NATIONAL BUREAU OF STANDARDS REPORT

2831

Error bounds for eigenvalues of symmetric integral equations

by

Helmut Wielandt
THE NATIONAL BUREAU OF STANDARDS

The scope of activities of the National Bureau of Standards is suggested in the following listing of the divisions and sections engaged in technical work. In general, each section is engaged in specialized research, development, and engineering in the field indicated by its title. A brief description of the activities, and of the resultant reports and publications, appears on the inside of the back cover of this report.

Ordnance Development. These three divisions are engaged in a broad program of research Electromechanical Ordnance. and development in advanced ordnance. Activities include

Ordnance Electronics. basic and applied research, engineering, pilot production, field testing, and evaluation of a wide variety of ordnance matériel. Special skills and facilities of other NBS divisions also contribute to this program. The activity is sponsored by the Department of Defense.

Missile Development. Missile research and development: engineering, dynamics, intelligence, instrumentation, evaluation. Combustion in jet engines. These activities are sponsored by the Department of Defense.

• Office of Basic Instrumentation

• Office of Weights and Measures.
Error bounds for eigenvalues of symmetric integral equations

by

Helmut Wielandt

American University
Universität Tübingen, Germany
Error bounds for eigenvalues of symmetric integral equations

by

Helmut Wielandt

1. The problem.

When the theory of integral equations was developed fifty years ago, its aim was to provide a general method for dealing with the common features of large groups of problems, rather than to furnish an effective method to solve specific problems numerically. In fact, the determination of an unknown function of one variable as the solution of an integral equation involves a function of two variables, viz. the kernel, and hence requires an amount of numerical work which could not, as a rule, effectively be performed with the equipment available at that time. Thus, the classical theory was interested in existence theorems, convergence theorems and asymptotic formulae more than in numerical aspects. The situation has been changed by the recent development of high speed calculating machines, which has created considerable interest especially in the problem of error estimates. It may be seen from BUCKNER's report [1] that much has been done in this direction during the last years. However, interesting

1) This paper has been prepared under a National Bureau of Standards contract with the American University.
and important questions are still open. For instance, in the basic problem of calculating the eigenvalues of a real symmetric kernel no error estimate seems to be known for the oldest and most natural method which consists in performing the integration approximately by a formula of numerical quadrature. It is the purpose of this paper to fill this gap.

To state our problem precisely we have to describe the method under discussion in some detail. Let the integral equation be written in the form

\[\int_0^1 K(x, \xi)y(\xi)d\xi = Ky(x). \]

We assume the given kernel \(K(x, \xi) \) to be real symmetric, or at least hermitian, and square-integrable:

\[K(x, \xi) = K(\xi, x), \quad \iint_{\mathbb{R}^2} |K(x, \xi)|^2 dx d\xi < \infty. \]

We wish to calculate the eigenvalues of \(K(x, \xi) \), i.e. the constants \(K \neq 0 \) for which (1) has a solution \(y(x) \) such that

\[0 < \int_0^1 |y(\xi)|^2 d\xi < \infty. \]

It is known that the eigenvalues are a real bounded set which is either finite or has 0 as its only point of accumulation, even if multiplicities are counted.

The first step in the numerical procedure which we want to discuss consists in selecting some rule \(S \) for numerical
quadrature. We choose a natural number n, a set of n numbers \(\xi_1 < \ldots < \xi_n \) contained in the interval \(0 \leq x \leq 1 \), a set of n positive numbers \(p_\nu \) with sum 1, and form the sum

\[
(4) \quad S f = \sum_{\nu=1}^{n} p_\nu f(\xi_\nu)
\]

as an approximation to the integral of the function \(f(x) \); we write

\[
(5) \quad \int_{0}^{1} f(\xi) d\xi \approx S f.
\]

In the second step of the procedure the selected n-point-rule S is used to replace the integral equation (1) by a system of n linear algebraic equations (7) in the following way.

Suppose \(\kappa \) is an eigenvalue of (1) and \(y(x) \) a corresponding eigenfunction. If we specify \(x = \xi_\mu \) (\(\mu = 1, \ldots, n \)) and approximate the integral by S we find from (1)

\[
(6) \quad \sum_{\nu=1}^{n} K(\xi_\mu, \xi_\nu) p_\nu y(\xi_\nu) \approx \kappa y(\xi_\mu) \quad (\mu = 1, \ldots, n).
\]

Introducing n unknown constants \(y_\nu \) and a new eigenvalue \(\kappa^S \) we form the system of equations corresponding to (6):

\[
(7) \quad \sum_{\nu=1}^{n} K(\xi_\mu, \xi_\nu) p_\nu y_\nu = \kappa^S y_\mu \quad (\mu = 1, 2, \ldots, n).
\]

In the third step the n eigenvalues \(\kappa^S \) of this algebraic problem are computed by any of the several available methods.
In the last step we assign these \(n \) values as approximations to certain of the (possibly infinitely many) eigenvalues of (1). There is a natural way of doing this. We remark that every \(\kappa^S \) is real; for \(\kappa^S \) is an eigenvalue of the \(n \times n \) matrix

\[
\kappa^S = (\kappa(\xi_p, \xi_p^\dagger) p_y)
\]

which is similar to the hermitian matrix \((p\frac{1}{2}\kappa(\xi_p, \xi_p^\dagger) p_y^\dagger) \). Since each \(\kappa \) as well as each \(\kappa^S \) is real, and since the \(\kappa \)'s have no other limit point than 0, it is natural to take the largest positive \(\kappa^S \) as an approximation to the largest positive \(\kappa \), the negative \(\kappa^S \) largest in modulus as an approximation to the negative \(\kappa \) largest in modulus, and so on.

Whenever a term we need is missing we shall take 0 in its place (following Weyl [11], p. 443), since almost all of the \(\kappa \)'s are near to 0. To formalize this correspondence we define

\[
\kappa^S_p (p = 1, 2, \ldots) \text{ to be the } p \text{-th positive eigenvalue of } \kappa^S
\]

(counting from the top and taking regard of the multiplicities) provided a \(p \)-th positive eigenvalue exists; if not, we define \(\kappa^S_p = 0 \). In the same way we define \(\kappa^S_p (p=1, 2, \ldots) \) to be the \(p \)-th negative eigenvalue of \(\kappa^S \) (counting from the bottom) or 0; and similarly we denote by \(\kappa_q (q = \pm 1, \pm 2, \ldots) \) the eigenvalues of \(\kappa \), possibly completed by zeros. The notation is such that
(9) \(\kappa_1 \leq \kappa_2 \leq \cdots \to 0 \), \(\kappa_{-1} \leq \kappa_{-2} \leq \cdots \to 0 \),
\(\kappa_1^S \geq \kappa_2^S \geq \cdots \to 0 \), \(\kappa_{-1}^S \leq \kappa_{-2}^S \leq \cdots \to 0 \).

(In what follows we shall refer to these numbers as the eigenvalues of \(K(x, \xi) \) and \(K^S \), though this is not the usual definition as far as \(\xi = 0 \) is concerned.) We take \(\kappa_\xi^S \) as an approximation to \(\kappa_\xi \), for every integer \(\xi \neq 0 \), and ask for a method to calculate error bounds in the case of any given hermitian kernel \(K(x, \xi) \) and any given n-point-rule \(S \) for numerical quadrature.

It appears from BÜCKNER's report [1] that so far only limit relations for \(n \to \infty \) have been obtained. HILBERT, in his first proof for the existence of eigenvalues for a continuous real symmetric kernel [7], proved that for the special n-point rules \(S_n \) defined by \(\xi_\nu = \nu/n \), \(p_\nu = 1/n \) we have \(\kappa_\xi^{S_n} \to \kappa_\xi \) as \(n \to \infty \). BÜCKNER ([1], p. 362; [2], p. 110) extended this result to a more general class of rules. In addition he obtained, for certain rules \(T_n \), the stronger result

\[
\lim_{n \to \infty} n^p (\kappa_\xi - \kappa_\xi^{T_n}) = 0
\]

under the assumption that \(K(x, \xi) \) has a continuous \(p \)-th derivative with respect to \(x \). (see [1], p. 113; [2], p. 370).

His proof of (10) (related to perturbation theory) involves in the pre-limit stage the unknown eigenfunction \(y_\xi(x) \) be-
longing to κ_q. For this reason it does not seem to provide a suitable way to answer our question, and we prefer to develop a new method.

