NATIONAL BUREAU OF STANDARDS REPORT 2498

AN ILLUSTRATION OF COMPUTATIONAL METHODS FOR THE DETERMINATION OF THE PARAMETERS OF A CERTAIN RANDOM PROCESS*

by

Eugene Lukacs
*The preparation of this paper was sponsored by the U. S. Naval Ordnance Test Station, Inyokern。

U. S. DEPARTMENT OF COMMERCE

Sinclair Weeks, Secretary
NATIONAL BUREAU OF STANDARDS

A. V. Astin, Director

THE NATIONAL BUREAU OF STANDARDS

The scope of activities of the National Bureau of Standards is suggested in the following listing of the divisions and sections engage 1 in technical work. In general, each section is engaged in specialized research, development, and engineering in the field indicated by its title. A brief description of the activities, and of the resultant reports and publications, appears on the inside of the back cover of this report.
Electricity. Resistance Measurements. Inductance and Capacitance. Electrical Instruments. Magnetic Measurements. Applied Electricity. Electrochemistry.
Optics and Metrology. Photometry and Colorimetry. Optical Instruments. Photographic Technology. Length. Gage.
Heat and Power. Temperature Measurements. Thermodynamics. Cryogenics. Engines and Lubrication. Engine Fuels. Cryogenic Engineering.
Atomic and Radiation Physics. Spectroscopy. Radiometry. Mass Spectrometry. Solid State Physics. Electron Physics. Atomic Physics. Neutron Measurements. Infrared Spectroscopy. Nuclear Physics. Radioactivity. X-Rays. Betatron. Nucleonic Instrwmentation. Radiological Equipment. Atomic Energy Commission Instruments Branch.
Chemistry. Organic Coatings. Surface Chemistry. Organic Chemistry. Analytical Chemistry. Inorganic Chemistry. Electrodeposition. Gas Chemistry. Physical Chemistry. Thermochemistry. Spectrochemistry. Pure Substances.
Mechanics. Sound. Mechanical Instruments. Aerodymamics. Engimeering Mechanics. Hydraulics. Mass. Capacity, Density, and Fluid Meters.
Organic and Fibrous Materials. Rubber. Textiles. Paper. Leather. Testing and Specifications. Polymer Structure. Organic Plastics. Dental Research.
Metallurgy. Thermal Metallurgy. Chemical Metallurgy. Mechanical Metallurgy. Corrosion.
Mineral Products. Porcelain and Pottery. Glass. Refractories. Enameled Metals. Concreting Materials. Constitution and Microstructure. Chemistry of Mineral Products.
Buillding Technology. Structural Engineering. Fire Protection. Heating and Air Conditioning. Floor, Roof, and Wall Coverings. Codes and Specifications.
Applied Mathematics. Numerical Analysis. Computation. Statistical Engineering. Machine Development.
Electronics. Engineering Electronics. Electron Tubes. Electronic Computers. Electronic Instrumentation.

Radio Propagation. Upper Atmosphere Research. Ionospheric Research. Regular Propagation Services. Frequency Utilization Research. Tropospheric Propagation Research. High Frequency Standards. Microwave Standards.
Ordnance Development. These three divisions are engaged in a broad program of research Electronechanical Ordmance. and development in advanced ordnance. Activities include Ordnance Electronics. and development in advanced ordnance. Activities include testing, and evaluation of a wide variety of ordaance matériel. Special skills and facilities of other NBS divisions also contribute to this program. The activity is sponsored by the Department of Defense.
Missile Development. Missile research and development: engineering, dynamics, intelligence, instrumentation, evaluation. Combustion in jet engines. These activities are sponsored by the Department of Defense.

- Office of Basic Instrumentation

NATIONAL BUREAU OF STANDARDS REPORT
 NBS PROJECT

AN ILLUSTRATION OF COMPUTATIONAL METHODS FOR THE DETERMINATION OF THE PARAMETERS OF A CERTAIN RANDOM PROCESS
by

Eugene Lukacs

The publication, rep unless permission is 4
25, D. C. Such perm cally prepared if th:

Approved for public release by the Director of the National Institute of Standards and Technology (NIST) on October 9, 2015
n part, is prohiblted
ndards, Washington
ort has been speciff-
jort for lts own use.

An Illustration of Computational Methods for the Determination of the Parameters of a Certain Random Process＊

by

Eugene Lukacs
National Bureau of Standards

1．Introduction：Statistical evaluation of the result of measurements is called for whenever repeated measurements of the same quantity are taker．However one encounters quite fre－ quently situations where the physical quantity observed varies with time。 We can then take a sequence of observations，but due to the variability in time we can not say that they are measurements of the same quantity。 Moreover the situation can be suctu that it is impossible to take simultaneously several independent observations or to repeat the experiment under identical conditions．As an example we mention the motion of certain physical bodies which receive an initial impulse and are then moving freely subject only to random influences． The observed quantity would be in this case either the posi－ tion or the velocity or the acceleration of the body．The motion of a wide variety of missiles belongs this class． As another example we mention the decrease in thickness（or weight）of a shoe sole or a tire due to the natural wear over a period of time。

[^0]In situations of this kind, the standard statistical techniques can not be applied in a natural manner. It seems therefore desirable to find an appropriate probabilistic model.

