NATIONAL BUREAU OF STANDARDS REPORT

1

2279

Statistical Engineering Laboratory National Eureau of Standards Washington, D. C. 20234

TABLES USEFUL IN ESTIMATING THE MEAN VALUE FUNCTION OF A FUNDAMENTAL RANDOM PROCESS

by

I. R. Savage and E. Lukacs

U. S. DEPARTMENT OF COMMERCE NATIONAL BUREAU OF STANDARDS **U. S. DEPARTMENT OF COMMERCE**

Sinclair Weeks, Secretary

NATIONAL BUREAU OF STANDARDS A. V. Astin, Director

E

THE NATIONAL BUREAU OF STANDARDS

The scope of activities of the National Bureau of Standards is suggested in the following listing of the divisions and sections engaged in technical work. In general, each section is engaged in specialized research, development, and engineering in the field indicated by its title. A brief description of the activities, and of the resultant reports and publications, appears on the inside of the back cover of this report.

Electricity. Resistance Measurements. Inductance and Capacitance. Electrical Instruments. Magnetic Measurements. Applied Electricity. Electrochemistry.

Optics and Metrology. Photometry and Colorimetry. Optical Instruments. Photographic Technology. Length. Gage.

Heat and Power. Temperature Measurements. Thermodynamics. Cryogenics. Engines and Lubrication. Engine Fuels. Cryogenic Engineering.

Atomic and Radiation Physics. Spectroscopy. Radiometry. Mass Spectrometry. Solid State Physics. Electron Physics. Atomic Physics. Neutron Measurements. Infrared Spectroscopy. Nuclear Physics. Radioactivity. X-Rays. Betatron. Nucleonic Instrumentation. Radiological Equipment. Atomic Energy Commission Instruments Branch.

Chemistry. Organic Coatings. Surface Chemistry. Organic Chemistry. Analytical Chemistry. Inorganic Chemistry. Electrodeposition. Gas Chemistry. Physical Chemistry. Thermochemistry. Spectrochemistry. Pure Substances.

Mechanics. Sound. Mechanical Instruments. Aerodynamics. Engineering Mechanics. Hydraulics. Mass. Capacity, Density, and Fluid Meters.

Organic and Fibrous Materials. Rubber. Textiles. Paper. Leather. Testing and Specifications. Polymer Structure. Organic Plastics. Dental Research.

Metallurgy. Thermal Metallurgy. Chemical Metallurgy. Mechanical Metallurgy. Corrosion.

Mineral Products. Porcelain and Pottery. Glass. Refractories. Enameled Metals. Concreting Materials. Constitution and Microstructure. Chemistry of Mineral Products.

Building Technology. Structural Engineering. Fire Protection. Heating and Air Conditioning. Floor, Roof, and Wall Coverings. Codes and Specifications.

Applied Mathematics. Numerical Analysis. Computation. Statistical Engineering. Machine Development.

Electronics. Engineering Electronics. Electron Tubes. Electronic Computers. Electronic Instrumentation.

Radio Propagation. Upper Atmosphere Research. Ionospheric Research. Regular Propagation Services. Frequency Utilization Research. Tropospheric Propagation Research. High Frequency Standards. Microwave Standards.

Ordnance Development. Electromechanical Ordnance. Ordnance Electronics. These three divisions are engaged in a broad program of research and development in advanced ordnance. Activities include basic and applied research, engineering, pilot production, field testing, and evaluation of a wide variety of ordnance matériel. Special skills and facilities of other NBS divisions also contribute to this program. The activity is sponsored by the Department of Defense.

Missile Development. Missile research and development: engineering, dynamics, intelligence, instrumentation, evaluation. Combustion in jet engines. These activities are sponsored by the Department of Defense.

• Office of Basic Instrumentation

• Office of Weights and Measures.

NATIONAL BUREAU OF STANDARDS REPORT

NBS PROJECT 1103-20-5119

16 February 1953

NBS REPORT 2279

TABLES USEFUL IN ESTIMATING THE MEAN VALUE FUNCTION OF A FUNDAMENTAL RANDOM PROCESS"

by

I. Richard Savage and Eugene Lukacs

*The preparation of this paper was sponsored by the U. S. Naval Ordnan Test Station, Inyokern.