2. Reduction to an approximation problem for functions of two variables.

The difficulty lies in the fact that we have to compare kernels and matrices: it would be easier to deal with two kernels, or with two matrices. In fact, there is an important theorem of WEYL ([11], p. 445) which allows us to compare the eigenvalues of two hermitian kernels $K(x,\xi)$ and $G(x,\xi)$, or of two hermitian matrices K and G of the same order, without any previous knowledge concerning eigenfunctions or eigenvectors. To formulate the theorem we define, for any kernel or square matrix H, the nonnegative number

$$(11) \quad \| H \| = \max |\eta|$$

where η runs over all eigenvalues of H. Then WEYL's theorem implies that

$$(12) \quad |K_q - \gamma_q| \leq \| K - G \| \quad (q = \pm 1, \pm 2, \ldots)$$

whenever K and G are two hermitian kernels, or two hermitian matrices, with eigenvalues κ_q and γ_q numbered according to (9).

To overcome the discrepancy between kernels and matrices we consider those hermitian kernels $K(x,\xi)$ which have the special property, with respect to a fixed rule S for numerical
quadrature, that the matrix \(K^S \) derived from \(K(x, \xi) \) by \(S \) has the same eigenvalues as \(K(x, \xi) \) has:

\[
K^S_{\varphi} = K_{\varphi} \quad (\varphi = \pm 1, \pm 2, \ldots).
\]

These kernels will be said to allow \(S \). Postponing the question of how to construct kernels allowing \(S \), we state:

Theorem 1. Let \(K(x, \xi) \) be a hermitian kernel and \(S \) a rule (4) for numerical quadrature. Then the eigenvalues \(\lambda^S_{\varphi} \) and \(\lambda^S_{\varphi} \), defined by (9), satisfy

\[
|\lambda^S_{\varphi} - \lambda^S_{\varphi}| \leq ||K - G|| + ||K^S - G^S|| \quad (\varphi = \pm 1, \pm 2, \ldots)
\]

for every hermitian kernel \(G(x, \xi) \) allowing \(S \).

Proof. If the eigenvalues of \(G(x, \xi) \) and \(G^S \) are denoted by \(\lambda^S_{\varphi} \) and \(\lambda^S_{\varphi} \), then by (13) \(\lambda^S_{\varphi} = \lambda^S_{\varphi} \). Hence

\[
|\lambda^S_{\varphi} - \lambda^S_{\varphi}| \leq |\lambda^S_{\varphi} - \lambda^S_{\varphi}| + |\lambda^S_{\varphi} - \lambda^S_{\varphi}|.
\]

Since \(K(x, \xi) \) and \(G(x, \xi) \) are hermitian, and since \(K^S \) and \(G^S \) may be transformed into hermitian matrices simultaneously by a similarity transformation which does not affect \(||K^S - G^S|| \), we have by (12)

\[
|\lambda^S_{\varphi} - \lambda^S_{\varphi}| \leq ||K - G||, \quad ||\lambda^S_{\varphi} - \lambda^S_{\varphi}| \leq ||K^S - G^S||
\]

which proves theorem 1.

Corollary 1. Let \(K(x, \xi) \) be a hermitian kernel, \(S \) a rule (4), \(G(x, \xi) \) a hermitian kernel allowing \(S \) which coincides with \(K(x, \xi) \) on the mesh points determined by \(S \), that is
(15) \[G(\xi^\mu, \xi^\nu) = K(\xi^\mu, \xi^\nu) \quad (\mu, \nu = 1, 2, \ldots, n). \]

Then
(16) \[|K^\varphi - K^S\varphi| \leq \|K - G\| \quad (\varphi = \pm 1, \pm 2, \ldots). \]

In order to facilitate the numerical application of these theorems we recall some simple estimates for the right hand sides. For arbitrary (not necessarily hermitian) kernels (or matrices) \(H \) we have

(17) \[\|H\| \leq \sup_{x, \xi} \int_0^1 |H(x, \xi)| d\xi \quad (\text{or} \quad \|H\| \leq \sum_{\nu = 1}^n \|h^\mu_{\nu}\|) \]

(18) \[\|H\|^2 \leq \iint \left| H(x, \xi) \right|^2 dx d\xi \quad (\text{or} \quad \|H\|^2 \leq \sum_{\mu, \nu} \|h^\mu_{\nu}\|^2) \]

(19) \[\|H\| \leq \sup_{x, \xi} \left| H(x, \xi) \right| \]

(20) If \(|H_1(x, \xi)| \leq H_2(x, \xi) \) then \(\|H_1\| \leq \|H_2\| \).

If \(K(x, \xi) - G(x, \xi) \leq M \) then by (19) and (17)
\[\|K - G\| \leq M, \quad \|K^S - G^S\| \leq M \sum_{\nu = 1}^n p_\nu = M. \]

Hence we have the convenient

Corollary 1°. If \(K(x, \xi) \) and \(G(x, \xi) \) are hermitian kernels such that \(G(x, \xi) \) allows \(S \) then

2) (17) and (18) are easily derived from (11), (19) from (18). For (20) cf. JENTZSCH [9] and FROBENTUS [7], p. 516.
This leads us to consider the following question: How well can a given kernel $K(x, \xi)$ be approximated by hermitian kernels allowing a given rule S?

3. Construction of kernels which allow S.

Let us say that a set of functions $g_1(x), \ldots, g_m(x)$ admits a given quadrature formula S if each $g_\mu(x)$ is square-integrable over $0 \leq x \leq 1$ and the scalar product of every two of them can be calculated exactly by S, that is

$$
\int_0^1 g_\alpha(\xi)g_\beta(\xi)d\xi = Sg_\alpha g_\beta \quad (\alpha, \beta = 1, 2, \ldots, m).
$$

Every set with this property provides a method for constructing kernels which allow S in the sense of (13):

Theorem 2. Let $g_1(x), \ldots, g_m(x)$ admit S, and let $c_{\alpha\beta}$ be complex constants such that $c_{\alpha\beta} = c_{\beta\alpha}$ for $\alpha, \beta = 1, 2, \ldots, m$. Then

$$
\sum_{\alpha=1}^m \sum_{\beta=1}^m c_{\alpha\beta} g_\alpha(x)\overline{g_\beta(\xi)}
$$

is a hermitian kernel allowing S.

Proof. Let us denote the expression (23) by $K(x, \xi)$. Evidently $K(x, \xi)$ fulfills (2). Hence it will be sufficient to prove that the eigenvalues $\kappa \neq 0$ of $K(x, \xi)$ coincide with the eigenvalues $\kappa^S \neq 0$ of the matrix K^S defined by (8).
Let \(y(x) \) be a solution of (1) and (3). Since \(\kappa \neq 0 \) we find from (1) and (3) that \(y(x) \) has the form

\[
y(x) = \sum_{\alpha = 1}^{m} c_{\alpha} g_{\alpha}(x)
\]

with certain constants \(c_{\alpha} \). Now (22) shows that (6) holds not only approximately but exactly. This means that

\[
K^{S} = \kappa, \quad y_{\upsilon} = y(\xi_{\upsilon}) \quad (\upsilon = 1, 2, \ldots, n)
\]

satisfy (7). Moreover we know that some \(y_{\upsilon} \neq 0 \) since by (24) and (22)

\[
0 < \int_{0}^{1} |y(\xi)|^{2} \, d\xi = \sum_{\upsilon = 1}^{n} p_{\upsilon} |y_{\upsilon}|^{2} = \sum_{\upsilon = 1}^{n} \rho_{\upsilon} |y_{\upsilon}|^{2}.
\]

Hence \(\kappa \) is an eigenvalue of \(K^{S} \), and the linear mapping (25) of eigenfunctions into eigenvectors preserves linear independence. As a consequence the multiplicity of \(\kappa \) as an eigenvalue for \(K^{S} \) is not less than for \(K(x, \xi) \). So we know

\[
\sum (\kappa^{S}_{\phi})^{2} \geq \sum \kappa^{2}_{\phi}.
\]

To prove theorem 2 it is sufficient to show that here equality holds. We have (from SMITHIES [10] formula 5.1.1)

\[
\sum_{\phi} \kappa^{2}_{\phi} = \int \int_{00}^{11} K(x, \xi) K(\xi, x) \, dx \, d\xi
\]

which can be written, by (22) and (23), in the form

\[
\sum_{\phi} \kappa^{2}_{\phi} = \sum_{\mu = 1}^{n} \sum_{\nu = 1}^{n} K(\xi_{\mu}, \xi_{\nu}) p_{\nu} K(\xi_{\nu}, \xi_{\mu}) p_{\mu}
\]

\[= \text{trace} (K^{S})^{2} = \sum_{\phi} (\kappa^{S}_{\phi})^{2}.\]
This completes the proof.

