NATIONAL BUREAU OF STANDARDS REPORT

3616

LABORATORY STUDIES OF SEVERAL FACTORS AFFECTING THE BEHAVIOR OF SOME MINERALS AS STABILIZERS FOR ASPHALT ROOFING

By

Sidney H. Greenfeld

U. S. DEPARTMENT OF COMMERCE NATIONAL BUREAU OF STANDARDS

U. S. DEPARTMENT OF COMMERCE

Sinclair Weeks, Secretary

NATIONAL BUREAU OF STANDARDS A. V. Astin, Director

THE NATIONAL BUREAU OF STANDARDS

The scope of activities of the National Bureau of Standards is suggested in the following listing of the divisions and sections engaged in technical work. In general, each section is engaged in specialized research, development, and engineering in the field indicated by its title. A brief description of the activities, and of the resultant reports and publications, appears on the inside of the back cover of this report.

Electricity. Resistance and Reactance Measurements. Electrical Instruments. Magnetic Measurements. Electrochemistry.

Optics and Metrology. Photometry and Colorimetry. Optical Instruments. Photographic Technology. Length. Engineering Metrology.

Heat and Power. Temperature Measurements. Thermodynamics. Cryogenic Physics. Engines and Lubrication. Engine Fuels. Cryogenic Engineering.

Atomic and Radiation Physics. Spectroscopy. Radiometry. Mass Spectrometry. Solid State Physics. Electron Physics. Atomic Physics. Neutron Measurements. Infrared Spectroscopy. Nuclear Physics. Radioactivity. X-Ray. Betatron. Nucleonic Instrumentation. Radiological Equipment. Atomic Energy Commission Radiation Instruments Branch.

Chemistry. Organic Coatings. Surface Chemistry. Organic Chemistry. Analytical Chemistry. Inorganic Chemistry. Electrodeposition. Gas Chemistry. Physical Chemistry. Thermochemistry. Spectrochemistry. Pure Substances.

Mechanics. Sound. Mechanical Instruments. Fluid Mechanics. Engineering Mechanics. Mass and Scale. Capacity, Density, and Fluid Meters. Combustion Control.

Organic and Fibrous Materials. Rubber. Textiles. Paper. Leather. Testing and Specifications. Polymer Structure. Organic Plastics. Dental Research.

Metallurgy. Thermal Metallurgy. Chemical Metallurgy. Mechanical Metallurgy. Corrosion.

Mineral Products. Porcelain and Pottery. Glass. Refractories. Enameled Metals. Concreting Materials. Constitution and Microstructure.

Building Technology. Structural Engineering. Fire Protection. Heating and Air Conditioning. Floor, Roof, and Wall Coverings. Codes and Specifications.

Applied Mathematics. Numerical Analysis. Computation. Statistical Engineering.

Electronics. Engineering Electronics. Electron Tubes. Electronic Computers. Electronic Instrumentation. Process Technology.

Radio Propagation. Upper Atmosphere Research. Ionospheric Research. Regular Propagation Services. Frequency Utilization Research. Tropospheric Propagation Research. High Frequency Standards. Microwave Standards.

•Office of Basic Instrumentation

Office of Weights and Measures.

NATIONAL BUREAU OF STANDARDS REPORT

NBS PROJECT

NBS REPORT

1004-10-1017

August 16, 1954

3616

LABORATORY STUDIES OF SEVERAL FACTORS AFFECTING THE BEHAVIOR OF SOME MINERALS AS STABILIZERS FOR ASPHALT ROOFING

By

Sidney H. Greenfeld Research Associate Asphalt Roofing Industry Bureau

Floor, Roof and Wall Coverings Section Building Technology Division

> Sponsored by Asphalt Roofing Industry Bureau

U. S. DEPARTMENT OF COMMERCE NATIONAL BUREAU OF STANDARDS

The publication, unless permission 25, D. C. Such p cally prepared if

Approved for public release by the Director of the National Institute of Standards and Technology (NIST) on October 9, 2015.

or in part, is prohibited Standards, Washington report has been specifireport for its own use,

CONTENTS

SUMMARY	Page 1
1. INTRODUCTION	2
2. MINERAL MATERIALS	3.
2.1 Materials Tested as Stabilizers 2.2 Asphalts	3 3
3. EQUIPMENT AND PROCEDURE	[`] 3
4. EXPOSURE SERIES	6
4.1 The Effect of the Softening Point of the Asphalts on Their Dura-	6
4.2 The Effect of the Softening Point of the Base Asphalt on the Durability of Coatings Containing Mineral	O -
Additives 4.3 Selected Minerals - The Effect of Som Natural Variations of Clay, Fly Ash and Silica on the Durability of Coa	e t ~
ings 4.4 The Effect of the Degree of Mixing of Minerals with Asphalt on the Dura-	9
4.5 The Effect of the Particle-Size Dis- tribution of the Mineral Matter on	<u>"L</u> •+
the Durability of Coatings 4.6 The Effect of Particle Shape of	17
Minerals on the Durability of Coatings	23

TABLES

Table No.		Page
I.	Properties of Minerals	4 - 5
II.	Durability of Asphalt Products	7
III.	Effect of the Softening Point of the Base Asphalt on the Durability of Coatings	8
IV.	Properties of Clays, Fly Ashes, and Silicas	10-11
V.	Durability Data	12 - 13
VI.	Mixing Procedures in Asphalt III	16
VII.	Particle Size Distribution Series 35% Mineral Matter	18 - 20
VIII.	Particle Size Distribution Series 50% Mineral Matter in Asphalt II	22
IX.	Fineness Factor	25

LABORATORY STUDIES OF SEVERAL FACTORS AFFECTING THE BEHAVIOR OF SOME MINERALS AS STABILIZERS FOR ASPHALT ROOFING

by

Sidney H. Greenfeld

SUMMARY

The effects of a number of variables inherent in asphalts and minerals available for use in asphalt roofings that were not reported in "Laboratory Evaluation of Six Selected Commercially Available Materials as Stabilizers for Asphalt Roofings" are covered in this report. The influence of softening point of the asphalts; particle size distribution of the mineral matter; particle shape of the mineral matter; natural variations in three of the minerals; and the thoroughness of mixing on the durability of the coatings were measured, The following generalizations resulted:

(1) The durability of the three asphalts decreased as their softening points increased.