Although we can take observations only at discrete time points, it seems quite natural to suppose that a random variable (for instance the position of a moving body) is given at each instant of time. It is customary to try to make as many observations as possible, the temporal proximity of the observations as well as the nature of the physical phenomenon will in most cases prevent the observations from being stochastically independent. This is a situation which is rarely studied in the theory of the statistical evaluation of measurements. However these considerations suggest strongly that a stochastic process, depending on a continuous time parameter would be the suitable probabilistic model for such a sequence of observations.

A mathematically simple model is obtained if we assume that the actual sequence of observations comes from a Wiener process with a certain mean value function. Such a model contains several parameters, the variance constant of the process and the parameters introduced by the mean value function. Procedures have been developed [2] [3] [4] for the estimation of these parameters. The purpose of this paper is to give a
brief survey of the estimation procedures，the numerical as－ pects of obtaining these estimates will be emphasized．Fin－ ally an example of a Wiener process with mean value function is constructed by means of random numbers．The main purpose of the present paper is to illustrate the available statis－ tical techniques by means of this artificial process．

2．The Wiener process

A stochastic process $x(t)$ ，depending on a continuous time parameter，is said to be a Wiener process if
（i）$x(t)$ is a process with independent increments and initial value $x(0)=0$ 。
（ii）the increment $x(t+\tau)-x(t)$ is normally distri－ buted with mean zero and variance cで，（where $c>0)$ 。

The constant c is called the variance constant of the process． The value $x(t)$ of the process can be written according to （i）as an increment，$x(t)=x(t)-x(0)$ so that we see from （ii）that the mean value function $\operatorname{Ex}(t)$ of a Wiener process is identically zero．It is quite of ten desirable to study a process which has the essential simplicity of the Wiener process but possesses a non vanishing mean value function。 We give therefore the following definition：

A stochastic process $y(t)$ is said to be a Wiener process with mean value function $f(t)$ if

$$
\begin{equation*}
y(t)=x(t)+f(t) \tag{2.1}
\end{equation*}
$$

Here $f(t)$ is a fixed real valued function of t such that $f(0)=0$. and $x(t)$ is a Wiener process.

The process $y(t)$ is completely determined by its variance parameter and its mean value function $f(t)$. In order to be able to apply estimation procedures to the function $f(t)$ it is desirable to give it in such a form that it contains certain parameters. A fairly general assumption is that
(2.2) $\quad \mathbf{f}(t)=k_{1} \varnothing_{1}(t)+k_{2} \varnothing_{2}(t)+\ldots \quad k_{s} \varnothing_{s}(t)$.

Here the functions $\varnothing_{1}(t) \ldots \varnothing_{S}(t)$ are s arbitrary but completely specified functions while the coefficients $k_{1} \ldots k_{s}$ are the parameters of the mean value function. The functions $\varnothing_{1}(t) \ldots \varnothing_{S}(t)$ are only subject to certain restrictions*[3] which are satisfied in all cases of practical interest。
3. The estimation procedure.

We assume in the following that the $y(t)$ process - as described by (2.1) and (2.2) - is observed over a finite interval $[0, T]$ so that one sample curve is known over this interval. We compute the following quantities

[^1](3.1) $\quad \Phi_{i j}=\int_{0}^{T} \phi_{i}(t) \phi{ }_{j}(t) d t \quad(i, j=1,2, \ldots, s)$
and then the quantities $\Phi^{i j}$ which are determined by the matrix relation
\[

$$
\begin{equation*}
\left(\left(\Phi^{\mathbf{i} \mathbf{j}}\right)\right)=\left(\left(\Phi_{\mathbf{i} \mathbf{j}}\right)\right)^{-1} \tag{3.2}
\end{equation*}
$$

\]

Next one has to compute the integrals

$$
\text { (3.3) } \int_{0}^{T} \phi_{i}(t) d y(t)=y(T) \phi_{i}(T)-\int_{0}^{T} y(t) \phi_{i}(t) d t \quad(i=1, \ldots, s)
$$

