NATIONAL BUREAU OF STANDARDS REPORT

2279

Statistical Enginearing Laboratory
 Nationa! Eureat of Standards
 Washington, D. C. 20234

TABLES USEFUL IN ESTIMATING THE MEAN VALUE FUNCTION OF A FUNDAMENTAL RANDOM PROCESS
by
I. R. Savage and E. Lukacs
U. S. DEPARTMENT OF COMMERCE
NATIONAL BUREAU OF STANDARDS

U. S. DEPARTMENT OF COMMERCE

Sinclair Meelss, Secretary
NATIONAL BUREAU OF STANDARDS
A. V. Astin, Director

THE NATIONAL BUREAU OF STANDARDS

The scope of activities of the National Bureau of Standards is suggested in the following listing of the divisions and sections engaged in technical work. In general, each section is engaged in specialized research, development, and engineering in the field indicated by its title. A brief description of the activities, and of the resultant reports and publications, appears on the inside of the back cover of this report.
Electricity. Resistance Measurements. Inductance and Capacitance. Electrical Instruments. Magnetic Measurements. Applied Electricity. Electrochemistry.
Optics and Metrology. Photometry and Colorimetry. Optical Instruments. Photographic Technology. Length. Gage.
Heat and Power. Temperature Measurements. Thermodynamics. Cryogenics. Engines and Lubrication. Engine Fuels. Cryogenic Engineering.
Atomic and Radiation Physics. Spectroscopy. Radiometry. Mass Spectrometry. Solid State Physics. Electron Physics. Atomic Physics. Neutron Measurements. Infrared Spectroscopy. Nuclear Physics. Radioactivity. X-Rays. Betatron. Nucleonic Instrumentation. Radiological Equipment. Atomic Energy Commission Instruments Branch.
Chemistry. Organic Coatings. Surface Chemistry. Organic Chemistry. Analytical Chemistry. Inorganic Chemistry. Electrodeposition. Gas Chemistry. Physical Chemistry. Thermochemistry. Spectrochemistry. Pure Substances.
Mechanics. Sound. Mechanical Instruments. Aerodynamics. Engineering Mechanics. Hydraulics. Mass. Capacity, Density, and Fluid Meters.
Organic and Fibrous Materials. Rubber. Textiles. Paper. Leather. Testing and Specifcations. Polymer Structure. Organic Plastics. Dental Research.
Metallurgy. Thermal Metallurgy. Chemical Metallurgy. Mechanical Metallurgy. Corrosion. Mineràl Products. Porcelain and Pottery. Glass. Refractories. Enameled Metals. Con. creting Materials. Constitution and Microstructure. Chemistry of Mineral Products.

Building Technology. Structural Engineering. Fire Protection. Heating and Air Conditioning. Floor, Roof, and Wall Coverings. Codes and Specifications.
Applied Mathematics. Numerical Analysis. Computation. Statistical Engineering. Machine Development.
Electronics. Engineering Electronics. Electron Tubes. Electronic Computers. Electronic Instrumentation.
Radio Propagation. Upper Atmosphere Research. Ionospheric Research. Regular Propagation Services. Frequency Utilization Research. Tropospheric Propagation Research. High Frequency Standards. Microwave Standards.

Ordnance Development. Electromechanical Ordnance. Ordnance Electronics. testing, and evaluation of a wide variety of ordnance matériel. Special skills and facilities of other NBS divisions also contribute to this program. The activity is sponsored by the Department of Defense.
Missile Development. . Missile research and development: engineering, dynamics, intelligence, instrumentation, evaluation. Combustion in jet engines. These activities are sponsored by the Department of Defense.

- Office of Basic Instrumentation

These three divisions are engaged in a broad program of research and development in advanced ordnance. Activities include basic and applied research, engineering, pilot production, field variety of ordnance matériel. Special skills and facilities of other this program

$$
1-0.2
$$

Office of Weights and Measures.