(2) The greater durability of the lower softening point asphalts was readily apparent with mineral concentrations of 50% or greater. (3) None of the three clays evaluated had any

appreciable effect on the durability.

(4) Fly ash samples could not be evaluated on the same basis as other samples because the spark method of determining failure could not be used. The indications are, however, based on visual determination of failure, that the effect of fly ash on durability is variable, that sample being designated as "low carbon" being least beneficial.

(5) Of the four silicas, only the special silica, characterized by its relatively greater fineness, (and with Asphalt II, Ottawa Silica) increased the durability of the asphalts.

(6) Thorough mixing is necessary to obtain the most uniform and optimum benefits from the use of minerals as stabilizers.

(7) Commercial blue black slate, Niagara dolomite and Lake Erie Silica were fractionated into a number of particle size ranges and reconstituted into five

synthetic size distributions. The durabilities of coatings made from 35% of each of these with each of the asphalts were in the following descending order:

Classification with U. S. Standard Sieves

Passing 200 mesh Commercial Gradation Passing 325 mesh Equal Size (approximately equal weights on each sieve) Uniform Size (Passing 140 - Retained on 230)

Passing 60 - Retained on 200 mesh

(8) Minerals with flat, plate-like particles (blue black slate, mica, and oyster shell) were most beneficial as stabilizers.

1. INTRODUCTION

During the planning of the mineral stabilizer research program it was recognized that there were several variables involved in stabilization of asphalts against degradation that were not covered by the exposures of the main series to be made. Supplementary exposure series were planned to determine whether any relationship could be established between some of these properties of the materials and durability and between some processing variables and durability. The following series of exposures were made:

- (1) The Effect of Softening Point on the Durability of Asphalt.
- (2) The Effect of the Softening Point of the Base Asphalts on the Durability of Coatings. Containing Mineral Additives.

Greenfeld, S. H., "Laboratory Evaluation of Six Selected Commercially Available Materials as Stabilizers for Asphalt Roofing", Sept. 23, 1953.

- Selected Minerals The Effect of Some Natural Variations of Clay, Fly Ash, and Silica on the (3) Durability of Coatings. The Effect of the Degree of Mixing of Minerals
- (4) with Asphalt on the Durability of Coatings.
- The Effect of the Particle-Size Distribution of (5) the Mineral Matter on the Durability of Coatings.
- The Effect of the Particle Shape of the Mineral Matter on the Durability of Coatings. (6)

With the exception of the Selected-Materials and Particle-Shape Series, all of the properties studied are of the type that can be modified in the laboratory or plant.

MINERAL MATERIALS 2.

2.1 Materials Tested as Stabilizers

Because of the numerous materials tested as stabilizers and the limited number of tests performed on each, the mineral materials will be described in connection with the series of exposures with which each is connected. Table I is a general tabulation of the properties of some of these minerals.

2.2 Asphalts

The asphalts used were the same as those reported in "Laboratory Evaluation of Six Selected Commercially Available Materials as Stabilizers for Asphalt Roofing". The asphalt products were blended to produce a base asphalt which, when mixed with the desired mineral matter, resulted in coating with a softening point in the range of 217 to 227°F.

3. EQUIPMENT AND PROCEDURE

The equipment and procedures for making the exposure panels and exposing and evaluating the coatings were as described in the above-mentioned report.

TABLE I.	PR OPERT I	ES OF MI	NERALS			
PR OPERTY	BBS	FLA. CLAY	N. DOL.	L.E. S.IL.	TENN. MICA	0.5.
Moisture, % Loss on Ignition at 1000°F, %a/	001	28.	010	000	0.05	100 00
Loss on Ignition at Jouor's Neter Solubility.	v0 + 0	10 10	, o. o	,0 ,0	+ 0 + 0°	10 10
Free Alkali, day	0.0	0.0	0.0	0°0 2°68	0.0	0.0 2.68
Surface Area, M ² /g ² /d/		27.6	0		2.2	5.23
011 Absorption, g/100gd/ Water Absorption, g/100gd/	32.7	63.9 36.4	18.4	20.2 20.2	97.5 61.5	23•0 53•0
<pre>% Passing U.S. #60</pre>	99°8	100.0	6.99	6°66	100.0	97.7
R Passing U.S. #80	6.6 6	66 6	6.66	80 80 10 10	96.0	93.6
% rassing U.S. #100 % Passing U.S. #120	96.2	99°8°	99. 9	53.7	85.6	84.4
% Passing U.S. #170	91.3	99°6	96.6	с г С С С С С С С С С С С С С С С С С С	62°9	
% rassing u.s. #200 % Passing U.S. #230	83.64	5.44 1.66	4.68 4.6	2 4 4	20.0 20.0	67.2
R Passing U.S. #325	76.7	98°9	81.0	4. M	37.8	57.5
% Finer than 20 microns	84	12	06 / M	201	55	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
% Finer than 10 microns	ۍ ت ا	∩ -	26 13	4-	0 t.	
% Finer than 2 microns	4	-	J.~	-1 -8	1 8 8	
Chemical Analysis: £/			Ň		,	
SIO2 ROC2 B	20 70 70	787 8	9 -	+86	0 r V r	0.2
Ca0+ Mg0, %)	⁴ 0		\	
$K_{20} + Na_{20}, \%$	+ v				5	
Mixture with Asphalta/E/:	, 1 c	6	, F			
Ease of MIXING Soft. Point Increase, °F	15 15	roor 28	raır 13	6000 2	1+000	15.000
N GER SGUNNUNG GVG/	TEVT DACE					

4 -

DRODERTTES OF MINERALS

;

(FUR FUULINUIES, SEE NEXT PAGE.)

a/ Method described in "A Survey of Materials Available for Use as Mineral Stabilizers", A.R.I.B., Oct. 1952. b/ Isopropyl Alcohol Displacement. c/ Nitrogen Adsorption - B.E.T. Method. d/ A.S.T.M. Method D281-31, Using Primol D and Water. e/ Sedimentation in Isopropyl Alcohol. f/ Supplier's Data for Typical Material. b/ 40% Mineral Matter in Asphalt III (S.P. = 223°F).

