TEST OF PRECAST PRESTRESSED
ROOF PANEL NO. 1
(TYPE A)

by

C. T. Valenti, Jr., T. W. Reichard
L. F. Skoda and D. Watstein
THE NATIONAL BUREAU OF STANDARDS

The scope of activities of the National Bureau of Standards is suggested in the following listing of the divisions and sections engaged in technical work. In general, each section is engaged in specialized research, development, and engineering in the field indicated by its title. A brief description of the activities, and of the resultant reports and publications, appears on the inside of the back cover of this report.

Ordnance Development. These three divisions are engaged in a broad program of research Electromechanical Ordnance. and development in advanced ordnance. Activities include Ordnance Electronics. basic and applied research, engineering, pilot production, field testing, and evaluation of a wide variety of ordnance matériel. Special skills and facilities of other NBS divisions also contribute to this program. The activity is sponsored by the Department of Defense.

Missile Development. Missile research and development: engineering, dynamics, intelligence, instrumentation, evaluation. Combustion in jet engines. These activities are sponsored by the Department of Defense.

• Office of Basic Instrumentation
• Office of Weights and Measures.
TEST OF PRECAST PRESTRESSED
ROOF PANEL NO. 1
(TYPE A)

by

C. T. Valenti, Jr., T. W. Reichard
L. F. Skoda and D. Watstein

Approved for public release by the Director of the National Institute of Standards and Technology (NIST) on October 9, 2015.
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Introduction</td>
<td>1</td>
</tr>
<tr>
<td>2. Description of Test Specimen</td>
<td>1</td>
</tr>
<tr>
<td>3. Fabrication of Specimen and Description of Materials</td>
<td>2</td>
</tr>
<tr>
<td>3.1 Forms</td>
<td>2</td>
</tr>
<tr>
<td>3.2 Prestressing Units</td>
<td>2</td>
</tr>
<tr>
<td>3.3 Welded Wire Fabric</td>
<td>3</td>
</tr>
<tr>
<td>3.4 Concrete</td>
<td>3</td>
</tr>
<tr>
<td>3.5 Prestressing Technique</td>
<td>3</td>
</tr>
<tr>
<td>4. Testing Procedure</td>
<td>4</td>
</tr>
<tr>
<td>4.1 Test Setup</td>
<td>4</td>
</tr>
<tr>
<td>4.2 Method of Loading</td>
<td>5</td>
</tr>
<tr>
<td>4.3 Instrumentation</td>
<td>5</td>
</tr>
<tr>
<td>4.4 Description of Test</td>
<td>6</td>
</tr>
</tbody>
</table>
TEST OF PRECAST PRESTRESSED
ROOF PANEL NO. 1
(TYPE A)

1. INTRODUCTION

The study of precast-prestressed concrete roof panels was initiated in the National Bureau of Standards at the request of the Bureau of Yards and Docks for the purpose of establishing design data for prestressed thin shell ribbed panels of various cross-sections.

The following report presents the data obtained in the test of one prestressed roof panel, type A, slab 1.

2. DESCRIPTION OF TEST SPECIMEN

The prestressed roof panel tested was constructed in accordance with Bureau of Yards and Docks plans (Sketch A-1, October 4, 1952) and specifications. The 5 ft by 24 ft panel was essentially a thin slab stiffened by two edge beams and two transverse ribs. The longitudinal edge beams were 8-in. deep and 2 1/2-in. wide at the base. The outer surfaces of the edge beam were plumb; the inner surfaces tapered up at a slope of 1.5 in. in 8 in. and became an integral part of the slab. At a distance of 9 in. from either end, there were two transverse ribs. The transverse ribs were 7 7/8-in. deep, 2-in. wide at the base, and tapered up at a slope of 1 in. in 7 7/8 in. until they merged into the slab. The portion of the slab enclosed by the longitudinal beams and transverse ribs was 1-in. deep. At the two extremities if the panel, the slab was 3-in. deep.