Remarks. (a) The eigenvectors of \(K^S \) are explicitly given by (25) in terms of the eigenfunctions of \(K(x, \xi) \).

(b) The restriction of theorem 2 to hermitian kernels can be avoided by a slight modification of the proof (calculate trace \((K^S)^p \), \(p = 2, 3, \ldots \)).

Theorem 2 suggests the following procedure to obtain bounds for \(|K_S - \kappa^S_S| \): (I) Select a set \(g_1(x), \ldots, g_m(x) \) which admits \(S \). (II) Select constants \(c_{\alpha \beta} \) which make (23) an approximation to \(K(x, \xi) \). (III) Apply theorem 1 or its corollaries.

Postponing the discussion of I to section 5 where several rules \(S \) will be dealt with we turn to the approximation problem II.

4. Reduction to an approximation problem for functions of a single variable.

We want to reduce our problem of approximating \(K(x, \xi) \) by \(\sum \sum c_{\alpha \beta} g_\alpha(x)g_\beta(\xi) \) to the "one-dimensional" problem of approximating functions \(f(x) \) by \(\sum c_\mu g_\mu(x) \). For the sake of simplicity let us assume that

\[
(26) \quad \overline{K(x, \xi)} = K(\xi, x); \quad K(x, \xi) \text{ continuous in } 0 \leq x, \xi \leq 1.
\]

Suppose we have defined an approximation operator \(A \) which assigns to every continuous function \(f(x) \) a linear combination of \(m \) fixed arbitrary functions \(q_\mu(x) \):
(27) \[Af(x) = \sum_{\mu=1}^{m} c_\mu q_\mu(x) \]

where the coefficients \(c_\mu \) depend on \(f \). Then it is natural to assign to the kernel \(K(x,\xi) \) the new kernel

(28) \[G(x,\xi) = A_x \overline{A_\xi} K(x,\xi) \]

where the subscripts denote the variable to which the operator is to be applied, and the conjugate complex operator \(\overline{A} \) is defined by

(29) \[\overline{Af}(x) = \overline{Af}(x). \]

Under suitable assumptions every error estimate for the approximation of \(f \) by \(Af \) yields an error estimate for the approximation of \(K(x,\xi) \) by \(G(x,\xi) \):

Theorem 3. Let the operator (27) be linear, i.e., for any complex \(\beta_i \),

\[A[\beta_1 f_1(x) + \beta_2 f_2(x)] = \beta_1 Af_1(x) + \beta_2 Af_2(x); \]

and let there be a constant \(c \) such that

(30) \[|Af(x)| \leq c \max_{\xi} |f(\xi)| \quad (0 \leq x \leq 1) \]

3) It will be seen later that this assumption is a weak point in our method of reducing the two-dimensional to the one-dimensional approximation problem. It would seem desirable to have a reduction method avoiding the constant \(c \).
for every function \(f(x) \) continuous in \(0 \leq x \leq 1 \). Let \(K(x, \xi) \) satisfy (26). Then (28) defines a hermitian kernel \(G(x, \xi) \) of the form (23) such that for \(0 \leq x, \xi \leq 1 \)

\[
(31) \quad \left| K(x, \xi) - G(x, \xi) \right| \leq (1 + c) \sup_{x, \xi} \left| K(x, \xi) - A_x K(x, \xi) \right|
\]

Proof. Since \(K(x, \xi) \) is continuous we can approximate \(K(x, \xi) \) uniformly by a polynomial:

\[
(32) \quad \left| K(x, \xi) - \sum_{\varphi=0}^{r} \sum_{\sigma=0}^{r} a_{\varphi \sigma} x^\varphi \xi^\sigma \right| \leq \varepsilon \quad (0 \leq x, \xi \leq 1)
\]

where \(\varepsilon > 0 \) may be prescribed arbitrarily small; and by symmetrizing, i.e. exchanging \(x \) for \(\xi \), we can achieve \(a_{\varphi \sigma} = a_{\sigma \varphi} \) since \(K(x, \xi) \) is hermitian. Define \(h_\sigma(\xi) = A_x \xi^\sigma \). Then by (30)

\[
(33) \quad \left| A_x K(x, \xi) - \sum_{\varphi=0}^{r} \sum_{\sigma=0}^{r} a_{\varphi \sigma} x^\varphi h_\sigma(\xi) \right| \leq c\varepsilon \quad (0 \leq x, \xi \leq 1)
\]

which shows that \(A_x K(x, \xi) \) can be approximated with arbitrarily high accuracy by a polynomial in \(x \), for every fixed \(\xi \). Hence \(A_x K(x, \xi) \) is continuous in \(x \), and we may apply \(A_x \) so that (28) really defines a function \(G(x, \xi) \). Applying \(A_x \) to (33) we find

\[
(34) \quad \left| G(x, \xi) - \sum_{\varphi=0}^{r} \sum_{\sigma=0}^{r} a_{\varphi \sigma} h_\varphi(x) h_\sigma(\xi) \right| \leq c^2 \varepsilon \quad (0 \leq x, \xi \leq 1).
\]

Since \(\overline{a_{\varphi \sigma}} = a_{\sigma \varphi} \), the double sum is hermitian. Hence by letting

\(\varepsilon \to 0 \) we find that \(G(x, \xi) \) is hermitian. In addition, since the \(h_\sigma(x) \) are linear combinations of \(g_1(x), \ldots, g_m(x) \) we find that \(G(x, \xi) \) has the form (23). Finally
\[|K(x,\xi) - G(x,\xi)| \leq |K(x,\xi) - A_x K(x,\xi)| + |A_x[K(x,\xi) - \overline{A_x K(x,\xi)}]| \]

\[\leq M + cM \]

if

\[\sup_{x,\xi} |K(x,\xi) - A_x K(x,\xi)| = M, \]

since

\[|K(x,\xi) - \overline{A_x K(x,\xi)}| = |K(x,\xi) - \overline{A_x K(x,\xi)}| \]

\[= |K(\xi,x) - A_{\xi} K(x,\xi)| = |K(\xi,x) - A_{\xi} K(\xi,x)| \leq M. \]

Remarks. (a) From (34) we see that also \(A_{\xi} A_x K(x,\xi) = G(x,\xi). \)

(b) If \(A \) is an integral operator with a real non-negative kernel such that for \(f_0(x) \equiv 1 \) we have \(Af_0(x) \equiv 1 \) then (30) is true with

(35)

\[c = 1. \]

To prove this let \(f(x) = u(x) + iv(x). \) Then we have, with \(M = \sup |f(x)|, \)

\[\text{Re}[A f(x)] = A u(x) = A[M f_0(x)] - A[M f_0(x) - u(x)]. \]

Since \(M f_0(x) - u(x) \geq 0 \) and \(A \) has a positive kernel we conclude that

\[\text{Re}[A f(x)] \leq A[M f_0(x)] = M. \]

In the same manner we find for every complex number \(\xi \) with modulus 1
\[\text{Re} \left(\zeta [A f(x)] \right) = \text{Re} \left(A \zeta f(x) \right) \leq M. \]

Hence \(|A f(x)| \leq M. \) This means that (35) holds.

5. Five special quadrature formulas.

A. We begin with the simple rule for which the abscissas \(\xi_v \) are the left end points of \(n \) subintervals of equal length and all weights \(p_v \) are equal. We denote this rule by \(\text{Leq}_n \):

\[\text{Leq}_n: \quad \xi_v = \frac{v-1}{n}, \quad p_v = \frac{1}{n} \quad (v = 1, \ldots, n). \]

Obviously the \(n \) piecewise constant functions

\[g_v(x) = \begin{cases}
1 & \text{if } \frac{v-1}{n} \leq x < \frac{v}{n} \quad (v = 1, \ldots, n) \\
1 & \text{if } v = n \text{ and } x = 1 \\
0 & \text{else}
\end{cases} \]

admit \(\text{Leq}_n \) in the sense of (22). (In a similar way, for every \(n \)-point-rule \(S \) a system of \(n \) piecewise constant functions admitting \(S \) can be constructed; see [1], p. 109).

We form the kernel

\[G(x, \xi) = \sum_{\mu=1}^{n} \sum_{v=1}^{n} K(\xi, \xi_v) g_v(x) g_v(\xi) \]

which is constant in every subsquare

\[\frac{\mu-1}{n} \leq x < \frac{\mu}{n}, \quad \frac{v-1}{n} \leq \xi < \frac{v}{n} \quad (\mu, v = 1, \ldots, n). \]

\(G(x, \xi) \) is of type (23) and coincides with \(K(x, \xi) \) at the mesh.
points \((\xi_n, \xi)\). Hence (16) holds. To estimate \(\|K - G\|\) we assume that \(K(x, \xi)\) satisfies a Lipschitz condition with a known constant \(L\) at each of the \(n^2\) mesh points:

\[
|K(x, \xi) - K\left(\frac{\mu}{n}, \frac{\nu}{n}\right)| \leq L(|x - \frac{\mu}{n}| + |\xi - \frac{\nu}{n}|)
\]

(38)

if \(\frac{\mu}{n} \leq x < \frac{\mu+1}{n}, \frac{\nu}{n} \leq \xi < \frac{\nu+1}{n}\).

