
X_{1100}
X_{2100}
X_{0200}
X_{1200}
X_{2200}
X_{0010}
X_{1010}
X_{2010}

Level of			
A	B	C	D
0	0	0	0
1	0	0	0
2	0	0	0

$\begin{array}{llll}0 & 1 & 0 & 0\end{array}$
1100
2100
0200
1200
2200
$\begin{array}{llll}0 & 0 & 1 & 0\end{array}$
10030
20030
\mathbb{X}_{0222}
x_{1222}
\mathbb{X}_{2222}

0	2	2	2
1	2	2	2
2	2	2	2

The 3^{n} observations give xise to 3^{n-1} successive sets of 3 values. A column of "sums and differences" having 3^{n} flements 15 formed as follows (1) the sums of the 3 elements of the 3^{12-1} sets are tabulated in order, (2) these are followed by the 3^{n-1} differences between the first and third elements of the sets, and finally (a) the sum of the first and chird minus twice the middic value for each of the 3^{n-1} sets are tabulated to complete the first column of "sums and differences"。

This same procedure is repeated on the successive columas of "sums and differences" until the $n=t h$ column of "sums and differences" is obtained. The square of the elements. D, of this n-th column divided by a corresponding factor, d_{0} gives a single degree of freedom for the main effects or interactions in the analysis of variance table. These simgle degrees of freedom come out in the following order. SThe subscript I refers to the linear component and the subscript 2 refers to the quadratic component. $)$

The appropriate divisors for the squares of the eatries in the n-th column are given by raising the triple (3, 2, 6) to the n-th power according to the following rule:

$$
\text { for } n=2 \quad(3,2,6\rangle^{2}=(3,2,6) \quad(3,2,6)
$$

3	2	6		
3	2	6		
9	6	18		
	6	4	12	
		18	12	36

The sequence of divisors for the corresponding elements of the n-th column being

$$
9,6,18,6,4,12,18,12,36
$$

$$
\begin{array}{lllllllllllll}
\operatorname{sos} n=3 & (3,2,6)^{3} & = & (3,2,6))^{2} & 33,2,6) & & & \\
9 & 6 & 18 & 6 & 4 & 12 & 18 & 12 & 36 & \\
3 & 2 & 6 & & & & & & & \\
& 27 & 18 & 54 & 18 & 12 & 36 & 54 & 36 & 108 & \\
& 18 & 12 & 36 & 12 & 8 & 24 & 36 & 24 & 72 & \\
& & 54 & 36 & 108 & 36 & 24 & 72 & 108 & 72 & 216
\end{array}
$$

The segnamee of divisors being

$$
27,18,54,18,12, \ldots \ldots \ldots .
$$

me extension to larger values of in isarried on in the same manner. The case n $=4$ is given in the worked out example.

Computational checks

(1) The sum of squares of the original observations is equal to the $\operatorname{sum} \mathrm{E} \frac{\mathrm{D}^{2}}{\mathrm{~d}}$.
(2) The gut of the n-th column of "eums and differeaces" can be checked paing the following procedure: from the succeasive sets of three values of the obsexvation column form a columa of the 3^{3-1} quantities obtained by taising 3 times the first element of the set mimus the middle element plus the third element. Repeat this process on the column so formed.
After n repetitions one final number remains. This number is the check sum for the $n-t h$ column of sums and differences.

Combining the individual degrees of freedom
The analysia of variance table is usually written in the form shown here for n m.

Analysis of varlance table

In ordez to convert the column of values $\frac{D^{2}}{d}$ cosresponding to the 81 individual degrees of iseedom for m An into this comventional som for the amlysis of variance tables, one can use successive triads of the columa of 81 individual dofo Two columns of values axe formed from the 27 triads: (41 the first element of each triad is recorded in sequence in the 5 isst colurn, and (28 the sum of the last two elements of the 27 triads is recorded in the second column.

These two columns are then combined into a stagle colums of 54 elementr by writimg the second column at the end of the fixst. Tkis Brocess is repeated $n=4$ times and the resulting column is the "sun of sdurres" column in the gtandard analysis of variance table。
(2)

以及er as follown：

$$
\begin{aligned}
& \text { etc. }
\end{aligned}
$$

 By 跏\＆（ivivisor．

促

П
Brock
haco $x=0$ or

r.

3. Anaggis of variance of general qaetorial deskgn

The proper seguerce for premextag the colum of observations
 fuctord Co the soliowtig combintion of the factors

 zre pur in order mo that the k levels of the factor A are secortind
 tained by writing eack tucer for B \& thane anc repeating this gergancy re etmes. The C famex is obtained by writuug each succesaive ivper for C. Evermem. Eor factorialy with other than threc factorn the sate approack in appited.

