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FOREWORD

A seminar on the theory of asymptotic expansions was held

by The American University with the cooperation of members of

the staff of the National Bureau of Standards during the fall

semester of 1 952—53 • This volume consists essentially of notes

on these lectures. While it contains such diversified topics

as the titles of the respective parts indicate, it nevertheless

attempts to bring together under one cover material which is of

considerable interest in pure and applied mathematics.



2

Part I,

SOME GENERAL THEOREMS AND METHODS

by

Fritz Oberhet linger

1) Introduc tion a In 1739 Euler investigated the series

(1 .1) y=f (x)=x
-1

(1 -Hx~ 1
+ 2Ix~

2
“3»x~^+«, « ° )

=
^

(-1 )
n
nlx~“

n
~^x>0 ?

o

which is divergent for any finite value of x, Obviously (1)

satisfies formally the differential equation

1

y + — = 0J X
(1.2) y

8

Putting y = v(x)e we obtain v 8 (x) =

(1 o2) which vanishes for x —> oo is

and a solution of

(1.3) y = f (x) = e
x

J"
dt = -e

x
Ei(-x),

where Ei(-x) is the so-called exponential integral,,

Euler considered (Id) as a series expansion of the function

defined in (1 „3) or (1 „3) as the sum of the everywhere divergent

series (1<d)„ In order to get a better insight into the connec-

tion between the formulas (Id) and (1.3) let us consider the

integral

( 1 0 *+) f (z)

GO

(z+t)” 1 e“
t
d t =

o

(1+ i) ’e
ldt

contract with American University,,
National Bureau of Standards
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which represents an analytic function in the z plane cut along

the negative real axis from 0 to ==oo » Instead of (1 .4) we nay

write
co

(1.4a) f(z) = e
x dv = -e^ Ei(-z)

1
where the path of

we expand (1 + ~)

(i + 1)
_1

= i

integration shall not pass the cut. In (1.4)

=1

into the finite series

t

z ^2 + O o o+ (“1 )

n t
n

+ (- 1 )

n+1

n+1 1z 1 +

and obtain integrating term by term

(1.5) f(z) = z "*[1-15 z ^+21 z ^-4-
, . . + (-1 )

n
nl. z + R

n
(z)]j

using the well known formula

o©

(1 .6) ^
e
‘ t<r

t* dt = HoC-H ) ,
Re<* > -1 , Re (T > 0.

o
Obviously

oo

(1.7) R
n
(z) = (-1)

nt1 ,-“- 1
( e“

t
t"

+1
(1 - j)

’ dt.

For a point z = |z| e* ,
(-w in the cut plane we have

on the path of integration 0 < t < oo

|1
t

+
z

a1

f (1 + 2t cos + t z
1
2 -

g( t)

For a fixed |z| and
?

this expression has a maximum at

t = — |z| cos 3* and the value of the maximum is

Cg(t)]
raax = l*

in '31 •

N
|e*
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Therefore on the path of integration 0 <_ t < oo there exist the

inequalities

I

1 +
!l

i +
z

<_ 1 , if cos 3" > 0, or

-1

sin ;9"| \ if cos & ^ 0

Hence, we obtain the following estimate for the absolute value

of the remainder R^(z) in (1 ,5)vw
GO

(1 o8a) |Rn(z)| < Izl”
11
” 1

^ e
t
t
n+

^dt = |zj
n

^ (n+1)J
,

cos S'

>

0,
O '

(1,8b) |R n(z)| <
|

z
|

-n_1 jcosec •9
,
|(n+1 ) ! , cos 5"

<_ 0.

In case z is real and positive (z=x,$" = 0) we simply get from

(1 .7)

(1,9) R (x) < (-1)
n+1

x -"“V+D!
n

(l 0 8a) shows that for Re z > 0, (cos d* > 0) the absolute value

of the remainder R
n
(z) is smaller than the absolute value of the

first neglected term in (1»5)» In addition to this we see from

(1 o9) that for a real and positive z, remainder and first ne-

glected term have the same sign* However, we can only infer from

(1 0 8b) that for a complex z with Re z < 0 and Im z ^ 0 the ab-

solute value of the remainder in (1 o 5) is of the same magnitude

as the absolute value of the first neglected term* Hence the

series (Id) can be used for the numerical calculation of the



integral (1«3) in spite of its divergence with limited accuracy

but with an accuracy which is often close enough to be suf-

ficient for numerical purposes® Moreover the larger the var-

iable is, the more readily does the series yield the results

just mentioned®

If, for instance we want to use (1 0 1) for the numerical com

putation of the integral (1 ®3) for a value x = 6, say the terms

in the series (1®1) become

and tend to infinity with increasing number® It is therefore evi

dent, that if the series is terminated after the fifth or sixth

n-th partial sura of this series will be least for n=5 or n=6,

that for a fixed n the remainder R
n
(z) tends to zero with in-

creasing argument z® Therefore the sum of the first n terms of

the divergent series (Id) will represent the value of the

integral (1 ®3) with any desired degree of accuracy if only x

is sufficiently large® Divergent series with this property are

called asymptotic series and (1®5) considered as an infinite

series is said to represent the integral (1 ®4) asymptotically

for large values of the argument or to be an asymptotic expansion

of (1.4) for large values of z and to indicate this we write

1 o o o

term, the difference between the function -x e Ei(-x) and the

namely smaller than ^ respectively® It follows from (1 ®8)

oo

( 1 . 10 )
2

o o o )

o
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for large values of z in -tt < arg z <

If in (1»10) z is replaced =; we get

(loll)
^

(1+zt)“
1
e“

t
dt 1-1 lz + 21 z

2
-

and we call this for all z ^ 0 divergent series on the r.hoS® of

(loll) an asymptotic expansion ©f the integral on the lohoSo of

(loll) for small values of z in -it < arg z < ^o

A generalization of (1 c 4) is
J3& GO

(z+t)*^ f ( t)d t = z
^

(1+ “) ^ £(t)dt,(1 o 1 2) F(z) = \

^ ° <y
Again z =

)
z

|

e is a point in the cut complex z plane (~?r<AACf)

and the same analysis as performed before applies to this case too

and ( 1 o 1 2 ) may be represented in the form

(1 .13)

Here

(1 o 1

4

-)

(1.15)

with

(1 ol6)

(1 o-17)

F(z) = z iL (z)

vis o

a„ = (-1

)

n
S f (t)t

n
dt

R
m (z) = (-D^V"- 1

f<i* t™*
1

f ( t)dt

co
.m+1

V*)> < urm 1

\

Rm (z)
|

< |z \eosec %
|

(

dt, cos »> o
p9

.m+1
dt, cos ><

provided the integrals on the r 0 h 0 So of (1„l4) to (1,17) exist,

Again 9 if z = x is real and positive and if furthermore

£(t) > 0 in (0 9 oo ) 9 then from ( 1 o 1 5)

R (x) < (=1)
m+1

x
=ra- 1 ( - - ~-m- 1

m t
r!fi+

' f ( t)dt = a
m+1

x( 1 . 18 )

o



7

Thus the absolute value of the remainder is less than the

absolute value of the first neglected term and has the same sign.

Again we may write
<30

(1.19)
^

(t+z) ^f(t)dt/\^z ^ a
0
+a

-j

2 1 + a
2

z ^ + »..)

e>

for large values of z in < arg z < ^
?
and

<30

(1.20)
^

(1+ztr 1 f(t)dtf^ s
0

+ a
i

z + ap z
2

+ »..

o

for small values of z in —tt < arg z < ^ and the a
n

are given by

(1.1*0? provided the integrals exist.

It may be mentioned that the problem to determine the function

f(t) in (1.1*0 when the a^ are given or in other words by given

asymptotic expansion on the r 0 h»s» of (1.20) to find the func-

tion on the l.h.s. of (1.20) which it represents asymptotically ,

leads to the so called Stieltjes momentum problem.

The question under which condition the system (1.1*0 by given

a
R
(n = 0,1,...,oo ) has a unique solution f(t) has been inves-

tigated by Stieltjes.

The first systematic investigations of divergent scries of

the type considered before were made almost simultaneously by

Th. J. Stieltjes (Annales scientif igues de l ! eeole normale

superieure, 3(1 886 ) 201-258 and H. Poincare (Acta Math. 8,

1886, 295—3*+*+)

.

Stieltjes calls the series semi convergent. Poincare on

the other hand speaks of asymptotic series.



*

8

2® Euler's and Plana 9 s summation formulas . Series of the

asymptotic type were produced for the first time by Euler's

summation formula (Knopp, K® Theory and application of infinite

series, London, 1928, p® 528)®

Let f(x) be a real function of the real variable x, continu-

ous with all its derivatives in x > 0® Then,

n

( 2 , 1 ) ^T~ f(D - ( f (x)dx + J ( f
n

+ f
0

) +

1-0
B, Bi

+
21 <V - V> ( f n

W - V > +— +

.
2k , f (2k-1) f (2k-1) . „+

T2kTT Cf
n

“ f
o

+ R
l

vu

( 2 . 2 ) R
k = j

f
(2k+1)

(x) r
2k+1

(x).

( pk„i ) ( ok—

1

)
n, k are positive integers® f ' and f^ respectively

means the (2k-1)th derivative of the function f(x) at the point

x = n and x = 0 respectively® P
2k+1^ * s t *ie (2k+1)th Bernoulli

polynomial which for k = 1,2,3,®®® in 0 <_ x < 1 can be repre-

sented by

(2®3)

CD

P
2k+1

2(-1 )
k+

^ (2k+1 ) S (2mm)
2k ^

sin (2^mx)
ra~ 1

( 2 .*+)

The Bernoulli numbers are defined by

oo ,

The series ^ xf^TT
[f

n

(2k~1} -

tCe*-!)
-1

B

B-t

1-0

will turn out divergent for almost all the functions £(x) which
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occur in applications, no matter what n in (2<d) may be« Thus

(2d) suggests a summation process for a certain type of divergent

series 0 Now it can be shown (Knopp, K„ Theory and application of

infinite series, London, 1928 , p, 539 ) that if f(x) is of con-

stant sign for x > 0 and together with all its derivatives tends

monotonously to zero with x—> oo the remainder in (2ol) can

be written as

( 2 . 5 )

13,

R ,
O' ^2k+2

[f
(2k+1) _ f

(2k+1)j
0 < $*<

(2k+2)l
n

In other words the remainder has the same sign and is numerically

less than the first neglected term.

Example s Asymptotic expansion of the function (x) -

We apply (2d) to the function f(x) = ;(y+x) , (y > 0) o Hence

f
(n)

(x) = (-1)
n

n« (y+x)
_n_1

Obviously f(x) is of constant sign for x > 0 and together with

all its derivatives tendmonotonouslyto 0 with x—> oo ,
so that

the remainder in ( 2 o 1 ) is of the form (2<>5)°

Euler’s summation formula gives
On

y” 1
+ (y+ 1

)“ 1
+ (y+2)“V 0 0 0+(y+ n )

_1
=

^
(y+x)

-1
dx +

+ £ [y
1
+ (y+n)

1
]+ ~ [y ( y+ a )

2
}+

. ^[y ^-(y+n)
B,

B
2k r -2k , d-2k-, ^ „

+ o o o+
2^ Ly (y+n) J + R|

log n-y” 1
-(y+1)

1
0 „ <Ky+n)

1 = log +

-
2
-[y” 1 + (y+ n)“

1

] - [y“'”(y+n)“2 ],o

log y -

[y“2k-( y+n)“
2k

]

o

Hence



10

The lohoSo tends to the f unction A-j-'(y) when n tends to in-

finity and we get

The series on the right hand side of (2„6) considered as an in-

finite series is divergent for any finite positive y, but

represents the function ^(y) asymptotically for large pos-

itive y so that we can write

for large positive y 0

A formula similar to Euler’s summation formula (2„1) in case

that f(w) is an analytic function of the complex variable w

has been established by Plana (Lindelof, E 0 Le calcul des re-

sidue , New York, 1937 ? P» 63 ,
Ford, W 0 B 0 Divergent series,

New York, 1916, p„ 12)„ Using this formula, the result (2„8)

can be shown to be true for complex values of y for ->r<arg y<F o

(2,6) lim [log n-y“^-(y+1)
1

’(y+n)
1

]
=

'f'(y)
=

n —> oo
Jk_

for large z in -ir < arg z <



3 ° Definition of asymptotic series .

According to the definition as given by Poincare (

1

886 ) a

function f(z) is said to possess an asymptotic expansion for a

large modulus of z and for a certain range of values of arg z>

if for such values of arg z

(3°1) lira z
E1

[f(z) - a
Q

- a^ z ^ ,<>Ta
n

z
n ]—>0

z —

>

00

when z —> oo along a radius for every fixed n = 0,1,2,.., in

y

9'
1

< arg z an* we write

—1 —2
(3 = 2) f(z)^a

o + z + &
2

z + = = °

/^
1

< arg z </^2

The question whether a function f(z) possesses an asymptotic ex-

pansion and what the values of the coefficients are is immediately

settled in theory by the fact that the successive limiting values

for z —> oe along a radius

f (z) a
o ’ f(z) - a.

1 » / \ —

1

—2
a 0 , f(z) - a

0
~a

1
z ~a

2
z ~^ a

3

(3 = 3 )

-f ^ ^ _ «s =•» " ^a) i \ — a —
ci a —a 00 1 <L

must exist. This shows that any function can have only one as-

ymptotic expansion. On the other hand for

(3=^) f(z) = e“z
,

- 5 < arg z < i

all the a^ are zero since z e —>0 for every integer m > 0

when z oo m ^ < arg z < ^ °

Thus



2

( 3 . 5 ) e Q + Oz^Oz 2 7T IT

, “ 2
< arg z < 2

A result, which shows that different functions may have the same

asymptotic expansion. Thus if f(z) has an asymptotic expansion

in —
‘k < a rg z < 2? f(z) + a e

2
( b > 0) has the same asymp-

totic expansion in — ^ < arg z < ^. If we write (3.2) in

the form

,+ a„ z
n + w (z) z”

n
(3.6) f(z) = + a-j z ' + 82 z +...

with w^(z)—*0 if z —> 00 in/^J < arg z < the following

theorems are readily established. Let be

( 3 . 7 ) f
1 (z) = a rt + a i z" >+ a _ z

"n+ W^>(z) z”
n

( 3 . 8 ) 12(2) = b
Q

+ b^ z
"” 1 +...+ b„ z

n
+ (z) z

n
n n

with w< 1} (z)->0 and w^ 2 ^(z) —>0 when z 00 in 0^ < arg z < 02

a) If f

1

(z) = f2(z)? then a
R

= b
R

(uniqueness theorem)

b) If F(z) = f-j Cz) + fp(z) = c
0
+c

-|

2 ^ + ..0+ c^z
n
+w^(z)z°

then c = a +b (sum theorem)nun
c) If F(z)=f

i
(z)f 0 (z) = c +c- z”V . . °+cz”n+w (z)z”

n

i d, 01 n n

>n

th e n c

,

If F(z) =
f i°(z)

a
2 ^n-1

(product theorem)

c
q
+c^ z +0.0+ c^ z

R + w^(z) z

then be =
o o

i Q? ^-j c
0 h o c 1

= ai 9 b 0c^+b.,c 4 + b„c 0 = a,

If f (z) = a 0z
2
+a 0 z

1
?

w
2 o 1 1

" u
o ’~2

(quotient theorem)

n , ... / > ™n
:>z

J +o..+a
n
z + w

n
(z) 2
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then
co
^

f (z)dzV
e>

-1
3
3 «2

a
2
z

2
2

a
n
2
-n+1

n-1 z
-n+1

,

the path of integration being taken along the asymptotic radius

vector (integration theorem)

o

If

(f) f(z)=a
1
z ^ + a^z

2
+ 0 0 0+a z

n
+ w (z)z

n

then

f l'(z)= -a
1
z”'*-2a 5z“^-. • n a z

~n_1 - £ (z)z
_n_1

provided f 5 (z) can be developed asymptotically (differentiation

theorem). This provision can be omitted in the complex case (see p.70).

In a) to f) w
n
(z) and £ n

(z) —> 0 when z —> oo •

Example to theorem f

F rom

f(x) = e“
x

sin(e
x

) 0+0 x
-1

+ 0 x“
2

+ „„.

for large positive x does not follow

f »(x) =~e“x sin(ex ).+ cos(ex ) ^ 0 + 0 x"
1 +0 x“

2 + ...

because f 8 (x) = -=e
x

sin(ex ) + cos(ex ) is oscillatory for real

positive x„

Poincare 8 s definition (3»1) of an asymptotic series may be

slightly generalized in the following manner.

1) Let be 0(z) a function defined for |z| > and ^ < arg z <

Furthermore let be
oo
V"
2.% 2 "

O
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an infinite, generally divergent series with arbitrary real ok
n

such that

O 1 2

This series is called an asymptotic expansion of 0(z) at z = oo

_ois

(3.9)

if

0(z) ^ y~a
n

n

, vu 2*1

z
n

[0(z) - a z ]—> 0 or

n+1
-^l

[0 (z) - ^a
x

z ] -> a
n+1

- o

when |z| —> oo in < arg z < ^. Corresponding.

2) Let be 0(z) a function defined for
|
z |

< and^j < arg z < ^

«

Furthermore l?t be
oo

V7
)

a
n

2

vr « o

an infinite generally divergent series with arbitrary realoC
n

such that

cL
Q

<o.o -^4-00

This series is called an asymptotic expansion of 0(z) at z=0

(3-10)

if

0(z) r\^

oo
<V •AnN z

Z_"
Vt=. t?