4. EXPOSURE SERIES

4.1 The Effect of the Softening Point of the Asphalts on Their Durability

Coatings, 25 mils thick, were made from each of the asphalt products and exposed in the accelerated durability machines to determine the effect of softening point on the durability of the asphalts.

The durabilities of these products are tabulated in Table II and shown graphically in Figure 1. The general trend is for the durability to decrease as the softening point of the asphalt increases. It must be stated, however, that there was an occasional specimen that deviated from the general trend with an abnormally low or high durability. Some differences in durability were the result of exposing half of the panels in one machine (odd ones) and half in another (even ones). In most cases the agreement was good, but in two instances, there was considerable divergence between the results of the two exposures.

4.2 The Effect of the Softening Point of the Base Asphalt on the Durability of Coatings Containing Mineral Additives

Table III and Figure 2 are comparisons of coatings made from a common base (Product C of Asphalt II) asphalt with those made to a definite softening point range, employing progressively softer asphalt as the quantity of mineral additive was increased. The coatings containing the common base seemed to be slightly more durable in the lower mineral concentrations, but the difference was very small and of the same order of magnitude as the differences found in replicate panels exposed at the same time. Thus, variation in the softening point of coatings containing mineral additives seems to be less significant than in asphalt coatings without additives.

-	7	-
---	---	---

TABLE II. DURABILITY OF ASPHALT PRODUCTS

		and the second second	The second s	the second s	
PRODUCT	A	В	C	D	E
Asphalt I Softening Point, °F Penetration at 25°C	192 24	205 21	215 19	224 17	237 15
Acc. Dur., Days Panel No. 1 Panel No. 7 Panel No. 2 Panel No. 6 Average Failure Pattern ^b /	կկ 30 52 52 կկ C	37 37 38 38 3 7 C	29 29 36 36 33 C	29 29 36 29 31 C	28 28 28 28 28 C
Asphalt II Softening Point, °F Penetration at 25°C	196 25	212 20	225 17	234 17	239 15
Acc. Dur., Days Panel No. 1 Panel No. 7 Panel No. 2 Panel No. 6 Average Failure Pattern	108 83 100 100 98 CA	83 83 84 84 83 A	82 69 84 84 80 AC	81 61 63 72 EA	480 81 83 83 82 AED
Asphalt III Softening Point, °F Penetration at 25°C	195 19	195 19	208 19	235 15	239 15
Panel No. 1 Panel No. 7 Panel No. 2 Panel No. 6 Average Failure Pattern ^b	95 86 87 87 89 AC	95 95 87 91 AC	81 81 81 91 81	85 85 46 46 AF	64 57 37 37 48

^a/Odd numbered panels were in one machine; even in another. ^b/Patterns are described in "Laboratory Evaluation of Six Selected Materials as Stabilizers in Asphalt Roofing". ^c/Not counted in average.

egninis, sur lagar anti-agric		CO	MMON	BASE	VAR I	ABLE	BASE
CONCENTRATION OF MINERAL, %	PANEL NO.	°F BASE	°F MIX	DUR. DAYS	°F BASE	°F MIX	DUR. DAYS
Asphalt II	1	225	225	82	228	228	74
	2	11	11	- 69 - 84	11		74
	6	11	11	84	11	11	76
35% B.B.S.	Ave.	11	231	80 177	211	222	75
57/0 = 02 0 = 0	7	11	11	177	11	11	
	2	11	11	163	11	11	158
	Ave.	11	11	170		11	152
50% B.B.S.	1	11	246	211	202	217	169
	7	11	11 11	211	11	11	
	6	11	11	198	н	11	<1)
	Ave.	11	11	209	11	H	192
60% B.B.S.	1 7	11	270	233	190	237	207
	2	11	tt	224	11	11	270
	6	11	11	224	11	11	an an co
35% N DOI	Ave.	11	220	227	" 217	11 225	238
	7	11	250	134	21/	11	90
	ż	11	11	110	11	11	103
	6	11	11	110	11		
50% N. Dol.	l Ave,	II	236	152	206	219	142
	7	11	11	152	11	П	
	2	11	11	145	11	11	161
	Ave.	TT	11	149	11	11	152
60% N. Dol.	1	11	248	140	197	GD 60 60	163
	7	11	11	146	11		187
	6	11	Ħ	130	11		207 107
	Ave.	TE	11	138	11		175

TABLE III. EFFECT OF THE SOFTENING POINT OF THE BASE ASPHALT ON THE DURABILITY OF COATINGS

Asphalt II - 25 mils thick.

b/ Odd numbered panels were exposed in one machine; even numbered ones, in another.

FIGURE |

'人工」 CACLE) -15) SYAD Э6 DURABIL

4.3 Selected Minerals - The Effect of Some Natural Variations of Clay, Fly Ash and Silica on the Durability of Coatings (All coatings tested in this series were 25 mils thick and contained 35% mineral matter.)

The three types of materials investigated in this series (described in Table IV) are representative of the wide variety of each type available. Despite the fact that the three clays tested varied from a disordered kaolinite (Florida Clay) to a mullite, there was little difference in their effects on the durability of any of the asphalts (Table V and Figure 3). Because of the flocculated nature of the Florida and Bradbury clays, the reported size distributions are probably not accurate. These clays were not dispersed readily in the asphalts. However, even in the Kyanite, which was mixed easily with the asphalts, there was no appreciable improvement in durability. In general, therefore, all three clays produced no decrease in the durability of asphalts II and III and only a small decrease in asphalt I.

Fly ash contains some components which are conductors of electricity; therefore, the high voltage probe could not be used to determine failures in coatings containing fly ash. Therefore, all end-point determinations on coatings containing fly ash were made by visual inspection.