The slab and the stiffening members were reinforced with 2-in. by 2-in. by 12 ga welded wire fabric. Each transverse rib also included two No. 3 deformed reinforcing bars, one at the top and one at the bottom. These bars met the requirements of A.S.T.M. Specifications A305-50T and A15-50T for deformed reinforcing bars of intermediate grade. Each longitudinal edge beam enclosed one ten wire Freyssinet prestressing unit complete with flexible conduit and placed in a parabolic curve. An overall view of the test slab is shown in figure 7.
3. FABRICATION OF SPECIMEN AND DESCRIPTION OF MATERIALS

3.1 Forms

Since the reinforcement was to be post-tensioned and the specimen had to be supported along its entire length prior to prestressing, the forms were constructed so as to permit stripping of the web and side surfaces of the longitudinal and transverse edge beams while continuing to support the base of the longitudinal edge beams. Therefore, the form was elevated on wooden trestles to permit working beneath the specimen without moving it. Figure 1 shows the overall view of the form. The trestles were joined by 2-in. by 4-in. pieces of Douglas fir and leveled with an engineer's level. The 2-in. by 4-in. struts were then grouted with Hydrocal to assure complete bearing and eliminate deflections of the form under the weight of the concrete. Plywood was used for all cast surfaces of the specimen to assure smooth surfaces. The web of the specimen was supported with wedge shaped 2-in. by 6-in. pieces of Douglas fir spaced 1\(\frac{1}{4}\) in. on center. The wedges were cut so as to permit complete support of the web and inner surfaces of the edge beams. The outer surfaces of the edge beams were supported 1\(\frac{1}{4}\) in. on center as shown in figure 1.

3.2 Prestressing Units

Ten wire Freyssinet prestressing units were used to apply the required prestress in the specimen. The units were obtained from the Intercontinental Equipment Company, Inc. of New York, N. Y. Each unit is complete with two end anchorage cylinders, two end anchorage cones, one flexible steel conduit, and ten 0.196 in. dia high yield point steel wires. To determine the properties of the wire, two samples were tested in tension in a 60,000 lb testing machine. Strain data were obtained using both Tuckerman optical gages and SR-4 bonded wire strain gages. Figure 27 shows the stress strain curve and Table 1 gives the properties of the wire, from data obtained with the Tuckerman gages. Two Freyssinet double acting hydraulic jacks and one five gallon capacity hydraulic pump were obtained from the above mentioned manufacturer to apply the pretensioning force to the specimen. Details of the end anchorage units and the hydraulic jacks in place for prestressing are shown in figure 6.
3.3 Welded Wire Fabric

Two in. by 2-in. by 12 ga welded wire fabric, obtained from the American Steel and Wire Company, Washington, D.C., was used to reinforce the web and edge beams of the specimen. The wire fabric was supported by 1/2-in. slab bolsters. The placement of the reinforcement in the form may be seen in Figure 2. Segments of the wire fabric were measured with micrometer calipers and the average diameter was found to be 0.1051 in. Tensile tests were made on several sections of the wire fabric, using Tuckerman optical gages to measure strain. It was found that the properties of the wire varied greatly among the individual specimens; the data obtained from only one specimen, however, are given in Table 1 and Figure 28.

3.4 Concrete

Proportions of the concrete mix used were 1:2.48:2.02, by weight. The cement factor was seven bags per cu yd.

White Marsh, Md. sand and pea gravel were used as fine and coarse aggregates. The pea gravel was passed through a 3/8-in. standard sieve to obtain 3/8-in. top size aggregate. High-early strength Portland cement was used with calcium chloride (2 percent by weight of cement) to permit early stripping and prestressing. Figure 3 shows the slump test made on the preliminary batch of the mix. The five 5 cu ft batches used to fill the form had slumps varying from 1 1/2 in. to 4 1/2 in. The specimen was cured under wet burlap for four days, then air dried for three days to permit attachment of SR-4 bonded wire strain gages. Ten standard 6-in. by 12-in. cylinders were cast at the time the specimen was made. The cylinders were cured in a curing chamber until they were tested. The average compressive strength of four cylinders tested at the time of prestress was 6760 psi. The remaining six cylinders, which were tested at the time the specimen was tested, had an average compressive strength of 6950 psi. Properties of the concrete are given in Table 1 and the stress-strain curve is shown in figure 26. It is noted here that the information in the Table, and the stress-strain curve, are from data obtained from two specimens tested at the time of prestress.