The publication, unless permissio 25, D. C. Such cally prepared i Approved for public release by the Director of the National Institute of Standards and Technology (NIST) on October 9, 2015

Jor in part, is prohibited 'Standards, Washington report has been specifir report for its own use.

	ŕ	٩	17 7 8	au ()	= c

TABLES USEFUL IN ESTIMATING THE MEAN VALUE FUNCTION OF A FUNDAMENTAL RANDOM PROCESS*

by

I. Richard Savage and Eugene Lukacs National Bureau of Standards

1. Introduction. Let y(t) be a stochastic process and assume that

- (1.1) y(t) = x(t) + f(t)
- (1.2) $f(t) = K_1 \mathscr{O}_1(t) + K_2 \mathscr{O}_2(t) + \dots + K_s \mathscr{O}_s(t)$

where x(t) is a fundamental random process.

In a forthcoming paper [4] H. B. Mann assumes that the y(t) process is observed over an interval [0,T] and developes a method for finding the maximum likelihood estimates for the parameters K_1, K_2, \ldots, K_s of the mean value function $f(t)^{**}$. In a technical note [5] he gives a brief exposition of his results and also explicit formulae for the practically important case where f(t) is a polynomial in t. As in least squares estimates it seems also here advantageous to use orthogonal polynomials. However, it is here necessary to assume that the derivatives $\emptyset'_{i}(t)$ are the first s polynomials of a system orthogonal with respect to the weight function 1 over an interval [0,T]. The functions $\emptyset_{j}(t)$ becomethen the integrals of Legendre polynomials adapted to the interval [0,1]. As a consequence the mean value function must have initial and terminal value zero, i.e.,

$$(1.3) f(0) = f(T) = 0.$$

While (1.3) will apply in certain physical situations its failure will in general prevent the use of orthogonal polynomials in estimating a mean value function ***. It will then be necessary

*The preparation of this paper was sponsored by the U.S. Naval Ordnance Test Station, Inyokern.

**The $\emptyset_j(t)$ are known functions, and are subject to certain restrictions, stated in [4] and [5].

***Ordinarily the condition (1.3) could be obtained by a rotation of axis, but in the situation under consideration such a rotation would disturb the nature of the random process, and hence can not be used. to assume that $\emptyset(t) = t^{j}$ and to use the methods developed for this case.

Let us therefore suppose that

(1.4)
$$f(t) = K_1 t + K_2 t^2 + \dots + K_s t^s$$

According to the formulae given in [4] and [5] the estimate \hat{K}_{j} of K_{j} is given by

(1.5)
$$\bigwedge_{K_{j}}^{\Lambda} = \sum_{r=1}^{s} \Phi^{jr} r \int_{0}^{T} t^{r-1} dy(t) \qquad (j = 1, 2, ..., s)$$

Here $\oint^{jr} = \frac{s^{jr}}{jrT^{j+r-1}}$ where the matrix $||S^{jr}||$ is the inverse of the matrix $\left\|\frac{1}{j+r-1}\right\|_{j,r} = 1, \ldots, s$. The purpose of the present note is to simplify the computations necessary for obtaining the estimates (1.5). This is done by studying first the matrix $\left\|\frac{1}{1+j-1}\right\|$ and giving formulae for finding its inverse. Tables of the coefficients S_{n}^{jr} are then computed for n = 2(1)10. These tables will be found at the end of this report. The same matrix occurs in least square theory when an integral is minimized instead of a sum. The inversion of this and related matrices was studied by A. R. Collar [2], [3] it is however believed that the proofs given here are somewhat more elementary.

2. A theorem due to A. Cauchy. The following theorem is due to A. Cauchy [1]. Let a_1, \ldots, a_n , b_1, \ldots, b_n be 2n numbers and consider the determinant whose elements are of the form $1/(a_1+b_k)$ (i,k = 1,2,...,n). Then

(2.1)
$$\left\|\frac{1}{a_{j}+b_{k}}\right\|_{i,k=1,\ldots,n} = \frac{\frac{1 \cdot \cdot n}{||}}{\frac{j>k}{j>k}} \frac{(a_{j}-a_{k})(b_{j}-b_{k})}{\frac{1 \cdot \cdot n}{||}}$$

This theorem as well as an indication of its proof may also be found in [7], page 98, problem 3.

