NATIONAL BUREAU OF STANDARDS REPORT

2369

A NUMERICAL ANALYST'S FIFTEEN-FOOT SHELF

by

George E. Forsythe

National Bureau of Standards, Los Angeles

U. S. DEPARTMENT OF COMMERCE
NATIONAL BUREAU OF STANDARDS
THE NATIONAL BUREAU OF STANDARDS

The scope of activities of the National Bureau of Standards is suggested in the following listing of the divisions and sections engaged in technical work. In general, each section is engaged in specialized research, development, and engineering in the field indicated by its title. A brief description of the activities, and of the resultant reports and publications, appears on the inside of the back cover of this report.

Ordnance Development. These three divisions are engaged in a broad program of research Electromechanical Ordnance. and development in advanced ordnance. Activities include Electronic Ordnance. basic and applied research, engineering, pilot production, field testing, and evaluation of a wide variety of ordnance matériel. Special skills and facilities of other NBS divisions also contribute to this program. The activity is sponsored by the Department of Defense.

Missile Development. Missile research and development: engineering, dynamics, intelligence, instrumentation, evaluation. Combustion in jet engines. These activities are sponsored by the Department of Defense.

• Office of Basic Instrumentation
• Office of Weights and Measures.
A NUMERICAL ANALYST'S FIFTEEN-FOOT SHELF*

by

George E. Forsythe

National Bureau of Standards, Los Angeles

PREPRINT

*This compilation was sponsored (in part) by the Office of Naval Research, USN.

Approved for public release by the Director of the National Institute of Standards and Technology (NIST) on October 9, 2015.
A NUMERICAL ANALYST'S FIFTEEN-FOOT SHELF*

by

George E. Forsythe

National Bureau of Standards, Los Angeles

Imagine a laboratory of numerical analysis, with computers, coders, problem analysts, and research mathematicians. The group varies in mathematical experience from new college graduates to professionals with long research records. Disappointingly few can profitably consult a book not in English but, pooling talents, the group can read English, French, German, Italian, Russian, and Hebrew quite well. Quite as important as a comprehensive library (assumed to lie within a few miles) is a small library in the laboratory building. What should such a working library contain?

Clearly the library needs a diversity of material, of which at least five classes can be distinguished:

A. Mathematics books.
B. Books on computing machines.
C. Tables of functions.
D. Periodicals.
E. General references (e.g., language dictionaries).

*This compilation was sponsored (in part) by the Office of Naval Research, USN. It represents the opinions of the author only, and not those of the National Bureau of Standards nor the Office of Naval Research.
This article is a proposed list of about 140 essential books in class A. The reader is warned that the list has been hastily prepared and is very tentative; its inclusions and omissions should not be taken too seriously.

Class A was divided into the following five categories, of which four have been split into subcategories:

1. Bibliographies on mathematics.
2. Collections of formulas.
3. Books on numerical analysis.
4. Other books on applied mathematics.

In selecting the titles five qualities were explicitly considered: (a) adequacy of material in topics likely to be needed; (b) use of English language; (c) completeness of bibliography; (d) readability; (e) recency. The order of precedence given to these qualities depended on the book user; for mature research men it was perhaps a, c, e, b, d, (most important first), while for junior computers, perhaps b, d, a, e, c. In categories 1, 2, and 3 a considerable proportion of the available books has been listed, so that any enlargement of the library would occur mainly in categories 4 and 5.
The bibliographical citations came from the books themselves, from the Library of Congress cards, or from Parke's very helpful Guide (see p. 4 below). Mrs. Mildred Martinolich helped prepare the citations.
1. BIBLIOGRAPHIES

VLASOV, V. Z., GOLUBEV, V. V., and MOISEEV, N. D. (editor),
Mechanics in the U. S. S. R. in the thirty years 1917-1947 (Russian),
Moscow-Leningrad, 1950. 616 pp. [Companion volume to that of Kurosh and others.]