Because fly ash is a by-product of the combustion of coal, its composition, both physical and chemical, varies with the source of the coal, the way it is burned, and the efficiency of the combustion. Therefore, its effect on

TABLE IV. PROPERTIES	OF CLAYS	, FLY	ASHES,	AND ST	LICAS	
	A 101		BRAD-	L.C.	H.C.	CHI.
PROPERTY2/	FLA. CLAY	NTTE NTTE	BURY	ASH	ASH	FLY ASH
Moisture, 8	2.2	0.0	1.6	4°0	4°00	4. 00
Loss on Ignition at 1000 F, %	13.3	0.1	+ ~ + ~	7.9	25.9	10°+
Water Solubility, %	0.0	00 20	0.1	s S S	6°-	200
Particle Size Distribution:) 0)))))))	4	•
% Passing U.S. #60	100.0	9°°6	100°0	9°66	98.7	9 ° .66
% Passing U.S. #80	99.9	99°0	. 99°7	98°9	97°4	99°7
% Passing U.S. #100	99°8	95°8	99°1	97.5	95°5	99°4
% Passing U.S. #120	99°8	6°16	98°8	96°7	93 °9	99 °1
% Passing U.S. #170	99°6	80°.	97°9	94°2	89°2	98 °2
% Passing U.S. #200	99°3	72.4	97.3	92 J	85.4	97.4
% Passing U.S. #230	99 .1	65.8	96.8	90°6	82°5	90.06
% Passing U.S. #325	98°9	5 8°9	95.0	8 , 1 8	72°9	。ま
Mixture with Asphalt:						
Ease of Mixing	Poor	Good	Fair	Good	Good	Good
Soft. Point Increase, "F	28	Ś	4	20	17	22

B

Method is described in "A Survey of Materials Available for Use as Mineral Stabilizers", A.R.I.B., Oct. 1952. (40% stabilizer in Aspendix III, S.P. = 223°F)

(TABLE CONTINUED ON NEXT PAGE)

- 10 -

TABLE IV. PROPERTIES OF CLAYS,	FLY ASHE	S, AND SI	ILICAS (C(ONT INUED)
	LAKE			
~	ERIE	BANK	OTTAWA	SPEC IAL
PR OPER TY 3/	SILICA	SILICA	SILICA	SILICA
Moisture. %	0.2	0.1	0.0	0.6
Loss on Ignition at 1000°F, %	0.7	0.2	0.1	0.7
" " 1800°F, %	2.2	0°4	0.2	1°†
Water Solubility. %	0°0	0.2	0.1	0°0
Free Alkali, %	0°0	0.0	0.0	0°0
Particle Size Distribution:				
% Passing U.S. #60	6.66	100.0	100.0	98.2
% Passing U.S. #80	98.2	97.8	99°0	98.1
% Passing U.S. #100	80°8	85°8	96.8	98.0
% Passing U.S. #120	53 ° 7	72.2	90.2	97.8
% Passing U.S. #170	15.3	42°7	65.0	с. Т
% Passing U.S. #200	8 . 1	34.3	51.7	91.2
% Passing U.S. #230	л. Т.	30.8	43.0	87.9
% Passing U.S. #325	3°4	19. 9	27.8	83.1
Mixture with Asphalt:				
Ease of Mixing	Good	Good	Good	Good
Soft. Point Increase, "F	л Г	2	2	20

A/ method is described in "A Survey of Materials Available for Use as Mineral Stabilizers", A.R.I.B., Oct. 1952. (40% Stabilizer in Asphalt III /, S.P. = 223°F)

		CHI。 FLY ASH ^D /	и сосов 66009 06898 944411 . 2200 8220 сосов 700099 06898 944411 . 2200 сосов 700099 068988 944411 сосов 6600 сосов 70009 сосов 70009 сосов 7000 сосов 70
		H.C. FLY ASH ^b /	60 60 60 60 60 60 60 60 60 60
лтрса/	ZER	L.C. FLY ASH ^b /	4 4 4 4 4 4 4 4 4 4 4 4 4 4
CT ADTT T	STABILI	BRAD- BURY CLAY	ortedion, preferred
		KYA- KTA- NITE	разичина на водина на водина
		FLA. FLA. CLAY	thick.
		NONE	DOBLETS
田 ン 凸 エ 凸 ン 田 ン 凸 エ 凸 ン		ASPHALT	<pre>Asphalt I no. 2, " no. 2, " " no. 6, " no. 6, " Average Ratioc/ Crack Pattern Softening Point, °F Soft. Point Base, °F Fen. at 25°C; Base Impact, Inches Pen. at 25°C; Base Impact, Inches No. 7, " " No. 7, " " No. 7, " " No. 6, " " No. 6, " " No. 7, " " No. 7, " " No. 6, " " No. 6, " " No. 7, " " No. 7, " " No. 6, " " No. 7, " " No. 6, " " No. 7, " " No. 7,</pre>

- 12 -

TABLE V. DUKABILIT DATA

1		-		
ED)	ERSa/ ER	SPEC IAL S IL ICA		
(CONTINU	STABILIZ STABILIZ	OTTAWA S IL IC A	ad by vist	pection.
LITY DATA	TESTED AS	BANK S IL ICA		Insj
DURABII	TNERALS 1	LAKE ER IE S IL ICA		
TABLE V.	SELECTED	ASPHALT	<pre>Asphalt I No. 7, "" Dur., Days No. 6, " Dur., Days seck Pattern tening Point, "F tening Point, "F tening Point, "F n. at 2500, Base No. 2, " " " No. 2, " " " " No. 2, " " " No. 2, " " " No. 2, " " " No. 2, " " " " " " No. 2, " " " " " " No. 2, " " " " " " " No. 2, " " " " " " " " " No. 2, " " " " " " " " " " " No. 2, " " " " " " " " " " " " " No. 2, " " " " " " " " " " " " " " " " " "</pre>	
			P HOSSORA P HOSSORA P HESSORA P	

- 13 -

t i

the durability of asphalt roofing varies considerably. The three samples of fly ash tested varied from one produced under very efficient combustion conditions (2% loss on ignition) to one with almost 18% loss on ignition. All three materials were very finely divided and had appreciable amounts of water-soluble material present; only two had small amounts of free alkali. Because failure was determined visually on these coatings, their durability cannot be compared directly with the unstabilized asphalts or the other coatings in which failure was measured by means of a high voltage probe. (Where comparisons between the two methods for determining failure are possible, visible inspection always results in a somewhat longer coating life.) Therefore, only comparisons among the fly ash specimens can legitimately be made. The material designated as Low Carbon Fly Ash contributes the least to the durability of the coatings.