The estimates \hat{k}_{j} of the parameters k_{j} are then

$$
\begin{equation*}
\hat{k}_{j}=\sum_{v=1}^{s} \Phi^{j v} \int_{0}^{T} \phi_{v}(t) d y(t) \tag{3.4}
\end{equation*}
$$

$$
(j=1,2, \ldots, s)
$$

The estimates $\hat{k}_{j}(j=1,2, \ldots, s)$ are limits of maximum likelihood estimates computed from observations taken over a finite set of points. It can be shown that under rather general conditions the estimates \hat{k}_{j} are unbiased estimates of k_{j} and that the covariance of \hat{k}_{i} and \hat{k}_{j} is given by $\sigma\left(\hat{k}_{\mathbf{i}} \hat{k}_{\mathbf{j}}\right)=c \Phi^{i j}$ 。

It should be emphasized that the estimates $\widehat{\mathrm{k}}_{\mathrm{j}}$ are not maximam likelihood estimates and that the estimated mean value

$$
\begin{equation*}
\hat{\mathbf{f}}(\mathrm{t})=\hat{k}_{1} \varnothing_{1}(\mathrm{t})+\ldots+\hat{k}_{s} \varnothing_{s}(\mathrm{t}) \tag{3.5}
\end{equation*}
$$

is not a least square fit of the data. Moreover it can be shown that the mean value curve $\widehat{f}(t)$ has another optimal property. We say that $\widehat{f}(t)$ is a best linear estimate of $f(t)$ if
(a) $E \hat{f}(t)=f(t) \quad$ (io $0 \hat{f}(t)$ is an unbiased estimate)
(b) E $\int_{0}^{T}[\mathbf{f}(t)-\hat{\mathbf{f}}(\mathrm{t})]^{2} \mathrm{~d} \mathrm{t} \leq \mathrm{E} \int_{0}^{T}[\mathbf{f}(\mathrm{t})-\widetilde{\mathbf{f}}(\mathrm{t})]^{2} \mathrm{~d} \mathrm{t}$
where $\tilde{f}(t)$ is an estimate, $\tilde{f}(t)=\sum_{v=1}^{S} \tilde{k}_{v} \varnothing_{v}(t)$ such that

$$
\tilde{k}_{v}=\int_{0}^{T} Y_{v}(t) d y(t) \text { and also } E\left(\hat{k}_{v}\right)=k_{v^{\circ}}
$$

The estimate (3.5) is a best linear estimate in this sense
We finally give an estimate for the variance constant 。
We divide the interval [O, T] into N equal parts of length $\tau=\frac{T}{N}$ and denote the subdivision points by $t_{i}=i \tau(i=0,1$, $2,000, N$) \quad The quantity
(3.6) $\hat{c}=\frac{1}{T-s \tau} \sum_{n=1}^{N}\left[y\left(t_{n}\right)-y\left(t_{n-1}\right)-\hat{f}\left(t_{n}\right)+\hat{f}\left(t_{n-1}\right)\right]^{2}$
can be used as an estimate for the variance constant co This estimate is slightly biased but its bias converges to zero as N increases.

We still have to choose the functions $\varnothing_{1}(t), \varnothing_{2}(t), \ldots, \varnothing_{s}(t) 。$ In this report we consider only the case in which the $\varnothing_{j}(t)$ are polynomials. However other choices are possible. For instance it might be advantageous to choose the $\varnothing_{j}(t)$ as trigonometric functions when phenomena with a definite periodicity are studied.

As in least squares theory it seems also here to be convenient to use orthogonal polynomials. The purpose of intraducing orthogonal polynomials is in the present case the
reduction of the matrix $\left(\left(\Phi_{\mathbf{i j}}\right)\right)$ to a diagonal matrix. From (3.1) we see that it is then necessary to assume that the derivatives $\emptyset_{j}(t)$ are the first s polynomials of a system orthogonal with respect to the weight function 1 over an interval $[0, T]$. It follows then that the functions $\varnothing_{j}(t)$ become the integrals of Legendre polynomials adapted to the interval $[0,1]$ 。 As a consequence the mean value function must have initial and terminal value zero, ie.

$$
\begin{equation*}
f(0)=f(T)=0 . \tag{3.7}
\end{equation*}
$$

Condition (3.7) will not be fulfilled in general. Moreover, it is not possible to enforce this condition by a rotation of the axis. In the situation under consideration such a rotatin would change the character of the process and prevent it from being a Wiener process. This means that in general it will not be possible to use orthogonal polynomials to estimate the mean value function of a Wiener process. The use of orthogonal polynomials is restricted to certain physical sitnations where the quantity measured starts at a certain level which is reached again at the end of the period of observation.

In the general case (3.7) is not satisfied and it is then convenient to choose for the $\varnothing_{j}(t)$ consecutive powers of t.