3.5 Prestressing Technique

When the specimen was 20 days old, the first attempt at prestressing was made. The two 10 wire bundles were slipped
into their respective flexible conduits which were cast in each edge beam of the specimen. The ends opposite the jacking point were anchored with the manufacturer's end anchorage device. Since it was felt that the pressure gage supplied by the manufacturer would not be sufficiently accurate to measure prestressing forces transmitted to the specimen, dynamometers were inserted between the end anchorage cylinders and the specimen at the jacking point. These dynamometers were used to control the load applied to the specimen. A close up view of the dynamometers and the hydraulic jacks in place for prestressing is shown in figure 6. The first attempt at prestressing was not successful since the load in the two edge beams varied. The variation in the load applied may have been due to frictional losses in the individual jacks. The prestress was released and a second attempt was made the next day. On the second attempt, the load was applied uniformly to the edge beams by manipulating the proper control valve on the pump. The prestress was applied in several increments and indications of micrometer dial gages, SR-4 strain gages on concrete and individual Freyssinet prestressing wires, dynamometers and pressure gages were recorded. Figure 13 shows the changes in total tension in the units after the jacks were removed. It can be seen that 20,050 lb had to be applied to the jacks to obtain a tension in each unit of 18,250 lb. A few minutes later, at the time that final readings were taken on all gages, the tension in each unit dropped to 18,100 lb.

Distribution of deflections under prestressing at various places in the slab are shown in figures 14, 15, and 16. Figures 22, 23, 24, and 25 show longitudinal strain in the concrete and Table 4 gives transverse strains in the concrete under prestressing.

4. TESTING PROCEDURE

4.1 Test Setup

One day after the prestress was applied, the specimen was moved to the testing piers by means of a lifting jig and a three ton bridge crane. Figure 7 shows the overall view of the lifting jig and the testing piers. The specimen was supported at four points by 2- by 2 1/2- by 3/4-in. bearing plates and 2 1/2- by 3/4-in. dia rollers. The span length between the rollers was 22 ft 4 in. The rollers and bearing plates are shown in figure 7. One end of the specimen was set in place by lowering the bridge crane. The other end was then supported by a 5 ton hydraulic jack and lowered gently to its proper position. Hydrocal was used between all bearing surfaces to assure complete bearing of the specimen.
4.2 Method of Loading

Water was used to apply the uniform load to the specimen during test. Since large deflections were anticipated, it was felt that the use of a single tank would cause too uneven a distribution of the water at large deflections. Therefore, four individual 5- by 6- by 2 ft tanks were used to minimize the concentration of load near the center of the slab. The tanks were made of No. 8 treated duck and were coated with a fatty acid pitch material to make them watertight. Each tank was loaded at the same rate and the total quantity of water entering the tanks was measured with individual water meters. The water meters are shown in figure 7. Figure 8 shows the overall view of the test setup with the water tanks in place.

4.3 Instrumentation

Deflections of the slab under load were measured with 0.001 in. micrometer dial gages and taut-wire mirror-scale devices. The dial gages were located on the underside of the slab at which measurements were made during prestressing at the top of the slab. Five dial gages were placed across the center cross-section of the spans and three were placed at approximately the quarter point sections of the span. A closeup view of some dial gages and some SR-4 gages are shown in figure 4. Dial gages were also placed over the supports to measure any settlement of the supports. Distribution of deflections as measured by the micrometer dial gages are shown in figures 14, 15, and 16. Figure 17 shows the load vs. deflection curves of the edge beams at the center and quarter point sections. Distributions of deflections of the edge beams, as measured by the taut-wire mirror-scale devices are shown in figure 18.

SR-4 bonded wire strain gages were placed both transversely and longitudinally on the specimen on top and bottom of the slab. A total of 54 gages were used to measure strain in concrete. The gages were placed across the center and quarter-point sections of the specimen. Figures 19 and 20 show the distribution of longitudinal and transverse strain in the specimen under the applied load. Figures 21, 22, 23, and 24 show the applied load vs. longitudinal strain at various points in the concrete and table 4 gives the transverse strain in the concrete through the pretensioning and loading cycles.
In addition, SR-4 bonded wire strain gages were attached to each prestressing wire at the end opposite the jacks so that the distribution of stresses in a given unit might be determined. Some of the gages were damaged before the test began because of the close working space in the conduit. Tables 3 and 4 show the comparison of stresses in each wire where gages were not damaged.

It is noted that the tensile stresses observed in the individual wires were in most cases higher than the average stress indicated by the dynamometers. Arrangement of the SR-4 strain gages on the individual wires of the prestressing units is shown in figure 5. Figure 12 shows the manner in which the lead wires were brought through the end anchorage cones.