NATIONAL BUREAU OF STANDARDS REPORT NBS PROJECT
 1103-20-5119
 16 February 1953

TABLES USEFUL IN ESTIMATING THE MEAN VALUE FUNCTION OF A FUNDAMENTAL RANDOM PROCESS*

by
I. Richard Savage and Eugene Lukacs

*The preparation of this paper was sponsored by the U. S. Naval OrdnanonBst Station, Inyokern.

$$
\begin{array}{lc}
\text { The pubilcation } & \text { Approved for public release by the } \\
\text { unless permssic } & \text { Director of the National Institute of } \\
\text { 25, D.C. Such } & \text { Standards and Technology (NIST) } \\
\text { cally prepared । } & \text { on October } 9,2015
\end{array}
$$

Jor In part, ls prohlblted
'Standards, Washington I report has been speclif-
r report for lis own use,

TABLES USEFUL IN ESTIMATING THE MEAN VALUE FUNCTION OF A FUNDAMENTAL RANDOM PROCESS*

by

I。 Richard Savage and Eugene Lukacs National Bureau of Standards

l. Introduction. Let $y(t)$ be a stochastic process and assume that

$$
\begin{align*}
& y(t)=x(t)+f(t) \tag{1.1}\\
& f(t)=K_{1} \phi_{1}(t)+K_{2} \phi_{2}(t)+\ldots+K_{S} \varnothing_{S}(t) \tag{1.2}
\end{align*}
$$

where $x(t)$ is a fundamental random process.
In a forthcoming paper [4] H 。B. Mann assumes that the $\mathrm{y}(\mathrm{t})$ process is obsertred over an interval [$0, T$] and developes a method for finding the maximum likelihood estimates for the parameters $K_{7}, K_{2}, \ldots, K_{S}$ of the mean value function $f(t) * *$. In a technical note [5] he gives a brief exposition of his results and also explicit formulae for the practically important case where $f(t)$ is a polynomial in t. As in least squares estimates it seems also here advantageous to use orthogonal polynomials, However, it is here necessary to assume that the derivatives $\phi_{j}^{\prime}(t)$ are the first s polynomials of a system orthogonal with respect to the weight function l over an interval [$0, T]$. The functions $\varnothing_{f}(t)$ becomer then the integrals of Legendre polynomials adapted to the interval $[0,1]$. As a consequence the mean value function must have initial and terminal value zero, i.e.,

$$
\begin{equation*}
f(0)=f(T)=0 \tag{1.3}
\end{equation*}
$$

While (2.3) will apply in certain physical situations its failure will in general prevent the use of orthogonal polynomials in estimating a mean value function $\% * *$. It will then be necessary

[^0]*The $\varnothing_{j}(t)$ are known functions, and are subject to certain restrictions, stated in [4] and [5].
Ordinarily the condition (1.3) could be obtained by a rotation of axis, but in the situation under consideration such a rotation would disturb the nature of the random process, and hence can not be used.
to assume that $\phi(t)=t^{j}$ and to use the methods developed for this case.

Let us therefore suppose that

$$
\begin{equation*}
f(t)=K_{1} t+K_{2} t^{2}+\ldots+K_{s} t^{s} \tag{1.4}
\end{equation*}
$$

According to the formulae given in [4] and [5] the estimate \hat{K}_{j} of K_{j} is given by

$$
\begin{equation*}
\hat{K}_{j}=\sum_{r=1}^{s} \Phi^{j r} r \int_{0}^{T} t^{r-1} d y(t) \quad(j=1,2, \ldots, s) \tag{1.5}
\end{equation*}
$$

Here $\quad \Phi^{j r}=\frac{S^{j r}}{j r T}$ where the matrix $\left\|S^{j r}\right\|$ is the inverse
of the matrix $\left\|\frac{1}{j+r-1}\right\| j ; r=1, \ldots:$;s: The purpose of the present note is to simplify the computations necessary for obtaining the estimates (1.5). This is done by studying first the matrix $\left\|\frac{1}{i+j-1}\right\|$ and giving formulae for finding its inverse. Tables of the coefficients $\mathrm{S}_{\mathrm{n}}^{\mathrm{jr}}$ are then computed for $\mathrm{n}=2(1) 10$. These tables will be found ${ }^{n}$ the end of this report. The same matrix occurs in least square theory when an integral is minimized instead of a sum. The inversion of this and related matrices was studied by A. R. Collar [2], [3] it is however believed that the proofs given here are somewhat more elementary.
2. A theorem due to A. Cauchy. The following theorem is due to h. Cauchy [l]. Let $a_{1}, \ldots, a_{n}, b_{1}, \ldots, b_{n}$ be $2 n$ numbers and consider the determinant whose elements are of the form $l /\left(\Theta_{i}+b_{k}\right)$ ($1, k=1,2, \ldots, n$). Then

$$
\begin{equation*}
\left\|\frac{1}{a_{i}+b_{k}}\right\|_{i, k=1, \ldots, n}=\frac{\prod_{j>k}\left(a_{j}-a_{k}\right)\left(b_{j}-b_{k}\right)}{\frac{1, \ldots n}{j, k}\left(a_{j}+b_{k}\right)} \tag{2.1}
\end{equation*}
$$