In the procedure described bere a colum of＂sums and differm encesi is formed for the fixst factor。 For a factor at two levels． the colum is formed by taking sums and differemces in cuccessive patrs as described for the $2^{\text {D }}$ factorial．For a factor at 3 levele， triads are used ank the colum of＂sums and ditierences＂lesormed as described for the 3^{12} sactorials．For factore at 4．5．6．or more levels a＂sums and differences＂colum ts formed by operating out sets of $4 \% 5$ ，6，etc。

The sums and diferemces to be used can be obtaimed from a table of orthogoral polymomals（See D．B．Delurye）．

蹋。 of levela of factor	Coefficients of 11near functions	$d_{1 j}^{8}$
$n=2$	$\begin{aligned} & 1 * 1 \\ & 1-1 \end{aligned}$	$\begin{aligned} & 2=a_{21} \\ & 2=a_{22} \end{aligned}$
$\square=3$	$\begin{aligned} & 1 \& 1 \& 1 \\ & 1 \& 0-1 \\ & 1-2 \& 1 \end{aligned}$	$\begin{aligned} & 3=d_{31} \\ & 2=d_{32} \\ & 6=d_{32} \end{aligned}$
－ 4	$\begin{aligned} & 1 \& 141 \% 1 \\ & * 3 \& 1-1-3 \\ & 1-1-1 \& 1 \\ & \& 1-3+3-1 \end{aligned}$	$\begin{aligned} 4 & =d_{41} \\ 20 & =d_{42} \\ 4 & =d_{43} \\ 20 & =d_{44} \end{aligned}$
$\Delta=5$	$\begin{array}{r} 1 * 1 \& 1 \& 1 \$ 1 \\ * 2 \& 1 \& 0-1-2 \\ 2-1-2-1 \& 2 \\ * 1-2 \& 0 \& 2-1 \\ 1-46-4 \& 1 \end{array}$	$\begin{array}{r} 5=d_{51} \\ 10=d_{52} \\ 14=d_{53} \\ 10=d_{54} \\ 70=d_{55} \end{array}$

[^0]$1 \times-2 x$
41 4-4 4

 - vium of "sums axd differemces" by apylying the appropriate cet of llatar functions for the mukber of levels of each successive factor Fe the preceding column. Tte firal colmm of "sums and differences"
 give the individual degrees of freedom of the analysis of vartance

$\underbrace{\left(V_{0}\right)}$

	divisot
C ${ }^{\circ}$	24
A_{1}	120
A_{2}	24
${ }^{4}$	120
婜1	16
$A_{1}{ }_{1}$	80
$\mathrm{A}_{2} \mathrm{~B}_{1}$	16
$\mathrm{A}_{8} \mathrm{~B}_{3}{ }_{1}$	80
${ }^{4}$	48
$A_{1}{ }^{\text {a }}$	240
$\mathrm{A}_{2} \mathrm{~B}_{2}$	48
$\mathrm{Af}_{4} \mathrm{~B}_{2}$	280
${ }_{A_{1}}^{C}$	$\begin{array}{r} 34 \\ 120 \end{array}$
$\mathrm{A}_{2} \mathrm{C}$	24
$\mathrm{A}_{3} \mathrm{C}$	120
$\mathrm{B}_{2} \mathrm{C}$	16
$\mathrm{AL}_{1} \mathrm{E}^{6}$	80
${ }^{5}{ }_{2} B_{1} C$	16
${ }^{A_{2} B_{2} C}$	80
$\mathrm{H}_{2} \mathrm{C}$	48
$A_{1} B_{2} C$	$2 \cdot 40$
$A_{2}{ }^{\text {E }}{ }^{6}$	48
$A_{3} B_{2} C^{6}$	240

The colusai of divisorg are those used to duvide the corsunponitu
 caces"。

41
0

The approprtate divtrors are obtained by mettixg the soeflialmus dif (asiven in the table on page 138 in the form
and mutiplying by the euccersive terms of
(dind for the mievels of
.to get
carreytug ou the process umtil all tactori ire accounted for。
For the 4 \% 3 I 4 factorial we heve:

$$
\Sigma 4204208(3,2068<2,28
$$

Dormg the multiplicatlom we get
(12 6012608408402412024120$)(2,2)=$
824 12024180168016804824048240
$24120241201680 \quad 16804824048280 \%$.
(as mhown on page 15.

Computathonal check

The sum of squares of the observattomis eques to the sem of the indilvidual degrecs of frecdom, 1.e $\quad, x^{2}=8 \frac{x^{5}}{d}$

Combination of individual degrees of fecedom

A combination of ingiviusal degrees of freedonis accomplunad loy forming two uning sets of k fthe number of levale of fnocor
 formed: the first by writing the first elemert of each set or 1 bu sequence the second by adding the next ($(k-1)$ elements of eaoly pol Fixs two columas are formed into one by apremdine the second solum to the and of the first. This columa ta then operated on weim vut of m elementa (the number of levels of factor B). Two colvens ur agairs formed as before ard coubimed. Thin proosm is far alls factorm。

76
+*it = + 1
$i)^{2}+11+1$
114 - 115

THI

tio Botvinill sam

The muber of degrecz of freedo ansociated with the thmat columa of "eram oi squas are siver by the terw of the product

$$
(1,5-1) \geqslant(1: 5-18 \quad(1,5-1)
$$

For the $4 x 3 \times 2$ example we have fxam page 1.58

And finally, using gets of

Thus we have

	difo
$A C$	1
A	3
B	2
$A B$	6
C	1
$A C$	3
$B C$	2
$A B C$	6

The sequence of $\mathrm{d}_{\mathrm{ol}} \mathrm{f}$ is obtaned by muttiplying

$$
\begin{aligned}
(1,3)(1,2)(1,1) & =(1326)(1,2) \\
& =(1,3,2,6,1326)
\end{aligned}
$$

[^0]: D．B．Delury，Values and Integrals of the Orthogonal polyoontils up to $n=26$ p published 10 catario Research youndation dy fiveresty of Toromto press（？950）．