4.4 Description of Test

The specimen was loaded in increments of 10 lb/sq ft and readings were taken on all gages. The first noted cracks occurred in both edge beams between 40 and 50 lb/sq ft. Figure 9 shows the first cracks in the east edge beam. The specimen was loaded to 60 lb/sq ft and that load was maintained for 1 1/2 hr at which time additional readings were taken on the gages. The load was continued to 70 lb/sq ft but the micrometer dial gages had to be removed due to excessive deflections of the slab. The load was then removed from the specimen by means of siphons to note the recovery. The transverse center-line of the slab recovered to within 1/4 in. of its original position and the tensile cracks closed up. Figure 10 shows the same cracks as figure 9 with the load removed. The empty tanks were removed from the specimen and the positions of cracks on the top surface and on the under-side of the web were noted. Figure 25 is a sketch of all cracks that were observed on the specimen after the load was removed. The next day, the specimen was reloaded to 60 lb/sq ft and additional measurements were taken until failure occurred at 80 lb/sq ft. It should be noted here that at this load the Freysinet wires in the west edge beam began slipping through the end anchorage devices and the tensioning force in it was lost completely. The slab rotated and the east edge beam twisted. Figure 12 shows details of the rotation at the north end of the slab. It can be seen that the No. 3 reinforcing bar was all that kept the east edge beam from pulling away from the transverse rib.
Table No. 1 Properties of Concrete and Reinforcements

<table>
<thead>
<tr>
<th>Material</th>
<th>Average Diameter</th>
<th>Cross Sectional Area</th>
<th>Proportional Limit</th>
<th>Yield Strength</th>
<th>E</th>
<th>Max. Stress</th>
</tr>
</thead>
<tbody>
<tr>
<td>2- by 2-IN. by 12 GA</td>
<td>.1050</td>
<td>.00866</td>
<td>54,000</td>
<td>68,000</td>
<td>29.0</td>
<td>80,000</td>
</tr>
<tr>
<td>Prestressing Wire</td>
<td>.1962</td>
<td>.0302</td>
<td>132,000</td>
<td>218,000*</td>
<td>29.6</td>
<td>268,000</td>
</tr>
<tr>
<td>Standard 6- by 12-IN. Concrete Cylinders</td>
<td>6</td>
<td>28.27</td>
<td>3600</td>
<td>---</td>
<td>4.16</td>
<td>6,760</td>
</tr>
</tbody>
</table>