This condition is certainly satisfied if \(K(x, \xi)\) has a partial derivative \(K_x(x, \xi)\) such that \(|K_x(x, \xi)| \leq L\) for every \(x, \xi\). (38) means that

\[
|K(x, \xi) - G(x, \xi)| \leq L P(x, \xi)
\]

where

(39) \[P(x, \xi) = p(x) + p(\xi); \quad p(x) = x - \frac{\mu}{n} \text{ if } \frac{\mu}{n} \leq x < \frac{\mu+1}{n}.\]

By (20) we have \(\|K - G\| \leq L \|P\|\). By (39) every eigenfunction of \(P(x, \xi)\) has the form \(c_1 p(x) + c_2\), hence the eigenvalues of \(P(x, \xi)\) can be calculated by solving the quadratic equation

\[
\pi^2 - 2\pi \int_0^1 p\, dx + \left[\int_0^1 p\, dx\right]^2 - \int_0^1 p^2\, dx = 0.
\]

The roots are

\[
\pi_i = \frac{1}{n} \left(\frac{1}{2} + \sqrt{\frac{1}{3}}\right), \quad \pi_{-1} = \frac{1}{n} \left(\frac{1}{2} - \sqrt{\frac{1}{3}}\right).
\]

Hence \(\|P\| = \pi_1\) by definition (11). We have proved

Theorem 4. Let \(S = \text{Leq}_n\). Let \(K(x, \xi)\) be a hermitian kernel satisfying the Lipschitz condition (38). Then
where
\[C = \frac{1}{2} + \sqrt{\frac{1}{3}} < 1.08. \]

We remark that the constant \(C \) cannot be replaced by any smaller constant independent of \(K(x, \xi) \). For in the special case \(K(x, \xi) = LP(x, \xi) \) equality holds in (41) for \(\varphi = 1 \).

B. By the same method we can treat the rule \(Meq_n \) whose abscissas are the mid-points of \(n \) subintervals of equal length:

\[
(42) \quad Meq_n: \quad \xi_{\nu} = \frac{2\nu - 1}{2n}; \quad p_{\nu} = \frac{1}{n}; \quad (1 \leq \nu \leq n).
\]

Changing (38) and (39) in an obvious way (with \(p(x) = \min_{\mu} |x - \xi_{\mu}| \)) we arrive at

Theorem 5. \textbf{Let} \(S = Meq_n \). \textbf{Let} the hermitian kernel \(K(x, \xi) \) satisfy

\[
|K(x, \xi) - K(\frac{2\mu - 1}{n}, \frac{2\nu - 1}{n})| \leq L(|x - \frac{2\mu - 1}{n}| + |\xi - \frac{2\nu - 1}{n}|)
\]

(43)

if \(|x - \frac{2\mu - 1}{n}| \leq \frac{1}{2n}, \quad |\xi - \frac{2\nu - 1}{n}| \leq \frac{1}{2n} \).

Then

\[
(44) \quad |\kappa_{\varphi} - \kappa_{\varphi}^S| \leq \frac{CL}{n} \quad (\varphi = \pm 1, \pm 2, \ldots)
\]

where \(C = \frac{1}{4} + \sqrt{\frac{1}{12}} < .54 \) is the best possible constant.

C. \textbf{For} the trapezoidal rule
\[
\text{(45) \quad \text{Tra}_n: \quad } \xi = \frac{\nu-1}{n-1}, \quad p_1 = p_n = \frac{1}{2n}, \quad p_2 = \ldots = p_{n-1} = \frac{1}{n} \quad (1 \leq \nu \leq n)
\]

we find similarly, replacing (37) by step functions which jump at \((\nu - \frac{1}{2})/(n-1)\) instead of \(\nu/n\):

Theorem 6. Let \(S = \text{Tra}_n\). Let the hermitian kernel \(K(x, \xi)\) satisfy

\[
\left| K(x, \xi) - K\left(\frac{\mu}{n}, \frac{\nu}{n}\right) \right| \leq L \left(|x - \frac{\mu}{n}| + |\xi - \frac{\nu}{n}| \right)
\]

if

\[
|x - \frac{\mu}{n}| < \frac{1}{2n}, \quad |\xi - \frac{\nu}{n}| < \frac{1}{2n}.
\]

Then

\[
(46) \quad \left| K_\xi - K_\varphi^S \right| \leq \frac{CL}{n-1} \quad (\varphi = \pm 1, \pm 2, \ldots)
\]

where \(C = \frac{1}{4} + \sqrt{\frac{1}{12}} < .54\) is the best possible constant.

D. We now turn to Simpson's rule \(\text{Sim}_n\) defined by

\[
(47) \quad \text{Sim}_n: \quad \xi = (\nu - 1)h, \quad h = \frac{1}{n-1} \quad (\nu = 1, 2, \ldots, n; \quad n = 2m+1)
\]

\[
p_1 = p_n = \frac{h}{3}, \quad p_2 = p_5 = \ldots = p_{n-2} = \frac{2h}{3}, \quad p_3 = p_4 = \ldots = p_{n-1} = \frac{4h}{3}.
\]

In order to get good approximations we try to avoid step functions. Since Simpson's rule integrates exactly every continuous function \(f(x)\) which is quadratic in each of the \(m = (n-1)/2\) intervals

\[
(48) \quad \frac{\xi}{2^\mu - 1} \leq x \leq \frac{\xi}{2^\mu + 1} \quad (\mu = 1, 2, \ldots, m),
\]
each set of continuous functions which are linear in each of the m intervals \((48)\) will admit \(S_{mn}\). We choose any set of \(m+1\) linearly independent functions \(g_1(x), \ldots, g_{m+1}(x)\) of this type. Their linear combinations exhaust the continuous piecewise linear functions with vertices at \(\xi_1, \xi_3, \ldots, \xi_n\).

In order to apply theorem 3 we define an approximation operator \(A\) by interpolation at the \(m+1\) points \(\xi_1, \xi_3, \ldots, \xi_n\):

\[
(49) \quad A f(x) = \sum_{\mu=1}^{m+1} a_\mu g_\mu(x), \quad A f(\xi_{2\mu-1}) = f(\xi_{2\mu-1}) \quad (\mu = 1, \ldots, m+1).
\]

Obviously \(A\) is linear. The best constant \(c\) in \((30)\) is \(c=1\), since the piecewise linear function \(A f(x)\) attains its maximum for some \(\xi_{2\mu-1}\), and there coincides with \(f(x)\). Let \(f(x)\) have a continuous second derivative in \(0 < x < 1\), and

\[
(50) \quad |f''(x)| \leq M.
\]

To estimate the error \(|f(x) - A f(x)|\), it will be sufficient to consider the interval \(\xi_1 \leq x \leq \xi_3\), that is \(0 \leq x \leq 2h\). In addition, since neither our assumption \((50)\) nor our conclusion \((55)\) is affected by subtracting a linear function from \(f(x)\), we may assume without loss of generality that

\[
(51) \quad f(0) = f(2h) = 0.
\]

Then

\[
(52) \quad f(x) = \int_0^{2h} L(x, \xi) f''(\xi) d\xi \quad (0 \leq x \leq 2h)
\]
where

\(L(x, \xi) = \begin{cases} \frac{\xi}{2h} (2h-x) & \text{if } 0 \leq \xi \leq x, \\ \frac{x}{2h} (2h-\xi) & \text{if } x \leq \xi \leq 2h. \end{cases} \)

Hence for \(0 \leq x \leq 2h \)

\[|f(x)| \leq M \int_0^{2h} |L(x, \xi)| \, d\xi = M \frac{x(2h-x)}{2} \leq M \frac{h^2}{2}. \]

From (51) we have \(A f(x) \equiv 0 \) for \(0 \leq x \leq 2h \), hence (54) gives

\[|f(x) - A f(x)| \leq \frac{Mh^2}{2} \quad (0 \leq x \leq 2h). \]

