On an Inequality of Hardy, Littlewood and Pólya

by

A. J. Hoffman
THE NATIONAL BUREAU OF STANDARDS

The scope of activities of the National Bureau of Standards is suggested in the following listing of the divisions and sections engaged in technical work. In general, each section is engaged in specialized research, development, and engineering in the field indicated by its title. A brief description of the activities, and of the resultant reports and publications, appears on the inside of the back cover of this report.

Ordnance Development. These three divisions are engaged in a broad program of research Electromechanical Ordnance. and development in advanced ordnance. Activities include Ordnance Electronics. basic and applied research, engineering, pilot production, field testing, and evaluation of a wide variety of ordnance matériel. Special skills and facilities of other NBS divisions also contribute to this program. The activity is sponsored by the Department of Defense.

Missile Development. Missile research and development: engineering, dynamics, intelligence, instrumentation, evaluation. Combustion in jet engines. These activities are sponsored by the Department of Defense.

• Office of Basic Instrumentation • Office of Weights and Measures.
On an Inequality of Hardy, Littlewood and Pólya

by

A. J. Hoffman

This work was supported (in part) by the Office of Scientific Research, USAF
On an Inequality of Hardy, Littlewood and Polya

by

A. J. Hoffman*

A well-known inequality of Hardy, Littlewood and Polya (see [3], p. 49) states: Let \(\alpha = (\alpha_1, \ldots, \alpha_n) \) and \(\beta = (\beta_1, \ldots, \beta_n) \) be points in \(\mathbb{R}^n \), and let \(\sigma \) and \(\tau \) be permutations of the set \(1, 2, \ldots, n \) such that \(\alpha_{\sigma_1} \geq \alpha_{\sigma_2} \geq \ldots \geq \alpha_{\sigma_n} \) and \(\beta_{\tau_1} \geq \beta_{\tau_2} \geq \ldots \beta_{\tau_n} \). Then in order that

\[
\beta_{\tau_1} \leq \alpha_{\sigma_1}
\]
\[
\beta_{\tau_1} + \beta_{\tau_2} \leq \alpha_{\sigma_1} + \alpha_{\sigma_2}
\]
\[
\vdots
\]
\[
\beta_{\tau_1} + \beta_{\tau_2} + \ldots + \beta_{\tau_{(n-1)}} \leq \alpha_{\sigma_1} + \alpha_{\sigma_2} + \ldots + \alpha_{\sigma_{(n-1)}}
\]
\[
\beta_{\tau_1} + \beta_{\tau_2} + \ldots + \beta_{\tau_{n}} = \alpha_{\sigma_1} + \alpha_{\sigma_2} + \ldots + \alpha_{\sigma_{n}}
\]

it is necessary and sufficient that \(\beta = X\alpha \), where \(X = (x_{ij}) \) is a matrix satisfying

(2) \(x_{ij} \geq 0 \) for all \(i, j \),

(3) \(\sum_j x_{ij} = \sum_i x_{ij} = 1 \) for all \(i, j \).

Several proofs of this theorem, and of various generalizations, are known (see [1], [2], [4] and [5] for some recent work). The purpose of this note is to present a strengthened

*This work was supported (in part) by the Office of Scientific Research, USAF.
version of the Hardy, Littlewood and Polya theorem (which we call HLP hereinafter), the proof of which is no more difficult than the proof of HLP.

We shall prove:

Theorem 1. Let \(\alpha = (\alpha_1, \alpha_2, \ldots, \alpha_n) \) satisfy

\[
\alpha_1 \geq \alpha_2 \geq \cdots \geq \alpha_n.
\]

Then in order that a vector \(\beta = (\beta_1, \ldots, \beta_n) \) satisfy

\[
\beta_1 \geq \beta_2 \geq \cdots \geq \beta_n
\]

and

\[
\beta_1 \leq \alpha_1, \\
\beta_1 + \beta_2 \leq \alpha_1 + \alpha_2 \\
\vdots \\
\beta_1 + \beta_2 + \cdots + \beta_{n-1} \leq \alpha_1 + \alpha_2 + \cdots + \alpha_{n-1} \\
\beta_1 + \beta_2 + \cdots + \beta_n = \alpha_1 + \alpha_2 + \cdots + \alpha_n,
\]

it is necessary and sufficient that

\[
\beta = X\alpha,
\]

where \(X = (x_{ij}) \) is a matrix satisfying (2), (3)

\[
x_{i_1j} \geq x_{i_2j} \text{ for all } i_1, i_2, j \text{ such that } (j-i_1)(i_1-i_2) \geq 0,
\]

and
(9) \[x_{ij} = x_{ji} \text{ for all } i, j. \]

Proof of necessity: Consider the set of all vectors \(\beta \) satisfying (5) and (6). They clearly form a bounded, closed, convex set in \(R^n \). Let us designate this set by \(K \).