3. <u>Inversion of a certain matrix</u>. In the introduction we proposed to consider the matrix (3.1) $S_n = \left\| \frac{1}{i+j-1} \right\|_{i,j=1,...,n}$ and to find its inverse. Clearly the determinant of S_n as well as all its minors are of the form discussed in Section 2. We can therefore compute the inverse S_n^{-1} by applying Cauchy's theorem. We denote by Δ_n^{ij} the minor of the element in the i-th row and and j-th column of the determinant Δ_n of the matrix S_n . If we write S_n^{ij} for the element in the i-th row and j-th column of the inverse S_n^{-1} then

(3.2)
$$S_{n}^{ij} = (-1)^{i+j} \frac{\Delta_{n}^{ij}}{\Delta_{n}}$$

If we use (2.1) to find Δ_n^{jj} and Δ_n we obtain by an elementary computation (n-1)

(3.3)
$$\Delta_{n} = \frac{\left(\frac{1}{k!} + \frac{1}{k!}\right)^{-1}}{\frac{1}{n!} \frac{n-1}{(n^{2}-k^{2})^{n-k}}}$$

and

(3.4)
$$\Delta_{n}^{ij} = \frac{(n+i-1)!(n+j-1)!}{[(i-1)!(j-1)!]^{2}n!(n-i)!(n-j)!} \frac{\binom{1}{k=1}}{\binom{n-1}{1}} \frac{-1}{j+i+1}$$

 $\left[\frac{n-1}{2}\right]_{3}$

It is easy to show inductively that

(3.5)
$$\frac{n^n}{n!} \prod_{k=1}^{n-1} \frac{(n^2 - k^2)^{n-k} k!}{(n+k)!} = 1$$

so that we obtain from (3.2), (3.3) and (3.4)

(3.6)
$$S_n^{ij} = \frac{(-1)^{i+j}}{i+j-1} \frac{(n+i-1)!(n+j-1)!}{[(i-1)!(j-1)!]^2(n-i)!(n-j)!}$$

4. Formulae for the numerical computation of the S_n^{ij} . It is quite convenient to compute the S_n^{ij} recursively. We obtain immediately from (3.6)

(4.1)
$$S_{n+1}^{ij} = \frac{(n+i)(n+j)}{(n+1-i)(n+1-j)} S_n^{ij}$$
 for $i, j=1,2,...,n$

By means of (4.1) it is possible to compute from the elements of S_n^{-1} the elements of S_{n+1}^{-1} in the first n rows and columns. We still have to determine the elements of the last column. We can

do this by deriving a relation between the elements of S_n^{-1} and the coefficients of certain orthogonal polynomials. Consider a polynomial of degree m

(4.2)
$$P_m(x) = 1 + a_{m,1}x + \dots + a_{m,m}x^m$$
 $(a_{m,m} \neq 0)$

such that (4.3

3)
$$\int_{0}^{1} x^{k} P_{m}(x) dx = 0 \quad \text{for } k = 0, 1, \dots, (m-1)$$

Equation (4.3) determines the polynomials $P_m(x)$, they are the Legendre polynomials adapted to the interval $0 \le x \le 1$. They are obtained from the Legendre polynomials formed for the interval $-1 \le x \le +1$ by a linear transformation of the variables. They are discussed and to a certain extent tabulated in [6]. This system of polynomials is orthogonal and we have

(4.4)
$$\int_{0}^{1} P_{m}(x)P_{n}(x)dx = \begin{cases} 0 \text{ if } m \neq n \\ \frac{1}{2m+1} \text{ if } m = n \end{cases}$$

Moreover,

(4.5)
$$a_{m,k} = (-1)^k {m \choose k} {m+k}$$

For the proof of (4.4) and (4.5) the reader is referred to W. E. Milne's book [6] chapter IX, Section 69.