* Yield point by the 0.2% offset method.
<table>
<thead>
<tr>
<th>TOTAL TENSION BY DYNAMOMETER</th>
<th>STRESS INDICATED BY DYNAMOMETER</th>
<th>NO. 2</th>
<th>NO. 3</th>
<th>NO. 4</th>
<th>NO. 5</th>
<th>NO. 6</th>
<th>NO. 7</th>
<th>NO. 8</th>
<th>NO. 9</th>
<th>NO. 10</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.00</td>
<td>KIPS PSI</td>
<td>16,540</td>
<td>29,980</td>
<td>25,490</td>
<td>25,570</td>
<td>25,750</td>
<td>22,550</td>
<td>16,020</td>
<td>34,420</td>
<td>18,680</td>
</tr>
<tr>
<td>10.00</td>
<td>33,080</td>
<td>48,900</td>
<td>46,400</td>
<td>46,200</td>
<td>47,600</td>
<td>42,200</td>
<td>39,000</td>
<td>55,700</td>
<td>40,900</td>
<td>47,300</td>
</tr>
<tr>
<td>15.00</td>
<td>49,620</td>
<td>62,700</td>
<td>58,800</td>
<td>57,800</td>
<td>59,900</td>
<td>53,300</td>
<td>51,100</td>
<td>73,400</td>
<td>56,200</td>
<td>62,300</td>
</tr>
<tr>
<td>15.90</td>
<td>61,200</td>
<td>76,500</td>
<td>72,300</td>
<td>70,900</td>
<td>73,200</td>
<td>66,500</td>
<td>64,500</td>
<td>68,400</td>
<td>70,100</td>
<td>75,500</td>
</tr>
<tr>
<td>18.20</td>
<td>60,210</td>
<td>77,000</td>
<td>72,100</td>
<td>70,100</td>
<td>72,300</td>
<td>69,000</td>
<td>67,200</td>
<td>89,500</td>
<td>73,200</td>
<td>77,500</td>
</tr>
<tr>
<td>17.30</td>
<td>57,230</td>
<td>73,300</td>
<td>69,000</td>
<td>66,000</td>
<td>68,100</td>
<td>65,300</td>
<td>62,500</td>
<td>69,400</td>
<td>73,300</td>
<td>73,300</td>
</tr>
<tr>
<td>16.00</td>
<td>52,930</td>
<td>70,400</td>
<td>65,700</td>
<td>63,000</td>
<td>65,100</td>
<td>62,400</td>
<td>59,700</td>
<td>66,400</td>
<td>70,400</td>
<td>70,400</td>
</tr>
<tr>
<td>16.20</td>
<td>53,590</td>
<td>70,900</td>
<td>66,300</td>
<td>63,000</td>
<td>65,200</td>
<td>62,400</td>
<td>60,200</td>
<td>66,900</td>
<td>71,200</td>
<td></td>
</tr>
<tr>
<td>16.35</td>
<td>53,920</td>
<td>71,780</td>
<td>65,900</td>
<td>63,500</td>
<td>65,900</td>
<td>62,800</td>
<td>61,100</td>
<td>67,700</td>
<td>71,780</td>
<td></td>
</tr>
<tr>
<td>16.60</td>
<td>54,910</td>
<td>72,800</td>
<td>66,400</td>
<td>64,200</td>
<td>66,600</td>
<td>63,500</td>
<td>62,000</td>
<td>68,500</td>
<td>72,800</td>
<td></td>
</tr>
<tr>
<td>16.80</td>
<td>55,570</td>
<td>74,200</td>
<td>67,000</td>
<td>65,000</td>
<td>67,300</td>
<td>64,500</td>
<td>63,300</td>
<td>69,500</td>
<td>73,800</td>
<td></td>
</tr>
<tr>
<td>18.60</td>
<td>61,530</td>
<td>80,300</td>
<td>72,000</td>
<td>64,800</td>
<td>73,000</td>
<td>69,500</td>
<td>69,600</td>
<td>75,500</td>
<td>79,800</td>
<td></td>
</tr>
<tr>
<td>21.70</td>
<td>71,780</td>
<td>93,500</td>
<td>83,800</td>
<td>81,700</td>
<td>85,200</td>
<td>80,600</td>
<td>80,700</td>
<td>88,100</td>
<td>91,600</td>
<td></td>
</tr>
<tr>
<td>22.60</td>
<td>74,760</td>
<td>93,700</td>
<td>84,300</td>
<td>82,300</td>
<td>85,600</td>
<td>81,200</td>
<td>81,200</td>
<td>88,800</td>
<td>92,000</td>
<td></td>
</tr>
<tr>
<td>26.20</td>
<td>86,670</td>
<td>106,300</td>
<td>96,800</td>
<td>94,700</td>
<td>98,700</td>
<td>93,700</td>
<td>93,200</td>
<td>102,000</td>
<td>104,700</td>
<td></td>
</tr>
</tbody>
</table>

NOTE: Stress in wire was computed from $S = E\varepsilon$, where $E = 29.6 \times 10^6$ psi and ε = strain indicated by SR-4 bonded wire gages on each wire.
Table No. 3: Comparison of Stresses in Each Wire of West Preissinet Prestressing Unit

<table>
<thead>
<tr>
<th>Total Tension by Dynamometer (Kips)</th>
<th>Stress Indicated by Dynamometer (PSI)</th>
<th>Stress in Wire (PSI)</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No. 12</td>
<td>No. 13</td>
<td>No. 17</td>
</tr>
<tr>
<td>5.00</td>
<td>16,540</td>
<td>25,500</td>
<td>23,500</td>
</tr>
<tr>
<td>10.00</td>
<td>33,080</td>
<td>45,100</td>
<td>41,500</td>
</tr>
<tr>
<td>15.00</td>
<td>49,620</td>
<td>55,700</td>
<td>50,900</td>
</tr>
<tr>
<td>18.20</td>
<td>60,200</td>
<td>68,700</td>
<td>63,900</td>
</tr>
<tr>
<td>17.90</td>
<td>59,200</td>
<td>92,300</td>
<td>88,600</td>
</tr>
<tr>
<td>16.90</td>
<td>55,900</td>
<td>88,500</td>
<td>81,900</td>
</tr>
<tr>
<td>15.80</td>
<td>52,300</td>
<td>84,500</td>
<td>78,500</td>
</tr>
<tr>
<td>16.00</td>
<td>52,900</td>
<td>85,200</td>
<td>79,400</td>
</tr>
<tr>
<td>16.20</td>
<td>53,600</td>
<td>86,000</td>
<td>79,900</td>
</tr>
<tr>
<td>16.50</td>
<td>54,600</td>
<td>86,900</td>
<td>80,700</td>
</tr>
<tr>
<td>16.90</td>
<td>55,900</td>
<td>88,100</td>
<td>81,900</td>
</tr>
<tr>
<td>18.60</td>
<td>61,500</td>
<td>94,100</td>
<td>88,700</td>
</tr>
<tr>
<td>21.90</td>
<td>72,400</td>
<td>100,800</td>
<td>99,700</td>
</tr>
<tr>
<td>22.60</td>
<td>74,800</td>
<td>101,500</td>
<td>51,000</td>
</tr>
<tr>
<td>26.00</td>
<td>86,000</td>
<td>113,800</td>
<td>104,300</td>
</tr>
</tbody>
</table>