We first show

Lemma. Let \(1 \leq a_1 < a_2 < \ldots < a_k = n \). Let \(y_1 = y_2 = \ldots = y_{a_1} = (\alpha_1 + \alpha_2 + \ldots + \alpha_{a_1})/a_1, y_{a_1+1} = y_{a_1+2} = \ldots = y_{a_2} = \)

\[(\alpha_{a_1+1} + \alpha_{a_1+2} + \ldots + \alpha_{a_2})/(a_2 - a_1), \ldots, y_{a_{k-1}+1} = y_{a_{k-1}+2} = \]

\[= \ldots = y_{a_k} = (\alpha_{a_{k-1}+1} + \alpha_{a_{k-1}+2} + \ldots + \alpha_{a_k})/(a_k - a_{k-1}). \]

Then (i) \(y = (y_1, y_2, \ldots, y_n) \) is a vertex of \(K \), and (ii) every vertex of \(K \) arises in this way.

Proof of lemma: (i) First, we must show that \(y \in K \).

It is immediate that \(y \) satisfies (5). To show that \(y \) satisfies (6), we first remark that the last equation of (6) obviously holds, so all that needs to be established are the inequalities. Further, if we prove

(10) \[y_1 + y_2 + \ldots + y_s \leq \alpha_1 + \ldots + \alpha_s, \]

for \(1 \leq s \leq a_1 \), it is clear from the definition of \(y \) that this argument will establish (10) for any value of \(s \). Now
(10) is equivalent with
\[
(11) \quad s(\alpha_1 + \alpha_2 + \ldots + \alpha_{a_i})/a_1 \leq \alpha_1 + \ldots + \alpha_s.
\]
But by (4), \(\alpha_1 + \alpha_2 + \ldots + \alpha_{a_1} \leq \alpha_1 + \alpha_2 + \ldots + \alpha_s + (a_i - s) \alpha_s \).

Hence,
\[
(12) \quad s(\alpha_1 + \ldots + \alpha_{a_1})/a_1 \leq \alpha_1 + \ldots + \alpha_s + (a_i - s) \alpha_s
\]
\[
- \frac{a_i - s}{a_1} (\alpha_1 + \ldots + \alpha_s + (a_i - s) \alpha_s)
\]
\[
\leq \alpha_1 + \ldots + \alpha_s + \alpha_s \left[(a_i - s) - \frac{a_i - s}{a_1}(s + a_i - s)\right]
\]
\[
< \alpha_1 + \ldots + \alpha_s,
\]
which proves (11).

To show that \(y \) is a vertex, assume that \(y = (y' + y'')/2 \), where \(y', y'' \in K \). Then if \(y_1' \ldots + y_1'a_1 > y_1 + \ldots + y_1'a_1 = \alpha_1 + \ldots + \alpha_{a_1} \), we would have \(y_1'' + \ldots + y_1'a_1 < \alpha_1 + \ldots + \alpha_{a_1} \), violating (6). Similarly \(y_1' + \ldots + y_j'a_j = y_1'' + \ldots + y_j'a_j \), \(j = 1, \ldots, k \).

Next, suppose for some \(s, 1 \leq s < a_i \), we have \(y'_s > y_s \). Then by the preceding paragraph, there is an integer \(t \), \(1 \leq t < a_i \), such that \(y'_t < y_t \). Note that \(y_s = y_t \). Hence \(y'_s > y'_t \). If \(t < s \), then \(y' \) violates (5). If \(t > s \), \(y'' \) violates (5). Hence
$y'_s = y''_s = y'_s$. Clearly this argument extends to any
$s = 1, ..., n$. Thus $y = (y' + y'')/2$ implies $y = y' = y''$.
This completes the proof of (i).

To prove (ii), let β satisfy (5) and (6), but not be a
vector such as y above. This means that there exists in-
tegers $1 \leq a_1 < a_2 < ... < a_k = n$ such that $\beta_1 = \beta_2 = ... =
\beta_{a_1} < \beta_{a_1+1} = ... = \beta_{a_2} < ... < \beta_{a_{k-1}} = ... = \beta_{a_k}$, but for at
least one $j = 1, ..., k-1$, we have $\beta_{a_j} + 1 < a_{j+1} +
\beta_{a_j}$, and for at least one $j = 1, ..., k-1$, we have $\beta_{a_j} < a_j +
\beta_{a_{j+1}}$. Let ϵ be any positive number smaller than
$\epsilon_1 + ... + \epsilon_{a_j} = (\beta_1 + ... + \beta_{a_j})$, $\beta_{a_j} - \beta_{a_{j-1}}$, $\beta_{a_j} - \beta_{a_{j+1}}$.
Define $\beta'_1 = \beta_1$, ..., $\beta'_{a_j-1} = \beta_{a_j-1}$, $\beta'_{a_j-1} = ... = \beta'_{a_j}$
$= \beta_{a_j} + \epsilon / (a_j - a_{j-1})$, $\beta'_{a_j+1} = ... = \beta'_{a_{j+1}} = \beta_{a_{j+1}}$
$- \epsilon / (a_{j+1} - a_j)$, $\beta'_{a_{j+1}} = \beta_{a_{j+1}}$, ..., $\beta'_n = \beta_n$. Also define
$\beta'' = 2\beta - \beta'$. Then it is easy to check that β' and β'' each satisfy (5) and (6), $\beta = (\beta' + \beta'')/2$, $\beta' \neq \beta''$, so β is not
a vertex of K. This completes the proof of (ii), thus of
the lemma.