Two of the samples of silica tested were in their natural form while the other two (Ottawa and Special) had been processed through a grinding and sieving operation. Further, the Special Silica had been used to polish plate glass and in addition to the small particles of glass present, the corners and edges of the particles were rounded. With the exception of this material, which was appreciably soluble in water, the silicas were rather coarse and inert.

None of the silicas affected the durability of asphalt I; both of the processed silicas and Lake Erie Silica increased the durability of asphalt II; and only the Special Silica appreciably increased the durability of asphalt III. The efficacy of the Special Silica is probably due to its fine degree of subdivision, 82% being minus 44 microns (325-mesh sieve).

4.4 The Effect of the Degree of Mixing of Minerals with Asphalt on the Durability of Roof Coatings

The effect of the thoroughness with which the mineral matter was mixed with the asphalt on the durability of the coating was investigated. Three mineral additives were used: 1) Blue black slate, representing a material which mixes readily and easily with asphalt; 2) Niagara

FIGURE 3

EFFECTS OF SELECTED MATERIALS ON DURABILITY

35 % MINERAL MATTER

25 MILS THICK

dolomite, representing a material which is incorporated with asphalt with moderate difficulty; and 3) Florida Clay, representing a material extremely difficult to mix with asphalt. These materials were mixed in concentrations of 35, 50, and 60% with asphalt III by three different procedures:

- 1) Prolonged Hand Mixing The melt was stirred continually for about one hour until all bubbling and foaming ceased.
- 2) Continuous Mechanical Mixing The mixture was stirred for 30 minutes with a high-speed laboratory stirrer after the mineral matter was added to the molten asphalt.
- 3) Brief Hand Mixing Panels were made as soon as the mineral matter was folded into the asphalt. Only enough stirring was used to keep the mineral matter suspended.

The three minerals are described in Table I. Table VI and Figure 4 cover the results of the accelerated durability tests on these coatings. The data in Figures 4 and 5 are plotted on a ratio basis, i.e., the durability of the coating divided by the durability of the corresponding asphalt without mineral additives. In this way, it is possible to see at a glance the magnitude of the change in durability produced by the additive, and the effects of the additive are reduced to a comparable basis. It can be seen that with blue black slate, the mineral which mixes readily with asphalt, there was little difference in the durability of the panel made by the three procedures. The same was true of the coatings containing dolomite, except that there was a little more spread among the three procedures. However, with clay, the material that is difficult to mix with asphalt, the only procedure that yielded coatings as durable as the unstabilized asphalt was the prolonged hand mixing, i.e., thorough mixing. Despite the fact that the average durability was not appreciably changed by the degree of mixing in most cases, the data show that with both the 30-minute mechanical mixing and with the brief hand mixing, the spread in durability of replicate panels exposed in differ-ent machines was greater than with prolonged hand mixing. Therefore, it must be recommended strongly that thorough mixing be employed to obtain the most uniform and optimum benefits from a mineral additive.

1		£																											- 1
	MIX.	90		231	152	//+ ///	202	2.69	A	52 50 70 70	202		138	102			1.87	मि	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	00 T	1	8		8					:
	HAND	50		225	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	- 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	200	2.67	A	221	07		98	. 95	200		1.49	A	122 120 120	20	-	17	5 1 1 1 1	27 92	09	0,80	241	193	20
	BR IEF	35		152	173	70 70 70		1.96	Ą	224 204	19		121	121			1.52	A		2010	4		4α Λυ	<u>6</u>	52	0,26	225	206	19
III ^{a/}	I. MIX.	60		216			197	2,63	A.	249	20		26 2	96 70	00 VC T		1.33	AE		272 1	2	. 	4 1 0 0 1 2						:
HALT	I. MECH	50		217			は	2.59	Å	226	20.		95	95	227		1.48	Ą	922	20 20 20	~	<u>1</u> ,2	ر ۲		25	0,69 0,69	234	193	20
IN ASF	30-MIN	35		152		7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	11/2	1.96	A	222	19	-	149	01 140		129	1.72	A	512		-	22	4 4 7	30	25	69°0	227	206	19
DURES	DNIX	60		203			199	2,66	ы	256	22		118		137	128	1.71	ভি		+ 0 7-0 	;	1				1			
PR OCE	AND MI	50		188			199	2,66	A		22		115		51	125	1.67	ឝ			4	81	80		85 85	1 . 13	227	190	22
JULXING	NGED H	35		188			174	5.32	A		20	(<u>a</u>	122			5		A				76	10		76	1°01	221	100	20
VI. N	PROLOI	0	xine)	666	۵۵ مر	36	35		ſz.	222		Mixin	<u> </u>	60	1 2	10	<u>у</u> н	ر الحار (/ //	lixing	- 96	2000	бі В	75	 	227	227	7
TABLE			asy Mi	Days	: :	ų.	¢	4		0 1	• •	verage	Days	= :	: 2	ŧ	ŧ		F O	4 a	cult N	Days	: =	I		ı		e Fi	θ
		AL	ate (E	Dur.,	: =	: •=	1	1		nt, F	of Bas	ite (A	Dur.,	= :	: =	،	¢		nt, 'F	Dase,	(Diffi	Dur.,	: =	1	• •	ı	nt. °F	Base.	of Bás
	IDURE	MINER	sck S1		~~~		5		attern	Pol	25°C	Dolom	0. 1,		v.	5		attern	le Pol		Clay	2. J.	<u>,</u>	0		++0	ne Poi	of.	25°C
	PR OCI	RCENT	ue Bl	inel Nc			erage	tio	ack Pa	ftenir	n. at	agara	Inel No	= :		erare	tio	ack P	of tenli		orida	n len		u u	rerage	ttio D.	ftenia	oft. P	en. at
		d,	B	Pe			AV	Ra	5	S C	P.C.	IN	Pa			Av	Ra	50	n n		E	Pa			A		20 20	S	å

Adil Coatings 25 mils thick.