V\-

Z
n
[0 (z) “ ^ a

i
z 0 » or

n+1
Z=o _/

^1
[ 0 (z ) - ^ e

i
2 J -» a

n+ i

when ( z |
—> 0 in^ < arg z < ^

l--o
Si
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Borel's associated series

Bore! associates with the divergent series

-1 -2a,+ a. 2 + a 0 2 +oi d
o » o a 2

n
=n

a quantity S which shall be equal to the sura s of the series if

it happens to be convergent and which shall have a definite

meaning if the series be divergent^, The series associated with

(3.2) is

(3.11) (j)(t) = a
0
+ a., + -It t

2 +
21

o o o o

And Borel defines as the "sum” S of (3°2)
GO

( 3 . 12 ) = (
e
_t

<£(j)dS =
^

e

o

It can be shown that the integral (3-1*1) admits an expansion of

the form (3°2) 0 For reasons of simplicity let us assume that s be

real and positive equal to x« Furthermore let (^>(t) be continuous

for 0 < t < oo and let be Cp(t) such that

„-*t d" _ n „ - n i oA lm © ” 0 ^ n ^ 0 j]j2jooo
t -» <s> dt

and 1 be an assigned positive number 0 Using this relation and

(3.11) we get after n-M partial integrations of (3„12) provided

x > 1

S(x) = a
o
+ a-| x

1 + a^ x
n

+ x'
"- 1

^
e-* $

( "+1)
(^) dt

But
j

(J)

Therefore

(n+1)
(t) I < ft e

1 * in 0 < t < oo

X
-"- 1

| $ $
(n+1) (|)dt|< R x

_n
(x-X)

-1

for x > lo Hence
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lira x
n
[S(x) - a

o
- x ^ x

n
]

=
—-^©o

and this proves ©or statement®

b) Asymptotic behavior of a sequence of numbers (Darboux's method )

The asymptotic behavior of a sequence of numbers a ( n=0 9 1 ,2, • • .

)

with a finite lim sup
n

“ for large n can be determined by

means of a method given by Darboux® (Journal de Math* (3)

18785, 5-56; 377-^l6 ) 0 With these a^ we can define a function f(z)

by

(H-ol )

00

f(z) =^"n *"
’

which represents an analytic function within a circle C with the

radius

(*+* 2 ) r = [lim sup
n

I
nr 1

From (4o1) we have by Cauchy's theorem

(
LK3) 2tt± =

J)
F~

n ~'
'

f(z)dz.

The path of integration be a circle with a radius < r around

z = Oo But we may take jd = r if f(z) is such, that its boundary

values on the circle of convergence define a continuous function

along C (boundary function of f(z))„ Thus, with r = re
15^

nzir

2 tt r
n

a =/ f(reW )e-in0d0(“f.4)

*

0

The r 0 hoSo of (h-® 1*) represents the Fourier coefficients of a

continuous function and these tend to zero if n tends to infinity®

This leads to

0** 5 ) r
n

a
n

0 f or n 00 •
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The case when the boundary function of f(z) is not continuous may

be treated as follows? We determine a series 0(z) = b
R
z
n

o
(comparison f unc tion)with the same radius of convergence r such

that the boundary function of

(4,6)

oo

F(z) = f (z) - 0(z) = ^ an“
bn^

n

is continuous. Instead of (4,5) we obtain now

(4.7) r
n

(

a

fi
- b

R
) —>0 for n—)oo .

The approximation (4,7) can be improved if the boundary function

of F(z) has a continuous derivative of the order k.

We apply then the preceeding results to the k-th derivative of

the boundary function of f(z) whose Fourier coefficients are asymp-

ktotically equal to n a
n

and obtain

(4.8) n
k
r
n

(a
fi

- b
fi

) —> 0 for n —>oo ,

Example

As an example for Darboux's method we use its simplest form

(4,7) to determine the asymptotic behavior of Legendre 5 s polynom-

ials P
n
(cos 0) for large n and fixed 0 (0 < 0 < ^) , The Legendre

polynomials are defined by

(4,9) f(z) = (1-2z cos 0 + z
2 )^=[(1 =ze^) ( 1 -ze

=10
) ]

=4-

£ P
n
(cos 0) z

11
,

Obviously f(z) has a pole of the order for z = and z=e~^.

The radius of convergence of the series in (4,9) is therefore

r = 1 o The character of f(z) as given by (4,9) suggests to choose
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a companion function 0(z) the expression
oO

(M-.10) 0(: :) = y~b
n
z
n = [( 1 -2 e

i0
)( 1 -e"

i20 )]^+[( 1 -ze
i0)(1 -el20)^

K;(?

b
n

= e
n + e

=il,0
(1-e

i20)"4]

Applying the binomial theorem we find easily

(4.11) b_ = C„ [e
in0 (1-e

'i20 )-4

where

(b- 1 2) c = .1 ^.3 ° 5° ° °Xij5r£U|. - JL.~. - 17 2
)

K ^ old) c
r 2«4„6 0 oo2n p(n+1 )

( n S )

'

Therefore

(*+.13) b
n = (^?r sin 0)^ cos [(n+i)0 -

Thus using (h 0 y) we obtain for large n

(^ol 4) P'
tt
(cos 0)— TT sin 0) 2̂ COS [(n+£)0 - i~]

By Stirling ’ s theorem w© can write

P(n 4 for large n
jp(n+1

This gives Laplace 9 s formula

(4-,, 1 5) P
n
(cos Tfn sin 0)~2 eos[ (n+|-)0 - i“]

for large n and 0 < 0 < n\

5o Asymptotic behavior of a function which is represented as a

Laplace transform

An often successful procedure to obtain an asymptotic expan-

sion of a given function f(z) is to represent this function in

the form of an integral transform
0Q

fM ~
^

0(x) K(x,z) dxo(5ol

)
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K(x ? z) is the kernel of the transform and the function 0(x) may

vanish over parts of the interval/ ~©o go ) , The basic problem is

to investigate if it is possible for an as signed kernel function

K(x ? z) to describe the behavior of £(z) for large z 9 say
9 by

the behavior of 0{x) for some isolated distinguished points,

(Go Doetsch, Joornat f, Math* 9 1 6*7
9 1932 9 271+-293) <>

We restrict ourselves here to the ease that (5«1) may be a

Laplace transform i 0 e 0 we choose

K(x 9 z) = e'“
X2

and 0(x) equal to zero in oo < x < 0 and equal to F(x) in

0 < x < oo o Therefore we represent f(z) by

(5.2) f(z) = j
F(x) e

X2
dXo

In this case we will show that the behavior for large z is deter-

mined by the behavior of F(x) for real positive x near the origin,

In this connection we establish 3 theorems ,a 9 bs,e

„

Theorem a GO

£(z) = =xz
F (x)dx

be convergent in a half place Re z > CP „ Then if

F(x) = 0 for 0 < x < a
)

f (z) - 0(e aRe z
) if z ~^©o in

j
arg z f < {

Proof

=az \ _=zt£(z) =
^

e~
2X F(x)dx = e

a2
{ F(a + l)dt

But by a well known theorem of the theory of the Laplace trans-

form (Doetschj Go Theorie und Anwendursg der Laplace Trans torma-



2Q

tion s
Berlin^ 1937? P° *+9) the integral tends to 0 as z tends to

infinity in ^arg z |< ^ or

co

5

“it
e ^ F(a + t)dt= o (1 ) z — and this establishes

theorem a,

Theorem b,

f (z) e F(x) dx

be convergent in a half plane Re 2 > (J^o Then, if

<Xf

F(x) Bx* , (Re |2> > -1) if t -*0
;

f(z)r-^ B x' e
M dx = B P

( p+ 1 )z P 1

for z 00 in |arg z
| < ^? by (1 .6) „

More precisely, when

(i p
F(x) = B x + £(x)x with ’c.(x)—>0 when x—>0

© o

£(z ) - B P ( ^
+1 ) z

~
»

^ = ^( z )

with ^J_(z)-—^0 when 2 —=>® in jarg z |< ^
Proof

00

i
1f(z) = 1 [B x' + f(x) x 1

] e
xx dx =

00 3T

= B \ x' dx +
.

\
00

^
<^(x) x ^ e'

*;2:
dx + ^ £(x)x ^ e"

xzdx

and T is chosen such, that(^(x)| < ^(T) for 0 < t < To

The last integral is o(@~T Rez
) for large 2 by theorem a

and we get using (1 »6)

|

f (z) - B P(p+1)z“H
I < ^ ^

o

< (1+Re
^
KRez)” 1 “Re + ©(e"T Rex

)

x Rez
x
Rep

dx + o(e-T ReZ)
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using (1*6) again c But with

z =
|

z
j

e
1 ^ we have

(Re z)-
1 -Rep= |z‘ 1 'h(eo«~fr

1 'Re Pe' H' ^ ^

and

I

f (z) - B f\p+1 )z"
1

”Pl<
|

+ °(e“
T Re 2

)

If for large z we choose T = 0 ((Re z)" 2̂
) ?

say, then

T Re z = 0((Re z)^) and A^-> 0 when z—>ooin jarg z| < This

proves theorem b c

Theorem c P

Let F(x) for small positive x be asymptotically represented

by
V
s

F(x) ^2_c
n

x "
,

W-KJ

Reck < RecL
^

»

Re dv > —1
o

+ oo
J

ioe 6 by (3»10)o

G(x) = F(x)
Z.

c
i

xl =

ok

*
1* 1

* + £(x) X
VI.+

J

with ^(x)—*>0 when x —^0

We apply theorem b to G(x) and get
CO

G(z) e
xz

dx = i FF(x) e
“X2 dx - ^ P(l+ ok.

o
' “1 — oC —1 — o4.

= v,rt^ n+1
)^- - 1 — 1 n+1

with (z) —»0 when z —^ oo in \arg z
[

< .

+ /i’^(z):

or

<30 CO

f(z) - I F(x) e
xz dx ^ / c, P(i + Qt-)z

-
1 -oCi

arg z <
7T
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Example for theorem c

Let be £(z) = J
2

(V2az) + Y
2

("72az)

where Jy
and Y

y
mean Bessel 8 s and Neumann’s cylinder function

respectively. By means of a well known integral formula we can

represent f(z) in the form (5«2) namely

(5.3) J
v
2 (V25> + Y

v
2

(V25i) = 2JT"
2

e-**x" 1
e
CU£

'lK
v(«t

' 1

)dx

i o e 0 F(x) = x"
1
e

1^ K (ox
-1

)

In order to obtain an asymptotic expansion for f(z) for large z

it is according to theorem c only necessary to find an expansion

that represents F(x) asymptotically for small positive x. But in

this case this is simply the asymptotic expansion of the modified

Hankel function for large positive argument which is known. We

have then (Watson
9 G. N. Bessel functions

, Cambridge 19^4, p.207)

for small positive x

Wt- © *

and we get applying theorem c

Jv
2 (SF71) + Yy

2
('/2

—
«z) /-

w>^0

and this asymptotic expansion is valid for l#rge z and |arg z
j

< fejCM
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6. Asymptotic behavior of a function which is represented as the
inverse of a Laplace t r a n s f o rnTTSla a r • s method )

»

A method to determine the asymptotic behavior of a function

f(x) for large x corresponding to Darboux's method for sequences

of numbers (see has been worked out by Haar (Math. Annalen,

96, 1927) 69“107) » Before outlining this method we quote two well

known theorems of the theory of the Laplace transform*

Lemma a

CO

5

1X
V, g (/vp dA^ tends to zero if x tends to infinity, pro-

vided g(w) is such that the integral is uniformly convergent with

e

_ cO

with respect to the upper and to the lower limit for all x y X.

(Doetsch ,Theorie und Auwendung der Laplace Transformation,

Berlin, 1937? p. 50). This theorem is an extension of Riemann“s

Lemma for Fourier coefficients* A function g(A^) with this prop-

erty is called of the Fourier character ior^ = + 00 for suffi-

ciently large x.

Lemma b .

f(x) be a function of the real variable, defined for x > 0

and continuous for x > X* (X fixed > 0) o The Laplace Transform

of f(x) eO

( 6 . 1 ) 0(z;
5

-zx
f (x)dx

be convergent for a real z = CT
Q

and such that 0(<T+ i 4^} for a

6“ > CT^ is ©f the Fourier character forA^= + 00 and sufficiently

large t, i„e.

(6.2)
j

0(<T + ifr
L)

is uniformly convergent for all x > X with respect to both limits.
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(6.3) f

(Doetsch

Berlin ,

( Coo GO

,x, 2ir±
^

e
xz

jj^zjdz = e
x<r

^
e^

x4
l 0(<r+i4^)d4^

C*- C o#
"CO

9
Theorie und Auwendung der Laplace Transformation,

1 937 ? p. 107.)

(6 0 3) is the inversion formula of the Laplace transform (6*1)

If the Laplace transform 0(z) of f(x) satisfies all the conditions

mentioned in Lemma b, we obtain immediately from (6*3) for large x,

using Lemma a*

(6.4)

(6.5)

lim e
x<r

f(x) = 0
x —» oo

or

f(x) = o(ex ) for x —* CD .

Equation (6.4) corresponds to (4.5) in Darboux“s theory* The ap-

proximation (6*4) or (6*5) will be best for the smallest possible

value of <T for which the conditions in Lemma b are satisfied. In

the most favorable case 6“ can be chosen to be the abscissa of

convergence of the integral in (6*1) or some number in an arbitrarily

small neighborhood.

We will now formulate additional conditions which will enable

us to replace the path of integration in (6*3) consisting of the

line^ = <T in the half plane of convergence of the integral in

(6,1) by a line^ = a in the half plane of regularity of the func-

tion 0(z), For this can be larger than the half plane of conver-

gence of the integral in (6,1). (Doetsch! Handbuch der Laplace

Transformation, Basel, 1950, vol* 1, p„ 152. Widders The Laplace

Transform, Princeton 1941, p* 58).
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We state now the theorems

(I) f(x) be defined for x > 0 and continuous for x > X. (X fixed

> 0) • The Laplace transform of f(x)
9 0(z) = x)dx be con-

vergent for a real z The integral ^ 0(<T“'+ ifyp d/V^ be
—a©

for a (T > uniformly convergent for x _> X.

(II) 0(z) considered as a regular function be analytic in the

half plane Re z > a(a <_<S“) and have for Re z —> a boundary values

(denoted by ^(a + ify ) such that the function y^z) which is com-

pleted by these boundary values is continuous for Re z > a in the
CO

5
—

two dimensional sense „ The integral
^

e^
x^ 0 (a+iA^)di^be uniformly

convergent for x > X. _ °°

(III) The integrals
<r+ CT-

^ e
xz 0(z)dz and

^
e
xz

0(z)dz

CU*t.^ CL-Clc>

shall tend to zero if w —> oo for x > X» Then

( 6 . 6 )

Proof

f(x) = o(eax ) for x oo

0'(z) is regular inside the rectangle

with the corners a+iw ? a-iw,<J“- iw,

(T + iw and continuous the boundary

included

„

i f xz
*

Then the integral \ e dz taken along the boundary

tangle is zero according to a modification of Cauchy’s theorem

(Heilbronns Math. Zeitschrift, 37? 1933? 37-=38)o If we let w

tend to infinity we obtain because of the conditions (III) and

Lemma b.



26

GO

( 6 . 7 ) f(x) = y e
ax

^
e
ix/l

J.0(a + iA^)d/Vj_.

- cc

Using (2) and Lemma a the result (6.6) is established. The

approximation (6.6) can be improved if we assume

(IV) The conditions (I), (II) , (III) are satisfied. The

boundary function 0(a + il^) has n derivatives with respect tod£

0(a + i^), X$
8 (a + i and 0^ n

”"^(a + i Hr^) tend to zero if

/Vj^ —* + oo o 0' n/
(a + i/|^) is integrable in any finite in-

terval and qo

e
ixA

t,0
(n)

(a + i^) d/V^

~CK>
converge uniformly for x > X.

We have then instead of (6.7)

(6.8) f(x) = o(x-n e
ax

) for x

Proof

.

oo

Under the assumptions mentioned above we get from (6.7) in

tegrating by parts
<30

1
f(x) = p e

ax (- -h

This establishes (6.8),

{j)“( e
ix^0 (n)

(a +

- Co

<30
Simple singularities of the Laplace transform

We assume now that the Laplace transform 0(z)= \ e
_zXf(x)dx

of f(x) is regular for Re z > a but has a singularity at Rez=a.

*The fact that 0'" n ^ is of the Fourier character and 0
^ n”^—

$

0
/ * \

forfo —>+ oo implies the Fourier character of 0^ * to 0.
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If it is possible to find a function F(x) (comparison function)
_ vo

whose Laplace transform Q) ( z) = \ e
xz

F(x)d?c has the same

singularity at Re z = a (and no other), and if the difference

0 (z) - <j^(z) satisfies (IV), then

( 6 . 9 ) lim x
n

e~
ax

[f(x) - F(x)] = 0 ,

x —>oo

We will restrict ourselves to functions f(x) whose Laplace

transforms 0(z) have singularities of algebraic and logarithmic

character and state the theorem (V).