Remarks:

- Prestressing started
- Before moving to test site
- Start of test

Note: Stress in wire was computed from $S = E \epsilon$, where $E = 29.6 \times 10^6$ psi and ϵ = strain indicated by SR-4 bonded wire gages on each wire.
TABLE No. 4 STRAINS IN TRANSVERSE SECTIONS AT CENTER AND QUARTER POINTS
(MICROINCHES/INCH)

<table>
<thead>
<tr>
<th>GAGE</th>
<th>PRESTRESS LOAD - KIPS</th>
<th>APPLIED LOAD - PSF</th>
<th>LOCATION OF GAGES</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>5</td>
<td>10</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TRANVERSE SECTION AT CENTER

| GAGE | NO. | 13 & 22 | 19 & 21 | 20 | 46 & 48 | 47 | 5 | 10 | 15 | 18.5 | 18.05 | 17.1 | 16.75 | 0 | 10 | 20 | 30 | 40 | 50 | 60 | 70 |
|------|------|---------|---------|---------|---------|----------|---|----|----|------|------|------|------|---|----|----|----|----|----|----|----|----|
| | 13 | -7.5 | -3.5 | -14.0 | -12.5 | +4.5 | -13.5 | -71.5 | -90.5 | +92.5 | +94.0 | -93.5 | -93.0 | -75.0 | -60.5 | -2.5 |
| | 19 | -11.5 | -8.5 | -20.0 | -21.5 | 7.0 | +1.5 | +28.5 | -80.5 | +89.5 | +78.5 | -76.5 | -35.5 | -57.0 | ------ | ------ |
| | 20 | -13.0 | -12.0 | -22.0 | -25.0 | -10.0 | -54.0 | +92.0 | -92.0 | -173.0 | +21.0 | +52.0 | +11.0 | +322.0 | -350.0 | -354.0 |
| | 46 | -7.0 | -17.5 | -22.0 | -24.5 | -14.0 | -33.5 | +2.5 | +44.0 | -89.5 | +107.5 | +119.5 | +145.5 | +244.0 | -383.0 | +534.0 |
| | 47 | -13.0 | -14.0 | -22.0 | -24.0 | -31.0 | -24.0 | +16.0 | -39.0 | +75.0 | +62.0 | -38.0 | -68.0 | -110.0 | +156.0 | -186.0 |

AVERAGE TRANSVERSE SECTION AT QUARTER POINTS

<table>
<thead>
<tr>
<th>GAGE</th>
<th>NO.</th>
<th>9,33 & 7,5</th>
<th>6,30 & 10,14</th>
<th>8 & 32</th>
<th>42 & 40, 52</th>
<th>41 & 53</th>
<th>10</th>
<th>9</th>
<th>8</th>
<th>7</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>-9.2</td>
<td>-8.7</td>
<td>-15.0</td>
<td>-15.2</td>
<td>-0.7</td>
<td>+16.0</td>
<td>+69.5</td>
<td>+85.0</td>
<td>+89.5</td>
<td>+88.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-10.7</td>
<td>-10.5</td>
<td>-13.5</td>
<td>-17.0</td>
<td>0.2</td>
<td>+7.0</td>
<td>+28.2</td>
<td>-87.5</td>
<td>+88.0</td>
<td>+77.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-15.0</td>
<td>-13.0</td>
<td>-22.0</td>
<td>-22.0</td>
<td>6.5</td>
<td>+8.0</td>
<td>+62.0</td>
<td>-99.0</td>
<td>+132.5</td>
<td>+146.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-30.0</td>
<td>-34.0</td>
<td>-38.5</td>
<td>-41.2</td>
<td>-30.5</td>
<td>-40.5</td>
<td>+6.7</td>
<td>+32.7</td>
<td>+75.5</td>
<td>+95.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-4.0</td>
<td>-8.0</td>
<td>-11.5</td>
<td>-10.5</td>
<td>0</td>
<td>-8.0</td>
<td>+46.0</td>
<td>+48.0</td>
<td>+81.0</td>
<td>+68.0</td>
</tr>
</tbody>
</table>