We write $a_{m,0} = 1$ and substitute (4.2) and (4.3) and obtain, considering also (4.4).

$$\sum_{j=0}^{m} \frac{a_{m,j}}{k+j+1} = \frac{1}{(2m+1)a_{m,m}} \delta_{k,m} \quad (k=0,1,\ldots,m),$$

PC Carl Freit

where $\delta_{k,m}$ is the Kronecker delta. We rewrite these equations as

(4.6)
$$\sum_{j=1}^{m+1} \frac{a_{m,j-1}}{k+j-1} = \frac{1}{(2m+1)a_{m,m}} \delta_{k,m+1} \quad (k=1,\ldots,m+1) \quad .$$

Considering the obvious relation

$$\sum_{k=1}^{m+1} \frac{1}{j+k+1} S_{m+1}^{hk} = \delta_{hk}$$

we solve the system (4.6) and obtain

$$a_{m,k-1} = \frac{1}{(2m+1)a_{m,m}} S_{m+1}^{m+1,k}$$

or

(4.7)
$$S_{m+1}^{m+1,k} = (2m+1) a_{m,k-1} = S_{m+1}^{k,m+1}$$

From (4.7) and (4.5) we see then that for $k = 1, \dots, (m+1)$

(4.8)
$$S_{m+1}^{m+1,k} = S_{m+1}^{k,m+1} = (-1)^{m+k-1} (2m+1) {\binom{2m}{m}} {\binom{m}{k-1}} {\binom{m+k-1}{k-1}}.$$

Formulae (4.1) and (4.8) can be used to compute systematically tables of the elements of ${\rm S}_{\rm m}^{-1}$.

5. An alternate method for computing S_m^{-1} . We normalize the polynomials (4.2) and obtain

(5.1)
$$Q_m(x) = \sqrt{2m+1} P_m(x) = \sum_{k=0}^m b_{m,k} x^k$$
 (m=0,1,2,...)

It is seen from (4.5) and (4.4) that

(5.2)
$$b_{m,k} = (-1)^k \sqrt{2m+1} \binom{m}{k} \binom{m+k}{k}$$

and

(5.3)
$$\int_0^1 Q_m(x) Q_n(x) dx = \delta_{m,r}$$

We consider the matrix

$$B_{N} = \left\| b_{m,k} \right\|_{m,k=0,\ldots,(N-1)}$$

It follows then from (5.3) that

(5.4) $B_N S_N B_N' = = I I$.

Here I denotes the identity matrix and $B_N^{'}$ the transposed of $B_{N^{*}}$. From (5.4) we see that

(5.5)
$$S_N^{-1} = B_N^{-1}B_N$$
.

If tables of the coefficients of the polynomials $P_m(x)$ are known it is possible to find S_N^{-1} from (5.5). On the other hand one could also derive (3.6) from (5.5) and (5.2). 6. Description of Tables and their preparation. Tables are given for the inverse of the matrix S_n [see equation (3.1)] for n=2,...,10. That is the quantities S_n^{ij} [see equation (3.2)] are tabulated for $1 \le i \le j \le n \le 10$.

Since the matrix S_n is symmetric its inverse is also, hence in the following tables S_n^{ij} is given only for $j \ge i$.

These tables were obtained by the use of equations (4.1), (4.7) and (4.8).

The tables were checked by using the relationships:

(6.1)
$$\sum_{i=1}^{n} S_{n}^{ij}/(i+k-1) = \delta_{jk} \quad (j,k = 1,...,n).$$

All of the above relations were checked for j=k, and supplementarily a few others were examined and found correct.

Acknowledgement: The authors wish to thank Mr. Edwin L. Grab who prepared and checked the tables.

REFERENCES

- [1] A. Cauchy, Exercises d'Analyse et de phys. math. Vol. 2, pp. 151-159, Paris 1841. Also Oeuvres completes 2^e serie XII.
- [2] A. R. Collar, On the Reciprocation of Certain Matrices. Proceedings of the Royal Society of Edinburgh, Vol. 59, pp. 195-206, (1939).
- [3] A. R. Collar, On the Reciprocal of a Segment of a Generalized Hilbert Matrix. Proceedings of the Cambridge Philosophical Society, Vol. 47, pp. 11-17, (1951).
- [4] H. B. Mann, On the Estimation of Parameters Determining the Mean Value Function of a Stochastic Process. To be published in Sankhya.
- [5] H. B. Mann, Statistical Techniques Applicable to the Analysis of a Fundamental Random Process. Technical Note WCRR-52-7 Flight Research Laboratory, Wright Air Development Center, Dayton, Ohio, 1952.
- [6] W. E. Milne, Numerical Calculus. Princeton University Press, Princeton, New Jersey, 1949.
- [7] G. Pólya-G. Szegő, Aufgaben und Lehrsätze aus der Analysis, Vol. 2. (Grundlehren der math. Wiss. Vol. 20) J. Springer Berlin, 1924. Reprinted by Dover Publications, New York, 1945.