(A) f(x) be defined for x > 0 and continuous for x > X
-

(X fixed > 0 ). The Laplace transform 0 (z) = \e xzf(x)dx be

convergent for a real z = <7"
o

. The integral V e
lx\ 0 (<jT-r i^)dA^

— cO
be for a CT > (T~

Q
uniformly convergent for x > X.

(B) 0(z) considered as a regular function be analytic in the

open half plane Re z > a (a < <T) . In the closed half plane

Re z > a^ 0 (z) shall admit one of the representations

Re £ > 01) 0
1
(z) = c(z-z

Q ) -^ +
'*f 1

(z)

2) 02 (z)
= c(z-z

Q
)“^+ ^(z)

3 ) $3(2) = c (z-z
o

)
n
log(z-z

o )+
^(z)

0^.(z) = c(z-z
0
)”^lpg(z-z

0
)+ ff^(z)

Rej><^0,§>^ 0

n 0,1 ,2 , . o

.

§ f 0 ,
-1

,
-2

corresponding to one of the functions f
y
(x), (v = 1 ,2,3,4 ).

2
o

is a point on the line Re z=a and c is a cons tant .
/

^fy
(z) be

a continuous function in Re z > a (regular for Re z > a). The

first n derivatives of the boundary f unc tion^
v
(a+i/

^) shall

exist and (a+i/1^) be integrable in any finite interval.
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(C) The integrals

<r- ;w
XZ ! _xz.

Ct W
zero if w —* oo for x > X

$
z) and \ e 0(z)dz shall tend to

(X~ Cm?

(D) According to the assumptions (B) with respect to 0(z) it is

obvious that the boundary function 0(a+i^) exists with -ike

exception of the point ^ = XvwZ
Q

and is in time^diff erentiable.

The functions 0(a+iA^)
, „ 0 0 (a+i^) shall tend to zero if

OK?
/V^ —$± oo and the integral

^
e 0 ( n

)

(a+j/v^d*^ and
^

e**'^ 0^ n
^ (a+i^)d

with fixed ^ , ^2 (^-j < Xvw z
Q <^2 * or an^ n = 0,1 ,2, » « . shall

b« uniformly convergent for x > X»

Under these assumptions we have the following asymptotic

expressions for f(x)

(60IO) lim
x 00

In case 3)

(60 1 1

)

lim
x <©

In case 4)

lim
X H»00

n ~ax
[f (x)

n -ax r n

Z X P-1
o ^

e x ]
= 0

z x . *

>
° 3t

rn^ 1

] = 0

x
n
e
~to

\ f (x ) +

_ Lifi]/ _ 0

z x P-1
H [log x

i-
These results can be generalized if 0(z) has a finite number of

poles on Re z = a Q Is for instance for Re 2 > a

0(z) = (z - zi 1 ^1 +*1 A-j" (Z)

5 I

with - a + ^
and

^ ^
^ 0, ”1, -2

? o 0 o we obtain

lim x
n
e

ax
[f(x)

x ”>00

l
x ^

x
x

x
] = 0(6„10a)
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Proof

la order to apply (6.9) we have at first to find functions

F (x) (caaparison functions) whose Laplace transforms^) (z)
V

r°°
- 1 e

H
F
v
(x)dx are of the form 1) to h ) „ These functions

A?
are respectively

z.x „ 1

Re j > 0la)

2a)

3a)

F
i
^ -

"pfjj
e 3 xs

-
1

F
2
(x) = 0 for 0 < x < 1

z x
o'vf-1

F
3
(x) = 0

for x > 1

°> -1
5 -2,..

for 0 < x < 1

z.x

ka) F^(x) =

-c(-1) n
ni e

0
x

n ^ for x

n = 0,1,2,...

0 for 0 < x < 1

« z „x p i

e x^ [log x -
fiji H(§)

] for x > 1

^ ?' 0 5“ I ,"2,o eo

It can easily be shown that the Laplace transforms <L,(z) of

these functions are respectively

1b) (^(z) = c(z-z )”•? Re J > 0

2b)
(J

= c(z-z
o
)“^ + Y^Cz)

3b) (P^Cx) = c(z-z )

n
log(z-z ) + Y^(x)

^b) $ ^ ( x ) = c(z-z
0
)“ logCz-z^) + Y^(z)

where V
y (z) ,

(v = 1,2,3)^) is an integral function of z
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We apply now (IV) to the difference function g y
(x)=f

v
(x)-F

y
(x)

,

(v -- 1 The Laplace transform of this function is

l-/
>

v (z)
- =<fvM - Y

v
(z)

Then it is obvious that the conditions in (V) are a consequence

of those in (IV) provided, that

oo

J
^ <fv

(<T+ i^)d /V^

— CO

converges uniformly for x > ^ for any CT"> a,

b 1

)

^
e
xz

(J> y
(z)dz and

^
e
xz ^y

(z)d

tend to zero if w —» oo for x > X<

e

GL-cvv

c !

)

i- \

$

^J
n
^(a + i/y^)—^0 for/V^—»+ oo and

oo

eix^f
v

( n)
( a + iAl)d^ ?

£
e
ixA

2$^
n)

(a+iA2)d^

are uniformly convergent for x > X and any n = 0,1,2,<,».

(^1 < Jm z
o
<A

?2 ) -

It has now to be shown that the
y
(z) in 1b)to 4b) satisfy

the conditions above B We prove this here only for the case v=1

,

i,e, we establish (6,10) under the assumptions in (V), For

the remaining case$we refer to the original paper by Haar,

Since here

^(z) = c(z=z
0
)”-^

,
Re^ > 0

it is obvious that b ! )and the first part of c ! )$is satisfied.

To prove the validity of a J

) and the second part of c’),

we note that for a fixed Re z = ^ and z
Q

= a + i A£
o

$1 (V = «
[ %

~ • + i( \
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1
(

\

+ )
= -i§c[ - & + i

( % “
'fyo

) -“
^ 8

$ 1

(r0
(^+ ify) = (”i)

n
c ^ (^+1)...(S>4n-1)[^ -a+i(^-^)]“^n

We make now ose ©ff lemma c.

md
I

If g(^ + i^) is absolutely integrable atA^ = + ® ai

lim g(*§ + 0 for /h -^+ oo
9

then

g + ±4^) icunif ormly convergent

for x > X,

Proof

5
"CC

j
j

e“
Xv

^g(*t + ity) d4^j = P
J
= U lx

^a(<i + lPH jX^
- 1 f e^g-Cf+i^d*,

j

P* ^

<“^|9(l+if)| +
|g(^ + i«f)| +( (g'CV

|
dv6

^

and this can he made arbitrarily small for x > X if ci and ^ are

sufficiently large. The application of this lemma proves a 8

)

and the second pert of b 11

)

.

Asymptotic behavior of a function defined by a power series .

The methods outlined before can often be used to determine

the asymptotic behavior of a function which is defined by a

power series. Let- be

( 6 . 13 ) f(y) = a
0 + a

1 y + a
2

y"‘+ » . . = a
CT y

are integral functions of the complex variable y and let the

series of the Laplace transforms of (6.13) for a real y = x,
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(6.14) 0„ (Z) = )_ a
n i

e
'X2 *”^ = 1

D O _ o

be convergent for |z| > R. Then it is evident that ^(z) is a

function regular in the half plane Re z > a ? where a is the ab

Furthermore 0
q
(z) and all its derivatives (the latter at least

of the second order) vanish if z tends to infinity. If now 0
Q
(z)

is such that for Re z > a it admits one of the representations

given in (B) we see by lemma c that all conditions in (V) are

satisfied and the asymptotic behavior of f(y) defined in (6.13)

for large positive y = x can be described by one of the formulas

(6o10) to (6.12) corresponding to the character of the singular

point z = z
Q
with Re = a. To determine the asymptotic behavior

.

of f(y) for any complex y for large
| y ( we put y = x e

1
9

(x > a) and investigate by the methods just described -the asymp=

totic behavior of

Example 0 As an example we consider the asymptotic behavior of an

integral function given by

scissa of this singular point z
q

of j$Q
(z) on or within the

circle of convergence \z
i
= R whose real part is a maximum.

o

for large positive x. We obtain now instead of (6.1*+)

(6.17) Y(y,*,»)=y y" _f(y)
nl (c4+n)

S

Hs©>
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/ 0,-1, -2,... and s arbitrarily complex,, This function has

been studied by Barnes (Philo Trans, Roy 0 Soc Q (A) 206, 1906,

249-297) o We obtain from (6,14)

GO

( 6 . 18 ) 0o (z)
= z-

n_1
(J.+n)'

s
='Z''Y_z'

n
(*-+n)

© o
If we denote by

©o

( 6 0 1 9) $(z 5c^,s) = z
n
(<^+n)~

s
, I z

|

<

©
we see that

(6o20) 0_(z) - z”
1

(5 (z
_1

,«L,s) 0

CO
-s

The function Cp(z,^,s) defined for |z
|
< 1 by the series in

(6o19) has been investigated for the first time by Lerch (Acta

Matho 11, 1 88*7 9 19-24) and is called Lerch's zeta function,,

Barnes (Proc° London Matho Soc, 4, 1906, 284-316) has proved

that apart from the essential singular point z = oo ^)(z,<^,s)

has but one singularity at z = L Hardy (ProCo London Math, Soc

3? 1905? 381-389) gave the representation

(6.21) $(z,J.,s) = ra-sJz'^Uog^) 3' 1
+ P(z)

where ^(z) is regular for Re z >

Thus

(6o22) 0OM = 1-S
1
(log ~

)

S_1 + (*)

where /^(z) regular for Re z > 1 0

Hence by (6»l6)

(6.23) 0 (z) = P(l_g)(l0 g z i^) S ^^(z)



The singular points of 0 (z) are z = 0 and z = e
1
^,, We consider

case - ^ Then the singular point z
Q
whose

i3^
real part is a maximum is the point z

o
= e and we will show

that 0rJz) admits for Re z > a = cos /9" one of the representa-

i3^
tions 1) or 2) of (B) i,e, 0^(z) has at z = z

Q
e a singu-

larity of algebraic character,,

We write (6„23)

( 60 24) 0 fz) = PCl-sXz-e 1
)
s_1

z ”
(

i*7Cs-1 ,lo<

z-e
i^ -)

s " ! +

+ A^*(Z)

We expand according to Taylor s theorem z
5^

z-e1^
&o

where
,D

r _ 1 d
1

n n! dz
n

Hence

(6 0 25) [z) = ra-i)e-

^ c
n
(z-e

D

“10\S- 1

] ..iS'J z~e

Is V a e"in
<37 Ai^tn+S“1_,_ %

(z-e ) +^pe (z)

(6.26) .n
-lj£;

n o,
dxn

or instead of (

6

0 25

)

(60 27) 0^£z) =

with

“S J e a e
n

in
(z=e

JL ^) IITS 1
+ /4**(z)



35

Since

dz
1

(z-e )
i^N+s-1 _ -/ aiXN+s=M' = A(z==e )

it follows from (

6

0 28) that if M is an integer such that

M < Re s < M + 1, the (M+N)th derivative o£^**(z) is continuous

(6.10a) gives then

N+M -x COS M r « /lim x e [f(x e J

X -V 00
. “in^

1-s)e"
is^S n

e
x A

x"
n~ s

]

P(1 -n-s)

sr
^-o

GO

or with x = y e

(6.29) lim y^M e"
Re y

[ \ -
v —* oo n ' i

' '

'

P (1-s) ey y

1 (n+<*0

P( 1 —n— s )

] = o

f < arg y < -^ t

with the a
n

given in ( 6 . 26) 0

The asymptotic expansion of the function f(y) defined by

(6.17) for ir < jarg y |

< ir can not be obtained by the method

developed before. It follows in this case from (6.18) and (6.16)

that the singular point of 0^,(z) whose real part is a maximum

is the point z = 0 which is an essential singular point of

0pXz)o But our method has so far been restricted to functions

0(z) with arithmetic and logarithmic singularities.
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Part II

Asymptotic Solutions of Linear Differential Equations with a
Parameter

by

H. A® An^osiewicz.

1 o Introduc tion . These lectures represent a survey of the

theory of asymptotic solutions of ordinary linear differential

equations containing a parameter® We shall restrict our dis-

cussion to equations of the second order

( 1 o 1 )
y" + a

1

(x) y* + ( k a
2
(x) + a^(x)) y = 0

because these equations are of importance in many problems of

applied mathematics. They arise in the solution of linear sec-

ond order partial differential equations by Bernoulli’s method
*

of separation of variables; mathematically, they are the type

of equations which include as special cases the differential

equations of such standard functions as the trigonometric func-

tions, Bessel functions, Legendre functions, the functions of

Mathieu, and many others.

We were guided in our presentation by an exposition of the

subject by Langer [19]° We shall not strive for greatest gen-

erality here because of evident limitation of space. Whenever

proofs of theorems are only outlined or details of too techni-

cal a nature omitted, these can be found in the references

listed at the end.
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2 0 The basic equation ,, It is known that the equation ( 1 0 1

)

can be transformed by a change of dependent variable into an

equation of like form in which the coefficient of y° is identi-

cally zeroo We shall assume that such a transformation has been

carried out
? and henceforth take as our basic equation

(2o1) y
88 + (k^a”(x) - b(x))y = 0 0

For convenience we write k a (x) rather than ka(x) although

this notation shall not imply that this term is necessarily pos-

itive.

Throughout the equation (2 0 1) is subject to the following

hypotheses §

(H^ )x is real and x s [x.j 9 X2 ] j
(x-j = - 00 and Xp = 00 is permitted);

2(h^a (x) and b(x) are real? continuous and differentiable to

whatever order is required on [x^ 9 x p ];

(H^) k is real and positive.

It is clear that these hypotheses guarantee the applicabil-

ity of the standard existence and uniqueness theorems so that for

any given x
q

e
9 Xp] and any constants yo? yo

5 there exists a

unique solution y(x) of (2d) which satisfies the initial con-

ditions y(x
o
)=yQ? y°(x

o
)=y

o
D

c

2
3° The case of a (x) bounded from %ero 0 Let us assume for

2the present that a“(x) is of fijsed sign on the interval 5 ^2^
2Since a (x) is real

9
we can then define a(x) such that

a(x)/|a(x)| = 1 or i according as a (x)s 0,

We begin by making the substitutions



Vi
(3.1) t=gj|aM|dx, u= |a(K)| y ,

which reduce (2.1) to the equation

^ - (X
2 + b

1
(t))u = 0

d t

(2.2)

where

(3.3) b-j = £ Ia \

z

[
b + (a'/Za) - (3al

)]

and the variable t ranges over an interval [t^jtg]. Note that

when \\\ is very large, then A* dominates the term A* + b^(t) in

(3.2) and thus minimizes the influence of b^(t). Since the

equation ii - A‘u=0 has the two solutions u - exp(+ we

attempt to solve (3«2) by assuming a solution of the form

(3A)

where

(3.5)

l’
n
(t,X) 5 e

Xt
v
n
(t,X)

v
n
(t)X) - 1 +

On differentiating (3*^) twice, we find that U (t,A) satisfies
n

the equation

Un (A + b^ ( t ) + b
2

( t)/v
n

(

t

? A) U
n

= 0

where

.7) b
2
(t) = (2«,-b,) + Exvi (2^ -t

V,
b
,
+
«i.i

)**(««-
i * t

e we determine the functions a^(t) so that they satisfy

the equations

(3.3) * Z ^ ~

this clearly depends upon the integjrability of b^(t) over



2„ The basic equation ,. It is known that the equation ( 1 o 1 )

can be transformed by a change of dependent variable into an

equation of like form in which the coefficient of y® is identi-

cally z@ro<> We shall assume that such a transformation has been

carried out
, and henceforth take as our basic equation

(2 0 1 ) y
n + (k

d
a
2
(x) - b(x))y = 0 „

2 2
For convenience we write k~a~'(x) rather than ka(x) although

this notation shall not imply that this term is necessarily pos=

itive 0

Throughout the equation ( 2 o 1 ) is subject to the following

hypotheses s

(H.j )x is real and x e [x.j ,x
2 J ; (x.j = - oo and x

2 = oo is permitted)

2
(H

2
)a (x) and b(x) are real, continuous and differentiable to

whatever order is required on [x^ 9 x 2 ]$

(H^j k is real and positive.

It is clear that these hypotheses guarantee the applicabil-

ity of the standard existence and uniqueness theorems so that for

any given x
q

s ,x
2 J and any constants y o ?yo

3 there exists a

unique solution y(x) of (2 0 1 ) which satisfies the initial con-

ditions y(x
o
)=y

o? y
D (x

0
)=y

0
®

o

3 ° The case of a' (x) bounded from zero 0 Let us assume for

2the present that a“(x) is of firmed sign os the interval [x^,x
2
]o

2Since a (x) is real, we can then define a(x) such that

2 >
a(x)/|a(x)| = 1 or i according as a (x)< 0 o

We begin by making the substitutions



r 1/2

(3 • 1 ) t = g
1

WcU>0|cU ,
u= |a(x)| y ,

which reduce (2.1) to the equation

(3-2)
4-f

- (X
2 + b

1
(t))u = 0

d t

where

(3.3) b
1 = ^ \a\

l
[b + (a'/2a) - (3a1 /^a )]

and the variable t ranges over an interval Note that

when 1X1 is very large, then X* dominates the term A* + b^(t) in

(3.2) and thus minimizes the influence of b^(t). Since the

equation vl - A"u=0 has the two solutions u = exp(+ AO? we

attempt to solve (3«2) by assuming a solution of the form

(3 .*0

where

( 3 . 5 )

l„(t,X) = e
Xt

v (t,X)
O H

V
n
(f?A) - 1 + ^ +oao+^*o

On differentiating ( 30 *+) twice, we find that U (t,A) satisfies
n

the equation

( 3 * 6 )

where

U
n

(A + b^ ( t) + b
2
(t)/v

n
(t,X) U

R = 0

( 3 . 7 ) b
2
(t) = \ + V*

A
(«n-«nt^ •

Suppose we determine the functions oc^(t) so that they satisfy

the equations

(3o8)
5 ^

this clearly depends upon the integjrability of b^(t) over
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^ t
1
,t2^’ Th®n th® equation (3<>6) reduces to

(3-9) U
n
-a1

.*. b,(t) + «„b,)A"v„(t,X))U
n « 0.