We assume therefore
(3.8)

$$
\left\{\begin{array}{l}
\varnothing_{j}(t)=t^{j} \quad(j=1,2, \ldots, s) \\
f(t)=k_{1} t+k_{2} t^{2}+\ldots+k_{s} t^{s}
\end{array}\right.
$$

We obtain therefore from (3.1), (3.3) and (3.4)

$$
\begin{equation*}
\Phi_{i j}=\frac{i j^{i+j-1}}{i+j-1} \tag{3.9}
\end{equation*}
$$

(3.10) $\left\{\begin{array}{l}\int_{0}^{T} t^{v-1} d y(t)=T^{i-1} y(T)-(i-1) \int_{0}^{T} y(t) t^{i-2} d t \\ \quad \text { for } i=2, \ldots, s \\ \hat{k}_{j}=\sum_{v=1}^{s} \Phi^{j v} v \int_{0}^{T} t^{v-1} d y(t)\end{array}\right.$

It is easy to show that

$$
\begin{equation*}
\Phi^{j v}=\frac{S^{j v}}{j v 1^{j+v-1}} \tag{3.11}
\end{equation*}
$$

where the matrix $\left\|S^{j v}\right\|$ is the inverse of the matrix $\left\|\frac{1}{j+v-1}\right\|_{j, v=1, \ldots, s}$.

The computational work involved in this estimation proceduce can be greatly reduced by providing tables of the matrices $\left\|S^{j v}\right\|$. These are inverses of finite segments of the Hilbert matrix and were tabulated for segments up to and including order 10. These tables [5] should be used whenever a polynomial of degree not exceeding 10 is the mean value function. The scope of these tables will be sufficient in most cases. It should be remarked that with the use of these
tables the estimation of the mean value function is by no means more laborious than the computation of a least square fit to the same data. One could even say that the estimation of the mean value function is in some respects more convenient than a least square fit. This is due to the fact that the table to be used for estimating the mean value curve depends only on the degree of the polynomials but is independent of the number of points observed in $[0, T]$. The tables for fitting orthogonal polynomials by least squares depend on the contrary on the degree of the polynomials as well as on the number of points.

4. Construction of an example.

We next construct an example to which we will apply the technique discusser in the preceding section. We use random numbers to construct "data" which simulate observations from a Wiener process with mean value function.

We choose the following polynomial of degree four

$$
\begin{equation*}
f(t)=3400+310 t-2.7 t^{2}+4310^{-3} \cdot t^{3}-2.6 \times 10^{-4} t^{4} \tag{4,1}
\end{equation*}
$$

This polynomial will represent the mean value function of our fictitious process. We assume that $T=100$ and that we take observations at all integer values $0 \leq n \leq 100$. We compute therefore the values of $f(n), n=0(1) 100$. In order to obtain the simulated observations we add random numbers as "errors" to the values $f(n)$. These random numbers were obtained from Hold's table [6]. These tables contain random
normal deviates representing a normal population of zero mean and unit variance. They are arranged in colums of 50 and the sums $\sum(x)$ of each column is also given。 We still musi select the variance constant c. In view of the arrangement of Wold's tables it was decided to choose

$$
\begin{equation*}
c=\frac{50}{3} . \tag{4.2}
\end{equation*}
$$

Random numbers from a normal population with zero mean and variance $c=\frac{50}{3} \wedge^{o b t a i n e d ~ b y ~ d i v i d i n g ~ t h e ~ v a l u e s ~} \sum(x)$ in Wold's table by $\sqrt{3}$. A set of 100 random numbers (denoted in the following by w_{i}) was derived in this manner by taking 100 columns in Wold's table。 We started with the first column and used all consecutive columns with the exception of the random numbers on page 7. These were skipped in agreement with the warning given in the tables. The sum $\sum_{i=1}^{n} w_{i}$ ($n=0,1,2, \ldots, 100$) with $w_{o}=0$ were computed and added as "errors" to the "true values". In this manner

$$
\begin{equation*}
g(n)=f(n)+\sum_{i=0}^{n} w_{i} \quad(i=0,1, \ldots, 100) \tag{4.3}
\end{equation*}
$$

was computed. These values of $g(1)$ are the simulated observations. We will apply in the following our estimation procedure to these simulated observations. Since we wish to use a Wiener process as our model we have to adjust the observations to make the initial value equal to zero. This can
be accomplished by subtracting $g(O)$ from all observations. This leaves the increments unchanged and does therefore not affect the character of the process. We denote by
(4.4)

$$
y(n)=g(n)-g(0)
$$

Table 1 gives for each n the values of $f(n), \sum_{i=1}^{n} w_{i} g(n)$ and $y(n)$ 。