							- I	-		-2772	R 31 KO		-5 82120	15 52320		-17 46360	6 98544
			01/1-		1680	-4200	2800			7560		1	15 12000	-39 69000		144 10000	-17 46360
	T L	r	0 240		-2700	0 6480	0 -l <u>4</u> 200		20	-7560	0 11680	000	-14 11200	36 28800		-39 69000	15 52320
			16 -12(120 120	240 -270	140 1680		<u>6</u> .)	3360	88200		5 64480	001LL 4LL		15 12000	-5 82120
Ser L					1		2			-630	002.11		-88200	2 11680		-2 20500	83160
CABLES Tn										36	UE Y		3360	-7560		7560	-2772
				9 9	-180	180											
		ч С	Ì	0 1	192	-180					630	-12600	:	56700	-88200	-	007771
			•	ע	-36	30					-1400	26880		-1 17600	1 79200		- 99200
									ریر ا نع		1050	-18900		79380	-1 17600		00/94
			5	4	2	75					-300	4800		-18900	26880		-12000
		34 14	-	-	t	9	·				52	-300		1050	0011		050

110 99088	-332 97264	378 37800	-201 80160	50 45040	-5 olifold	12012
-332 97264	1005 90336	-1152 59760	620 92800	-157 17240	15 96672	-38808
378 37800	-1152 59760	1334 02500	-727 65000	187 11000	-19 40400	48510
-201 80160	620 92800	-727 65000	403 20000	-1.05 81,000	11 28960	=29400
50 45040	-157 17240	187 11000	-105 84,000	28 57680	-3 17520	8820
-5 0450t	15 96672	-19 40400	11 28960	-3 17520	37632	9277
12012	-38808	48510	-29400	8820	-1176	60

E

- 11 -

64	2016	20160	-92400	2 21760	-2 88288	1 92192	-51480
-2016	84,672	-9 52560	4,6 56960	-116 42400	155 67552	-105 94584	28 82880
20160	-9 52560	11J, 30720	-582 1.2000	1496 88000	-2043 24120	02119 217/1	
92400	46 56960	-582 1.2000	304,9 20000		00880 08800	-7769 36160	2162 16000
51760	-116 42400	1496 88000	-8004 15000	21344 40000	29967 53760	21189 16800	-5945 94000
88288	1,55 67552	-2043 24120	11.099 08800	-29967 53760	1,24,99 1,1696	-30300 51.024	8562 15360
92192	-1.05 94584	02119 2171	-7769 36160	21189 16800	-30300 51024	21754 21248	-6183 77760
-51480	28 82880	-389 1.8880	2162 16000	-5945 94000	8562 15360	-6183 77760	1766 79360

2

Ś

-

80 EH

-

- III -

28158 27300	-1 12633 09200	1 83967 38360	-1 57686 32880	75810 73500	-20216 19600	2756 75400	-157 52880	2 18790
-1 12633 09200	4 52299 16160	-7 42053 31200	6 39307 46880	-3 09188 88000	83026 94400	08402 314LL-	658 94400	-9 26640
1 83967 38360	-7 42053 31200	12 23674 45200	0,85817 85840	5 16485 97000	-1 39848 50880	19423 40400	-1135 13400	16 21620
	6 39307 46880	-10 60517 85840	9 25542 85824	-4 54507 65360	1 24309 78560	-17481 06360	1037 83680	-15 13512
75810 73500	3 09188 88000	5 16485 97000	-1, 54,507 65360	2 25450 22500	-62432 37000	8918 91000	-540 54000	8 10810
-20216 19600	83026 914400	-1 39848 50880	1 24,309 78560	-62432 37000	17563 39200	-2561 32800	159 66720	-2 4,91480
2756 75400	08402 3thtt-	19423 40400	-17481 06360	8918 91000	-2561 32800	384 19920	-24 94800	082L1
⊶1 57 52880	658 91400		1037 83680	-540 54000	159 66720	-24 94800	1 72800	-3240
2 18790	-9 26640	16 21620	-15 13512	8 1 0 810	-2 49480	68214	-3240	81