This equation evidently resembles equation (3.2), the more so

the larger 1X1 and n <> We are therefore lead to presume that

U
n
(t

? >,) might represent an asymptotic expression of a solution

of (3<>2); and since similar considerations apply to U
n
(t ? “l)

the same might hold for U
n
(t,-A)o This can indeed be shown

C 10; 1 1 Jo

Theorem (Horn) s If a (x) is bounded away from zero on

b + jL__ „ I ax

,

. _„
2 i*3

1

Xi

[x^ 5 X2 ] and the integral
x s

a 2a‘

converges + then the equation (2»1) possesses a pair of solutions

y(x) = Iciwi Vptiikjiawidx)^ +

where e(x 3
k) -> 0 as k o© 0

p
It follows that if a“(x) < 0 on [x^Xg]? then there exists

a pair of solutions of (2o1) of the form

(3.10) y1?2
(x) ” |a(*)| (±k ^ac*Hdk)

1
1 + 0(V^)|

;

2
and if a (x) > 0 on [x lS x 9 ], there exists solutions of the form

.1 * *

(3.11) y^(x) = [a6o]
*

| cos (
k
^a(x)cU + + 00/?^)j

»

Observe that the leading terms in these expressions satisfy

the differential equation

(3o12) Y" + (k
2
a
2

+ (aV2a)-(3a 52Aa 2
)) Y*0



f

M-0

which has no singularity on [x^ jXg] since a(x) ^ 0 by hypo-

thesis o

consider solutions o f (2o1) to the right of x0? say over an

interval [x.j jXg] where x^ > x
o

„ For sufficiently large £ k

these solutions are expressible in the form (3*11), ic,e. they

are of oscillatory type 0

Recall that we were lead to the expressions (3»10) and

(3 o 1 1 ) by an investigation of the equation (3°2) for large val-

ues ofl^l, and that (3«2) was obtained from (2<>1 ) by the

transformation of variables (3«1) in which the constant £ as

well as the lower limit of the integral were left unspecified.,

Let us now choose these constants as follows;

closer and closer to x
Q

if k is taken larger and larger,, This

clearly establishes a relation between the size of k and the

distance of x. from x which must be satisfied in order that a
1 o

solution of (2o1) may be expressed over [x^ ? x2 J in the form

" o
ho The case of a simple zero of a (x). Suppose now that

o
a (x) has a simple zero at some point $ = x

q ; we may assume with-

2
out loss of generality that (x-x

Q
)a (x) > 0 for x 5 x q0 Let us

and since \ must be large, we see that the point x^ may be taken

(3.11 )o



Note that the function

( 4 . 3 ) \ - * l a(*)dx

increases numerically with \x-x \; thus the equation \\\= C

defines two points (k) < xQ? c
;)
(k) > x

q
which depend upon k

and tend to x
q

as k -* oo » It follows that, given any C > 0,

the expressions ( 3 o 10 ) and ( 3 ° 11 ) are valid only in those

intervals to the left and to the right of x
q ,

respectively,

which are separated from one another by the interval [C.J 5 C 2 J 0

In any such interval to the left of c., the solutions of ( 2 «

1

)

are of exponential type while in any interval to the right of

C
2

they are of oscillatory type, the transition from one type

to the other taking place in [^,€ 2
]° However, no information

as to the transition itself is available from the expressions

(3o10) and ( 3 o 1 1 ) § they become infinite at x = x
o

<> Moreover,

the equation ( 3 ° 12 ) satisfied by their leading terms has a

singularity at x = x
Q

in contrast to equation (

2

0 1 ) which re=

mains non-singular throughout [©.,,€ 2 ]°

5° Example o As an illustration of the previous considers-

tions let us investigate the differential equation

(5° 1 ) y" + k
2

xy = 0

which is satisfied by the functions

1 2 I

(5.2) > , (x) = x
1 3

j3. (\) , *5
= •

Its general solution (save for an arbitrary constant factor)

may be written in the form



42

s
11

(5.3) yE
(x) = fc/3)k] cos(«-|)J.j(^j

7T 7T

where ck. is any constant such that ““
2 ^ - 2° If is clear from

(5»2) that when x is real and positive so is
^
while arg| = 3F/2

for x negative, i 0 e 0 \^\ = i^ e

For large values of | the asymptotic expressions for J < (£)
1 3

are known explicitly; they are of the form

(5.*+) Iji (\) ~(i»^)
i
|A

t1
e
i(

P(V') + AU^P(-V’)]

where P denotes a formal power series with constant coefficients

[32 ] 0 If the constants ^2 are determined so that (5<>4) is

valid for positive large values of
^ ,

they will in general not

be correct for negative values of \ 0 In other words, as arg|

varies from zero to 2^
?

the constants 9 A
2
must be changed

in order that (5»4) remain valid* This fact is known after its

discoverer as Stokes” phenomenon [25]

»

To obtain the asymptotic forms of yw (x) we use (5°*+) with

the appropriate constants and note that by (5°2)l^l= C yields

o = (3C/2k)^
//^

0 We find for x < c 1 <0
«

(5.5) y„(x) «^^U00M'’)| + i cc,sc'«'^\''+O (^ 1 ^l

and for x > C
2 > 0

(5.6) yw (x) = X* \cos(^-|+«)+ 0(V )j .

Clearly, all solutions with the exception of yo
(x) become in-

finite as x -» os- y ic ©o + oe, and yQ
(x) approaches zero 0
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If there exists a value § (c*) such that

(5 o7) tan « = i exp(=2
1 ^ (e^ ) \

)

thus far x 3 < e^>th© ©xplieit turms in (5°5) ar© the

and for x < c* the first term in (5®5) will become dominant

while for x > e* the second term will besom® dominant,, The

existence of e* evidently depends upon whether (for a given '*)

the equation (5°7) can be solved for $(c*) 9 i°e 0 whether et

1$ sufficiently small , say or < o< 6 „ Suppose we agree to iden-

tify e* with c^ if oc > <x
q
and with if or 3 0 o Then we may

put the asymptotic expression (5°5) and (5o6) into the fol-

lowing forms

(5o8)y (x) =

r e + 0(U\ )}

|
’-lx I

^cosot e
^

+*) T 0( V
1

^

c*< *< c«, (<0)

X > (>Q) o

These formulas will be useful in our later discussions 0

6 0 The method of Jeffreys ,, We shall now outline a method

due to Jeffreys [12] which permits a representation of the

solutions of (2d) over intervals which include a simple zero

2
of the coefficient a (x) 0

Let us assume b(x) 3 0 in (2„1) 9 io®, let us consider the

equation

( 6 0 1 ) y
56 4- k^a

c'

(x)y 3 0

2where we suppose further that a (x) has a simple zero at the

O
origin and x a (x) > 0 for x / 0 9 and that the value of the



2
derivative of a (x) at x = 0 is unity* (This normalisation

merely introduces a constant factor which can be taken into the

parameter k.) In addition, we assume that in a neighborhood of

the origin the function a (x) may be approximated by a linear

function* These assumptions imply that for sufficiently small

values of x, say x in [x^ 9 X2 ]>
the equation (6*1) may be ap-

proximated by the equation

(6o2) y
M + k

2
xy = 0 o

Let us note also that

(6.3)

* 1
\ = k ja(x)d* ~ ykx*

for x in [x^ jXg] °

We now recall that for sufficiently large negative values

of x the solutions of (6*1) may be expressed according to (3.10)

in the form j.

y.j
~ i e*|p (~\\\) >

(6*4)

y2 ^ (^0 >

to be precise, these representations are valid only for

2
x < (< 0). If we are permitted to replace a (x) and \ by

their approximate values, i 0 e 0
^ 3

! a !
i 1*1 ^ ^ I

)

( 6 . 5 ) \a\ ( If 1) ® (xl^xp (|k \
* \^)

then we may identify the right hand sides of these expressions



according to (5=8) we readily find

- i i

I

x
|

^ exp (- |
k

|
X

I

2
) ^ 2y

o
(x)

(606)

I

i
exp (§ k

|
x

(

2
) ~ 2y

?r
(x)

3

On the other hand, we know from previous considerations

that, on traversing the origin, the right hand side of (606)

becomes
1 i
5 _,2 , 2 7T ,

( 6 . 7 )

2yo
(x)~2 x cos kx - x~)

- i i
2 2 tt

2y7r(x) 2 x cos kx - t^) >7T

and these expressions are valid for x > c
2
(> 0 )> Finally,

if we are permitted to replace again x and
^

by a‘"(x) and
r X

k a(x)dx, respec tively , then we find from (5»8)

- 1 i
2x ^ cos (| kx = 2 |C<| ~^cos

( ^
^ 2y

7f
(x)

(608) 1 i
2x cos kx““ ~ J2)

= 2 Kl “^cos
( f

- ^ 27^ (x)

12

These formulas, namely ( 6 0 4 )

,

a 0 „

(

6 6 8 ) , clearly establish the

connection between the respective solutions of (6.1) on

either side of the origin 0 According to Jeffreys we denote

these connections in the following ways

(6.9) exp(-
j J |

) 2
|
a |“^co s (^

-
J)

(6.10) 1^1“^ exp( If |
) *”* 2

|
a |"^cos

(|
~)

where the double arrow indicates that the functions it

connects are asymptotic representations of the same functions
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under different circums tanees » As Langer [19] has P inted out

certain mi conceptions may arise from this notation since the

left hand side of ( 6 0 9 ) implies the right hand side but the

onverse is not necessarily true„ The same statement holds

for (6o10) where the right hand side implies the left hand

side but not conversely,,

It is clear that the expressions (6„5) are valid only if

x.| < c.j
,

and expressions (6„8) are valid only if x.~, > ©20 It is

therefore a requirement of the method that the interval L
coS]

be included in [x^ ? x ? ] for otherwise we are not justified in

making these transfers „ This, however, can always be accom=

plished by making k sufficiently large since c 1 n 0 as k oa,

We remark that Kramers also established the formula

(6o9) >
together with Ittraann he obtained the further relation

JL_ -1 j-

(6o11)
\
a

\

2 exp( 1^1) |q\
4 cos(^ + 5)

which evidently results from (5®8) by taking e* = it/2 (13|l4-J 0

Among physicists all these relations are commonly referred to

as part of the Wentzel-Kraraers-Brillouin method [33] o Gold
o

stein extended Jeffrey 0 ® method to the case where a
-
(x) may

vanish of any integral order [6]„ An entirely different pro-

cedure based upon the idea of encircling the zero of a (x) in

the complex plane, was given by Zwaan„ [2; 19? 3^]®

7 o The method of Lanqer o We now come to the discussion

of a method due to Langer which is perhaps the most powerful

and most elegant procedure for obtaining asymptotic represen-
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tations of solutions of (2 e 1) for large values of the parameter

ho [ 1 5; 1 6; 1 7; 1 8; 1 9; 20] o However ingenious the method of

Jeffreys, it is essentially based upon connecting appropriately

the useof Horn*s classical representations (3.10) and (3<,11).

Langer starts from the same basic idea, namely that approxi-

mately identical differential equations should have approx-

imately identical solutions 0 He introduces, however, a * { re-

lated'® equation which approximates the given equation throughout

2
the entire interval including the zero of a“(x); moreover this

related equation is explicitly solvable in terms of Bessel

f unc tions

»

Let us begin with the following preliminary observation

The functions satisfy

the differential equation

2
$

or, in terms of the variable x

(7.2)

If we make the substitution

we can reduce (7°2) to the equation

(7A) 13 " + (k
2
a
2
(x) - ) u = 0

whose solutions are the functions
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(7.5) u = A(x) ^ J
± ^ (f ) .

The equation (7« 1+) is of the type (2d ) „ In fact, since

(7.6) (* -d> 2
A(x) 2a ha^ ( j

a dx)^

this equation resembles very much the equation (3d 2), namely

(7-7) Y« + (k
2
a
2 + £ - id)

2a
Y = 0

hi

which is satisfied by the leading terms of the classical asyra-

pototic representations (3-10) and (3-11)- The only difference

in their coefficients is the term

(7.8) (*-d)
( ^ a dx)

2
If x

o
is a zero of a (x), then (7-7) clearly has a pole

at x = Xq which causes the breakdown of Horn 8 s procedure,, The

coefficient of (7-^) also has a pole at x = x^for any arbi-

trary in , and so nothing seems to have been gained,, However,

for on®! particular value of y. this pole can be removed because

of the presence of the term (7-8)- Suppose that a (x) van-

ishes at x = x
Q

of the order fc,; then if we choose ja = l/(\|+2),

it is easy to see that (7-6) remains bounded at x = x w * Thus,

for this particular choice of p. 9 the equation (7 *h) approx-

imates the basic equation (2d) over the entire interval in-

cluding the point x
q

o The difference between these two equa-

tions is independent of the parameter k and is therefore dom-

inated by the term k a (x) for sufficiently large k„ This
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is in contrast to Jeffrey 5 s approximations where
9 except for

the point x = x
0 , the difference increases with k of the order

2 2
k o Note also that if a (x) does not vanish within the inter-

val under consideration, then p. = ^ and so (7°^) reduces to

(7o7) ;
thus Langers method contains as a special case the

classical representation theorem of Horn,,

Let us now consider the basic equation (2d)

(7°9) y
n + (k

2
a
2
(x) - b(x))y = 0

2under the further hypotheses that a (x) has a simple zero at

p
the origin and that x a^Cx) > 0 for x ^ 0 o We will write (7»9)

in the form

(7.10) y" + (k
2
a
2
(x) - y = p(x)y

where

(7.11) p(x) = b(x) -

A(x)

Now the left hand side of (7o10) is identical with the related

equation (7®h-)
, and if we regard (7°10) formally as a non-

homogeneous equation we may thus solve (7°10) in the familiar

form

r
x

.

(7»12) y(x) = u(x) + ^ \ K (x*t)y(t)dt

c

where K(x 9 t) = u
q
(x)u

1
(t)-u

1
(x)u

q ( t) and W is the Wronskian

determinant of u
0
(x) 9 (x) » It is clear from (7<>11) that at

x = c the values of y(x) and y” (x) are identical with those

of u(x) and u'(x) 9 respectively,,
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On repeatedly substituting the entire right hand side of

( 7 o 1 1 ) for y(t) in the integrand, we obtain the expansion
* * t

(7.13) y(x) u(x) + (k (<it)u(k)olt + ^^K’(x,t)K(t,s)u(i)o(scli +

-'c tt .

which has to be shown to converge and to represent y(x) for

sufficiently large k c

Recall that under our assumptions jx = i and so the related

equation (7°^) has the solutions

L 11
(7-1^) U (x) = A(x)k\£TT/3)^

3
[cos(<x+|)\(0* *

7T
For Of = 0 and « = ^ we obtain a pair of linearly independent

solutions which we can identify as u
q
(x) and (x) in ( 7 » 1 1 )

5

their Wronskian has the value k« Furthermore, their asymptotic

expressions are given by (5°<3), i°e 0

,,,
u
o (x) '"i' e, 0axp(-l^l) w a £

cos(^-|)

u
1

(x)fv \Q|
£€xp(l^) ^ Cl t©$(|+^)

for x negative or positive,.

We now sketch the proof of convergence of the series (7»1 )

The first term of (7»1 ) can be split into two integrals

(7.16) I, = k
-1

u
0
(x)||»(fc)u,(t1u.(t)«U,

If the interval of integration lies inside the interval [c^ ,€p]

as defined in 5>? then the integration over it contributes an

amount which tends to xero as k 00 = This can be concluded

from the fact that the interval is in length of order k 5

while the product of any two solutions (?ot ) has the factor
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k - o Thus we may suppose the integration carried out over

those intervals only where x < e. or x >

Let us suppose first that the graph of u(x) is rising

on c < x < c.j o Then
?
according to (5.8), we have

\ \ i
* COS a e < x < C.

( 7 « 1 7 ) u(x) ^
j

i - v
c

{ a * cos ^
where by (5°7)

(7.18) tan or = i exp(=2\

It is now easy to see that 3^
= 0(1) for > Co As regards

we note that its integrand is of the form

t

a C t

.

