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ON THE SOLUTION OF THE CATERER PROBLEM

by

J 0 W„ Gaddom*

A 0 J 0 Hoffman, D 0 Sokolowsky**

Introduciloji

This paper continues the investigation of the Caterer

problem formulated and partially solved by Walter Jacobs in

[ 1 ] o We shall describe and justify an algorithm for solving

the problem, indeed for solving a problem that is slightly

more general than the original one, A knowledge of [l] is

desirable for an interpretation of the abstractly formulated

linear program discussed here, but is not necessary for a

reading of this paper 0 We believe^ however, that the reader

who is interested in the "life cycle" of a linear program -

(a) formulation, (b) simplification, (e) development of an

algorithm for solution - will learn from the discussion of

the caterer problem contained in [ 1 ] (which treats (a), (b)

and a special case of ( e ) ) and this article an instructive,

and in some ways, typical example,,

We now introduce the problem to be attacked?

Let be given constants, r^, 0 , ? Pn
given non-

negative constants, let X be a variable, z = (z^,,o ? zn
) be

a variable vector lying in the rectangular parallelepiped

*U 0 S 0 Air Force,
**National Bureau of Standards

This work was sponsored (in part)by the Office of Scientific
Research, USAF,
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(1) 0 < z
i

(i = 1 , . . . ,n)

Let A-j,...,Am 9iven vectors in n-spaee, the coordinates

of each consisting of I's and 0 f s such that:

(2) The I's in each A^ are consecutive, and

(3) If the coordinates in A^ which are 1 are a, a + 1,...,b,

and the coordinates in A. which are 1 are c, c+1,...,d, and if

a < c, then bid. We assume tacitly that each A^ contains

at least one 1

.

The problem is: for any number A ^ 0, to find values for

X and z, subject to (l) and

(4) (

A

±
, z ) > t

± - X (i = 1 , . . . ,m)

which minimize the linear form

(5) >x+ Z z
i

i-

1

A comparison of our problem ivith the transformed caterer

problem given in (4.3) of [l] will show that (4.3) is a

special case of the above.

2. The solution if X is specified . Since our object is

to study the behavior of X and Z, it is not unnatural to ask

what the solution of our problem would be if X were specified;

i.e., if X were a given constant. If we set = t^ - X

(i = 1,...,m), then our problem becomes: for all z = (z^,...,z
n

)

subject to (1) and
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(4*)

minimize

(5 !

)

(Apz) £

Z
^

+ o o o + Z
^

(i = 1 ? o o ° ?
m) 9

Before solving the problem, one should cheek to see that

the inequalities (1) and (4") ape consistent,, Set r =

Then it is clear that the inequalities are c©n~

sistent if and only if (A^ 9 p) > (i = 1 90 oo 9 m ) 9
which can

be easily ascertained,,

Assume now that (l) and (h- 5

) are consistent,. Let S. be

the set of all indices i such that the j-th coordinate of

A. is 1, Define = (0, r 0? r-,,„ 6 o S r ), and
i d J n

(6) z, (X) = max ^O; max [ - (A^, ) ]}
i e s,

If z.j (X) ? o e 0 9 %^ (X) have been defined (1 n ) 9 let

( k

)

r = (z^ (X) , o „

o

9 z k
(X)

, 0, r ^+ 25 ° ° ° ?

°

Then define

(7) z
k+

-j(X) = max
[
0 9 max C ^ i

~ r^)]j
i 6 S

k+1

We contend that the vector z(X) = (z 1 (X), oeo ,z (X)) de~
1 n

fined inductively above solves the problem of this section,,

It is clear that our prescription states that z^ (X) is the

smallest value of z ?
consistent with (l) and (4"); and that,

assuming z
}
= z^(X) ?ooe? z^ = z^CX), z^-j (X) is the smallest

value of z^+ .j

consistent with ( 1 ) and (4
' ) ®



We shell prove our contention by showing that

Lemma Is For every k (k = 1 , . . . ,n) , z(X) minimizes z^+ . • .+7
: ,

subject to (1) and (4').