- 16 -

4 FIGURE

EFFECTS OF MIXING ON DURABILITY

ASPHALT III - 25 MILS THICK

I = 75 DAYS

SPREAD

ONITAOD TJAH92A YTIJI8A9UO YTIJI8A9UO 0E 0E VTIJI8A9U0 ΟΙΤΑЯ =

4.5 The Effect of the Particle-Size Distribution of the Mineral Matter on the Durability of Coatings

Because the particle-size distribution is one of the attributes of mineral matter which may seriously affect its performance, its effects on durability were evaluated in all three asphalts. Three minerals, blue black slate, Niagara dolomite and Lake Erie silica, were sieved into eight fractions and reconstituted into five different synthetic size distributions, as follows:

1)	+200 Mesh - Coarse material retained on a No. 200 U. S. Standard Sieve.
2)	-200 Mesh - Material passing a No. 200 U. S. Standard Sieve.
3)	-325 Mesh - Material passing a No. 325 U. S. Standard Sieve.
4)	Uniform Size - Material passing a No. 140 but re- tained on a No. 230 U. S. Standard

5) Equal Size - Approximately equal weights retained on a square-root of two series of U.S. Standard Sieves.

The geometry of irregular particles being separated by means of sieves with square openings introduced some deviations from the distributions desired.

Exposure panels (25 mils thick) were made from coatings containing 35 per cent of materials containing each of these distributions. The particle-size distributions are recorded along with the accelerated durability data in Table VII. Average durability figures are shown graphically in Figure 5.

			BLUE	BLACK	SLATE		
ASPHALT	None	Regu-	+200	-200	-325	-140	Equal
						T230	pize
<u>Asphalt I</u>	-	1 -	10				
Panel No. 1, Dur., Days	52	61	58	58	<u>75</u>	53	52
" 7, Dur, Days	52		58	58	75	59	52
" " 2, Dur., Days	34	75	65	72	80	55	54
" " 6, Dur., Days	34		65	72	80	42	54
Average	43	_68 _ 68	62	65	77	52	_ 53
Durability Ratio	1 C	1.50	1.44	T°2T	1.79	1.21	T.23
Crack Pattern		BG	B	G	G	BC	C
Soltening Point, F	219	222	220	220	222	227	230
Base Doit. Point, F	219	210	220	207	207	212	214
Dase ren. at // r	TO	21	TO	21	21	20	20
ASphalt II		-1.		- / -		-1	
Panel No. 1, Dur., Days	74	146	13T	161	149	140	122
" 7, Dur., Days	74		131		120	133	129
" 2, Dur., Days	70	120	131	147	101	162	152
Auonogo	70	150	122		171	150	123
Average.	72	2 01		2 00	2 08	170 2 11	1 01
Cnack Pattern		2.01	⊥•// ∧	2.09	2.00 A		T• 7T
Softening Point °F	228	222	ววร์	227 n	22/1	225	220
Base Soft Doint OF	228	211	22)	215	224	22)	215
Base Pon at 77°F	17	222	10	10	22	10	10
Asphalt TIT	± /		- /		~~	17	19
Panel No. 1 Dur. Davs	66	188	122	185	177	145	153
" " 7. Dur., Days	69	100	122	171	163	138	111
" " 2. Dur. Davs	Ří	159	120	198	161	134	149
" " 6. Dur. Davs	81		100	173	154	134	129
Average	75	174	116	182	164	137	141
Durability Ratio	í	2.32	1.56	2.43	2.19	1.83	1.88
Crack Pattern	F	A	Â	AH	A	A	A
Softening Point, °F	227	218	226	221	227	223	223
Base Soft. Point, °F	227	205	221	205	207	205	209
Base Pen. at 77°F	14	20	17	20	20	20	20
% Passing U. S. 60		99.8	99.1	100.0		100.0	100.0
80		99.3	94.7	100.0		100.0	98.7
100		97.9	85.0	100.0		94.7	95.1
. 120		96.2	74.1	99.9		92.4	90.2
170		91.3	35.2	99.9		72.9	66.6
200		86.9	5.7	99.3		40.2	54.5
230		83.1	1.0	95.4	100 0	13.5	42.8
325	and the second secon	10.1	0.7	05.5	100.0	4.1	21.7

TABLE VII. PARTICLE SIZE DISTRIBUTION SERIES*

"35% Mineral Additive Exposed in Films 25 mils thick on Aluminum.

TABLE VII. PARTICLE SIZE DISTRIBUTION* (CONT'D)

	NIAGARA DOLOMITE					
ASPHALT	Regu- lar	+200	-200	-325	-140 +230	Equal
Asphalt I Panel No. 1, Dur., Days ""7, """ "2, """ Average Durability Ratio Crack Pattern Softening Point, °F Base Soft. Point, °F	45 59 52 1.21 C 220 209	43 42 42 43 1.00 8 226 219	43 36 50 42 43 1.00 c 221 211 20	38 37 37 37 0.86 BC 218 207	36 36 36 36 36 0.84 223 212	35 35 35 35 35 0.81 c 224 214
Asphalt II Panel No. 1, Dur., Days """, ", """ """, ", """ """, ", """ """, ", """ """, ", """, ""	98 103 101 1.35 A 225 217 19	87 80 89 103 90 1.20 AC 223 214 19	88 88 114 104 99 1.32 AE 226 219 18	99 87 93 93 1.24 A 219 214 19	91 84 83 90 87 1.16 A 223 214 19	99 99 85 78 91 1.21 A 223 221 18
Panel No. 1, Dur., Days """7, """ ""2, """ Average Durability Ratio Crack Pattern Softening Point, °F Base Soft. Point, °F Base Pen. at 77°F % Passing U.S. 60 100 120 170 200 230 325	122 108 115 1.53 221 204 20 99.9 99.9 99.9 99.6 99.3 96.6 93.4 89.9 81.0	112 108 94 107 1.43 226 219 18 99.6 91.4 99.6 91.4 99.6 91.4 20.5 91.4 20.5 91.4 20.5 91.4 20.5 91.4	134 134 128 110 127 1.69 A 220 215 19 100.0 100.0 100.0 100.0 100.0 100.0 99.9 99.9	109 102 116 116 111 1.48 A 223 206 20	95 98 97 1.29 A 222 210 20 100.0 93.0 74.1 41.25	87 87 110 76 90 1.20 A 223 214 19 100.0 97.9 94.5 79.8 70.0 50.0 19.1