-2i f (t)
0(1 );

since
|
exp(-2i ^ (t))

|
< ( exp(-2i ^ (x))

\
for all t < x, we find

Ig = e”^ ^ (x)
0(1) o Hence we can conclude that

(7.19) I
1

+ I
2

=
'k

5/60O)

k-5/6a-VA l 0 ( 1 )

l!\ < C

IU > c

A similar argument can be applied to the other terms in the

expansion (7.13); it yields estimates in terms of successively

—Ihigher powers of k which are sufficient to prove convergence

of the series (7»l3)o

Theorem 1 danger ) 0 Let u(x) be a solution of the related

equation (7°^) whose graph is rising at a point e < 0 Then

the solution y(x) of (7°9) given by ( 7 ° 1 3 ) can be expressed in

the form
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(7-20)

£ l
a(x) looser e

1^
J
+0(k )]

5/6
1

c<x<c.

c^<x<C2

c
2
<x

y(x) - u(x) + k 0(1

)

^a”^(x)^Cos(^- f +«) + 0(V^ + 0(k
y

)]^

where the constant ck is the same as in (7°1?)»

The case where the graph of u(x) is falling at x = can

be dealt with in similar manner,. According to our convention

as regards c* 9
we have <* >o?&9 where tan = ~k exp (-2C)

?
and

thus by (5.8)

(7.21) (%)«. p*' sin *
,

I
a

2
c os

( \ J )

x<Ci

x>c~

If c is any constant greater than c^ , then the integrals I.

and I
2

can be shown to be of the form

(7o22) X, = e
2i ^ (x)

0(1), X2 = 0(1) Ul>C,

and similar estimates can be found for the subsequent terms

in (7. If).

Theorem 2(Lanqer ) 0 Let u(x) be a solution of the related

equation (7<>^) whose graph is falling at the point c^<c. Then

the solution y(x) of (7»9) given by (7.13)> (Can be expressed

in the form

(7o23)

|\a^
s sin ec €^ + 0 ) + 0(fc

y(x) =|u(x) + k“^'
/6

0(1

)

/ f \
co$(H «* ) +0(^j + 0(k

m1

)J

x< Cl

Cl <x<c 2

c
2
<x

where o( is the same constant as in (7 <>21 )
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We have outlined Langer’s method for a particularly simple

case. In general, it can be applied to any equation of type

o
(2*1) where a (x) is a real or complex function representable

in the form (x-x ) a. (x) in some region of the /complex plane,

and k is a real or complex parameter, Langer himself applied

this method to an investigation of Bessel functions for large

complex arguments and large complex orders [l6j and to a study

of Mathieu's equation for complex arguments and at least one

large parameter [l8j.

8o Extensions of Lanqer's method . In the foregoing discus-

sion it was assumed throughout that in the equation

(8.1) y
n + (k

2
a
2
(x) - b(x))y = 0

the coefficient b(x) is independent of the parameter k. This

2
is an unnecessary restriction so long as a (x) has a simple

zero, for in this case the theory requires only slight modifica-

tions to cover the case where b(x) is a bounded function of k.

Goldstein was the first to investigate equations of the

more general type

(8.2) y
n - (k

2
a
2
(x) + k ct^x) + b(x,k))y = 0

under the assumptions that x and k are real and a (x) vanishes

of the second order at a point x = x
Q

and b(x,k) = 0 o His

method of attack is essentially based upon Je£frey”s idea of

fitting together the classical representations on either side

of the point x
q
[8]o A similar treatment was also given by Voss .)"
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[30] o Langer succeeded in extending his method to equations of

the form ( 8 o 2) in which x as well as k may be complex [17]° We

shall not state these results here; a brief sketch of them for

the special case of real parameters can be found in [19]°

In recent years Cherry has successfully attempted to improve

Langer’s method with a view toward obtaining expansions better

suited for numerical calculations [3?^]° Langer“s results have

only limited utility because the expansions generally involve

functions far too complex to be handled numerically* As a con-

sequence, the first terms in the expansions are only of use in

numerical work* For example, Langer has shown that

(8.3) (f)^L\v(artaiahx-x)|jl + f

where L(x) = K^^(x) and the series Ie^T1 converges uni-

formly in 0 < x < 1 provided v > v . We shall outline Cherry s s

method for the case of fheie Bessel functions [33°

9o The method of Cherry * Let us consider the function

y = '\/x ( k - x
2

) as a function oft — cirtanh x -x; the

introduction of the variable t is suggested by Langer 8 s formula

(8*3) in which J
v

( -^1-x^) is expressed in terms of the function

L(vt)o The value of the constant parameter k will be specified

later* On differentiating y twice, we find for y the differen-

tial equation

(9.1)
d t ^

* o.



Since for sufficiently small values of x we have

(9.2)
t = l r (1 + j

^ +...)

x = (3t)
l/3

(1 - i»(3t)
2/3 +...)

the coefficient of y in (9.1) can be written in the form

(9.3) V
2 + t ^+(k2~ v

2
= ^)(3t) 2/^+ P(t

2/3)

where P denotes a power series whose coefficients can be cal-

culated from (9o1 ) and (9o2) 0 Thus the equation (9«1) may

be approximated for small values of t by the equation

(9.*0
2

+ u(-v 2
+ p ) = 0;

dt 36t

and the best agreement (near t = 0) will be obtained by taking

2 2 1
k = v + We will show that the solutions of (9°1 ) can be

expressed in terms of solutions of (9o4) 0

The general solution of (9o*+) is known to be

(9.5) u(t) = A L(vt) + B L(vt e'
r
^)

where L(z) = Vz K-, (z) 0 From the properties of the function
3

L(z) we easily deduce the following inequalities

(9.6) \L(z)\ <A,
\

«-X
l, | L (ze*S 1 4At l

•*
l

, |

~~
|

S A, 1
e
ix

|

which hold for arbitrary \ z \ so long as -it7r + € < arg£ < ^
w- 6

We now write (9«1) in the form

(9.7)
+ y( _ V

2 + -L,) = y f(t)
dt

2
36

1

*

where



(9.8)

56

f(t) = -£-p - 0~2 - 1 )(| X
if

X
2
+ k

2~ V
2

)

36 1 x

and solve this equation by iteration; we suppose throughout that

0 < t < 00 and V real and positive.. Taking yQ = L(>lt), we obtain

(9.9) y
1
(t)=L(vt)+^L(A>j^UO*iTi;L(y«^-L

l
(vx)

l^^r-)

Jf(K)d*

and thus
y^

(t) L(Vt) for t large. It is easy to see that the

integral on the right of (9*9) is bounded by M \ \
f(x)

\
dx

? and
0

so we find for 0 < t < 00

(9.10)
I
y

1
(t)

1l(h)

where C is a certain positive constant. It follows in similar

manner that

(9.11) y n
(t)

L(Vt)

yn-i
(t)

I

L(n) I

< (7 )

n

o

The sequence of functions yn
(t) converges to a solution of (9o 7)

such that

(9.12) y(t) = L(vt)
^

1 + 0( v
1

)]

uniformly for 0 < t < 00 and V > C + € ,

We must now identify this solution. Since by (9°&)

f(t) = 0(t ) for large t, we can improve (9<>10) and (9°11)>

namely

(9.13) Ml-il
UH> 1

<£• < (a**
1 L(vV) 1

hence we have
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(9.1*0 y(t) = L(vt)
|

1+0
W
(t

-1

)
^

= |e ,t
(i + o

y
(t

1

)j
.

On the other hand, we know that the general solution of (9*1 )j

and so of ( 9 * 7)9 is the *orm

(9.15) y( t) = A s/x J
y
^k^ I + B >/x Y

v
[k *J\ -x

2

|
o

Since, by virtue of t = arctanh x - x 3
we have

(9.16) = e
1 + t

^1 + 0(e“2t
)^ ,

we find from (9.15)
v

y(t) =
r^T)(

kl^?H UOv (
,
' x

H
+

(9.17) A
r(v+'i

)

By letting t ^ oo we can prove from (9.17) that B = 0 and de-

termine A, so that we finally obtain

(9.1 B) y(t) = P N + l) (~) J

^

^
kVi^ i

.

On substituting for y(t) the series determined by iteration

we can deduce, for k = v
,
Langer's formula (B„3)j writing down

the first term only, we have

(9.19) = +

We now try to improve this result by transforming the original

equation (9*1) into a form which resembles ( 9 ®*+) more closely 0

We begin with the following preliminary observations „ The dif-
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( 9 . 20) + w (-V
2 + c + -2-*) = 0

dz^ 3^z

in which c is a disposable constant, can be reduced by the

subs titution

(9.21 ) z = g(t), w - u^TtT

to the differential equation

( 9 . 22 )
0,

Let us

( 9 . 22 )

(9.23)

consider the difference between the coefficient of u in

and that of y in (9»1)»

<- ’>& -?? *'k‘->')

and let us attempt to determine g(t) so that this difference is

suitably reduced,. We prescribe g"(0) = 1 and put

(9.24) g'(t) = 1 + h
t
(t) v

2
+ h

2
(t) v

_4
+. ..

(
^ „Ll

(9.25) z = g(t) = \ gi(t)dt = t + g
1
(t)v + g2

(t)v +... ;

0
'

we also let

o
(9.26) c~c

o
+c^v + c

2 ^ +.».

2 2 _p _i+
k v = k + k., V +k0 V +ooo

o 1 2

Then, and substituting these formal expressions into (9.23)

and expanding f in jyowers of v we can reduce f by equating
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to zero as many of the coefficients as we please* This reduc-

p
tion yields for the coefficients of v° and v“ the following

set of equations

(9.27) -2h
1
(t)+c + - (^ - 1)

1 0
36

1

; \ bx ^x
2

+ k ) — 0

( 9 -2h
2
(t)+c

1
-h^(t)+2c

o
h

1

+—b Oi, -f-)+ i h, " -(^ -1)k,=0.
1 3

1

*. x

2/3
The terms in x can be developed in powers of t

7 Jas in ( 9 « 3 )

and so (9.27) becomes

( 9 . 29 )
-2b, + +(k. + |-5 )

+ U 25.T9
(3t)S+

• • • = 0
’

since h^(t) thus t Danish for t = 0, we have to take

( 9 . 30 ) k
0 = 35

and c
0

= - (k
0

+
jfc

5
= “ §25 ’

With the values of c
Q

and k
Q , h^ (t) is uniquely determined by

(9.27); in fact, according to ( 9 * 29 ), we have

( 9 . 31 ) b, (t) = n 3^.49 ( 3 t)
273 +...

By integration, we find

( 9 . 32 ) g,(t) =
^

h
1
(t)dt =

1 73^5.49 ( 3 t)
5/3 +...

0

Now h
2
(t) can be determined in similar manner from ( 9 . 28 )

„

Here, the salient fact is that because of the form of h^ (t)

and g^ (t) the constants and c^ can be determined so as to

annul the terms in t an^ . hence h
2
(t) and g 2

(t) have

a local development similar to that of h^ (t) and g^(t)* In

this manner we can determine as many of the functions h
r
(t)



60

and g r
( t) as we please and thereby reduce the function f in

( 9 ° 23 ) to any desired degree,
g p

(t)
It can be shown that the functions h (t),-— are bounded

r t

in any finite t-interval, It follows that if the series (9o2 1+3

= ( 9 « 26 ) are terminated after k c. 13 ii (t), g ( t) have been

determined, then the difference | z-t
(
can be made arbitrarily

small for y sufficiently large. The expansion of f(t) in

powers of v” converges for\v|> V
q ; moreover, f(t)=0(v~ t“w ^) 0

We now use (9»22) as approximating equation and solve (9°1)

by iteration as before; to simplify matters, we can reduce

first ( 9 o 1 ) by the inverse of the transformation z = g(t) to

an equation in z and then compare the solutions of the resulting

equation with those of (9»20), Here it is more convenient to

express the final result in terras of Airy-func tions by intro-

duciog

(9.33) Z=(|z) 2/3 , M=^. 2/3=(v
2
-c)

1//3
,

L(j*.z) = «v£(MZ) 1/4Ai(IIZ).

sLt can then be shown by arguments similar to those used before

that

(9.3*0 J/Wi-x2
) = (mz)'ax (mz)^i + 0 (m"

2*' 1

)
j

where Z ranges over the upper half of the complex Z plane from

p
which the part of the sector 0 < arg Z < —tt that corresponds to

V

Jmz > 'kw is removed; and this formula is uniformly valid without

restriction upon X
, except for slight modifications near the

zeros of L
( j*. z) , provided v is real and positive.



61

The formula (9»34) was tested numerically for accuracy [3]>

it was found that in the case of n=2 it gives, for instance, at

least 8 decimals for v > 9? nearly 8 for v > 5> and more than 5

for \f > 2 0 Thus it is always more accurate than any other

standard formulas (like the two Debye "A-formulas" [32]),

Cherry's method can be extended to differential equations

of the form

(9o35) y" + (k
2
a(x) + b(x,k~

2
))y = 0

where a(x) has a simple zero at the origin and k is a large

parameter and the function b(x,y) is regular at x = 0, y = 0 [4]

However, we shall not present these generalizations here.

The theory of asymptotic solution of systems of linear

differential equations containing a parameter has very recently

been discussed by Turrittin [29]. His method of attack is essen

tially part of the "WKB" procedure we briefly mentioned earlier.



62

References

1. Birkhofi, G» D* "On the asymptotic character of the solu-
tions of certain linear differential equations containing
a parameter." Trans. Am. Math. Soc., vol. 9 (1908), pp.
21 9-231

.

2. Birkhoff, G. D. "Quantum mechanics and asymptotic series."
Bull. Am. Math. Soc., vol. 39(1933)? pp. 681-700.

3. Cherry, T. M. "Uniform asymptotic expansions." J. Lend. Math.
Soc., vol. 24 ( 1 9^9 ) ? PP. 121-130.

Cherry, T. M. "Uniform asymptotic formulae for functions with
transition points." Trans. Am. Math. Soc., vol. 68 (1950),
pp. 224-257°

5. Evans
;
R* L. "Asymptotic solutions in the neighborhood of a

turning point for linear ordinary differential equations
containing a parameter." Thesis, Univ. of Minn., April
1951.

6. Goldstein, S. "A note on certain approximate solutions of
linear differential equations of the second order with an
application to the Mathieu equation." Proc. Lond. Math.
Soc., vol. 28(1928), pp. 81-90.

7. Goldstein, S. "The freee oscillations of water in a canal of
elliptic plan." Proc. Lond. Math. Soc., vol. 28(1928),
pp. 91-99.

8. Goldstein, S. "A note on certain approximate solutions of
linear differential equations of the second order, (2)."
Proc. Lond. Math. Soc., vol. 330932), pp. 246-252.

9. Gradstein, I. S. "Linear equations with variable coefficients
and small parameters in the highest derivatives." Mat.
SbefrMik N.S., vol. 27(1950), pp. 4-7-68.

10. Horn, J. "Ueber eine lineare Dif f erentialgleichung zweiter
Ordnung mit einem willkurlichen Parameter." Math. Anna-
len, vol » 52 (1899)? pp. 271-292.

11. Horn, J. "Ueber lineare l>if f erentialgleichungec mit einem
veranderlichen Parameter*," Math. Annalen, vol. 52(1899)
ppo 340-362.

12. Jeffreys, H. "On certain approximate solutions oT linear dif-
ferential equations of second order." Proc. Lond. Math.
Soc., vol. 230 925)? pp. 428-436.



63

13. Kramers, H. A 0
cHVeXA enmeehanik und halbzahiige Guam tisi® rung® 88

Zeitsefari’f t . Physik , vol® 390 926), pp® 828-o40®

l4® Kramers, H» A. and Ittmann, 6.P. nZur Quanteilung des asyraraet-

rischen Kreis©l$,II n
. Zeitschrift Physik, vol® 58(1928),

pp o 217-231.

1 5. Langer, R® E. “On the asymptotic solutions of ordinary differ-
ential equations with an application to the Bessel func-
tions of large order," Trans® Am, Math® Soc®, vol® 330931)
pp. 23-64®

l6 0 Langer, R, E, 880n the asymptotic solutions of differential
equations with an application to the Bessel functions of
large complex order," TthWF® Am, Math, Soc®, vol, 3^(1932)
pP o 447-480

•

17» Langer, R, E® 8,The asymptotic solutions of certain linear dif-
ferential equations of the second order, 58 Trans® Am® Math®
Soc®, vol. 36(1 93 1*), PP» 90-106®

18® Langer, R. E® “The solutions of the Mathieu equation with a

complex variable and at least one parameter large. 88 Trans.
Am® Math® Soc®, vol. 36(1934), pp® 637-695.

19. Langer, R® E. 88The asymptotic solutions of ordinary linear
differential equations of the second order, with special
reference to the Stokes 8 phenomenon. 88 Bull® Am® Math, Soc.,
vol,® 4o(l 93*0 ? PP. 545-582®

20. Langer, R® E® 880n the asymptotic solutions of ordinary differ-
ential equations, with reference to the Stokes 8 phenomenon
about a singular point® 88 Trans® Am® Math® Soc®, vol® 37
(1935), pp. 397-416®

21 ® Liouville, J® !!Sur le developpement des fonctions ou parties
de fonctions en series dant les divers termes sont assujettes
a satisfaire a une meme equation dif f erentielle du second
ordre contenant un parametre variable® 88 Liouville J. ,

vol®
2(1637), pp. 16-35.

22® Noaillan, F® '"Developpements asymp totiques dans les equations
dif f erentielles linsaires a parametre variable® 88 Mem® Soc,
Sci® Liege, vol® 11(1912), 197 PP.

23® Perron, 0® t8 Uber die Abhangigkeit der Integral© eines Systems
Ixeearer Dif f eren tialgleiehungen von einem Parameter® 88

Si tzungsberich te Heidelberger Ak® Wiss®, Math.-Natur w®

,

Abb® 13(1916), Abh® 15(1918), Abh® 3(1919).