Proof by induction: We have already seen that lemma 1

holds if k = 1. Assume it holds for k - 1, we wish to show it

holds for k. If z
f/

.(X) = 0, this is obvious from the induction

hypothesis. If z h
(X) ^ 0, then by (7), there exists a vector

A. such that
i

(8) z (X) + (A.
1 ^

) = u., i6 S,
1 7

.1
7 K

Let us write out the inequality

(9) (A^,z) >

as

(9') z
k-ot t# * * + 2

k-

l

+ z
k
+z

k+1
+ * * * + z k+6^

(Recall (2)). Of course « or or both may be 0). Then (8)

says that

(1°) z
k-cz

X>) + •••+ zk^ +
^k+l

+ # ** + r
k+/3

= M
i

Now (9 1

) is one of the inequalities (4'). Hence, by (10)

and (1), z
k
_^(X) + . . .+ z v (X) - min z z, r ,

for all z

subject to ( 1 ) and (

4

1

)

.

But by the induction hypothesis,

z^ (X) + ...+ z
k_af

_
1
(X) = min Zj + ...+ z k-^_i • Combining these

last two statements proves the induction step.



-
5
-

Note that our proof uses (2), but not (3) 0 The theorem is

false if (2) does not hold

»

Now
?

it is clear from (h) that the set of X for which the

inequalities (1) and (*+) of our main problem are consistent

form a closed half-line^ containing arbitrarily large posi-

tive numbers „ Let e be the end point of^ » For each X > @
9

let S(X) = min (z, + 0 oo+ z ) 9 subject to (l) and (*+)„ We have
i n

just seen how to compute S(X) and we now prove

3o For X 2. s, S(X) is a .convex non-increa s ing function of X c

Proofs Let then the convex region which is the

intersection of the half-spaces corresponding to X=X^ in (*+)

contains the convex region corresponding to X=X^; hence S(X,

)

1 SCX^)*, To prove S(X) is convex, we first prove a more gen-

eral lemma 0

Let A and B be two real linear spaces
9 and let K be a con-

vex set in A® B„ Let V be the projection of K on A; i 0 e<, 9

V = { v| v e. A
9 3 w £, B such that v <3> w & K; let W be the pro-

jection of K on B„ It is easy to see that V and W are convex

setSo Let f be a convex function bounded from below defined

on V 0

Lemma 3° The function

(11) g(w) = inf f(v)
v <a w €. K

is a convex function on W„

Proof a We must show that w,
{

W
9

^ W
9

ct o, ^2. 0 9

(3 = 1 ,
imply
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(12) g(°^w^ +/3 w
2

) < ag(w^) + (l g(w
2

).

Let C be any positive number. Then by (11), there exist

v.j , v
2

such that

(13) v
1
® w

1
€ K, v

2 ® w
2 € K, and

(14) f(v^) < g(w
1

) + £ , f(v
2

) 1 g(w
2

) + £- .

Since K is convex, it follows from (13) that ^(v-j® )

+ |£> (v
2

d w
2

) = ( * v.j + 0> v
2

) & ( <* + ft w
2

) € K. There-

fore, since f is convex, g( « + (l w
2

) 1 f(ocvj +/3 v
2

)

£ o:f(v
1

) + /3f(v
2

) £ org(Wl ) + (3g(w
2

) + <£. , by 04).

Since this inequality holds for every £ > 0, we have (12).