NOTE: PLUS VALUES INDICATE COMPRESSION.
MINUS VALUES INDICATE TENSION.
Fig. 2 - Placement of Steel in Form.
Fig. 4 - Close Up View of Section of Edge Beam Showing Detail of Gages.
Fig. 5 - Arrangement of SR-4 Strain Gages on Freyssinet Prestressing Unit.
Hydraulic Jacks in Place for Prestressing.
Fig. 8 - Overall View of Specimen at Start of Test.
Fig. 9 - Crack Pattern in Section of East Edge Beam - 70 PSF.
(First Crack Opened at Approx. 45 PSF)
Fig. 10 - Same Cracks as Fig. 9 with Load Removed.
Fig. 11 - Overall View Showing Failure at 80 PSF.
Fig. 12 - Close Up of Secondary Failure in N.E. Corner of Specimen.
VARIATION OF AVERAGE OBSERVED TENSION IN PRESTRESSING UNITS WITH APPLIED LOAD

FIG. 13

AVERAGE OBSERVED TENSION IN PRESTRESSING UNITS, KIPS

APPLIED LOAD, PSF
Each point is the average of two opposite gages, on east and on west edge beam.

Numbers encircled (•) indicate total load on the ten wire stressing units in pounds, as determined by dial dynamometers; average of two.

Other numbers indicate uniform load in pounds per square foot, applied to specimen—first day of test.

Deflections under live load are not corrected for initial uplifting which occurred during tensioning.

Precast-Prestressed Slab 1
Deflections of edge beams under post tensioning and applied loads
As measured by micrometer dial gages
Fig. 14
DEFLECTION OF WEB AT CENTERLINE UNDER POST TENSIONING & APPLIED LOAD
AS MEASURED BY MICROMETER DIAL GAGES
FIG. 15
DEFLECTION OF CROSS-SECTIONS UNDER APPLIED LOADS AS MEASURED BY MICROMETER DIAL GAGES

PRECAST-PRESTRESSED SLAB-I

AVERAGE OF SECTIONS AT QUARTER POINTS

FIG. 16
PRESTRESSED SLAB-1
APPLIED LOAD VS. DEFLECTION OF EDGE BEAMS AT CENTER AND QUARTER POINTS

FIG 17

APPLIED LOAD, PSF

50

40

30

20

10

0

AT CENTER

AVERAGE DEFLECTION OF EDGE BEAMS, IN.

AT QUARTER POINTS
PRESTRESSED SLAB-1
DISTRIBUTION OF DEFLECTIONS UNDER APPLIED LOAD
FIG. 18
(DEFLECTIONS MEASURED WITH TAUT WIRES)

- = FIRST DAY OF TEST
- - = SECOND DAY OF TEST

NOTE: FIGURES ON CURVES INDICATE INTENSITY OF APPLIED LOAD IN P.S.F.
NOTE: NUMBERS ON CURVES INDICATE LOAD ON SLAB IN LB/SQ FT.
COMPRESSIVE STRAINS ARE PLOTTED BELOW ZERO LINES.
NOTE: NUMBERS ON CURVES INDICATE LOAD ON SLAB IN LB/SO FT. COMPRESSIVE STRAINS ARE PLOTTED BELOW ZERO LINES.
PRESTRESSED SLAB-I
LONGITUDINAL COMPRESSIVE STRAINS THROUGH TENSIONING AND LOADING CYCLE AT TOP OF SPECIMEN
(CENTER SECTION)
FIG. 21

APPLIED LOAD
PSF

PRESTRESSING FORCE
KIPS

STRAIN
PRESTRESSED SLAB-1
LONGITUDINAL COMPRESSIVE STRAINS THROUGH TENSIONING AND LOADING CYCLE AT BOTTOM OF SPECIMEN
(CENTER SECTION)