64

24 . SehXesinger, L. "Ufeer asyniptotische Dars teliuegen der Losungen
lihearer Diff ereotialsys teme als Funktionen eioes Para-
meters*” Math. Annalan 9 vo.1* 63(1907), pp. 277-300.

25° Stokes, G. G. "Memoirs and Scientific Correspondene e, ” Cam-
bridge 1907, vol . 1, p* '62.

26. Tamarkih, J. and Besikowitsch', A® "Uber die asympto'tischen
Ausdrucke for die Integral© eioes Systems linearer D'if-
f erentialgleichungen

,
die von einem Parameter abhangen.”

Math. Zeitschrift, vol. 21 (1924-), pp. 119-125®

27 o Trjitzinsky
9 W. J. "Theory of linear differential equations

containing a parameter,” Acta. Math., vol. 67(1936),
pp. i-5o.

28. Turrittin
9 K. L. "Asymptotic solution of certain ordinary

differential equations associated with multiple roots of
the characteristic equation.” Am® J. Math., vol* 53,
(1936), pp. 364-376.

29® Turrittin, H. L. "asymptotic expansions of solutions of sys-
tems of ordinary linear differential equations containing
a parameter.” Ann. Math. Studies, No. 29, pp • 31-11 6,
Princeton University. Press, 1952.

30. Voss, W® "Bedingungen fur das Auftreten des Ramsaueref f ektes”®
Zeitschrift Physik, vol. 33(1933), pp® 581-613.

31 . Wasow, W 0 "On the asymptotic solution of boundary value
problems for ordinary- differential equations containing a

parameter.” J. Math® Phys • , vol. 230944-), pp. 559-574.

32. Hats on
9 G® N. ?A treatise on the theory of Bessel functions.”

Cambridge Univ. Press, 1922.

33. Wentzel, G. "Eine VerallgemeineFung der Quantenbedingungen
fur die Zwecke der Wellenmechanik* ” Zeitschrift Physik,
vol® 38(1926)5 pp® 518-529®

34. Zwann 9 A. "Intensita ten on Ca-Funkenspektrum. ” Dissertation,
Utrecht, 1929®



Part III

Existence and Uniqueness Theorems for Asymptotic Expansions

Philip Davis



66

Fart III

Existence and Uniquenes s Theorems for Asymptotic Expansions

by

Phil ip Davis

In the present part, we shall discuss some function theore-

tic aspects of asymptotic expansions. These are closely re-

lated to the theory of interpolation and approximation for

analytic f unc tions^f or infinitely differentiable functions, and

to the theory of quas i-analy tic families of functions.

1 . Asymptotic Series in the Sense of Poincare

Let D be a fixed region in the complex z = x + iy plane.

We distinguish a point of the plane which is a limit point of

D. For simplicity, we may take the distinguished point as

z = 0. For a given f(z) which is defined in D, we consider the

following limits?

(1.1) a
o

= f

z -> o

a
1

= lira z“ [f(z) - a ]

. z —> ©
o

o

a
fi

= lira z”
n
[f (z)-a

(>

->a
1
(z)-. o o-a

n
_^z n”^

]

. z

—

o

o

If all the limits in (1.1) exist and yield the same value a

independently of the manner in which z goes to 0 in D, then

we shall say that f possesses the asymptotic expansion
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a
n

z
n

at z = 0, and we shall indicate this by writing

n=0
00

( 1 . 2 ) a „ tQ
n=0

n

The association (1 „2) is a purely formal one, and nothing is

said either as to the convergence of the right hand member of

(1 <>2) or as to the way the series represents the function,.

We restrict our attention to functions which are regular analy-

tic in the interior of D, and designate by A = A(D) the sub-

class of functions which are analytic in D and possess an

asymptotic expansion at 2 = 0, Let us note the following ele-

mentary consequences of the definition,. Given an f( 2 ) defined

in Do Some or all of the limits (Id) may fail to existo In

such a case f will not possess an asymptotic expansion at

2 = Oo If, however, f possesses an expansion then that ex-

pansion is unique 0 The class A of functions possessing asymp-

totic expansions is a linear class. Each limit a
n

in (lol)^

though defined in terms of the preceding limits^may be regarded

as a linear functional over As

(1<>3) a
n = %( f ) = L

n
(f)> = O? 1 ? 00 ®)? * 6 A

Thus, for f
^
^±2 (z A and for arbitrary complex constants c( ^

and o( 2
we have 0(1 + 0(2

f
2 ^ A and

( 1 o ^ ) L
r

($(.jf,j + ^2^2^ ^ ^
1

^ ^2 ^n ^2^ ? ^ 9
"1 9000)0

The asymptotic series (1 0 2) may be written in the form
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(1.5) f

(

z)/\j~2L k^(f ) 7
n

n=0
n

exhibiting the role of f in the formation of the series®

If the distinguished point z = 0 is interior to D, then the

class A coincides with the class of all functions which are

regular in D. For, if f is regular, it possesses a Taylor

expansion

(lob)
5

jz
|
< f, ^ > °

F rom ( 1 o 1 ) we have

(1 .7) a „
= lira

o
z -> o

a^ = lim
. z —> o

f (z) = f(0)

f '(0)

©

O

o

= lim
Z 0 k=n

f U0
St ( 0 )

The asymptotic series for a function at a point of regularity

therefore coincides with its Taylor series,. In this case,

the functionals L may be identified as derivatives®
n v

(U8) L
R
(f) = f

(n)
(0)/nl (n = 0,1,...).

On the other hand, suppose that f is regular in D-(0) o Then

the existence of the first limit of (1.1) already implies by

Riemann's theorem on removable singularities that f must be

regular in D» If £ is regular at z = 0, then its asymptotic

series converges in a neighborhood of z = 0. The converse

here is not true; if z" 0 is a singular point of a function,
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its asymptotic series may either converge or diverge*, A func-

tion f possesses a convergent asymptotic expansion if and only

if it may be written in the form

(1.9) f = g + h

where g is regular at z = 0 and h possesses an asymptotic

expansion which is identically zero. The existence of non-

trivial functions h which have this property (and are therefore

singular at z = 0) will be shown in ^3 for certain domains Do

For these reasons it is profitable to deal only with func-

tions possessing singularities at z = 0 and to restrict the

distinguished point to be a non-isolated boundary point of Do

If a singular function possesses an asymptotic expansion, the

singularity must be of a transcendental nature, for it is

easily seen that if f had a pole, an algebraic branch point

or a logarithmic singularity at z = 0, all the limits in (Id)

would not existo No extensive classification of singularities

which admit asymptotic expansions appears to have been made 0

The identification of L
r

in (1 *8) cannot in general be raadeo

Whether or not this is true depends to a certain extent upon

the domain D» For asymptotic expansions along the real line
4

all the limits (1 ol

)

may exist without implying any differen-

tiability properties whatever on the functiono On the other

hand, if D contains a positive angle at z = O^tbeeu this iden-

tification may be made 0
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Theorem *
g Let D contain a sector S§

j

arg z
j

< ©,
j

2
| .£. P?

p, 9 > Oo If f(z) is regular in D and possesses an asymptotic
' / \

expansion ( 1 » 2) in D-, then a = lim f
n Hz)/ni where the limit

n

may be carried out in any § |arg z
\

<
9 9^ < Q e Further-

more all successive derivatives of f possess asymptotic ex-

pansions valid in 5 . which may be obtained by term by termcaaoaaia9aa>ESHaE3iBiBmaiSBaaE3>zaK9BaB I enagmian i .ipi-i-ai.TWiTTiiiMiiffii inMganrrncaBoataMaiMMMJMaMgmTwi ih iWm i iijutilm a—nafiTurtfa iinniiin ;m iru_.« n

differentiation of (1«2) 0

Proof s Let 9.j < ©• < 9, and designate by the triangle

bounded by arg z = + 9*, x = /u • The limits (Id) imply that

(1 dO) f(z) - a
Q + a.^ z +oo*+ a^ z° + Q (z)

where £ (z) is regular in T^and continuous on its boundary.

including z = 0, and where lim (z) = 0® Therefore,
z^ o

(loll) f 8
( z) = + ^ a

2
z + 3 a ^z^+ oeo + na^z

0 ^ + nz
11

^EL ( z)

+ z
n
€ 5 (z)

Now, by Cauchy : s integral formula

(1 d 2) (z)
1

2^1
&Sil
( t-z)‘

dt

Hence for jarg z| < 9^ ,

i
_ i Max |€r(t)| A I \n

0.13) L" 4'(z)l < t&xj ' $ (1y) —
Lf—

* - 1 2iT |z
j

sin(© 8 -9
1
)

where 0 (T ) is the length of T » For n ,> 2, we have

*Ritt(1 1

)



lira

z o

7V.

|

z
n
£

!

( z) I <
2irsin(£ 9 -©

— Max I £(t) L But Ais arbitrary,

i> *c- T/J
1

and this last factor goes to 0 as /i.-> 0<, Hence, lim I z
n
£ ’ (z)[ =0,

z-^o* 1

(n = 2,3,ooo)o Thus we see from (1*11) that lira f ! (z) exists
z o

and equals a
1

and that f J (z) has the asymptotic expansion

na z
n

n-1
in jarg z

J

o We may now repeat this argu-
00

z:
n=1
ment for the successive derivatives 0

A converse of this result is also possible under certain

c ire urns tances

*

Theorems Let f(x) be real valued and infinitely differen

* (n) (x) exis

t

(n=0,1, 1 , o « 9 ),tiable in 0 < x < a and let lira

x->c+
or , in the complex case, let f(z) be regular in a sector Ss

larg z| <, ©, |zl < p and lim f^
n
^(z) exis

t

» Then f possesses
' z -^>0
an asymptotic expansion on the line (or in the sector) and the

values of the limits (1*1) are given by a = ( f

)

= lim f^
n
^(z)/n!o

z -> 0

Proof s Let n be a fixed positive integer» For an arbitrary a

and z in S we have the formal Taylor identity

n 4

(1»l4) f(z) ~ f(a) + (z-a) f ' (a) + <.»o+
^ ^(a)

urn I
(z”t)

n=1
f^

n ^(t)dt, or.

(1 ol 1+ I
) f(z) = f(a) + (z-=a) f'(a)+.o.+

n-1

*TT S
f(D)

(

Jc
7i

uz)du,

If we allow a-^0 in S and designate lira f^
n
^(z) by f^

n
^(0),

z -^o
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From the first limit in (1.1) we have a
Q

= lim f(z) = f(0)© Wc
z —^ o

proceed by induction and assume we have established that

for k-0
^ 1 ? . o o 9 n-1 © Then ^aj,=lim

z o

f
(k)

(z) __ f
(k)

(0)
k l V «

(1©l6) a
n
=lim z

n
[ f (z)™a o

-a^ z-

Now a
n

z -^o

f
(n ^(0)

nl

n-1
R-1 -I

Z J

= lim
z o

: lim
z o

Tn

STITT (
l(n) («> du

I

0

Tjyr ( (1-u)
n“ 1

[f
(n) (uz)-f (n) (0)]du = 0.

Jn

(n)The result follows by the continuity of f
v /

(z).

Example 1 © We cite here an example discussed in a previous part,

Let

(1-17) f(z) =

oo

o
TT^T dw

>
j

ar 9 z
l

<o{. < IT

A formal computation which may be justified yields
oo „w n

e w
(1.18)

and

(1.19)

Hence

( 1 © 20 )

series

( 1 . 21 )

f
(n)

(z) = (-1

)

n
n!

lim f
(n)

(z) = (

Z 0

(1+zw)
n+

1

dw

n

90

10

=» wndw = (-1

)

n
(nl

)

2
.

OO

f(z)^X (
n=0

n
ni z

Consider the function F(z) defined by the power

oo n
zFw = r z-jit

n=C 2 * n
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i
/ 1

1

We have lira (—rr) = (“nT*n)
= 1 so t ^iat

I
2

)

=
I is th e

n oo 2 n —xb 2

1/n

circle of convergence of (1.21). Now,

( 1 . 22 ) k|k! *—
n=k k « 2

( k-0 ,1 , o ® o

)

n

and all the series ' 1 « 22) converge for 2=1. Hence, by Abel's

theorem*

.

the limit holding as z—^ 1 between two chords with vertex at

z = 1. Thus
,
we may write

2. Some Generalizations of Asymptotic Series

As has been pointed out, not every function possesses an

asymptotic expansion. Thus, for instance, Tz does not possess

one at z = 0. In order to widen the class A of functions with

such expansions, we may allow the basis elements in the expan-

sions themselves to have singularities at the distinguished

point. This can be carried out as follows? Let z = 0 be a

boundary point of B and by 0
Q
(z), 0^ (z) ,

.

.

.

,0n
(z) , . . o denote

a sequence of functions which are regular in B and continuous

in the closure of B. Moreover let 0
R
(O) = 0 (n=1,2,...), but

vanish nowhere else in B and let

(1 .2*0 F (z)mZ ('Z' (?) (z-1)
k

k=0 n=k
.

Cf., e.g., Titschmar«h (12) p. 229
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( 2 . 1 ) lira 0R+1 (z)/0„(z) = 0 (n=0,1,...)
z o

00

We shall say that 7>1 c 0(z) is an asymptotic series in a

n=0
n n

generalized sense for f(z) at z=0 if

(2© 2) c
Q

= lira f(z)/0
o
(z)

Z -T' O

c
1

= lira [f(z)-c
0 0o (z)]/0 1

(z)
O Z —

O

c
n

= lim [f (z)-c
Q
0
o
(z)

o z—> o

•c
n-1 0n-1 (z) ^/0n (z)

If we again designate by A = A(D; i 0nl>
) the class of functions

which are regular in D and possess the above limits ,
we see that

th
A is a linear class and that the n

L
limit in (2©2) is a linear

functional defined over As c
fi

- L
fi

(f) (n=0,1,o©©)© may,

under certain circumstances, be identified as the limit as

2 —^o of an appropriate differential operator,

Example s Let A < <©», and 0 (z)=z
n

T o i n
oo

In this case the

z
^ n

and theasymptotic series are of the form i(z)^ 2T
n=0

ai

theory would be related to the theory of Dirichlet series

.

Series defined by (2.2) may be written alternatively as

(2.3)
oo

f(*)~ II L
n
(f) 0n (z); f fA.

The principal formal property of (2o3) is that of bic»rthoqonality f

This means that

(2o4)
Lfjj (0n ) =

^mn (m,n—Q,1 , ©©«) •

These relations are readily established from (2©2) and the van-

ishing of 0n+1 /0n
at z =0© Asymptotic series in the sense of
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/
Poincare, or in the extended sense of (2.2) are therefore parti-

cular examples of biorthoqonal series o The general concept of a

biorthogonal series may be explained as follows? Let A be a

linear class of functions and a sequence of linear func-

tionals defined on Ao Let^0 T^be a sequence of functions of A

for which the biorthogonality relationship (20^) holds,, A formal
oo

series f ^ 21 L (f) 0 ,
f & A, is known as a biorthogonal series

n=0
n

for fo Fourier series, Taylor series, interpolation series are

additional familiar examples of biorthogonal series

„

For biorthogonal series generated by given sequences

and *£0^, the following major problems may be raised,,

Ao The Interpolation Problem ? What are necessary and suf-

ficient conditions on a given sequence of constants in

order that the equations

(2.5) L
n
(f) = 0 (a = 0,1 ,...)

possess a solution f in A. In particular, is there a solution

for an arbitrary sequence

Bo The Uniqueness Problem s Is the set complete for A.

That is, do the conditions

(2.6) L
n
(f) = 0 (n=0,1 f G A

imply that f = 0. If the set is complete for A, then the

solution to an interpolation problem is unique if it exists.