This theorem as well as an indication of its proof may also be found in [7], page 98, problem 3.
3. Inversion of a certain matrix. In the introduction we proposed to consider the matrix

$$
\begin{equation*}
S_{n}=\left\|\frac{1}{i+j-1}\right\|_{i, j=1, \ldots, n} \tag{3.1}
\end{equation*}
$$

and to find its inverse. Clearly the determinant of S_{n} as well as all its minors are of the form discussed in Section 2 . We can therefore compute the inverse S_{n}^{-1} by applying Cauchy's theorem. We denote by $\Delta_{n}^{i j}$ the minor of the element in the $i-t h$ row and and $j-t h$ column of the determinant Δ_{n} of the matrix S_{n}. If we write $S_{n}^{i j}$ for the element in the $i-t h$ row and $j-t h$ column of the inverse S_{n}^{-1} then

$$
\begin{equation*}
S_{n}^{i j}=(-1)^{i+j} \frac{\Delta_{n}^{i j}}{\Delta_{n}} \tag{3.2}
\end{equation*}
$$

If we use (2.1) to find $\Delta_{n}^{1 j}$ and Δ_{n} we obtain by an elementary computation

$$
\begin{equation*}
\Delta_{n}=\frac{\left(\prod_{k=1}^{n-1} k!\right)^{2}}{n^{n} \frac{n-1}{\prod_{k=1}}\left(n^{2}-k^{2}\right)^{n-k}} \tag{3.3}
\end{equation*}
$$

and
(3.4)

$$
\Delta_{n}^{i j}=\frac{(n+i-1)!(n+j-1)!}{[(i-1)!(j-1)!]^{2} n!(n-i)!(n-j)!}
$$

It is easy to show inductively that

$$
\begin{equation*}
\frac{n^{n}}{n!} \prod_{k=1}^{n-1} \frac{\left(n^{2}-k^{2}\right)^{n-k} k!}{(n+k)!}=1 \tag{3.5}
\end{equation*}
$$

so that we obtain from (3.2), (3.3) and (3.4)

$$
\begin{equation*}
S_{n}^{i j j}=\frac{(-1)^{i+j}}{i+j-1} \frac{(n+i-1)!(n+j-1)!}{[(i-1)!(j-1)!]^{2}(n-i)!(n-j)!} \tag{3.6}
\end{equation*}
$$

4. Formulae for the numerical computation of the $S_{n}^{i j}$. It is quite convenient to compute the $S_{n}^{i} j$ recursively. We obtain immediately from (3.6)

$$
\begin{equation*}
s_{n+1}^{i j}=\frac{(n+i)(n+j)}{(n+l-i)(n+l-j)} s_{n}^{i j} \text { for } i, j=1,2, \ldots, n \tag{4.1}
\end{equation*}
$$

By means of (4.1) it is possible to compute from the elements of S_{n}^{-1} the elements of S_{n+1}^{-1} in the first n rows and columns. We still have to determine the elements of the last column. We can
do this by deriving a relation between the elements of S_{n}^{-1} and the coefficients of certain orthogonal. polynomials. Consider a polynomial of degree m

$$
P_{m}(x)=1+a_{m, 1} x+\ldots+a_{m, m} x^{m} \quad\left(a_{m, m} \neq 0\right)
$$

"such that
(4.3)

$$
\int_{0}^{1} x^{k} P_{m}(x) d x=0 \quad \text { for } k=0,1, \ldots,(m-1)
$$

Equation (4.3) determines the polynomials $P_{m}(x)$, they are the Legendre polynomials adapted to the interval $0 \leq x \leq 1$. They are obtained from the Legendre polynomials formed for the interval $-1 \leq x \leq+1$ by a linear transformation of the variables. They are discussed and to a certain extent tabulated in [6]. This system of polynomials is orthogonal and we have
(4.4)

$$
\int_{0}^{1} P_{m}(x) P_{n}(x) d x=\left\{\begin{array}{l}
0 \text { if } m \neq n \\
\frac{1}{2 m+1} \text { if } m=n
\end{array}\right.
$$

Moreover,

$$
\begin{equation*}
a_{m, k}=(-1)^{k}\binom{m}{k}\binom{m+k i}{k} \tag{4.5}
\end{equation*}
$$

For the proof of (4.4) and (4.5) the reader is referred to W. E. Milne's book [6] chapter IX, Section 69.