Since the intervals \([\xi_j, \xi_j^*]\) may be treated in the same manner, (55) holds for \(0 \leq x \leq 1 \). Now let

\[K(x, \xi) = K(\xi, x), \quad |K_{xx}(x, \xi)| \leq M \]

where the derivative \(K_{xx} \) is supposed to be continuous. Then theorem 3 states that \(G(x, \xi) = A_x \overline{A_\xi} K(x, \xi) \) is a hermitian kernel allowing \(\text{Sim}_n \) and approximating \(K(x, \xi) \), on account of \(c = 1 \) and (55), with a uniform error \(\leq Mh^2 \). Hence we have

\[|K_{S \xi} - K_{\xi}^S| \leq 2Mh^2 = \frac{2M}{(n-1)^2} \quad (s = \pm 1, \pm 2, \ldots). \]

If we had been able to make coincide \(G(x, \xi) \) with \(K(x, \xi) \) at all mesh points then the constant 2 in (57) could have been replaced by 1. But obviously our \(m+1 = (n+1)/2 \) functions \(g_\mu(x) \) are too few to do this; we would need \(n \) functions \(g_\nu(x) \) which are linearly independent on the \(n \) points \(\xi_\nu \). So we are led to search for \(m \) more functions \(g_{m+2}(x), \ldots, g_n(x) \) which
complete the \(m+1 \) functions \(g(x) \) defined above [after (48)]
to a system \(g_1(x), \ldots, g_n(x) \) still admitting \(\text{Sim}_n \). It may
be checked by a simple calculation that the step functions
\[
g_{m+1+\mu}(x) = \begin{cases} 1 & \text{if } |x - \xi_{2\mu}| \leq \frac{2h}{3} \\ 0 & \text{else} \end{cases} \quad (\mu = 1, \ldots, m)
\]
do us this favor\(^4\). Using these functions we may proceed
as before, replacing (49) by
\[
Af(x) = \sum_{\nu=1}^{n} a_{\nu} g_{\nu}(x), \quad Af(\xi_{\nu}) = f(\xi_{\nu}) \quad (\nu = 1, \ldots, n).
\]
We have, say in \(0 \leq x \leq 2h \),
\[
Af(x) = \begin{cases} \frac{x}{2h} f(0) + (1 - \frac{x}{2h}) f(2h) & \text{if } |x-h| > \frac{2h}{3}, \\ f(h) + \frac{f(2h)-f(0)}{2h} (x-h) & \text{if } |x-h| \leq \frac{2h}{3}. \end{cases}
\]
Hence \(|Af(x)| \leq \frac{5}{3} \sup |f(x)|\), that is (30) holds with
\[
c = \frac{5}{3}. \quad (60)
\]
To estimate \(|f(x)-Af(x)|\) we assume, as before, (50) and (51).
Then by (59)
\[
f(x) - Af(x) = \begin{cases} f(x) & \text{if } (x-h) > \frac{2h}{3}, \\ f(x) - f(h) & \text{if } (x-h) \leq \frac{2h}{3}. \end{cases}
\]
\(^4\) The author is not aware of any convenient system of continuous functions \(g_{m+2}, \ldots, g_n \) serving our purpose. This lack of information concerning (22) seems to indicate that an investigation of numerical quadrature of products of two functions is desirable. Such a theory would be useful in numerical applications of Hilbert space.
Hence by (54), still in $0 \leq x \leq 2h$,

$$
(61) \quad |f(x) - Af(x)| \leq M \frac{x(2h-x)}{2} \leq M \frac{5h^2}{18} \quad \text{if } |x-h| > \frac{2h}{3}
$$

and

$$
|f(x) - Af(x)| \leq M \int_0^{2h} |L(x, \xi) - L(h, \xi)| \, d\xi \quad \text{if } |x-h| \leq \frac{2h}{3}
$$

where $L(x, \xi)$ is given by (53). The right hand side is found, after some computation, to be

$$
(62) \quad M \frac{(h^2+x^2)(h-x)}{2(h+x)} \leq M \frac{5h^2}{18} \quad \text{if } |x-h| \leq \frac{2h}{3}
$$

From (61) and (62), we have, for every x with $0 \leq x \leq 2h$, and hence in the entire interval $0 \leq x \leq 1$

$$
(63) \quad |f(x) - Af(x)| \leq M \frac{5h^2}{18} \quad (h = \frac{1}{n-1})
$$

instead of (55). Using (16), (19), (31) and (60) we find

Theorem 7. Let $S = \text{Sim}_n$. If $K(x, \xi)$ is hermitian and has a continuous second derivative such that $|K_{xx}(x, \xi)| \leq M$ then

$$
(64) \quad |\kappa_\xi - \kappa_\xi^S| \leq \frac{CM}{(n-1)^2}
$$

where $C = (1 + \frac{5}{3}) \frac{5}{18} < .75$.

It should be possible to replace C by a substantially smaller constant by using (17) instead of (19).

E. Our last example is Gauss' rule Gau_n. Its (irrational) abscissas and (positive) weights are uniquely determined by the property that
From (65) we see that the system \(1, x, \ldots, x^{n-1}\) admits \(\text{Gau}_n\).

Hence we find from theorems 1, 2, 3:

Theorem 8. Let \(S = \text{Gau}_n\). Let there exist a linear operator \(A_n\) which assigns to every continuous function \(f(x)\) \((0 \leq x \leq 1)\) a polynomial \(A_nf(x)\) of degree \(< n\) such that

\[
|A_nf(x)| \leq c_n \max |f(\xi)| \quad (0 \leq x \leq 1),
\]

and for some \(p < n\)

\[
|f(x) - A_nf(x)| \leq c_n^{(p)} \max |f^{(p)}(\xi)| \quad \text{if } f^{(p)} \text{ is continuous},
\]

with constants \(c_n\) and \(c_n^{(p)}\) independent of \(f\). Then we have for every hermitian kernel \(K(x, \xi)\) which has a continuous \(p\)-th partial derivative \(K^{(p)}(x, \xi)\) with respect to \(x\),

\[
|K^S - K^S| \leq 2(1+c_n)c_n^{(p)} \max |K^{(p)}(x, \xi)|.
\]

From the extensive literature on approximation, several operators \(A_n\) are either immediately available or can be obtained from trigonometric approximation operators by substituting \(x = \frac{1}{2}(1 + \cos \phi)\); see [4].

Thus, the "trigonometric" operator defined by JACKSON ([8] p. 3) leads to the "polynomial" constants\(^5\)

\(^5\) These constants are better than those given by JACKSON, p. 17. They have been calculated by Dr. P. HENRICI. He found that if \(|f^{(p)}(x)| \leq 1, f(\frac{1}{2}) = \ldots = f^{(p-1)}(\frac{1}{2}) = 0\) and \(f(\frac{1}{2} + \frac{1}{2} \cos \phi) = g(\phi)\) then \(|g^{(p)}(\phi)| \leq H^p\) where \(H < \frac{\pi}{2}\) for \(1 \leq p \leq 6\). It is known [4] that \(H < \frac{\pi}{6}\) for \(1 \leq p < \infty\).
\[c_n(p) = \begin{cases} \left(\frac{1 + \frac{2}{n-1}}{n} \right)^p & (p \leq 6), \\ \left(\frac{1 + \frac{1}{n-1}}{n} \right)^p & (p \geq 7). \end{cases} \]

Since JACKSON's operator is an integral operator with a non-negative kernel, (66) holds with \(c_n = 1 \). Hence we have

Corollary 8'. Let \(S = \text{Gau}_n \). Let the hermitian kernel \(K(x, \xi) \) possess a continuous \(p \)-th derivative \(K^{(p)}(x, \xi) \) with respect to \(x \). Then we have for \(n \geq p \)

\[
| \kappa_S - K^p | \leq \frac{d^p}{n-1} \max_{x, \xi} | K^{(p)}(x, \xi) |
\]

where \(d = 1.92 \) if \(p \leq 6 \), and \(d = 4.1 \) if \(p \geq 7 \).

FAVARD [5] has defined a trigonometric operator which leads to the "polynomial" constants

\[
(71) \quad c_n(p) = \begin{cases} \left(\frac{67}{n} \right)^p & (2 \leq p \leq 6), \\ \left(\frac{1.36}{n} \right)^p & (p \geq 7). \end{cases}
\]

These constants are better than those given by (69).