n	$\mathrm{f}(\mathrm{n})$	$\sum_{i=0}^{n} w_{i}$	$g(n)$	$y(n)$
40	13566.40	19.28	13585.68	10185.68
41	13800.20	24.97	13825.17	10425.17
42	14033.94	24.01	14057.95	10.757 .95
43	14267.61	34.91	14302.52	10902.52
44	14501.21	39.54	14540.75	11140.75
45	14734.71	37.63	14772.34	11372.34
46	14968.11	39.20	15007.31	11607.31
$1+7$	15201.37	38.24	15239.61	11839.61
48	15434.48	41.34	15475.82	12075.82
49	15667.38	43.40	15710.77	12310.77
50	15900.00	41.94	15941.94	1254.94
51	16132.34	39.91	16172.25	12772.25
52	16364.32	46.44	16410.76	13010.76
53	16595.89	54.57	16650.46	13250.46
54	16826.96	51.10	16878.06	13478.06
55	17057.46	44.44	17101.90	13701.90
56	17287.32	47.63	17334.95	13934.95
57	17586.44	48.87	17565.31	14165.31
58	17744.73	51.55	17796.28	14396.28
59	17972.07	55.07	18027.14	14627.14
60	18198.40	55.15	18253.55	14853.55
61	18423.56	56.79	$18+80.35$	15080.35
62	18647.46	58.08	18705.54	15305.54
63	18869.95	64.22	18934.17	15534.97
64	19090.92	65.90	19156.81	15756.81
65	19310.21	64.83	19375.04	15975.04
66	19527.70	65.97	19593.67	16193.67
67	19743.22	65.96	19809.18	16409.18
68	19956.62	65.29	20021.91	16621.91
69	20167.74	67.54	20235.28	16835.28
70	20376.40	74.56	20450.96	17050.96
71	20582.44	78.49	20660.93	17260.93
72	20785.66	78.65	20864.31	$17+64.31$
73	20985.89	79.59	21065.48	17665.48
74	21182.92	81.32	21264.24	17864.24
75	21376.56	83.12	21459.68	18059.68
76	21566.60	84.18	21650.78	18250.78
77	21752.83	84.83	21837.66	18437.66
78	21935.02	81.67	22016.69	18616.69
79	22112.96	86.44	22199.40	18799.40
80	22286.40	82.16	22368.56	18968.56

$-14-$				
n	f(n)	$\sum_{i=0}^{n} w_{i}$	$g(n)$	$y(n)$
80	22286.40	82.16	22368.56	18968.56
81	22455.12	81.37	22536.49	19136.49
82	22618.86	80.44	22699.30	19299.30
83	22777.38	84.07	22861.45	19461.45
84	22930.42	82.34	23012.76	19612.76
85	23077.71	82.09	13159.80	19759.80
86	23219.00	78.16	23297.16	19897.16
87	23353.99	73.10	23427.09	20027.09
88	23482.42	74.72	23557.14	20157.14
89	23603.98	75.86	23679.84	20279.84
90	23718.40	84.38	23802.78	20402.78
91	23825.36	86.21	23911.57	20511.57
92	23924.57	86.97	24011.54	20611.54
93	24015.70	91.86	24107.56	10707.56
94	24098.44	90.60	24189.04	20789.04
95	24172.46	81.73	24254.19	20854.19
96	24237.44	78.38	24315.82	20915.82
97	24293.03	80.21	24373.24	20973.24
98	24338.88	80.01	24418.89	21018.89
99	24374.66	83.05	24457.71	21057.71
100	24400.00	79.30	24479.30	21079.30

5. Computation of the estimated mean value curve and of the variance constant

We next compute the estimate of the mean value function using formulae (3.9), (3.10) and (3.11) in order to obtain the integral (3.10) we have to compute the integrals
$\int_{0}^{T} y(t) t^{i-2} d t$ for $i=2, \ldots, s$. These integrals were evaluated by means of Simpson's rule

$$
\begin{gather*}
\int_{x_{0}}^{x_{0}+n h} y d x=\frac{h}{3}\left[y_{0}+4\left(y_{1}+y_{s}+\ldots+y_{n-1}\right)+2\left(y_{2}+y_{4}+\ldots+y_{n-2}\right)\right. \tag{5.1}\\
\left.+y_{n}\right]
\end{gather*}
$$

Where a is an even number.
The results were compared in all cases to the approximation by summation and for $1=5$ also to the use of a seven point Lagrangian interpolation formula [1]. It was found that results obtained by the seven-point formula and Simpson's rule differ only little while straight summation would be too crude an approximation to the integral. As an example, we mention that $\int_{0}^{T} y(t) t^{3} d t=461,157,455,032$ by Simpson's rule, while $461,160,141,829$ was obtained from the 7 -point formula and $471,752,177,029$ by straight sumation. The integrals $\int_{0}^{T} y(t) t^{i-2} d t$ were therefore computed by (5.1), the values are given in table 2 .