We write $a_{m}, 0=1$ and substitute (4.2) and (4.3) and obtain, considering also (4.4),

$$
\sum_{j=0}^{m} \frac{a_{m, j}}{k+j+1}=\frac{1}{(2 m+1) a_{m, m}} \delta_{k, m} \quad(k=0,1, \ldots, m)
$$

where $\delta_{k, m}$ is the Kronecker delta. We rewrite these equations as

$$
\begin{equation*}
\sum_{j=1}^{m+1} \frac{a_{m}, j-1}{k^{+j-1}}=\frac{1}{(2 m+1) a_{m, m}} \delta_{k, m+1} \quad(k=1, \ldots, m+1) \tag{4.6}
\end{equation*}
$$

Considering the obvious relation

$$
\sum_{k=1}^{m+1} \frac{1}{j+k-1} s_{m+1}^{n k}=\delta_{h k}
$$

we solve the system (4.6) and obtain

$$
\begin{gathered}
-5 \\
a_{m, k-1}=\frac{1}{(2 m+1) a_{m, m}} s_{m+1}^{m+1, k}
\end{gathered}
$$

or
(4.7)

$$
s_{m+1}^{m+1, k}=(2 m+1) a_{m, k-1}=s_{m+1}^{k, m+1}
$$

From (4.7) and (4.5) we see then that for $k=1, \ldots,(m+1)$
(4.8)

$$
s_{m+1}^{m+1}, k=s_{m+1}^{k, m+1}=(-1)^{m+k-1}(2 m+1)\binom{2 m}{m}\binom{m}{k-1}\binom{m+k-1}{k-1}
$$

Formulae (4.1) and (4.8) can be used to compute systematically tables of the elements of $\mathrm{S}_{\mathrm{m}}^{-1}$.
5. An alternate method for computing S_{m}^{-1}. We normalize the polynomials (4.2) and obtain
(5.1) $\quad Q_{m}(x)=\sqrt{2 m+1} P_{m}(x)=\sum_{k=0}^{m} b_{m, k} x^{k} \quad(m=0,1,2, \ldots)$

It is seen from (4.5) and (4.4) that

$$
\begin{equation*}
\mathrm{b}_{\mathrm{m}, \mathrm{k}}=(-1)^{\mathrm{k}} \sqrt{2 \mathrm{~m}+1}\binom{\mathrm{~m}}{\mathrm{k}}\binom{\mathrm{~m}+\mathrm{k}}{\mathrm{k}} \tag{5.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{0}^{1} Q_{m}(x) Q_{n}(x) d x=\delta_{m, n} \tag{5.3}
\end{equation*}
$$

We consider the matrix

$$
B_{N}=\left\|b_{m, k}\right\|_{m, k=0, \ldots,(N-1)}
$$

It follows then from (5.3) that

$$
\begin{equation*}
B_{N} S_{N} B_{N}^{\prime}==I \tag{5.4}
\end{equation*}
$$

Here I denotes the identity matrix and B_{N}^{\prime} the transposed of B_{N}. From (5.4) we see that

$$
\begin{equation*}
S_{N}^{-1}=B_{N}^{-1} B_{N} \tag{5.5}
\end{equation*}
$$

If tables of the coefficients of the polynomials $P_{m}(x)$ are known it is possible to find S_{N}^{-1} from (5.5). On the other hand one could also derive (3.6) from (5.5) and (5.2).
6. Description of Tables and their preparation. Tables are given for the inverse of the matrix $S_{n}[$ see equation (3.1)] for $n=2, \ldots, 10$. That is the quantities $S_{n}^{j j}$ [see equation (3.2)] are tabilated for $1 \leq i \leq j \leq n \leq 10$ 。

Since the matrix S_{n} is symmetric its inverse is also, hence in the following tables $S_{n}^{i j}$ is given only for $j \geq i$.

These tables were obtained by the use of equations (4.1), (4.7) and (4.8).

The tables were checked by using the relationships:

$$
\begin{equation*}
\sum_{i=1}^{n} S_{n}^{i j} /(i+k-1)=\delta_{j k}(j, k=1, \ldots, n) . \tag{6.1}
\end{equation*}
$$

All of the above relations were checked for $j=k$, and supplementarily a few others were examined and found correct.

Acknowledgement: The authors wish to thank Mr. Edwin L. Grab who prepared and checked the tables.