Unfortunately no constant \(c_n \) satisfying (66) seems to be known for FAVARD's operator, hence we cannot use (71) to improve (70). However, there is a special class of kernels where we can do without \(c_n \), viz. kernels of the form

\[
(72) \quad K(x, \xi) = h_1(x + \xi) + h_2(x - \xi) \quad (0 \leq x, \xi \leq 1).
\]

We prove

Theorem 9: Let \(S = \text{Gau}_n \), and let \(K(x, \xi) \) be a hermitian
kernel of type (72). If there exist complex polynomials \(p_1(x) \) and \(p_2(x) \) of degrees \(< n\) such that for some constants \(\xi_1, \xi_2 \)

\[
(73) \quad |h_2(x) - p_2(x)| \leq \xi_1 (-1 < x < 1), \quad |h_1(x) - p_1(x)| \leq \xi_2 (0 < x < 2)
\]

then we have

\[
(74) \quad \left| K_{\xi} - K_{\xi}^S \right| \leq 2(\xi_1 + \xi_2) \quad (\xi = 1, 2, \ldots).
\]

Proof. Put

\[M(x, \xi) = p_1(x + \xi) + p_2(x - \xi). \]

Then we have from (73)

\[|K(x, \xi) - M(x, \xi)| \leq \xi_1 + \xi_2 \quad (0 \leq x, \xi \leq 1). \]

Since \(K(x, \xi) \) is hermitian the kernel

\[G(x, \xi) = \frac{1}{2} \left[M(x, \xi) + \overline{M(\xi, x)} \right] \]

also satisfies

\[|K(x, \xi) - G(x, \xi)| \leq \xi_1 + \xi_2. \]

Moreover, \(G(x, \xi) \) is hermitian and a polynomial of degree \(< n\) in \(x \) (and in \(\xi \)); hence \(G(x, \xi) \) allows \(\text{Gau}_n \) by theorem 2.

Theorem 9 now follows from corollary 1".

We may apply FAVARD's operator to \(h_1(x) \) in \(0 \leq x \leq 2 \), and to \(h_2(x) \) in \(-1 \leq x \leq 1 \). Since we now have intervals of length 2 the numerators occurring in (71) have to be multiplied by 2. We obtain
Corollary 9'. Let \(S = \text{Gau}_n \). Let \(K(x, \xi) \) be a hermitian kernel of type (72) such that \(h_1 \) and \(h_2 \) have continuous \(p \)-th derivatives. Then we have for \(n \geq p \)

\[
|K(x, \xi) - K_S| \leq 2 \cdot d \cdot \max_{0 \leq t \leq 2} \left[h_1(t) + h_2(p)(u) \right]
\]

where \(d = 1.34 \) if \(2 \leq p \leq 6 \), and \(d = 2.72 \) if \(p \geq 7 \).

F: Once more \(\text{Leq}_n \). Whenever \(K(x, \xi) \) is periodic then better results may be expected from the simple rule \(\text{Leq}_n \) than from \(\text{Gau}_n \). To show this we note that the system of \(n \) exponential functions

\[
g_\mu(x) = e^{2\pi i \mu x} \quad \text{where} \quad \mu = \begin{cases} \{ -m, \ldots, m \} & \text{if} \ n = 2m+1 \\ \{ -m, \ldots, m+1 \} & \text{if} \ n = 2m+2 \end{cases}
\]

admits \(\text{Leq}_n \). (It also admits \(\text{Meq}_n \) and \(\text{Tr}_{an} \) which, on account of the periodicity, is not essentially different from \(\text{Leq}_n \).)

Repeating the reasoning of section 5E, we arrive at the following analogues of theorems 8, etc.:

Theorem 10. Let \(S = \text{Leq}_n \). Let there exist a linear operator \(A_n \) which assigns to every continuous function \(f(x) \) of period 1 a linear combination of the functions \(g_\mu(x) \) defined by (76) such that for some constant \(c_n \)

\[
|A_n f(x)| \leq c_n \max |f(\xi)| \quad (-\infty < x < \infty)
\]

and further, if \(f^{(p)}(x) \) exists and is continuous for some
constant $c_n^{(p)}$

(78) \[|f(x) - A_n f(x)| \leq c_n^{(p)} \max_{x \in [a, b]} |f(x)| \quad (-\infty < x < \infty). \]

If $K(x, \xi)$ is a hermitian kernel of period 1 and $K^{(p)}(x, \xi) = (\partial/\partial x)^p K(x, \xi)$ is continuous (in the entire (x, ξ)-plane) then

(79) \[|k_{\xi} - k_{\xi}^S| \leq 2(1 + c_n^{(p)}) \max_{x, \xi} |K^{(p)}(x, \xi)|. \]

JACKSON [8] and FAVARD [3] have given trigonometric operators A_n leading to the constants 6)

(80) \[c_n = 1; \quad c_n^{(p)} = \left(\frac{256}{n-2} \right)^p \quad (p \geq 1) \]

(81) \[c_n^{(p)} = \left(\frac{354}{n} \right)^p \quad (p \geq 2) \]

Hence we have

Corollary 10'. Let $S = \text{Leq}_n$. Let $K(x, \xi)$ be a hermitian kernel with period 1. Then

(82) \[|k_{\xi} - k_{\xi}^S| \leq 4 \left(\frac{256}{n-2} \right)^p \max_{x, \xi} |K^{(p)}(x, \xi)|. \]

To theorem 9 there corresponds

Theorem 11. Let $S = \text{Leq}_n$. Let

6) JACKSON [6] p. 10 gives the constant $(3/m)^p$ for approximation by trigonometrical polynomials of order $\leq m$ in $0 \leq x \leq 2\pi$. In our case we have $m = (n-1)/2$ or $m = (n-2)/2$, and 3 is to be replaced by $3/2^m \approx 48$ for the interval $0 \leq x \leq 1$. This leads to (80). Similarly (81) is obtained from FAVARD'S trigonometric constants.
\[K(x, \xi) = h_1(x+\xi) + h_2(x-\xi) \]

be a hermitian kernel, with functions \(h_1(x), h_2(x) \) of period 1. If there exist linear combinations \(e_1(x), e_2(x) \) of the exponentials functions (76) such that for \(-\infty < x < \infty\)

\[|h_{\alpha}(x) - e_{\alpha}(x)| \leq \varepsilon_{\alpha} \quad (\alpha = 1, 2; \quad \varepsilon_\alpha \text{ constant}) \]

then we have

\[|\kappa_\xi^S - \kappa_\xi^S| \leq 2(\varepsilon_1 + \varepsilon_2) \quad (\xi = \pm 1, \pm 2, \ldots). \]

Here the approximation operators work even better than in the polynomial case since, on account of the periodicity, the duplication of the interval does no harm. Using FAVARD's constants (81) we obtain

Corollary 11'. Let \(S = \text{Leq}_n \). Let \(K(x, \xi) \) be a hermitian kernel of type (72) where \(h_1(x), h_2(x) \) have the period 1 and a continuous \(p \)-th derivative such that

\[|h_{\alpha}^{(p)}(x)| \leq L_\alpha \quad (-\infty < x < \infty; \quad \alpha = 1, 2). \]

Then we have for \(\xi = \pm 1, \pm 2, \ldots \)

\[|\kappa_\xi^S - \kappa_\xi^S| \leq 2 \left(\frac{15}{n} \right)^p (L_1 + L_2). \]

Remark. Under the assumption that \(K(x, \xi) \) is analytic in a known neighborhood of \(0 \leq x \leq 1, \quad 0 \leq \xi \leq 1 \), especially convenient bounds of \(|\kappa_\xi^S - \kappa_\xi^S| \), for an arbitrary quadrature formula \(S \), might be obtained from the error estimates given by DAVIS for the approximation of analytic functions [3].
6. Two Numerical Examples.

I. Suppose we want to calculate the eigenvalues of

\[K(x,\xi) = e^{x\xi} \quad (0 \leq x, \xi \leq 1) \]

using the trapezoidal n-point-rule. How large should we choose n to be sure that the error of each eigenvalue is less than .01? This question is answered by theorem 6.

Using the trivial estimate \[|K(x,\xi)| \leq e \] we find

\[|K_\zeta^n - K_\zeta|^n \leq \frac{\epsilon_1}{n-1} < \frac{1.47}{n-1} \quad (\zeta = \pm 1, \pm 2, \ldots). \]

Hence \(n \geq 148 \) is sufficient. If we want to answer the same question for Gauss' rule we may either estimate \(K^{(p)}(x,\xi) \) and apply Corollary 8 for some suitable chosen value of \(p \), or we may search for a good explicit polynomial approximation to \(K(x,\xi) \) and then apply theorem 2 and corollary 1.