2. COLLECTIONS OF FORMULAS

a. General

HASTINGS, Cecil Jr., Approximations in numerical analysis, Loose-leaf sheets being published by the RAND Corporation, Santa Monica, California, 1950 ff. 74 sheets so far.

b. Bound with numerical tables

NATIONAL BUREAU OF STANDARDS, Tables of Chebyshev polynomials \(C_n(x) \) and \(S_n(x) \), Applied Mathematics Series, vol. 9, Government Printing Office, Washington, 1952. 161 pp. [The introduction by Lanczos is a valuable reference.]
3. REFERENCES ON NUMERICAL METHODS

a. General

b. Matrix problems

c. Differential equations

d. "Monte Carlo" methods

REFERENCES ON APPLIED MATHEMATICS

a. Engineering mathematics

b. Theoretical physics

c. Mechanics

d. Statistics

e. Economics

5. REFERENCES ON PURE MATHEMATICS

a. Logic

b. Algebra

c. Number theory

d. Analysis in general

GOURSAT, É. (translated by E. R. Hedrick), A course in mathematical analysis, Ginn, Boston, vol 1, 1908, 548 pp.; vol. 2, part 1, 1916, 259 pp.; vol. 2, part 2, 1917, 300 pp. [For vol. 3 see next entry.]

e. Calculus

f. Real variables

g. Complex variable; conformal maps

h. Series, etc.

i. Fourier series; transforms

j. Polynomials and approximation

AKHIEZER, N. I., *Lectures on the theory of approximation* (Russian), Moscow-Leningrad, 1947. 323 pp. [The compiler has not seen this book, but the author is an expert on the Russian work in this field, which is so important for numerical analysis.]

k. Special functions

ROSSER, J. B., Theory and application of \[\int_0^z e^{-x^2} \, dx \] and \[\int_0^z e^{-y^2} \, dy \int_0^y e^{-x^2} \, dx, \] Mapleton, Brooklyn, 1948. 192 pp.

1. Potential theory

m. Differential equations

TAMARKIN, J. D., and FELLER, W., Partial differential equations, Brown University, Providence, 1941. 268 pp. [Mimeographed notes.]

n. Difference equations; integral equations

o. Inequalities

p. Calculus of variations, etc.

q. Probability

r. Topology

s. Geometry

March 12, 1953
THE NATIONAL BUREAU OF STANDARDS

Functions and Activities

The functions of the National Bureau of Standards are set forth in the Act of Congress, March 3, 1901, as amended by Congress in Public Law 619, 1950. These include the development and maintenance of the national standards of measurement and the provision of means and methods for making measurements consistent with these standards; the determination of physical constants and properties of materials; the development of methods and instruments for testing materials, devices, and structures; advisory services to Government Agencies on scientific and technical problems; invention and development of devices to serve special needs of the Government; and the development of standard practices, codes, and specifications. The work includes basic and applied research, development, engineering, instrumentation, testing, evaluation, calibration services and various consultation and information services. A major portion of the Bureau's work is performed for other Government Agencies, particularly the Department of Defense and the Atomic Energy Commission. The scope of activities is suggested by the listing of divisions and sections on the inside of the front cover.

Reports and Publications

The results of the Bureau's work take the form of either actual equipment and devices or published papers and reports. Reports are issued to the sponsoring agency of a particular project or program. Published papers appear either in the Bureau's own series of publications or in the journals of professional and scientific societies. The Bureau itself publishes three monthly periodicals, available from the Government Printing Office: The Journal of Research, which presents complete papers reporting technical investigations; the Technical News Bulletin, which presents summary and preliminary reports on work in progress; and Basic Radio Propagation Predictions, which provides data for determining the best frequencies to use for radio communications throughout the world. There are also five series of nonperiodical publications; The Applied Mathematics Series, Circulars, Handbooks, Building Materials and Structures Reports, and Miscellaneous Publications.

Information on the Bureau's publications can be found in NBS Circular 460, Publications of the National Bureau of Standards ($1.00). Information on calibration services and fees can be found in NBS Circular 483, Testing by the National Bureau of Standards (25 cents). Both are available from the Government Printing Office. Inquiries regarding the Bureau's reports and publications should be addressed to the Office of Scientific Publications, National Bureau of Standards, Washington 25, D. C.