Т9

- 17---

00968 تبلاوبا با	-20 21138 26200	38 oly195 55200	-38 83755 87600	23 30253 52560	-8 32233 40200	00thts theor i	-18290 84400	831 40200	-9 23780
-20 21138 26200	91 23280 45200	-172 32863 07600	176 60868 82560	-106 43827 19400	38 20861 oldioo	-7 884,31 64400	85065 55200	-3898 83780	43 75800
38 OU1195 55200	-172 32863 07600	326 78614 42560	-336 39750 11400	203 77925 56800	-73 58695 34400	15 29079 55200	-1 66350 L-	7701 40800	87 51600
-38 83755 87600	176 60868 82560	-336 39750 14400	34,8 06739 96600	-212 10357 16800	77 12857 15200	-16 16027 21280	1 77585 40800	-8324 31600	96 09600
23 30253 52560	-106 43827 19400	203 77925 56800	-212 10357 16800	130 15446 44400	-47 72330 36280	C0800 71001 01	-1 12378 26600	5351 34600	63 06300
-8 32233 40200	38 20861 04400	-73 58695 34400	77 12857 15200	-47 72330 36280	17 67529 76400	-3 78756 37800	42810 76800	-2081 07900	25 22520
1 70714 54400	-7 88431 64400	15 29079 55200	-16 16027 21280	10 10017 00800	-3 78756 37800	82450 36800	-9513 50400	475 67520	-6 00600
-18290 84400	85065 55200	082LJ 06350 L-	1 77585 40800	- 1 12378 26600	42810 76800	-9513 50400	1129 07520	-58 80600	79200
831 40200	-3898 83780	7701 40800	-8324 31600	5351 34600	-2081 07900	475 67520	-58 80600	3 26700	-4950
-9 23780	43 75800	-87 51600	96 09600	-63 06300	25 22520	-6 00600	79200	-4950	100

7₁₀

- 7 -

/

THE NATIONAL BUREAU OF STANDARDS

Functions and Activities

The functions of the National Bureau of Standards are set forth in the Act of Congress, March 3, 1901, as amended by Congress in Public Law 619, 1950. These include the development and maintenance of the national standards of measurement and the provision of means and methods for making measurements consistent with these standards; the determination of physical constants and properties of materials; the development of methods and instruments for testing materials, devices, and structures; advisory services to Government Agencies on scientific and technical problems; invention and development of devices to serve special needs of the Government; and the development of standard practices, codes, and specifications. The work includes basic and applied research, development, engineering, instrumentation, testing, evaluation, calibration services and various consultation and information services. A major portion of the Bureau's work is performed for other Government Agencies, particularly the Department of Defense and the Atomic Energy Commission. The scope of activities is suggested by the listing of divisions and sections on the inside of the front cover.

Reports and Publications

The results of the Bureau's work take the form of either actual equipment and devices or published papers and reports. Reports are issued to the sponsoring agency of a particular project or program. Published papers appear either in the Bureau's own series of publications or in the journals of professional and scientific societies. The Bureau itself publishes three monthly periodicals, available from the Government Printing Office: The Journal of Research, which presents complete papers reporting technical investigations; the Technical News Bulletin, which presents summary and preliminary reports on work in progress; and Basic Radio Propagation Predictions, which provides data for determining the best frequencies to use for radio communications throughout the world. There are also five series of nonperiodical publications: The Applied Mathematics Series, Circulars, Handbooks, Building Materials and Structures Reports, and Miscellaneous Publications.

Information on the Bureau's publications can be found in NBS Circular 460, Publications of the National Bureau of Standards (\$1.00). Information on calibration services and fees can be found in NBS Circular 483, Testing by the National Bureau of Standards (25 cents). Both are available from the Government Printing Office. Inquiries regarding the Bureau's reports and publications should be addressed to the Office of Scientific Publications, National Bureau of Standards, Washington 25, D. C.