*35% Mineral Additive Exposed in Films 25 Mils Thick on Aluminum.

TABLE VII.	PARTICLE	SIZE	DISTR IBU	TION SI	ERIES*(C	ONT'D)
			LAKE ERI	E SILI	CA	
ASPHALT	Regu- lar	+200	-200	-325	-140 +230	Equal Size
Asphalt I Panel No. 1, Dur., Days ""7, """ "2, """ "4verage Durability Ratio Crack Pattern Softening Point, °F Base Soft. Point, °F Base Pen. at 77°F Asphalt II	33 41 37 0.86 c 213 20	28 28 42 35 33 0.77 BC 222 212 20	49 49 35 35 42 0.98 c 226 210 21	41 41 26 40 37 0.86 c 227 208 21	29 36 29 29 31 0.72 C 223 213 20	37 30 30 32 0.75 C 225 213 20
Panel No. 1, Dur., Days ""7, """ "2, """ "4verage Durability Ratio Crack Pattern Softening Point, °F Base Soft. Point, °F Base Pen. at 77°F	s 91 117 104 1.39 AC 217 207 23	68 68 84 98 80 1.07 AC 219 214 19	132 132 118 132 128 1.71 A 223 215 19	112 112 112 112 112 1.49 A 227 217 19	93 93 93 93 1.24 A 225 215 19	120 109 101 101 107 1.43 A 226 216 19
Panel No. 1, Dur., Days ""7, """ "2, """ Average Durability Ratio Crack Pattern Softening Point, °F Base Soft. Point, °F Base Pen. at 77°F % Passing U. S. 60 100 120 170 200 230 325	80 72 76 1.01 A 226 206 200 99.9 98.2 80.8 53.7 15.3 85.1 4	93 93 81 87 1.08 A 222 215 19 100.0 99.5 92.7 26.7 1.0	$ \begin{array}{c} 122\\ 122\\ 143\\ 136\\ 129\\ 1.72\\ A\\ 223\\ 210\\ 20\\ 100.0\\ 100.0\\ 99.9\\ 99.9\\ 99.7\\ 98.2\\ 85.7\\ 1.52.5\\ \end{array} $	108 108 123 123 115 1.53 A 224 207 20	95 87 105 98 1.31 A 226 216 19 100.0 43.7 18.8 7.3 1.2	100 103 103 102 1.36 A 219 210 20 100.0 97.9 93.1 71.2 56.5 46.7 28.2

*35% Mineral Additive Exposed in Films 25 Mils Thick on Aluminum.

The durability was a function of both the asphalt and the mineral additive. However, the results will be discussed primarily in terms of the minerals. While the finer distributions of blue black slate increased the durability more than the coarse ones in asphalts I and III, in asphalt II the durability was independent of the size distribution. The coatings made with silica, however, indicated that the finer distributions yielded the more durable coatings.

The indecisive nature of the above results led to the conclusion that the quantity of mineral matter present was insufficient for the effect of particle-size distributions to be observed in coatings 25 mils thick. Accordingly, the two extreme size ranges, +200 and -200, were formulated at a concentration of 50% in asphalt II and exposed in films 13 and 25 mils thick. The results are presented in Table VIII and Figure 5.

The effects of size distribution were clearly evident with 50% mineral matter in coatings 13 mils thick. For example, +200 blue black slate lasted only 42% as long as the asphalt alone, but the coating with the -200 blue black slate was three times as durable, making it produce over seven times the durability of the +200 material. At 25 mils, the same trend, though not so extreme, was maintained, the -200 mesh material producing a coating twice as durable as the +200 mesh. With dolomite, there was a factor of about two in both cases, but in the thin film it shifted the durability from below to above that of the asphalt alone. In the case of silica, however, the increase in durability produced by going to the finer size was small.

In summary, the -200 mesh fraction of blue black slate, Niagara dolomite, and Lake Erie silica seem to be most effective in increasing the durability of asphalt roof coatings in concentrations of 35 and 50 percent. The material retained on the 200 mesh sieve is the least effective, while the regular (commercial), -325, equal size, and uniform size (-140 +230) follow in descending order, with little difference between adjacent distributions.

MINERAL	BLUE SLA	BLACK TE	NIAG DOLO	ARA MITE	LAKE SILI	ERIE CA
Size Range Softening Pt.,°F 13 Mils Thick	+200 220	-200 226	+200 219	-200 217.	+200 219	-200 223
No. 1, Dur., Days No. 7, Dur., Days No. 2, Dur., Days No. 6, Dur., Days Ave., Dur., Days Durability Ratio Crack Pattern	23 23 23 23 23 0.42 A	178 178 167 160 171 3.10 A	, 54 53 48 54 0.98 A	104 90 93 102 97 1.76 A	64 50 52 52 0.94 A	80 86 71 64 75 1.36 A
25 Mils Thick No. 1, Dur., Days No. 7, Dur., Days No. 2, Dur., Days No. 6, Dur., Days Ave., Dur., Days Durability Ratio Crack Pattern	120 135 145 120 129 1.72 A	225 230 223 233 228 3.04 EG	110 102 102 106 1.41 A	144 139 137 143 141 1.88 E	134 120 98 98 112 1.49 A	129 129 113 113 121 1.61 A

TABLE VIII. PARTICLE-SIZE DISTRIBUTION SERIES 50% MINERAL MATTER IN ASPHALT II*

*Durability of Asphalt II: 13 Mils - 55 Days 25 Mils - 75 Days Because particle shape was the one property of the minerals studied in the Principal Series of exposures that seemed to be related to the efficacy of their stabilizing action, some quantitative method of expressing particle shape was sought. A relation between a bulk density and the true density of the minerals seemed worth considering for this purpose. Franz Popel, in 1929, proposed a relation of this type, which he called "fineness factor", and defined as

 $f = \frac{\text{density} - \text{compacted wt}_{\circ} = \frac{d-b}{b}}{\text{compacted wt}_{\circ}}$

where the compacted weight is an empirical bulk density determined under any set of conditions that would yield reproducible results.