We resume our proof of the necessity of theorem 1. Let
$\beta \in K$, then β is a convex combination of the vertices of
K. By the lemma, each vertex of K is of the form $x_{a_1} \cdot \cdot \cdot ,
\cdot \cdot \cdot , x_{a_k}$, where $X_{a_1} \cdot \cdot \cdot , a_k$ is the matrix of order n
with 0's everywhere outside the square boxes along the main diagonal, where the first box is of order a_1, the second box of order a_2-a_1, ..., the k-th box of order a_k-a_{k-1}; every entry in the first box is $1/a_1$, every entry in the second box is $1/(a_2-a_1)$, ..., every entry in the k-th box is $1/(a_k-a_{k-1})$. Note that $X_{a_1,...,a_k}$ satisfies (2), (3), (3), (9). Since $\beta = \sum c_i (X^{(i)} \alpha)$, where $\sum c_i = 1$, $X^{(i)}$ is a matrix of the type (12), we may write $\beta = (\sum c_i X^{(i)}) \alpha$, and observe that any convex combination of matrices satisfying (2), (3), (3), (9) also satisfies these conditions. If we set $X = \sum c_i X^{(i)}$, the proof of the necessity is complete.

Proof of sufficiency: We shall show that if a matrix X satisfies (2), (3), and (3) — (9) is not needed —, and a vector α satisfies (4), then $\beta = X\alpha$ fulfills (5) and (6). We first show

$$(13) \quad \beta_i \geq \beta_{i+1} \quad (i = 1, \ldots, n-1)$$
For $\beta_i - \beta_{i+1} = \sum z_j x_j$, where $z_j = x_{ij} - x_{i+1,j}$. By virtue of (8), $z_j \geq 0$ for $j \leq i$ and $z_j \leq 0$ for $j \geq i + 1$.

By (3), $\sum z_j = 0$. It follows from (4) that if we set $u = z_1 + \ldots + z_j$ and $v = z_{j+1} + \ldots + z_n = -u$, $\sum z_j \alpha_j \geq u \alpha_i + v \alpha_{i+1} = u(\alpha_i - \alpha_{i+1}) \geq 0$. This proves (5). The proof of (6) - which depends on (2) and (3) - is the same as in HLP.

Bibliography

THE NATIONAL BUREAU OF STANDARDS

Functions and Activities

The functions of the National Bureau of Standards are set forth in the Act of Congress, March 3, 1901, as amended by Congress in Public Law 619, 1950. These include the development and maintenance of the national standards of measurement and the provision of means and methods for making measurements consistent with these standards; the determination of physical constants and properties of materials; the development of methods and instruments for testing materials, devices, and structures; advisory services to Government Agencies on scientific and technical problems; invention and development of devices to serve special needs of the Government; and the development of standard practices, codes, and specifications. The work includes basic and applied research, development, engineering, instrumentation, testing, evaluation, calibration services, and various consultation and information services. A major portion of the Bureau's work is performed for other Government Agencies, particularly the Department of Defense and the Atomic Energy Commission. The scope of activities is suggested by the listing of divisions and sections on the inside of the front cover.

Reports and Publications

The results of the Bureau's work take the form of either actual equipment and devices or published papers and reports. Reports are issued to the sponsoring agency of a particular project or program. Published papers appear either in the Bureau's own series of publications or in the journals of professional and scientific societies. The Bureau itself publishes three monthly periodicals, available from the Government Printing Office: The Journal of Research, which presents complete papers reporting technical investigations; the Technical News Bulletin, which presents summary and preliminary reports on work in progress; and Basic Radio Propagation Predictions, which provides data for determining the best frequencies to use for radio communications throughout the world. There are also five series of nonperiodical publications: The Applied Mathematics Series, Circulars, Handbooks, Building Materials and Structures Reports, and Miscellaneous Publications.

Information on the Bureau's publications can be found in NBS Circular 460, Publications of the National Bureau of Standards ($1.00). Information on calibration services and fees can be found in NBS Circular 483, Testing by the National Bureau of Standards (25 cents). Both are available from the Government Printing Office. Inquiries regarding the Bureau's reports and publications should be addressed to the Office of Scientific Publications, National Bureau of Standards, Washington 25, D. C.