Apply lemma 3 to the present situation as follows: Let

z = v, z, +...+z„ = f(v), X = w, S(X) - g(w). This completes

the proof of 3*

4. Summary of the s±iiiation_to_ date .

Let us assume, temporarily that S(X) is explicitly

known. Now it is manifest from (6) and (7) that z . (X) is a

n

polygonal curve. Hence S(X) - £2 z.(X) is a polygonal
j=1

curve. Since S(X) is convex, the half-line will break up

into intervals (e - e
Q
,e^), (e^ ,

©

2 ) ,...,(

©

d , 00 )

,

such that

the slope of S(X) is -m. in (e
o
,e^), -m

2
in (e^ ,

e

2 ) ,"j-ra
d

in

(e
(j
_

1
,e

(
j), 0 in (e

d
,oo), m

1
> m

2
>...>m

d > 0. It is obvious
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that = max t
^

and that in (e^oo), S(X) = 0, It is also

clear that e = max [t. - (A^,r)j „ Assuming that all @
o

JL

and m were known, it is obvious that the minimum of (5)

(which, as the sum of two convex polygonal functions of X,

is also a convex polygonal function of X) could be obtained

as follows?

if A > m. , the minimum of (5) is attained at X = e

if > A £ m^, the minimum of (5) is attained at X =

(ip) if £ A >_ ra^
?

the minimum of (5) is attained at

X = ed-n

if m^ > A > 0 , the minimum of (5) is attained at X = e^
)

if 0 > A ? (5) has no minimum,,

Since we have already seen in paragraph 2 how to obtain

the z . which minimize (5) once the correct X is known, for-
j

mulas (15) solve our problem once the numbers e
rt
,e 1?000 ,e

and ,ooo,m, are determined

,

o'-1
?oos?v

d

m n !ia A >41 jr\ * /tb. m m, >41

^
' d

We already know e
Q „

We shall show below how, given

one may obtain and m^ by a reasonably efficient procedure.

Since is also known, this procedure, in view of 0 5)? will

solve our problem,

5, The algorithm .

Recall now the procedure described in paragraph 2,

particularly formulas (6) and (7),
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An inequality (A^,z) > - X is said to be bounding for

z • at X if i € S. and z.(X) = M- - (A.,r^ J ^). Let B. be
j J J i 1 J

the set of all indices i such that (A.,z) > t.-X is bounding
1 "l

for z
B

at X = e. 1 . Note that
k o-l

(16) z
j
(8

o-1
) > 0

implies that Bj is not empty. Let be the set of all in-

dices j such that the j-th coordinate of A^ is 1 . Then

(17) i £ k > j, k € T
±

imply i £ B
R , z

k
(e

6_ 1
) = r

R

We now divide all indices i = l,...,n into two classes M

(moving) and S (stationary) as follows: if z^(e
0_^)

- 0,

assign 1 to S; if z^(e^_^) > 0, assign 1 to M; if 1,2, ...,k

have been assigned, and 2
k+ -j

^ e
o-l

^ = assign k+1 to S; if

z
R+ i(e^>0,

and no index in U (recall ( 16 )) has been
* ^ B

k+1
assigned to M, we assign k+1 to M, but if an index in U T.

i € B
k+1

has been assigned to M, we put k+1 in S.

It will turn out that rk is the number of indices as-

signed to M, but before we show this, we first prove

Lemma *+. (a) If i € fj B . ,
then there is at most one

j
3

index in the intersection of T . and M; (b) for any i, there

are at most two indices in the intersection of and M.

P roof of (a): Assume i €. B.; k,£ £ T., £ M, k </.
J

If j? then (17) and the definition of M contradict i £ M.
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Therefore, we may assume k < £ < j 0

Let i
Q £ B^ (we know from (16) that i € M implies B^ is

not empty) o Then since k £ M, k < d ,
it follows that

k £T. o But k, H , j £. T.; hence by (2) and (3), p >£ ,
2.