FIG. 22

APPLIED LOAD
PSF

PRESTRESSING FORCE
KIPS

EDGEBEAM

INTERSECTION OF EDGEBEAM AND WEB

WEB AT CENTER

STRAIN

-0.002-
LONGITUDINAL COMPRESSIVE STRAINS THROUGH TENSIONING AND LOADING CYCLE AT TOP OF SPECIMEN
(AVERAGE OF QUARTER POINT SECTIONS)

FIG. 23

EDGEBEAM

INTERSECTION OF EDGEBEAM AND WEB

WEB AT CENTER

APPLIED LOAD

PSF

60

40

20

0

PRESTRESSING FORCE

KIPS

20

0

002

STRAIN
LONGITUDINAL COMPRRESSIVE STRAINS THROUGH TENSIONING AND LOADING CYCLE AT BOTTOM OF SPECIMEN
(AVERAGE OF QUARTER POINT SECTIONS)

FIG. 24

EDGE BEAM

INTERSECTION OF EDGE BEAM AND WEB

WEB AT CENTER

APPLIED LOAD

PSF

PRESTRESSING FORCE

KIPS

STRAIN

---0002---
NOTE - UNMARKED NOS. INDICATE DISTANCE IN INCHES BETWEEN CRACKS OR BETWEEN CRACK & QUARTER POINT

DISTRIBUTION OF CRACKS ON SPECIMEN - FIRST DAY OF TEST

FIG. 25
STRESS-STRAIN CURVE OF CONCRETE CYLINDERS
AVERAGE OF 2 CYLINDERS

COMPRESSIVE TEST

\[E_{\text{tan}} = 4.16 \times 10^6 \text{ PSI} \]

MAX. STRESS = 6760 PSI

STRAIN, \(10^{-4}\) IN./IN.
TENSION TEST OF PRESTRESSING WIRE

\[D = 0.1962 \quad A = 0.0302 \text{ SQ. IN.} \]

\[E_{\text{tan}} = 29.62 \times 10^6 \text{ PSI} \]

MAX. STRESS = 268,000 PSI

STRAIN, \(10^{-3} \) IN./IN.
TENSION TEST OF WIRE MESH

SPECIMEN

\[\varepsilon_{\text{tan}} = 30.9 \times 10^6 \text{ PSI} \]

MAX. STRESS = 87,500 PSI

ROCKWELL HARDNESS 84 B

STRAIN, \(10^{-4}\) IN./IN.
THE NATIONAL BUREAU OF STANDARDS

Functions and Activities

The functions of the National Bureau of Standards are set forth in the Act of Congress, March 3, 1901, as amended by Congress in Public Law 619, 1950. These include the development and maintenance of the national standards of measurement and the provision of means and methods for making measurements consistent with these standards; the determination of physical constants and properties of materials; the development of methods and instruments for testing materials, devices, and structures; advisory services to Government Agencies on scientific and technical problems; invention and development of devices to serve special needs of the Government; and the development of standard practices, codes, and specifications. The work includes basic and applied research, development, engineering, instrumentation, testing, evaluation, calibration services and various consultation and information services. A major portion of the Bureau's work is performed for other Government Agencies, particularly the Department of Defense and the Atomic Energy Commission. The scope of activities is suggested by the listing of divisions and sections on the inside of the front cover.

Reports and Publications

The results of the Bureau's work take the form of either actual equipment and devices or published papers and reports. Reports are issued to the sponsoring agency of a particular project or program. Published papers appear either in the Bureau's own series of publications or in the journals of professional and scientific societies. The Bureau itself publishes three monthly periodicals, available from the Government Printing Office: The Journal of Research, which presents complete papers reporting technical investigations; the Technical News Bulletin, which presents summary and preliminary reports on work in progress; and Basic Radio Propagation Predictions, which provides data for determining the best frequencies to use for radio communications throughout the world. There are also five series of nonperiodical publications: The Applied Mathematics Series, Circulars, Handbooks, Building Materials and Structures Reports, and Miscellaneous Publications.

Information on the Bureau's publications can be found in NBS Circular 460, Publications of the National Bureau of Standards ($1.00). Information on calibration services and fees can be found in NBS Circular 483, Testing by the National Bureau of Standards (25 cents). Both are available from the Government Printing Office. Inquiries regarding the Bureau's reports and publications should be addressed to the Office of Scientific Publications, National Bureau of Standards, Washington 25, D. C.