The first method gives the estimates

\[|K_\zeta^n - K_\zeta^G_{au,n}| \leq \begin{cases} 4e^{(\frac{1+92}{n-1})^p} & (p \leq 6, p \leq n), \\ 4e^{(\frac{1+1}{n-1})^p} & (7 \leq p \leq n). \end{cases} \]

The smallest bound results from choosing \(p = 6 \); this leads to \(n \geq 8 \). In the second method it is natural to use the Taylor expansion with center \(\frac{1}{2} \). If \(0 \leq z \leq 1 \) then

\[e^z = e^{\frac{1}{2}} e^{z-\frac{1}{2}} = e^{\frac{1}{2}} \sum_{\nu=0}^{n-1} \frac{(z-\frac{1}{2})^\nu}{\nu!} + R_n, \quad |R_n| \leq \frac{(\frac{1}{2})^n}{n!} e. \]
Putting
\[G(x, \xi) = e^{\frac{3}{2}} \sum_{y=0}^{n-1} \frac{(x \xi - \frac{1}{y})^y}{y!} \]
we find from (21) the estimate
\[|K_\varphi - K_\varphi^{Gau}| \leq \left(\frac{1}{n!} \right)^{n-1} e. \]
This shows that already \(n \geq 5 \) is sufficient for \(|K_\varphi - K_\varphi^{Gau}| < .01 \).

II. Sometimes our theorems can be applied in the inverse direction: We have some information concerning the eigenvalues of \(K(x, \xi) \) and ask for similar information concerning the eigenvalues of \(K^S \). For instance, let
\[(80) \quad K(x, \xi) = \frac{5}{13-12 \cos 2\pi(x+\xi)} \quad (0 \leq x, \xi \leq 1). \]
Since \(K(x, \xi) > 0 \) and \(\int K(x, \xi) d\xi = 1 \) for every \(x \), we know that \(K_1 = 1, |K_\varphi| < 1 \) (\(\varphi \neq 1 \)) (cf. JENTZSCH [7], FROBENIUS [14]).
Suppose we want to perform some iteration process with the matrix \(K^S \) which is derived from \(K(x, \xi) \) by one of the \(n \)-point quadrature formulas \(S \) discussed in section 5, knowing that the process will converge satisfactorily if all \(|K_\varphi^S| \leq 1.1 \).
How large should we choose \(n \) in order to secure convergence? \(^7\)

The kernel (80) is pretty bad for numerical integration

\(^7\) This question was proposed to the author by Dr. J. Todd and gave rise to the present investigation. The kernel (86) appeared in a numerical procedure for conformal mapping of the interior of an ellipse with axis ratio 5 onto the unit circle.
since it has a high crest along $x + \xi = 1$. The derivatives have the upper bounds

$$(87) \quad p = 0 \quad 1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 6$$

$$|K^{(p)}\xi| \quad 5 \quad 49.7 \quad 1270 \quad 85800 \quad 683 \times 10^4 \quad 444 \times 10^6 \quad 492 \times 10^8$$

Using these values (and $p = 6$ where $K^{(p)}(x,\xi)$ occurs) we find that

$$(88) \quad \left| K_\varphi - K^S_\varphi \right| \leq 0.1 \quad (\varphi = \pm 1, \pm 2, \ldots)$$

(and hence $|K^S_\varphi| \leq 1.1$) if S is one of the following rules:

$$(89) \quad (41) \quad (44) \quad (64) \quad (70) \quad (75) \quad (82) \quad (85)$$

Comparing the results for Simpson's and Gauss' rule we see that our Gauss estimates (70) and (75) are far from being good (they could be greatly improved if the constant c_n for FAVARD's operator turned out to be near to 1). In (75) and (85) the fact is used, that $K(x,\xi)$ is a function of a single variable. (82) and (85) use the periodicity of $K(x,\xi)$.

Better results than by our general theorems, are, of course, obtained if the special structure of our kernel (86) is used. To do this we develop $K(x,\xi)$ into its Fourier series:

$$K(x,\xi) = \sum_{j=\infty}^{\infty} \left(\frac{2}{3} \right)^{|j|} e^{2\pi ij(x+\xi)},$$
and then, say for \(n = 2m+1 \), choose

\[
G(x, \xi) = \sum_{j=-m}^{m} \left(\frac{2}{3}\right)^{|j|} e^{2\pi i j (x+\xi)} = \sum_{j=-m}^{m} c_{\alpha}^{\beta} g_{\alpha}(x) g_{\beta}(\xi)
\]

with \(c_{\alpha}^{\beta} = \xi_{\alpha}^{\beta} \left(\frac{2}{3}\right)^{|\alpha|} \) and \(g_{\alpha} \) defined by (81). We have

\[
|K(x, \xi) - G(x, \xi)| \leq 2 \sum_{j=m+1}^{\infty} \left(\frac{2}{3}\right)^{j} = 6 \left(\frac{2}{3}\right)^{m+1} = 6 \left(\frac{2}{3}\right)^{2n+1},
\]

hence by (84)

\[
|\kappa_{q}^{L_{eq}} - \kappa_{q}^{L_{eq}}| \leq 12 \left(\frac{2}{3}\right)^{2n+1}.
\]

From this estimate it follows that already \(L_{eq_{25}} \) is sufficient. Which is the smallest value of \(n \) such that \(S = L_{eq_{n}} \) satisfies (88)?

In the case of the kernel (86) this value of \(n \) can actually be determined. For the eigenvalues of \(K(x, \xi) \) can be calculated exactly, as it is always the case when \(K(x, \xi) = f(x+\xi) + g(x-\xi) \) with periodic functions \(f, g \) (the eigenfunctions have the form \(ae^{2\pi irx} + be^{-2\pi irx} \)). In a similar way the eigenvalues of \(L_{eq_{n}} \) can be calculated. The result is (after a convenient change in the numbering of the eigenvalues):

(90) \[
K_{q}^{L_{eq}} = \begin{cases}
q^{\xi} & (q = 0, 1, 2, \ldots), \\
-q^{|q|} & (q = -1, -2, \ldots),
\end{cases} \quad (q = \frac{2}{3})
\]

(91) \[
K_{q}^{L_{eq_{n}}} = \begin{cases}
q^{\xi} 1+q^{n-2q} & (q = 0, 1, 2, \ldots, \lfloor \frac{n}{2} \rfloor), \\
-q^{|q|} 1+q^{n-2|q|} & (q = -\lfloor \frac{n-1}{2} \rfloor, \ldots, -1), \\
0 & \text{else.}
\end{cases}
\]
From this it follows that for \(n \leq 10 \)
\[
|K_5 - K_{5n}^{\text{eq}}| = |K_5 - K_5| = \left(\frac{2}{3}\right)^5 > .1,
\]
but for \(n \geq 11 \) always \(|K_\varphi - K_\varphi^{\text{eq}}| \leq .1 \). Hence \(n = 11 \) is the lowest admissible value.

Perhaps it will be felt that all of the results mentioned in the table (89) are not very satisfactory. However, one must bear in mind that no general approximation theorem which is based on uniform bounds for some derivative is likely to give good results for the special kernel (86) since this kernel has high values of \(K^{(p)}(x,\xi) \) only at a small part of the unit square, though our estimates are valid for kernels which have everywhere derivatives of the order of magnitude allowed by (87). Better results for the kernel (86) could be derived from approximation theorems involving say

\[
\max_{\xi} \int |K^{(p)}(x,\xi)| \, dx \text{ instead of } \max_{x,\xi} |K^{(p)}(x,\xi)|.
\]

A close look at example II will show that there are at least two more directions where we may look for refinements.

From (90) and (91) we see that, for fixed \(n \), the errors
\[
|K_\varphi - K_\varphi^{\text{eq}}| \text{ depend on } \varphi \text{ in such a way that they are small for small } |\varphi| \text{ (they attain their maximum value for } \varphi \approx \pm n/2).\]

This means that our estimates which are uniform in \(\varphi \) are unnecessarily bad if we are interested, as usual, only in the first eigenvalues (those of large modulus). It would
be worth searching for estimates of the type

\[|K_\phi - K_\phi^S| \leq C_\phi \]

where \(C_\phi \) depends on \(K(x, \xi) \), \(S \) and \(\phi \), and is small for small \(|\phi| \).

Another direction for improvements is suggested by the fact that, in our example, we are interested only in one-sided bounds (namely upper bounds for \(|K_\phi^S| \)). For some quadrature formulas \(S \) there exist much better upper bounds for \(|K_\phi^S| \), and lower bounds for \(|K_\phi| \), than those implied by our estimates of \(|K_\phi - K_\phi^S| \). An example will be given in the next section.