Table 2
$i \quad \int_{0}^{T} y(t) t^{i-2} d t$

2	$1,209,256.51$
3	$78,807,137.03$
4	$5,825,790,539.54$
5	$461,157,455,032.19$
6	$38,111,464,889,820.59$

We next compute from table 2 the values $a_{i}=i y(T) T^{2-1}-$ $-i(i-1) \int_{0}^{T} y(t) t^{i-2} d t$ for $i=2, \ldots, 6$ while $a_{1}=y(T)=y_{100}$. These are given in table 3 .

$$
\text { Table } 3
$$

\mathbf{i}	$\mathbf{a}_{\mathbf{i}}$	
1	2.10793×10^{4}	
2	1.79735×106	
3	1.59536×108	
4	1.44077×1010	
5	1.31650×1012	
6	1.21414×1014	

We finally compute form (3.10) the estimates $\hat{\mathbf{k}}_{\mathrm{j}}$ of the coefficients of the mean value function and obtain $\hat{\mathbf{k}}_{\mathrm{j}}=\sum_{\mathrm{v}=1}^{\mathrm{s}} \Phi^{\mathrm{jv}}{ }_{\mathrm{a}}^{\mathrm{v}}$ for $\mathrm{j}=1, \ldots, \mathrm{~s}$ 。 The elements Φ^{jv}
of the inverse matrix were taken from the tables [5] mentinned above. The coefficients $\hat{\mathbf{k}}_{\mathrm{j}}$ were computed for mean value function of various degrees, using always the same "data" to be fitted. The results of these computations
are given in table 4 。

Table 4
Coefficients $\hat{\mathrm{k}}_{\mathrm{j}}$ for estimating mean value curves of degree S

j	$\boldsymbol{g}=3$	$\mathfrak{g}=4$	$\mathfrak{s}=5$	$\mathfrak{s}=6$
1	257.267	308.773	307.495	300.785
2	46.962×10^{-2}	-2.6211	-2.4932	-1.4868
3	-9.34×10^{-3}	4.2166×10^{-2}	3.8332×10^{-2}	-8.638×10^{-3}
4		-2.5753×10^{-4}	-2.128×10^{-4}	7.266×10^{-4}
5			-1.79×10^{-7}	-8.63352×10^{-6}
6				2.8182×10^{-8}

Using these coefficients the values $\hat{\mathbf{f}}_{s}(t)$ of the estimated mean value curve of degree s were computed for $t=1$ and $t=10(10) 100$ and $s=3,4,5,6$. In addition the mean value estimate $\hat{f}_{4}(t)$ of degree 4 was computed for $t=0(1) 100$ and a least square fit to the simulated observations was also determined. A comparison of these curves given in table 5, while table 6 permits to compare the $4-$ th degree estimate with the $4-$ th degree least squares fit. We denote by $\hat{f}_{4}(t)$ the 4 -th degree mean value estimate and by $\tilde{f}_{4}(t)$ the $4-$ th degree least square fit. If we write again $y(t)$ for the (adjusted) simulated observations then we see from table 6 that

$$
\sum_{t=0}^{100}\left[\hat{\mathbf{f}}_{4}(\mathrm{t})-\mathrm{y}(\mathrm{t})\right]^{2}=3351.71
$$

while

$$
\sum_{t=0}^{100}\left[\tilde{f}_{4}(t)-y(t)\right]^{2}=3166.90
$$

Table 5

Comparison between the coordinates, the observations and the true values
"true values"

$\mathbf{t}(\mathbf{t})-\mathbf{f}(\mathbf{0})$$\quad$| "Simulated |
| :---: |
| observations" |

Least squares fit f_{4} (t)
303.52
2865.12
5423.79
7834.18
10195.57
12545.23
14858.43
17048.42
18966.44
20401.75
21081. 58

Estimates of mean value curve of degree

\mathbf{t}	3	4		
1	257.73	306.19	305.04	6
10	2610.26	2865.21	2861.83	299.29
20	5258.32	5423.14	5424.66	5442.90
30	7888.16	7834.08	7839.22	7851.25
40	10443.74	10196.58	10200.83	10191.15
50	12869.00	12547.68	12547.31	12526.12
60	15107.92	14860.69	14856.81	14846.98
70	17104.44	17050.36	17045.67	17057.57
80	18802.54	18967.36	18966.27	18983.58
90	20146.18	20401.13	20404.87	20399.69
100	21082.70	21079.30	21079.50	21079.30