REFERENCES

[1] A. Cauchy, Exercises d'Analyse et de phys. math. Vol. 2, pp. 151-159, Paris 1841. Also Oeuvres completes 2^{e} serie XII.
[2] A. R. Collar, On the Reciprocation of Certain Matrices. Proceedings of the Royal Society of Edinburgh, Vol. 59,
[3] A. R. Collar, On the Reciprocal of a Segment of a Generalized Hilbert Matrix. Proceedings of the Cambridge Philosophical Society, Vol. 47, pp. 11-17, (1951).
[4] H. B. Mann, On the Estimation of Parameters Determining the Mean Value Function of a Stochastic Process. To be published. in Sankhya.
[5] H. B. Mann, Statistical Techniques Applicable to the Analysis of a Fundamental Random Process. Technical Note WCRR-52-7 Flight Research Laboratory, Wright Air Development Center, Dayton, Ohio, 1952.
[6] W. E. Milne, Numerical Calculus. Princeton University Press, Princeton, New Jersey, 1949.
[7] G. Pólya-G. Szegó, Aufgaben und Lehrsätze aus der Analysis, Vol. 2. (Grundlehren der math. Wiss. Vol. 20) J. Springer Berlin, 1924. Reprinted by Dover Publications, New York, 1945.

e
12012
-504504
5045040
-20180160
$378 \quad 37800$
-33297264
11099088
-38808
2596672
-15717240
62092800
-115259760
100590336
-33297264
48510
-1940400
18711000
-72765000
133402500
-115259760
37837800

8820	-29400
-317520	1128960
2857680	-10584000
-10584000	40320000
18711000	-72765000
-15717240	62092800
5045040	-20180160

49
-1576
8820
-29400
48510
-38808
12022

64		-2016		20160		-92400		21760		88288	192192		-51480
-2016		84672		52560		56960	-11.6	424.00		67552	-105 94584		82880
20160	-9	52560		30720		1.2000	3496	88000	-2043	24.20	24261120	-389	18880
-92400	46	56960	-582	12000		20000	-8004	15000	11099	08800	-7769 36160	2162	3.6000
221760	-116	42400	1496	88000	-8004	15000	21344	40000	-29967	53760	2118916800	-5945	94000
-2 88288	3.55	67552	-2043	24120	11099	08800	-29967	53760	42499	41696	-3030051024	8562	15360
192192	-105	94584	1412	61120	-7769	36160	21189	16800	-30300	51024	2175421248	-6183	77760
-51480	28	82880	-389	18880	2162	16000	-5945	94000	8562	15360	-618377760	1766	79360

218790
-15752880
275675400
-2021619600
7581073500
-15768632880
18396738360
-11263309200
2815827300 -926640
65894400 $-21 / 126204,80$
8302694400
-30918888000
63930746880
-74205331200
45229916160

1621620
-113513400
1942340400

51648597000

-1513512
089を8 LEOT
-1748106360
12430978560
-45450765360
92554285824

63930746880

810810
-54054000

8
0
-1
0
-2
-8

-6243237000
22545022500

15966720
-256132800
1756339200
-6243237000
12430978560

8302694400
8
0
－
－
d
N

\circ

8
$\stackrel{0}{3}$
$\underset{\sim}{2}$
$\underset{1}{1}$
38419920
-256132800
891891000
09890 T8 Z そし
1942340400
-1141620480

오
172800
8
$\underset{\sim}{0}$
木
ন
Ni
0
in
8
$\stackrel{3}{3}$
0
जै
103783680
-113513400