C. The Problem of Uniqueness Classes? If is not com-

plete for A, can we distinguish non-trivial subclasses A*<C A
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such that is complete £©r A*„

D 0 The Problem of Representation s If ^
L

^ is complete for A
oo

(or for an A*) in what sense does the formal series f^ L (f)0
n-0 n n

represent £? or, how can we reconstruct f from a knowledge only

of the sequence of values L>
n
(f) (n=Q ? 1 ? ° ° » ) o If we operate

within a uniqueness class? then such a reconstruction is? in

principle? always possible 0 If we do not operate within a

uniqueness class, we can only hope to obtain f to within a

constant multiple of a zero function? i 0 e 0 ? to within a solution

of L
n
(f) = 0 (n=0?1? OO o) o

The main object of Part III is to discuss aspects of these

problems for asymptotic series in the sense of Poincare*, For

this case? interpolation is the construction 6£ functions

with preassigned asymptotic series * . The uniqueness problem

is that of constructing non identically vanishing functions with

zero asymptotic expansions,. The problem of uniqueness classes

and of representation is that of finding supplementary condi-

tions under which expansions are unique and of finding suramabil-

ity theorems

o

3» Functions Possessing Preassiqned Asymptotic Expansions

It is easily shown that for a wide class of domains D

the sequence is incomplete for A(D) 0

Theorem s Let the region D be contained in the sector

0 < < arg z < o(ir, o<!< 1 o Then is incomplete

for A(D)
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Proof: This is established by exhibiting a non-identically

vanishing function f which is in A(D) and for which L
R
(f) = 0

(n = Consider the function

-k

(3.D

where

(3.2)

We have

f(z) = e

k >

crz

1

/u
n

f =

2 gL

- ^^cosk©
In the sector I© < ol it

o o o o

|k©| < so that cos k© 6 > Oo Thus, lim |f| =0,

n=0, 1,ooo From (1»1) this implies that L
n
(f) = 0* n = 0,1,

Other examples of such functions are easily foundo Indeed,

for any g(z)£ A and for any f with the above property,

f(z)g(z) will again have this property,, Furthermore it is seen

that this proof holds for regions D with the property that there

exists an /l > 0 such that the circle |z = /2- intersects D

in a common region which is included in a sector,, The example

(3.1) does not hold in any region which winds around z= 0

infinitely many times; indeed this function does not possess

any asymptotic expansion in such a region» We turn now to the

interpolation problem for the sequence

Theorem : Let
n

be a completely arbitrary sequence of

complex numbers o Then there exist function f(z) which are

regular in a region D for which z=0 is a boundary point and

such that

(3.3) f (z )

^

2T p* n z
n

n=0 \
n



78

This theorem is frequently given another formulation as follows

s

Let ^ be a completely arbitrary sequence , then there are func -

tions f (z) which are regular in a region D* for which 2=0 is a

boundary point and such that

(3A) lira f

z ^ o

(n)
<*> =

ft,
C n-0 , 1 5000)

By the results of , these formulations are equivalent if D

and D* contain sectors,. In general, the origin will be a singu-

larity of the function in question,, This will surely be the case

if lim sup
| /3

n —* 00 n
1 //fl = 00 o This theorem has been proven under

conditions of varying generality by E, Borel (3)?Jo Fo Ritt (10),

To Carleman(5)^ A, BesikowitschO

)

9
P 0 Franklin(6), Go Polya(9)

5

and by numerous others 0 In view of the great interest in this

problem and the diversity of methods employed, we shall sketch

several proofs here.

First Proof „ This is due to Garleman and may be described

as a method of condensation of singularities. We shall con-

struct a function which is analytic in the closed half circle Ds

j

2
j

< 1 , Re(z) > 0, is of the form

(3o5) f (z) = €
q +

00—
~ n n z

z + e
n~1

n

and satisfies (3*3)° Let n > 1 be fixed,

we have

Then given an €“ > 0

(3«6)
Cr n

z
Z +6:

< Q 2 €: D *

Note further the identities



(3 - 7) h ^ t §£ z=o
=

0

1

0 < k < n

k = n

Let o{ be an arbitrary sequence of positive numbers such that
oo

L ^ ^
< oo o We select c = ^

, c^
= ^

andG > 0 such that
k

c i£Ifc i

7. + £
< in Do We proceed now by indue tion Q Having sel-

ected constants c q? c^ ? o o o 9 c
fi _^

and positive constants

£ n_ 1
?
we determine c

fi

by the requirement that

(3.8) P- n
[c

o
+

n.
dz

n o -r\ + c ^2=0 n = p»

This is possible since the bracketed sum is regular at z=0

Having determined c ,
we now determine an G such that

(3.9)

n

cn£n z

z +6
n

n

n

~°^n ’ z G ^

This is possible in view of (3.6) e The series (3»5) is dominated
oo

by X / I,
< 00 in D and hence converges uniformly and absol-

k=1
K

utely to a function which is analytic in the interior of and

continuous on the boundary of Do It remains to prove that

lira [f (z)- k
Q

- 3
7^0 ' l

Now,

|£ r__1
z
n 1

j z
n - (n-1 ,2 , o o o

)

c
i G cn^n z

n+1 r, /• \
ri ' + z R (z)

z + G n
n

= P
R
(z) + z

n+1
R
n
(z)

where R
r
(z) is bounded in Do Hence it suffices to prove that

Z^o
[P

"
(z) “ ^°" P

Z z
"=1 ^“n

=f„*
(3.11

)
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Now, in view of (3°7) and (3®8) we have

(3.12) ¥1
F
n
(z)

z=0
=
fk

(k=0,1 ,...,n)

by .

Hence/ the second theorem of g 1 , C 3 <* 1 1 3 follows.

/
Second Proof s This is due to Polya. The approach here is

probably the most natural one, but it leads to the necessity of

solving a system of infinitely many linear equations in infin-

itely many unknowns. We have seen that it is not always possible

to construct a power series with preassigned derivatives at a

point interior to its region of convergence. But this is pos-

sible when the distinguished point lies on the circle of conver-

gence. We take the distinguished point to be z=1 , and suppose

that we have a power series

(3.13) t (z) a + a. z + a. z
2
+,

convergent for |z| < 1. Suppose further that the following se-

quence of series derived from (3°13) by successive differentia-

tions also converge to the valu6 indicated

(3 o 1
i+) a

Q + a^ + &2 + +O0 °

a.j +2&2 + ^ a
3
+ 000

a
2

3®^"^" ° ° °

3
^

*^”000

Q
O

o

By Abels limit theorem* we can assert that as z 1 in an angle,

p o 229 O
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lim f^(z)/nS = p (u=0 9 1 ? o 0 o )

o

We can therefore write
z 1 -

'

GO

f(z)^Xl 3 (z- 1 )o Thus
9

the problem will be solved if given
n=0 ' n

an arbitrary set of values (3>
n

we can produce a solution of

the system ( 3 « 1
1+)o The first equation of (3ol4) implies that

a 0 and in such a case f would surely be regular in Jz| < 1*

The solution of the system ( 3 ° 1 ^) depends upon the following

/

sufficient condition which Polya has given for the solution of

such sys terns o Let there be given an infinite system of linear

equations in the unknowns x.s
oo

(

3

o 1 5 ) — a
n£

x
i “

^ n
( n—0 9 1 9000)

in which the coefficients satisfy

(3.16) lim a
j
_ 1

.k/ajk = 0
k 00 J J

( j—0 *1 9000} 0

( 3 . 17 )
IS

JC
Q

a
ok ° 0 ° a

o k+n-1
|

J* °

( n- 1 *2*000)

n1 a
n-1 *k+n-=1 •

( k—O * 1 9000)

The constants
^> n

may be completely arbitrary ,. Then there exists

a solution of the system (3»15) which is such that all the series

in (3o1 5) converge absolutely o

The proof of this theorem involves only elementary notions of

convergence* but will be omitted here® During the course of

its proof a solution is actually constructed by a stepwise

processo In the system (3<>l4) we have a . . = kS/jS(k-j)l so

that

(3olB) lim a.
k-> 00

k^a j*k j/k-j+1
= 0
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while D . = 1. The above conditions are therefore fulfilled
n 5

k

and ( 3 o 1 4-) possesses an absolutely convergent solution for all

sequences ^> n »

Third Proof s We construct here a function which is regular

in the entire z plane cut along the negative real axis and

which possesses a preassigned asymptotic expansion at z = 0,

in this region. This method is due to Ritt(10) and extended by

Franklin(6)

,

Let a = nS
(3> , and select quantities b such that

n in n

(3.19) 0 < b
fi

< 1 and b
R < /ja

n |

(n=0,1,,,,)

for some fixed k > O 0 If we set

oo

(3o20) i(z) =

n=0

n f .
z (1

b
n

2
1/3

1/3where z J designates that branch which is real for x > 0,

we can show that lira f^
n
^(z)/nl = & (n=0

, 1 ,2, , , , ) in the cut
z o V

n

plane. The proof is, briefly, as follows. If Re(t) < 0 then
2

|l e
1

1
< 2 1 1 1 ,

for if |t| < I then |l -e t
|

= 1 1 + + , ,

,

I 2
1 ' C. o

< |t(1 +
fx + JT +->«>)) < |t|

|

e-1 j< 2
1

1
1

, While if
'

jtj > 1, Re( t) < 0, )l - e
l

\

< 1 + je
1

/
< 2 < 2 jtj, Now,

Re(z
//

>̂

) = ^
^ ^ cos ^ > 0 in -it < © < ir 0 Hence

\
-b z

,

ll - «
I

< 2

dominated by

1/3

9
3

b
n

z
1/3

The series (3o20) is therefore

(3.2D F(z) = Z ff |z
n j|z"l/3 |= 2k ,H lz~

l/2

j
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It follows that the series (47) converges uniformly and absolutely

in any region 0 <tl< |z| < R lying in the slit plane. Since/iand

R are arbitrary f(z) is analytic throughout the slit plane. We

have moreover.
oo

(3.22) f(z) - a
0 = ^ z

n
(1

•v
1/3

*
V •1/3

Now
,

(3.23)
00

t ^ n
z " (1 -

n=1

“1/3

while e

-b z
c

)/ < 2k(eM-1)
j

z
-1/3

|
= o(1)

*—1/3
I _b p

—1/3 cos 0/3
(z—> 0)

= o(1) ? z-^ Oo Therefore

lim f(z) = a in the slit plane. Differentiating (3.20) for
z -^>0

mally there is obtained

00

(3*24) f »(z) = X n £ n
n=1 v

n-1 /
1

^n z
: (1 -e

1/3
00 fi b z

n
-b z

^ r* n n n
) - Z_ L/o- e

n=0 3z^/J

-1/3

The second series is dominated by an exponential series while

the first may be treated as above. The series (3°24) represents

the derivative of f . As before, we can show lim f f (z) = Pi°
z 0 '

Repeated differentiations yield additional series which can be

handled similarly.

Franklin has proved a very general existence theorem as follows

Theorem s Let P
R

be an infinite set of points such that no

For each n let there be
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given an arbitrary sequence of complex numbers
^

( k~0
, 1 , 0 « o

)

a

Then there exist functions f

(

2 ) which are regular in the slit

plane and for which

(3 = 25) lira f
(k)

(z)/kj = (2. (k,n=0,1 , . . „)

.

z-> P
R

'
nK

In the language of asymptotic series , this means that we can

find functions which have arbitrarily prescribed asymptotic

behavior at the points of an infinite isolated set. Further gen-
i /}

erality can be achieved by replacing z ^ in the last proof by
1

2m ^
z “ which will enable us to deal with regions with a finite

branch point at z“0 o Finally, functions with preassigned asymp-

totic expansions can be constructed when we adopt the generalized

definition of§2 0

1+0 The Birkhoff-Besikovitch Problem of Approximation

This may be described as a problem of approximation with

an infinity of auxiliary conditions » Let D and G be bounded

regions with G C D and the origin in D-G 0 Let there be given a

function g(z) which is analytic in Do It is desired to approx-

imate g(z) in G by a function h which possesses a prescribed

asymptotic expansion at z=0o We may use the construction of the

third proof of ^>3 to obtain a solution,, From (3°21) we have

jf (z)
|

< 2k e^
z
®|z

=
^ / ^|o Since k was completely arbitrary, we

may in any bounded region G for which the origin is an exterior

point, find a function f whose modulus is arbitrarily small in

G and such that the quantities lira f^°^(z) (n=0,1 >»»•) are
00 o

preassignedo Let ‘"X a z
n

be the required asymptotic expan-
n”0

11
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sion at z=0 and let g(z) =
oo

b^z in a neighborhood of z=0

Construct a function f(z) with an asymptotic expansion
oo

^ (a -=b )z
n

at z=0 which is of modulus < £ in Go Then the
/

.

n n —
n=G

f unc tion

(*+ol) h(z) = g(z) + f(z!

•o
n

will have the asymptotic expansion a z at z=0 9 while
n=0

(^o2) | h(z) - g(z)|j<£ in G

By making use of the generalizations mentioned in ^ 3 ?
it is pos-

sible to prove the followingo

Theorem ? Let D and G be bounded regions with G C D and let

z-j )0 oo,z n
lie on the boundary of Do If g is analytic in D, it

is possible to find a function h with preassiqned asymptotic

(k)expansions at z^oo.,z
n

and such that h v
(z) approximates

(k)
g (z) arbitrarily closely in G ? 0 < k < K < oo 0

This theorem was first stated in Birkhoff(2) for functions of

class C and for two points » The first proof was given by Ac

Besikovitch(1 ) o The general theorem above Is due to PoFranklin

(6) 0 Nor does this exhaust the number of auxiliary conditions

which can be imposedo We can, e 0 g 0? insist further that h ac-

tually take on the values g($^) at a finite number N+1 of

points in Go We shall show this for K=0 0 Let h* approx-

imate g to within 0 in G and have the prescribed asymptotic

expansions at z^ Q Let 0(z) be a function which has zero asymp

•
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totic expansions at z^ and such that 0 < J < |0(z)| <1 in G«

Such a function 0 may also be constructed by the above theorem,

Let PN (z)
be the polynomial of degree N for which

gU.) - h*(o/.) _ r>

» 3 ) Pnt^-; )
~ ” — P* ( i— 1 , 2

,

0 « o , N+ 1 )

«

" 1 0^)

Consider now

(^o^) h(z) = h*(z) + 0(z) PN(z)

The function 0(z)pj^(z) has zero asymptotic expansions at each

point z^ hence h has the required preassigned expansions at z^

Furthermore, h(^) - g($(^)o Now,

0*.5) h(z)-g(z)| < |h*(z)-g(z)| +
J

0

(

z)

< G +
|pn(z)

j

*

PN ( z)

F rora (**•3), M < 2fe ,
while from Lagrange's formula

™ w(z) W
(H-,,6) pN(z)

=

J, SrqrT 5 = 7T
. I

" Nfl |_,
so that max I Pw(z)j < 2£ M where

ze G 1
w

1
~ = max

z £ G
j

, w(z)

iti

Thus

(^e?) max | h ( z) - g(z)| < Q (1 + 2M)

,

z£ G I
1
~

establishing the stated result*

It appears, then, that in the absence of additional hypo-

theses (i c e 0 , utilizing only the coefficients a
n ),

an asymptotic

series may be summed to arbitrary values on a finite set of

points

«
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5® Uniqueness Theorems foi

We have observed that the set of functionals
^
L^given by

(1 .1 ) is frequently not complete for the class A(D) « We may

therefore raise the question whether non-trivial subclasses A*

of A may be found for which
^
L^ is complete. Such a class will

be called a uniqueness class for ^asymptotic expansions o Within

a uniqueness class, the interpolation problem of 3 need no

longer possess a solution, but if it does, the solution will be

unique 0 Uniqueness classes can be obtained by the requirement that

all asymptotic expansions of functions in the class deviate in the

large from their respective functions by not too great an amount,
oo

Let f(z)£ A and f(z) a z
n

at z=0 o Write
n=0 n

(5.D R
n
(z) = f(z) - a

Q
- a^z

n-1
n-

and consider the ratios

(5.2) f
n
(z) = z

n
R
n
(z) (n=1,2,ooo)

The functions f
n
(z) are analytic in D and are bounded as z->o„

Let ^m
n
^be an arbitrary sequence of positive numbers and consider

the subset of functions f (z) £ A which satisfy in addition

(5.3) jf^(z)
j

^ Mm^5 z ^ D, ( n—0 , 1 , ooo)

for some M > 0 o Designate this subset by A*=A*(m ), exhibiting the
n

dependence of A* on the preassigned sequence ^ m^ » If ^jrn
n
^does

not become infinite too rapidly, then A*(m
n ) will be a uniqueness

class. This will be the case, e 0 go, if we select m
n

so that

(5M lim inf (m = r < oo
n -> oo
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To show this, let £ ? g £-A*(m ) and possess identical expansions
00 00

f ( z ) ^T a z , g(z)^ X a n z ° Now ?

n^O
n

n=0
n

(5=5) |r8|$u\-X«X
|

* H,

l~©

'V •>• I

so that

(5.6) s. (^.,
1
,
1^,, j,

Hence for jz| £ t < (V-+4 )“"* we have jf(z)~g(z)
|

_< H^(t(V+4))^o

Allowing n^-^> 00we find that f-g=0 for Jz| < t, z£D^so that by

analytic continuation, f=g throughout Do

On the other hand there are sequences ^ m^^f or which A*(m
n

)

is not a uniqueness class® For let D
+

be a region such that

every point of D with the exception of z~0 is interior to D
+

o

Select an F(z) which is a regular in D
+

? possesses an identically

zero asymptotic expansion, but is itself not identically zero®

Such an F can be found for a wide class of regionsD' 0 Now

from the quantities m = max f (z) formed for®. (5o2) using F 0
O Tpy

j]
SI

'

2&D I
9

The class A*(m
n

) cannot be a uniqueness elasso A fundamental

problem, therefore, is to give necessary and sufficient condi-

tions on the sequence
|

ra^ in order that the class A* (m
R ) be a

uniqueness class for asymptotic expansions 0 This problem may

be formulated for arbitrary regions D, and for norms other than

(5o 3) 9 e,g,
? for ^f

n
(z)|

2 dxdy < Mn*
n

®

IX
If the growth of |m

n
^is restricted too severely, then every

function of A :<£ (n^) will be regular at z“0 so that the class will
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be a trivial one 0 This will occur if the lim inf in (5»^) is

replaced by lim sup<, To show this, observe that from (5.1) we

have

(5.7) »„(*) = * V"
so that

(5.8)

Hence

(5.9)

f
n
(z) = a

n + z f
n+1

(z)

(5.io)

a A 3 +
1
z

1
m .

n n
1

n+1

0 we obtain the general

\
a

1
< m

|
n

l
n

= r < oo ?
we have then

n —> oo
00

n i I -1
function g(z) = "22 a

n
z
n

-'LS re 9 ui flr for |z < If C
n-0

. ^

designates the circle
J

z |

< < r , then as we have seen A*(m
n

)

is a uniqueness class for expansions in D A C, hence f = g in

D C\ C and is therefore regular in |z| < r~ 0

An important uniqueness class was exhibited by G,N<. Watson

(13) who showed that m
R

may be increased to

m
n = 0 (

r

11

P (n(1 -€) + 1))(5.11

)

for an appropriate Do This was later improved by F» Nevanlinna

(8), who showed that we may take

(5.12)

We shall give Nevanlinna " s proof „ D is an infinite sector, and

m
n = 0 (

r

n
P(n + 1 ))
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for convenience we take 2=00 as the distinguished point® We must
/ 05

first prove a lemma of Phragmen-Lindelof type®

Lemma § Let £(z) be analytic in the angle “it/2k < arg 2 < *t/2k

and satisfy the inequality

(5 = 13 )
|f(z)| < «e_<rr*

; ©, CT> u, t= |z)

there ® Then f(z) = 0 o

Proof o By analytic continuation it suffices to prove that f

vanishes on the positive x axis® Select a T > and consider

the function

(5 = 15-) F (z) = e
T z f(z) =

We have |f(z)| = e
Tr cos k!Z

|f(z)| so that Dy (5 = 13)

(5 = 15)
|

F(z)
|

< C e"
(<r “T cos k0)rk

„

Select an c(, k < 9 such that 0“ = T cos (kir/2«Q® On the sides of

the angle -ir/2^ < arg 2 < k/2(K we have

(5d 6) F(z) < C

while at every point in and on this angle we have

(5 = 17) |f(z)

|

< C e
(T- '

r)rk
=

Selecting a k 8 such that k < k 8 <o(, we have, uniformly for

-ir/2^ < arg 2 < ir/2 c{ ,

(5.18) lira e
r

-F(z) = 0®
00

By a standard Phragmen-Lindeloi theorem*, we have |f(z)| < C
1

k
|

interior to =JT/2g( < arg z < tt/2ok® Therefore )f(z)| < c |e-
Tz

I

*See, e 0 g®

,

Titchmapih” (12) p® 177°



For a point x on the real axis we have \f(x)j < € e 0 We

may now select T arbitrarily large and obtain f(x) = 0 o

Theorem s If m = 0((T
n
P (if + 1 ) ) { n -> oo ) 9 then A* (in ) is

a uniqueness class for asymptotic expansions at z = 00 in

-ir/2k 5 < arg z < *r/2k% 0 < k°i k.