Table 6

t	$y(t)$	${\hat{r_{4}}}^{(\stackrel{t}{b})}$	$\widetilde{\sim}_{4}(t)$
0	0	0	-3.11
1	313.39	306.19	303.52
2	616.56	607.39	605.13
3	909.40	903.85	901.95
4	1199.08	1195.79	1194.23
5	1483.97	1483.45	1482.21
6	1760.49	1767.05	1766.09
7	2037.23	2046.82	2046.12
8	2316.49	2322.96	2322.50
9	2587.23	2595.70	2595.43
10	2856.70	2865.21	2865.12
11	3123.92	3131.70	3131.77
12	3387.85	3395.36	3395.57
13	3647.53	3656.37	3656.69
14	3914.71	3914.90	3915.32
15	4168.79	4171.12	4171.62
16	4421.80	4425.20	4425.76
17	4676.61	4677.30	4677.90
18	4925.48	4927.56	4928.19
19	5176.03	5176.13	5176.77
20			5423.79
21	5674.89	5668.74	5669.38
22	5919.35	5913.05	5913.66
23	6160.81	6156.18	6156.76
24	6397.31	6398.27	6398.79
25	6638.32	6639.40	6639.86
26	6878.08	6879.67	6880.08
27	7116.33	7119.20	7119.53
28	7361.22	7358.06	7358.31
29	7602.20	7596.33	7596.50
30	7848.66		7834.18
31	8083.47	8071.42	8071.43
32	8314.13	8308.42	8308.30
33	8549.57	8545.08	8544.85
34	8790.84	8781.48	8781.14
35	9026.60	9017.66	9017.22
36	9263.93	9253.68	9253.12
37	9494.93	9489.55	9483.88
38	9730.09	9725.32	9724.53
39	9954.80	9960.99	9960.09
40	10185.68	10196.58	10195.57

t	$y(t)$	$\mathbf{f}_{4}(\mathbf{t})$	$\mathrm{f}_{4}(\mathrm{t})$
40	10185.68	10196.58	10195.57
41	10425.17	10432.11	10430.99
42	10657.95	10667.58	10666.34
43	10902.52	10902.98	10901.63
44	11140.75	11138.30	11136.84
45	11372.34	11373.52	11371.96
46	11607.31	11608.64	11606.97
47	11839.61	11843.60	11841.84
48	12075.82	12078.39	12076.54
49	12310.77	12312.97	12311.02
50	12541.94	12547.09	12545.23
51	12772.25	12781.06	12779.14
52	13010.76	13014.66	13012.67
53	13250.46	13247.81	13245.77
54	13478.06	13480.45	13478.36
55	13701.90	13712.50	13710.36
56	13934.95	13943.86	13941.69
57	14165.31	14174.47	14172.26
58	14396.28	14404.21	14401.98
59	14627.14	14632.98	14630.74
60	14853.55	14860.69	14858.43
61	15080.35	15087.20	15084.94
62	15305.54	15312.41	15310.20
63	15534.17	15536.17	15533.93
64	15756.81	15758.37	15756.15
65	15975.04	15978.86	15976.67
66	16193.67	16197.50	16195.34
67	16409.18	16414.13	16412.01
68	16621.91	16628.59	16626.52
69	16835.28	16840.73	16838.72
70	17050.96	17050.36	17048.42
71	17260.93	17257.32	17255.45
72	17464.31	17461.42	17459.63
73	17665.48	17662.48	17660.77
74	17864.24	17860.29	17858.68
75	18059.68	18054.66	18053.14
76	18250.78	18245.38	18243.97
77	18437.66	18432.23	18430.93
78	18616.69	18614.99	18613.82
79	18799.40	18793.45	18792.40
80	18968.56	18967.36	18966.44

t	$y(t)$	$\mathrm{f}_{4}(\mathrm{t})$	f_{4} (t)
80	18968.56	18967.36	18966.44
81	19136.49	19136.50	19135.71
82	19299.30	19300.60	19299.96
83	19461.45	19459.43	19458.93
84	19612.76	19612.73	19612.38
85	19759.80	19760.23	19760.03
86	19897.16	19901.66	19901.62
87	20027.09	20036.75	20036.93
88	20157.14	20165.22	20165.51
89	20279.84	20286.78	20287.23
90	20402.78	20401.13	20401.75
91	20519.57	20507.98	20508.77
92	20611.54	20607.02	20607.98
93	20707.56	20697.93	20699.06
94	20789.04	20780.40	20781.70
95	20854.19	20854.10	20855.57
96	20915.82	20918.71	20920.34
97	20973.24	20973.88	20975.68
98	21018.89	21019.26	21021.23
99	21057.71	21054.52	21056.65
100	21079.30	21079.30	21081.58

We still have to estimate the variance constant. This is done for the estimate $\hat{\mathbf{f}}_{4}(t)$ by means of (3.6) and the data contained in table 6. We obtain the estimate $\hat{c}=15.051$ as compared with the "true value" $c=50 / 3$.

We also give four figures which permit to visualizo the relative errors of our estimates. Figures 1 and 2 comm pare the estimating polynomials of degrees $3,4,5$ and 6 。 In figure 1 the graphs of

$$
\hat{R}_{4}(t)=\frac{\hat{f}_{4}(t)-f(t)}{f(t)} \text { and of } \widetilde{R}_{4}(t)=\frac{\widetilde{f}_{4}(t)-f(t)}{f(t)}
$$

are given, in figure 2 we find the corresponding errors
referred to the observations, ion. the curves $\hat{r}_{4}(t)=$ $=\frac{\hat{f}_{4}(t)-y(t)}{y(t)}$ and $\tilde{r}_{4}(t)=\frac{\tilde{f}_{4}(t)-y(t)}{y(t)}$.