"

p £ T.^ imply p ^ T. , But by (17)? p € T.
, p > l imply

zn (e, 1 ) = r t

p o-
1 p

Together with i £ B., these facts imply
J

i e o We know, however, that k £ M, k £ T

d £ T., we have a contradiction of d€ Mo

Combined with

Proof of Assume j < k < J? ; j, 6 T.
5 j, k,i? £ M<

Let p € B^o Then j ^ T^, and also, by (17)? ft T^„ A com-

parison of T . and T exhibits a violation of (2) and (3)»
** r

6 8 Going from e
Q ._i

to Resuming our main discussion,

let K be the set of all i such that the intersection of T. and
i

M consists of two indices (K may be empty)* Let
ft>

= min
. x i£ K
)(A. ,z(e^ J) - t. + e. J if K is not empty, ft = + oo other-

wise* Then ft> 0 o For if ft ~ 0 ,
i 0 e 0 , there is an i G K

such that (A. ,z(e A ,))=!„- 6 ,, then if k is the largest
i
Q

o-l i p-1 J

index in T
. , clearly i G. B,

, and we would have a violationOK
O

of lemma 4(a)*

Let t= min z.(e. -,)* By the definition of M, > 0,

iSU 1 0-1

Jbmaliy, let = min (/3, if) > 0„ We contend

Lemma 5» For all X, e ^_-j
< X < 0£ + and each j = 1,

ooofti, we have
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(13) z • (X) = z . (X) = )
j b 1

J J /

if j 6 S

z
j
(8

o-1
) {x-e

d-1
) if j e M

Before proving the lemma, let us informally state its

content. If X lies in the prescribed range, then: if j € S,

moves by precisely the amount by which X differs from e^_^

.

Proof : Obviously the lemma holds for z^(X). Assuming it

holds for z.j , . . . jz^-j (X)
, we shall show it holds for z^CX).

By virtue of lemma 1, we must show that if z^ = z^ (X) , . . . ,z^_^

- z
Jt
_

1
(X) satisfy ( 1 3) , z

fc+1
= r,

;+1 , . . . ,zR
= r , then (i) if

we set Zj,
t
= z^(X) according to (l3), the vector z satisfies

(1) and (*+); but (ii) if we set z^ < z^(X) th© vector z will

not satisfy (l) and (4-).

Suppose k M. We first prove (i). For each i £. S
f^, TV

may contain no indices in the range 1,...,k-1 in M or 1 index

in the range in M (lemma h(b)). It is clear from

the induction hypothesis that; in the former case, (A^,z) t^

- X. In the latter case, again from the induction hypothesis,

we have

But, by the definition of o( and ft , for this range of X,

(19) (A
i?

z) > (A
i
,z(e

&_ 1
)) - 2(x - e^))

( 20 )



Combining (19) and (20), we obtain again (A,,z) 2_ t, - X.

Next, let i £ B , Then clearly (A
4 ,z) = t. - X, which proves

iia. -a- X

(ii) •

Suppose k €. S. The proof of (i) involves no new ideas,

ar^d is omitted. To prove (ii), if z., (e. ,) = 0, (ii) is
1

il 0“ i

immediate; hence, assume z,(e A ,) > 0, which, by ( 16 ) , (17),

and the construction of S, implies that there exists an i € B

j & S
, j < k such that j £ M. It follows from (17) and (7)

that (A.
; ,z) = - X, which proves (ii).

We observe the following immediate consequences of lemma

r'
J 9

Corollary i. The funetio.'- z > (X) is a mocotonie, non-
J

increasing function of X.

This implies that in coinc from 3.- , to e. « w- may sub-

stitnte for (i) the inequalities

(s') 0 < z .(X) < z .(a- , )= j ” J o—l

Corollary 2. The slope m.. is equal to the number of

indices in M.

To complete our algorithm, when we arrive at X = 0( + e
^

we replace ©, , by , + oc and repeat our construction of
0“ i o—

!

the new M and S
,

say M* and S’. By virtue of the convexity

of S(X), the number of indices in M* is less than or equal

to the number of indices in M. Ii it is less than, then

+ 8: 1 = e x . If it is equal, we proceed in the same mosmeQ— | Q a 7
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It is clear, from the fact that each Zj(x) is a polygonal

function of X with a finite number of vertices, and (from the

definition of « ) that each step takes us from an X corres-

ponding to a vertex of some ?.(X) to the next largest X cor-
•I

responding to a vertex of (possibly some other) z.(X), that
J

we arrive at in a finite number of steps.
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