Rather than a compacted weight, the bulk density used was obtained by fluffing the mineral matter by letting it flow slowly through a column of one-inch inside diameter, 21 inches long. Baffles set at an angle of 45° were placed 12 and 16 inches from the top of the column and the column was constricted to a diameter of 3/4 inch at the bottom. The column discharged into a 100-ml, weighed and calibrated, graduated cylinder from a point 1/4 inch above the cylinder. In practice the mineral matter was poured slowly into the column until it just overflowed the receiver. The excess was struck off level with the top of the receiver and the receiver and contents weighed. The weight of the mineral

1/

"Laboratory Evaluation of Six Commercially Available Minerals as Stabilizers for Asphalt Coatings", S. H. Greenfeld. 2/

Franz Popel, Der Moderne Asphalstrassenbau (Strassenbau-Verlag Martin Boerner, Halle 1929). matter divided by its volume is termed the "fluffed bulk density" or simply, the "fluff density". A correlation of fineness factor based on this bulk density is presented in Figure 6. The individual points are tabulated in Table IX.

It is readily seen that for each asphalt this factor correlated well with durability. The only materials that deviate considerably from the curves are oyster shell and mica, both being materials characterized by flat, platelike particles. Since the deviations are in the direction of greater durability than indicated by the lines, the lines may be taken as conservative indications of durability.

Despite the rather good correlations indicated by Figure 6, it must be emphasized that these data were obtained for specific materials under very specific test conditions and that the results may vary under other conditions. The fact that a different line is plotted for each asphalt emphasizes the importance of the asphalt itself in respect to durability. TABLE IX. FINENESS FACTOR

	Particle		Fluff	Fineness Factor f	Du Day 35%	rabilit; 's to F. Mineral	u • •
Mineral	Shape (Visual)	Density d	Density	d-b b		sphalts	III
ca 00 BBS	년 년 년 년 년 년	565 0000	0.29 0.68 73	ورس رکس	572 6572	>1000 157 152	>1000 182 171
ster Shell	AP	2 0 0 0 0 0 0 0	0.72		115	1981 1981	193
ec. Silica	BR	2 . 58	0.78	2°.)	, ΤΟ.	123	155
C. Fly Ash	H	2 . 62	0.62	2°5	, 1	116	119
00 Dol.	BS	2.87	0.94	2.1	43 143	66	127
25 Dol.	BS	2.87	0.93	2.1	37	93	111
DO BBS	FР	2.94	0.99	2°0	62	133	116
ag. Dol.	BS	2.87	1.03	1°8	27	TOT	115
anite	н	3 ° 60	1.3 ⁴	1.7	μ3	98	96
Clay	H	2.64	1°04	L 5	8 000000000000000000000000000000000000	86	76
Do Dol.	BS	2 . 87	1.29	1°5	t_3	6	107
E. Silica	BR	2 68	1.3Ì	1.1	37	105	76
= Flat Plate	S S		AP = Ac	icular Plate	S		

<pre>AP = Acicular Plates BS = Blocky, Sharp Corners I = Indefinite (Requires higher mag- nification than on light micro-</pre>	scope)
FP = Flat Plates BR = Blocky, Rounded Corners H = Heterogeneous	

- 25 -

YTIJI8A9U0 26-15) SYAD CACLE)

THE NATIONAL BUREAU OF STANDARDS

Functions and Activities

The functions of the National Bureau of Standards are set forth in the Act of Congress, March 3, 1901, as amended by Congress in Public Law 619, 1950. These include the development and maintenance of the national standards of measurement and the provision of means and methods for making measurements consistent with these standards: the determination of physical constants and properties of materials; the development of methods and instruments for testing materials, devices, and structures; advisory services to Government Agencies on scientific and technical problems; invention and development of devices to serve special needs of the Government; and the development of standard practices, codes, and specifications. The work includes basic and applied research, development, engincering, instrumentation, testing, evaluation, calibration services, and various consultation and information services. A major portion of the Burcau's work is performed for other Government Agencies, particularly the Department of Defense and the Atomic Energy Commission. The scope of activities is suggested by the listing of divisions and sections on the inside of the front cover.

Reports and Publications

The results of the Bureau's work take the form of either actual equipment and devices or published papers and reports. Reports are issued to the sponsoring agency of a particular project or program. Published papers appear either in the Bureau's own series of publications or in the journals of professional and scientific societies. The Bureau itself publishes three monthly periodicals, available from the Government Printing Office: The Journal of Research, which presents complete papers reporting technical investigations; the Technical News Bulletin, which presents summary and preliminary reports on work in progress; and Basic Radio Propagation Predictions, which provides data for determining the best frequencies to use for radio communications throughout the world. There are also five series of nonperiodical publications: The Applied Mathematics Series, Circulars, Handbooks. Building Materials and Structures Reports, and Miscellaneous Publications.

Information on the Bureau's publications can be found in NBS Circular 460, Publications of the National Bureau of Standards (\$1.25) and its Supplement (\$0.75), available from the Superintendent of Documents, Government Printing Office. Inquiries regarding the Bureau's reports and publications should be addressed to the Office of Scientific Publications, National Bureau of Standards, Washington 25, D. C.

.