7. One-sided bounds for \(\text{Meq}_n \).

Theorem 12. Let \(S = \text{Meq}_n \) be the quadrature formula defined by (42). Let \(K(x, \xi) \) be a hermitian kernel with a continuous second derivative \(K_{xx}(x, \xi) \) such that \(|K_{xx}(x, \xi)| \leq L' \) \((0 \leq x, \xi \leq 1)\). Then

\[
(93a) \quad \left| K_p^S - K_p \right|, \left| K_{-p} - K_{-p}^S \right| \leq \frac{C L'}{n^2} \quad (p = 1, 2, \ldots)
\]

where \(C = \frac{1}{8} \left(\frac{1}{3} + \sqrt{\frac{1}{3}} \right) < .098 \) is the best possible constant.

The estimate (93) is remarkable for the fact that it is quadratic in \(1/n \) though the two-sided estimate (44) for \(\text{Meq}_n \) is only of the first order. Applied to our "bad" kernel (86) theorem 12 shows that \(|K_\phi^S| \leq 1.1 \) for \(S = \text{Meq}_{49} \). This
is a very satisfactory result in view of the fact that neither the periodicity nor the special form (72) of the kernel has been used.

Proof of theorem 12. We define a piecewise continuous hermitian kernel \(G(x, \xi) \) which is constant in each of the \(n^2 \) subsquares

\[
| x - \xi_{\mu} | < \frac{1}{2n}, \quad | \xi - \xi_{\nu} | < \frac{1}{2n} \quad (\mu, \nu = 1, 2, \ldots, n),
\]

where \(\xi_{\nu} = (2\nu-1)/2n \), such that \(G(x, \xi) \) coincides with \(K(x, \xi) \) at the mesh points determined by the rule \(\text{Meq}_n \):

\[
G(x, \xi) = K(\xi_{\mu}, \xi_{\nu}) \quad \text{if (94) holds.}
\]

By theorem 2 this kernel \(G(x, \xi) \) admits \(S = \text{Meq}_n \), hence its eigenvalues are \(\kappa_p^S \). To prove (93a) let \(p \) be a fixed natural number. If \(\kappa_p^S = 0 \) then (93a) is true since \(\kappa_p \geq 0 \) by definition. Let \(\kappa_p^S \neq 0 \). Then the eigenfunctions \(z_p(x) \) of \(G(x, \xi) \) corresponding to the first \(p \) eigenvalues \(\kappa_p^S \) \((p = 1, \ldots, p)\) are piecewise constant. We determine numbers \(a_{\pi} \) such that

\[
z(x) = \sum_{\pi=1}^{p} a_{\pi} z_{\pi}(x)
\]

is normalized and orthogonal to those eigenfunctions \(y_{\varphi}(x) \) of \(K(x, \xi) \) which belong to eigenvalues \(\kappa_{\varphi} \) with \(1 \leq \varphi \leq p - 1 \).

(Such numbers \(a_{\pi} \) exist since the orthogonality requirement imposes at most \(p - 1 \) linear homogeneous conditions on the \(p \)
unknowns a_{n^*}) Put

$$D(x, \xi) = G(x, \xi) - K(x, \xi).$$

We prove theorem 12 by estimating the integral

$$J = \left(\iint_{00} z(x) \, D(x, \xi) \, z(\xi) \, dx \, d\xi \right)$$
in two ways. From (96) we have

$$\left(\iint_{00} z(x) \, G(x, \xi) z(\xi) \, dx \, d\xi \right) \geq K_p^S,$$
and from the orthogonality condition

$$\left(\iint_{00} z(x) \, K(x, \xi) z(\xi) \, dx \, d\xi \right) \leq K_p,$$

hence

$$J \geq K_p^S - K_p.$$ \hspace{1cm} (97)

On the other hand we remark that $z(x)$ is constant in each of the subintervals $(\nu-1)/n < x < \nu/n$. Hence J will not be altered if we replace $D(x, \xi)$ by any kernel $\hat{D}(x, \xi)$ which has the same mean value as $D(x, \xi)$ in each of the subsquares (94). Let us choose for $\hat{D}(x, \xi)$ the kernel which is obtained by "symmetrizing" $D(x, \xi)$ in each of the subsquares in the following way: With the notation (94) define

$$\hat{D}(x, \xi) = \frac{1}{4} \sum'_\sigma \sum'_\tau D(\xi + \sigma (x-\xi), \xi + \tau (\xi-\xi)) \quad (\sigma, \tau = \pm 1).$$

Obviously $\hat{D}(x, \xi)$ has the same mean value as $D(x, \xi)$ in each subsquare, and in addition we know
We integrate (98b) twice, using the initial conditions (98a); the result is

\[|\hat{D}(x, \xi)| \leq L^2 \]

(0 \leq x, \xi \leq 1).

Now we can proceed as in the proof of theorem 4. We find

(99) \[\|\hat{D}\| \leq L' \pi_1 \]

where \(\pi_1 \) is the largest root of equation (40) formed with the present definition of \(p(x) \). Solving (40) we find \(\pi_1 = C/n^2 \) with the value of \(C \) given in theorem 12. Now (99) gives \(J \leq CL/n^2 \). This inequality together with (97) completes the proof of (93a). Applying (93a) to \(-K(x, \xi)\) instead of \(K(x, \xi) \) we obtain (93b).

8. Limitations of the method.

Though the method of numerical integration can in principle be applied to every kernel it will give, as a rule, good results only if the kernel is smooth at least in the neighborhood of the mesh points \((\xi_\mu, \xi_\nu)\). For only these \(n^2 \) points are used to calculate the approximations \(K_{\phi S} \), so they have to represent the whole of \(K(x, \xi) \). In cases where \(K(x, \xi) \) is not very smooth better results may be expected.
from Hilbert's second method which approximates, after choosing n orthonormal functions $\varphi_{\nu}(x)$, the eigenvalues κ_{φ} of the integral equation (1) by the eigenvalues $\kappa_{[n]}^{[n]}$ of the $n \times n$ matrix
\[k_{[n]} = (k_{\mu\nu}) \quad (\mu, \nu = 1, \ldots, n) \]
where
\[k_{\mu\nu} = \int_{-\infty}^{\infty} \varphi_{\mu}(x) K(x, \xi) \varphi_{\nu}(\xi) \, dx \, d\xi. \]
Error estimates for this method (which may be considered as an analogue of the well-known Rayleigh-Ritz method for differential equations) are being published elsewhere [12].

We mention the following result of type (92): For $p = 1, 2, \ldots$ we have
\[0 \leq \kappa_{p} - \kappa_{p}^{[n]} \leq \frac{1}{K_{[n]}} \left[\int_{-\infty}^{\infty} |K(x, \xi)|^2 \, dx \, d\xi \right. \]
\[- \left. \sum_{\mu=1}^{n} \sum_{\nu=1}^{n} |k_{\mu\nu}|^2 \right]. \]
BIBLIOGRAPHY

Universität Tübingen, Germany

and

American University, Washington, D. C.

September 30, 1953
THE NATIONAL BUREAU OF STANDARDS

Functions and Activities

The functions of the National Bureau of Standards are set forth in the Act of Congress, March 3, 1901, as amended by Congress in Public Law 619, 1950. These include the development and maintenance of the national standards of measurement and the provision of means and methods for making measurements consistent with these standards; the determination of physical constants and properties of materials; the development of methods and instruments for testing materials, devices, and structures; advisory services to Government Agencies on scientific and technical problems; invention and development of devices to serve special needs of the Government; and the development of standard practices, codes, and specifications. The work includes basic and applied research, development, engineering, instrumentation, testing, evaluation, calibration services, and various consultation and information services. A major portion of the Bureau's work is performed for other Government Agencies, particularly the Department of Defense and the Atomic Energy Commission. The scope of activities is suggested by the listing of divisions and sections on the inside of the front cover.

Reports and Publications

The results of the Bureau's work take the form of either actual equipment and devices or published papers and reports. Reports are issued to the sponsoring agency of a particular project or program. Published papers appear either in the Bureau's own series of publications or in the journals of professional and scientific societies. The Bureau itself publishes three monthly periodicals, available from the Government Printing Office: The Journal of Research, which presents complete papers reporting technical investigations; the Technical News Bulletin, which presents summary and preliminary reports on work in progress; and Basic Radio Propagation Predictions, which provides data for determining the best frequencies to use for radio communications throughout the world. There are also five series of nonperiodical publications: The Applied Mathematics Series, Circulars, Handbooks, Building Materials and Structures Reports, and Miscellaneous Publications.

Information on the Bureau's publications can be found in NBS Circular 460, Publications of the National Bureau of Standards ($1.00). Information on calibration services and fees can be found in NBS Circular 483, Testing by the National Bureau of Standards (25 cents). Both are available from the Government Printing Office. Inquiries regarding the Bureau's reports and publications should be addressed to the Office of Scientific Publications, National Bureau of Standards, Washington 25, D. C.