\circ
0
\sim
N
\sim
i
\rightleftarrows

42580
-249480
810810
-1513512
1621620
O
O
0
0
218790
$\stackrel{\square}{-}$

$$
\begin{aligned}
& 4375800 \\
& -389883780 \\
& 8506555200 \\
& -78843164400 \\
& 3820861 \text { du400 } \\
& -1064382719400 \\
& \begin{array}{r}
1766086882560 \\
-1723286307600
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
\text { O} \\
\text { ले } \\
\text { N } \\
\text { ल } \\
\text { ले } \\
\text { ले }
\end{array} \\
& -8751600 \\
& 770140800 \\
& \text {-1 } 6635041280 \\
& 152907955200 \\
& -735869534400 \\
& \begin{array}{l}
\text { O } \\
\text { io } \\
\text { in } \\
\text { N } \\
\text { N } \\
\text { on } \\
\text { n } \\
\text { n }
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
\circ \\
\hline 0 \\
0 \\
0 \\
0 \\
0 \\
\\
\\
\cdots
\end{array} \\
& \begin{array}{l}
8 \\
\text { N } \\
\text { in } \\
\text { n } \\
\text { n } \\
\text { İ } \\
\text { m } \\
\text { n }
\end{array} \\
& 9609600 \\
& -832431600 \\
& 17758540800 \\
& -161602721280 \\
& 771285715200 \\
& \text {-212 } 1035716800 \\
& \begin{array}{r}
3480673996600 \\
-336 \quad 3975024400
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& -6306300 \\
& 535134600 \\
& \text {-1 } 1237826600 \\
& \begin{array}{l}
8 \\
0 \\
0 \\
8 \\
\text { - } \\
\text { - } \\
\text {-1 } \\
0 \\
\text {-1 }
\end{array} \\
& -47 \quad 72330 \quad 36280 \\
& 1301544644400
\end{aligned}
$$

$\begin{aligned} & \text { ion } \\ & \text { N }\end{aligned}$
2522520
-208107900
4281076800
-37875637800
176752976400
-477233036280
771285715200
-735869534400
$\begin{gathered}\underset{\sim}{8} \\ \text { O- } \\ \text { m } \\ \underset{\sim}{\sim} \\ \underset{\sim}{\sim} \\ i\end{gathered}$
-600600
47567520
-951350400
0089E OSTZ8
008LE 9SL8L E-
COBOO LTOOT OT
$\begin{aligned} & \text { O } \\ & \text { N } \\ & \text { - } \\ & \text { N } \\ & \text { O} \\ & \text { - } \\ & 0 \\ & \text { - }\end{aligned}$
0025S 6L062 SI

> 79200
> -5880600
> 112907520
> OOTOS ELSG-
> 4281076800
$\begin{array}{r}-4950 \\
326700\end{array}$

8
0
0
0
in
in

025L9 SL7

$$
\begin{aligned}
& \text { 009ヶた TSES }
\end{aligned}
$$

> 7701.40800 | N |
| :--- |
| |
| | -6306300 $\begin{aligned} & 8 \\ & 0 \\ & 0 \\ & 0 \\ & 0\end{aligned}$ -8751600 4375800 $\begin{aligned} & \circ \\ & \stackrel{0}{\sim} \\ & \sim \\ & i\end{aligned}$

THE NATIONAL BUREAU OF STANDARDS

Functions and Activities

The functions of the National Bureau of Standards are set forth in the Act of Congress, March 3, 1901, as amended by Congress in Public Law 619, 1950. These include the development and maintenance of the national standards of measurement and the provision of means and methods for making measurements consistent with these standards; the determination of physical constants and properties of materials; the development of methods and instruments for testing materials, devices, and structures; advisory services to Government Agencies on scientific and technical problems; invention and development of devices to serve special needs of the Government; and the development of standard practices, codes, and specifications. The work includes basic and applied research, development, engineering, instrumentation, testing, evaluation, calibration services and various consultation and information services. A major portion of the Bureau's work is performed for other Government Agencies, particularly the Department of Defense and the Atomic Energy Commission. The scope of activities is suggested by the listing of divisions and sections on the inside of the front cover.

Reports and Publications

The results of the Bureau's work take the form of either actual equipment and devices or published papers and reports. Reports are issued to the sponsoring agency of a particular project or program. Published papers appear either in the Bureau's own series of publications or in the journals of professional and scientific societies. The Bureau itself publishes three monthly periodicals, available from the Government Printing Office: The Journal of Research, which presents complete papers reporting technical investigations; the Technical News Bulletin, which presents summary and preliminary reports on work in progress; and Basic Radio Propagation Predictions, which provides data for determining the best frequencies to use for radio communications throughout the world. There are also five series of nonperiodical publications: The Applied Mathematics Series, Circulars, Handbooks, Building Materials and Structures Reports, and Miscellaneous Publications.

Information on the Bureau's publications can be found in NBS Circular 460, Publications of the National Bureau of Standards (\$1.00). Information on calibration services and fees can be found in NBS Circular 483, Testing by the National Bureau of Standards (25 cents). Both are available from the Government Printing Office. Inquiries regarding the Bureau's reports and publications should be addressed to the Office of Scientific Publications, National Bureau of Standards, Washington 25, D. C.

[^0]: *The preparation of this paper was sponsored by the U. S. Naval Ordnance Test Station, Inyokern.