In figures 3 and 4 we compare the error of the estimating polynomials of degress $3,4,5$ and 6 , the basis of reference is in figure 3 the curve $f(t)$ in figure 4 the curve $y(t)$.
6. Conclusion. In actual applications we will often encounter situations where more than a single sample curve of the process are given. In these cases a number of problems can arise. It might for instance be necessary to test the hypothesis whether two or more sample curves come from processes with the same variance constant or with the same mean value function. Due to the fact that increments from a Wiener process behave as if they were independent observations from a normal population many of the questions which might arise can be treated by standard statistical techniques. To go into such a discussion would however excoed the scope of this paper.

The author wishes to acknowledge his thanks to Mr。Edwin Lo Grab who carried out the necessary computations.

References

［1］Go Blanch，I。Rhodes，Sevenmoint Lageangian integra－ tion formulas．Jour．Math。Phys．22，204－207 （1943）．
［2］H．BoMann，The estimation of parameters in certain stochastic processes。Sankhya 11，97－106 （1951）．
［3］Ho Bo Mann，On the estimation of parameter determining the mean value function of a stochastic process． To be published in Sankhya．
［4］Statistical Techniques Applicable to the analysis of a fundamental randomprocess．Technical Note W．C．R。R－52－7．Flyhd。Res．Labo，Wright Air Dev．Center，Daytong Ohio， 1952 。
［5］I。Ro Savage，E．Lukacs，Tables of inverses of finite segments of the Hilbert Matrix．To be pub－ lished in the NBS Applied Math。Series．
［6］H．Wold．Random Normal Deviates orracts for Computers XXV。Cambridge University Press， 1948 。

FIG. 1
$100 \hat{R}_{4}(t)$ and $100 \tilde{R}_{4}(t)$

FIG。2
$100 \hat{x}_{4}(t)$ and $100 \tilde{x}_{4}(t)$

FIG。3
$100{\hat{\hat{R}_{j}}}_{j}(t)$

FIG. 4

$$
100 \hat{r}_{j}(t)
$$

THE NATIONAL BUREAU OF STANDARDS

Functions and Activities

The functions of the National Bureau of Standards are set forth in the Act of Congress, March 3, 1901, as amended by Congress in Public Law 619, 1950. These include the development and maintenance of the national standards of measurement and the provision of means and methods for making measurements consistent with these standards; the determination of physical constants and properties of materials; the development of methods and instruments for testing materials, devices, and structures; advisory services to Government Agencies on scientific and technical problems; invention and development of devices to serve special needs of the Government; and the development of standard practices, codes, and specifications. The work includes basic and applied research, development, engineering, instrumentation, testing, evaluation, calibration services, and various consultation and information services. A major portion of the Bureau's work is performed for other Government Agencies, particularly the Department of Defense and the Atomic Energy Commission. The scope of activities is suggested by the listing of divisions and sections on the inside of the front cover.

Reports and Publications

The results of the Bureau's work take the form of either actual equipment and devices or published papers and reports. Reports are issued to the sponsoring agency of a particular project or program. Published papers appear either in the Bureau's own series of publications or in the journals of professions? and scientific societies. The Bureau itself publishes three monthly periodicals, available from the Government Printing Office: The Journal of Research, which presents complete papers reporting technical investigations; the Technical News Bulletin, which presents summary and preliminary reports on work in progress; and Basic Radio Propagation Predictions, which provides data for determining the best frequencies to use for radio communications throughout the world. There are also five series of nonperiodical publications: The Applied Mathematics Series, Circulars, Handbooks, Building Materials and Structures Reports, and Miscellaneous Publications.

Information on the Bureau's publications can be found in NBS Circular 460, Publications of the National Bureau of Standards ($\$ 1.00$). Information on calibration services and fees can be found in NBS Circular 483, Testing by the National Bureau of Standards (25 cents). Both are available from the Government Printing Office. Inquiries regarding the Bureau's reports and publications should be addressed to the Office of Scientific Publications, National Bureau of Standards, Washington 25, D. C.

[^0]: ＊The preparation of this paper was sponsored by the U．S．Naval Ordnance Test Stationg Inyokern。

[^1]: *These assumptions are: (a) All the functions \varnothing (t) are twice differentiable。 (b) For any set a_{1}, \ldots, a_{s} of real numbers, not all zero, we have $a_{1} \varnothing_{1}^{\prime}(t)+\ldots a_{s} \varnothing_{s}(t) \neq 0$ for some $t-$ set of positive measure which is contained in [$0, T$].