Proof s As we have observed previously
9

it suffices to show

that if f(z) is analytic in this region and if |z
ut

£{z)j

< M o-
n

+ 1 ) (n=0 9 1 ?000 ) then f (z) s0 o In the sector we
.

* - n+1

have |f(z)| £ M(«=)
n
P(f + 1 ) < (^)

n
(f)

n k
e “TT" Now

f or <7- (|r)
1 ' k

<
j

z
|

< whieh
9
for fixed z can be sat-

is f led by selecting n sufficiently iarge ? we have
n/

k

(£)
k

< all so that |f(z)| < M, ik(JL)
k

< M : ,
e

’

But by the preceding lemma
9 this implies that f(z) s 0 o

Specializing this theorem to the case k = 1 9 we see that if

(5° 19) m
r

= 0 (r*
1

PC n+1))

then A*(m
n ) is a uniqueness class for asymptotic expansions in

angles at least as large as ~ir/2 < arg z < ir/2o Within a uni-

queness class ? we can theoretically sum an asymptotic series and

arrive at that function which gave rise to the series o That is 9

since the functionals )ar® complete for a uniqueness class

A* (01^)5 then we can reconstruct any f €• A*(m
R

) from a knowledge

only of the sequence of asymptotic coefficients L^(f)o This

comes under Problem D ©f the problem of representation,,

One result in this direction is that due to G 0 NoWatson 0
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This tells os that if m
rr?

satisfy (5<>19) and if the basic sector

is at least as large as -&/2 — > < arg z < JT/2 + ^ ,
0 < < ir/2

,

then asymptotic expansions are sumraable to their function by a

Borel method in - < - 6 < arg z < 6 < and for jzj suffi-

ciently large 0

Theorem s Let D designate a region of the form

(5 o20) -ir/2 ^ < arg z < r/'2 +p^ ,
jz|>k>0 ? 0<A < ir/2.

Let f ( z ) be analytic in D and possess an asymptotic expansion

(5o21 ) f(z) = a + a
1

z + ooo + a
i

z
'‘ 0 ^ + R (z)

© 8 il“ 8 IS

iere

( 5 . 22 ) z
a

R (zn )
|

=0 (o“
n
r(n+ i}) ?

r> o

uniformly for all z in Do Then the function
n

oo at
(5.23)

oo at
<*> = Z ^

n=0

is regular in ircle t < 1 /(7
" and can be continued analy-

tic< to any sector

5o24) <=6<argt<6<

by means of the representation

(5o25) a(t)
1

2iri
duo

Here L is a contour consisting of two infinite radii arg u= + y< /S

j

u
j

> £, > k/g” joined by the circular arc |u| = A 3 |arg u| < y s

and traced positively from the fourth to the first quadrants,.

9
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C5o26) f(z) e”
w

a (— ) dw ?z *

J
0

for > k 9 jarg zj _< 5»

This theorem which may be regarded as an inversion theorem for

Laplace transforms is established by making formal substitutions

and justifying this by appropriate ma jorizations utilizing

(5 o22) 0 For exact details the reader is referred to Hardy (7)

pp, 1 92=1 9^<>

6, The Carleman Theory

For the case of the unit circle with z = 1 as the dis-

tinguished point* To Carleman (5) has given necessary and suf-

ficient conditions on the sequence ^m^ in order that A*(m
n

)

be a uniqueness class for asymptotic expansions » Carleman 9 s

method is of great ingenuity^ involving the solution of an

interesting minimum problem for analytic functions. We shall

consider the proof in detail.

Theorem s A*(m
n

) is a

pansions at z - 1 in j z j

(6,1) log

uniqueness class for asymptotic

< 1 if and only if

ex-

The equality sign in (6,1) is to be given the following meanings

either the series appearing behind the integral has a finite

radius of convergence* or its radius of convergence is infinite

and the integral itself diverges, A finite radius of conver-

gence implies that lira inf (m )
!/n “ p< oo 9 and we have

n oo
already seen that in such a case A*(m ) is a uniqueness class.
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The interesting possibility is. therefore the second one.

We make the following preliminary observations A*(m
n
) is not

a uniqueness class if and only if there exists an f ^ 0, regular

in )z
|
<lfor which

(6o2) (n=0 9 1 o o o ), < 1

.

For ? if A*(ra ) is not a uniqueness class *
there will exist two

functions g(z) ? h(z) £ A*(ra ) possessing the same asymptotic
oo

expansion a (1-z)
n satisfying

n=0

(6.3) °\(*\ (i-sr
- i

0

(1-4^
(n=0,1 pc). Therefore^ (6 C 2) must hold with f = ir(g-h)

versely, let f(z) be regular in |z| <
|
and satisfy (6 0 2 )

These conditions imply that

(6M lim ' f(z)
1

(1-z)
n

= 0 ( H“0 j 1 5000)

Con-

o
so that from (Id) we have f(z)^0 + 0<>(1-z) + Oo(l-z) +000

Thus , f is in A^Cm^) and possesses a zero asymptotic expansion,,

For an arbitrary f(z) regular in |zj <lwe introduce an in-

tegral

(6o5) I„( f >0“) = ^ ”2 2k
k~0 Q»

lilH
which is of fundamental importance to the proof of Carleman t s

Theorem^ and inquire as to its minimum value under the nor-

malization f(0) - 1 a
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Lemma 1 „ As f (z) runs through the set of functions regular

in jz| < |
and satisfying the normalization f (0) = 1 , the inte-

gral I (f;(T") possesses a minimum value I^*(0") which is given by

s>o

(6.6>**T*<(r) =.
i - ^k

9/i>

Proof 5 Define a function w (z) by means of

(6.7) (
|
-?' i

)

v~
4. (i-»r

1

o~

-

j

1-1 »

6

+^ ,

Then

(6.8) 1 (i-'f
•v*

-

4-
t \ \ +

/Vv\

£ ^

©is jzj = 1 ?
we have z = (z) \ so that

(6.9) w
Q
(z)

i

zH
- ) (1-»l

n
|

2
,

)(1-2)
n=1

l

2

2 2
in ra.

4-

+ 000+ “^=5 = -O^Cz)
m

Now z
n w (z) is a polynomial of degree 2n<> From (6„7 ) 9 z=0 is

not a root*, while from ( 6 0 9 ) there are no roots on jz| “
1 ,

From ( 60 7) if z ~ p is a root 9 then z ™ P”**
is also a root 0

We designate the roots which lie in the unit circle by 9 p2°°

Then

(

6

o 1

0

) Z
0W

n
(z) - c(z- ) O O O (z-

p n
) (z- ^)ooo(z=-^0 ^
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and C = (- so that

(60II) w
r
(z) " (m

0

2

p i
°ooD

n )
1

I r
1 )d“p

k
z >

k-\

It follows that
<V(W

(6o12) w (z)
O

14=1

o
2
fr-p„)

_1 IT (1-P^)(i-Pkz)
k-\ '

'

Since the coefficients of the polynomial z
nw

n
(z) are real, the

quantities ^,<> 00
, pR

are conjugate two by two (if n is odd,

one ^ will be real) so that^fl” (1“ p^z) = TT (1- p^z) ° Thus,

2 „

(6o13) w (z)
n

•k-i ' fcs. \

" (m
o fl

0 0 0 Pn^ Trio™

From (6o13), (6»9)j and (

6

«

5

) ^

(
r 1 rr(i-p^)

(6 0 i^) X^(f J
- Pk) '

*

2^
If we set g(z) = TT ^

11 ~~
\ f( 2 ) ?

then g is regular in jz| < 1,

(1 - z)
n

g(0) = 1 if f(0) = 1, and we must have
\ jg|

2
ds < 00 <> If

ffWfc 'J

0 - 2
)

f^)

= 1 + ZT a»z , then
n=1

2ir

^1-

00
ds = 1 + Z

k=1

The minimum value of this integral therefore occurs with

a^ = 0(k=1 ,2, o o o ) ,
that is, with g(z) = 1, and has the value 1 e

(1 _
%n

The function which minimizes (6 0 lT) is therefore f(z)= T . 7-L.

-ft-d-Pk*)
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It Is regular in
J

z
|

< 1 » Furthermore

(6.15) yll ) = (m
0

‘

ft... Pn
)_1

-

We now apply Jensen 5 s formulae* This states that if a function

h(z) v h(O) "/ 0 5
is analytic in jzj < R, and if ^ ~ 000

are the moduli of its zeros in |z
|

< R, then for UQ< t< K+v

( 6 . 16 ) log
r"^gd. - y f log Jb(fe

ie
)|

de.
r ^ o o o r_

1 n vJ

&

In ( 60 I 6 ) select h(z) = z
nw (z) ? t = 1 , then we obtain from

( 60 I 6 ), (6o13)» (6 o9)>

(6.17)

rrr
r

log I„*( 1 ) = yn
log XL n

(e
1 <

^)d©<

n

From (6.9) ?
= (2sin ^)

n XT [m.
P
(2sin §)' 1

" * k=0

so that 2^

(.e.mhfth) = J ^ /l

iTr-

&s© J /F 0 \
in view of the vanishing of the first integralo Setting

© “1 k
2sin

2
= r ? and m

k
“ m

k
°

9 we °^ ta ln ( 606 ) 0

Lemma 2 0 The sequenc e I * ((T) is bounded as n 00 if and

only if

See, eog 0 j Titehmarsh" (12) p Q 125o
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(6 0 1 9)
^ 2k

dr <
p ) p ^ oo

k=0
m
k

r

oo

z

Proof g By Lemma 1 , I * is bounded if and only if the

quantities (6 0 6) are bouodedo Since I * (cr) are non=dec reasing
n

is n oo , I *

ivt, / T - \
"/J 3 ( Sa'-Zr*-

)

J

are bounded if and only if

^ #

'S'*-'
Setting /jJ

1
' = A-/(r“ 9

we see that this statement is equivalent to

f . f
*5* \ —

,

^ ^ ^S-0

afn, is equivalent to (6 0 1 9) because of the inequalitiesThis aga;

>. 1 ? for 1 < oo
,

and the convergence

1JT-
After these preliminary lemmas, we turn to the proof of

Garleman°s theorem,. It suffices to show that there exists an

f regular in
J

zj <1? f(z) 4 0, such that

(6 o 20) <. m„ (n=0, 1 9 |z I < 1

if and only if (

6

0 1 9) holds,. Let f(z) be regular in jz
J

< 1 and

thsatisfy (6<,20)„ If f has a zero of the p order at z = 0 3

0 < p < oo 9 write f(z) = z^h(z) 0 Then, h(z)/h(0)| = L

Now,
.

^

(6 0 21 )
^ lx * 1 v ‘ 1

(Msj/uo)
j* z-

1*
\
vm

I

s
- ZZ^ (i-i) U.
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so that by ( 6 o 20 )
' A,

Cb.22)I^(Wl juo) '><!) i J^ )2
_ Z_ a-u*- £ ± _ —
fe^o Ikloll^ (jr^lN

*

s

J

)

for £T*> 1 „ But I * < I and therefore I * (01 is bounded as
n -a-3* n n

n oo o Applying Lemma 2 ?
we conclude that ( 6 0 1 9) hoi ds o

Conversely j
assume that ( 6 0 1

9

) hoi ds 0 Then we have 9

(6o23) I/O) < M (»fO,1,ooo)

Let 'P (z) designate the minimizing function arising in Lemma
J _^n

1 with <7* = 1 $
and given by^ (z) = X. ’ ~

”
° We have

?

(6.24)
1

2ir
% (z)

k=Q m, (1 -z)'

it ( 1 -Pkz)

d s M C n-0 9 » 9000 )

k\~\
th

In particular^ by taking the 0 term of the left hand member

of (6 0 24)

2
(6o25)

arm 2 i'fr
o

k\-\

z) ds < M (n-0 9 1 $ o o o J o)

From (6 0 25) it follows that
} ^(z)^ f ora a normal family* in

|z| < 1o 'There therefore exists a subsequence l

^n
(z) eonver

1 / P
ging uniformly in every closed subregion of z < 1 to an

analytic function F(z) 0 Now (0) = s© that F(0) = 1.

From ( 60 24-)
P

See e 0 go f Tiickmarsh' ( 12 ) p Q 169



IOC

(6o26)

so that

(6 0 27)

2JTm,

la!

v
fn (z)

(1-z)*
1

2

ds < =0,1 o o o ^ n)

.
z

«

(1-z)'

ds < 2>r M m, 0 < r < 1 ( k=0
? 1 , 0 o o 9 n

)

selecting n=n_ in (6„27) and letting p -> oq we obtain
P

(6.28) ds < 2ir M m
k

0 < r < 1 t“0 ,

1

y ! 5000 )

We wish now to show that from F(z) and (6 0 28) ?
we can construct

an f(z) regular in |z| <
J
for which (6 o 20) holds 0 At firs t 9

we

shall insert a well known inequality for analytic functions 0 Let

.2 )
= "XI a

n
z
n

be regular in jzj <|, Then 9 j |g(z)|

fckA-

n=0 n *
1

00
n

a z
n

2Ta„z_ ds = 2it
*— n n X

n^O

Lds

n+1 M 0 < r < 1 o On the

other hand
9
applying the Schwarz inequality to Xq a

n
z
n

? |g(z)|

. ,
\ \2 2n<

< c X a I r

n=Q 1
n 2 ? so that

r

(6 0 29) g(z) < 1_
2fT

^ j

g ( 2
)

|

V
d s

, I
z

I

< r

Finally ?
let

(6o30) £(z) = a(1-z) F (

1

z, (0 < b <

and introduce

(6o31) t = 1 - b(1~z) o

Since jz| < 1 implies jtj < 1, f(z) is regular in jz
|

< 1

Now
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(6.31

)

f UJ- = ,hkab (1-t)
F(t)

(1-z)* (1=t)
K

Applying (6 0 29) to (6.31) with g = F(t)/(1=t)
k

s and using (6 Q 28)

we obtain

(6.32)
f (z)

( 1 “Z

)

k
ab

k<=1 (1-t)

f M m,
c'

H
|t| <i

Allowing 1

,

(6o33)

Now
?

(l -HI
1

)

f (z)

(1-z)
1

< ab
k_1

m„
(i- 1.1*5*’

H"'

6-^(1-^ + 1*1
u

) _ ^ (i-a-a 4-iii
1
-)

94- ) -i-Vh-tp) (a.4_4 ).^ /_

^

so that for |z
j

< )
we have

(6.3*0
iUtH

.,< %f
~
l) - =

(1- |t|^) (b~fo ; (2==z=z) 1 b

Henee 9 from (

6

0 33)

9

(6o35)
(1 =z)

a b
k“¥ /Ma sj

* V" oa. ( k-0 q 1 5000)

Since 0 < b < 1 and a was entirely arbitrary^ we may now select

it so that the inequalities (6 o 20) are satisfied,.

This completes the proof of Corleman ,! s Theorem*, Carleman

has provided additional characterizations of sequenees^mj^f or

which (60I) holds ? and has given a method for the construe*

tion of the unique f (within an A*(m )) from a knowledge only

of its asymptotic coef f icients

.
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