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LOWER BOUNDS FOR TOE RANK AND LOCATION OF THE EIGENVALUES
OF A MATRIX*

by

Ky Fan and A« J. Hoffman

This paper contains several remarks devoted to the problems

mentioned in the title,. The resells of Hi apply to arbitrary

n x n matrices with complex coefficients, those of ^ 2 apply

to normal matrices ©niy„

1

In this section we consider the following problems concern-

ing an arbitrary n x n matrix A = (a . .) with complex coeffi-

cients i

Problem 1 i Find lower bounds for

can be calculated in a

the coefficients a
iJ

the rank of A

simple manner

tha t

from

Problem 2% Find n non-negative numbers , • „ .

,

^
such that every eigenvalue of A lies

in one or more of the n circular disks

I X “ a
ii^ ci ^ ( i —

1 ? • • • ?n) •

Most of the results in the literature relevant to Problem

1 are sufficient conditions for a matrix to be non-singular,

*This work was supported (in part) by the Office of Scientific
Research, USAF.
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n

such as Hadamard 8 s theorem that |a..| > X3 l a i (1 < i < n)
1

,

- _

implies that A is non-singular ® As mentioned in [8], the

application of this theorem to A - A I implies the theorem of
n

S® Gersgorin [3] that setting P. ~ C k J (1 < i < n)

is a solution to Problem 2 (See [8] and [10] for an extensive

bibliography on solutiOTS to Problem 2)® A generalization by

A® Ostrowski [5] of the theorem of Hadamard-Gersgorin is the

1 1followings If. p and q are positive ,
— + — = 1 and ^ , . ® .

,

Ck'
n

a re n positive numbers such that

n

£ i

fci
1+

<*i
= 1 ’

(1 .1 )

then ja . J > Of.
^^ ( 23 |a . . !

p

1

^ ( 1 < i < n ) implies that
1 1J - -

A is mon-singular , or , equivalently, setting

P- - O'. ( 13 la. .| (1 < i < n) is a solution to

j=1 , j^i 1 J s ~

Problem 2 ® (Hadamard-Gersgorin 8 s theorem is the limiting case

P = 1 of this result)® An improvement of Hadama rd-Gersgorin 1 s

theorem is a theorem of Taussky [9] and P, Stein [ 6 J which

asserts that if X is an eigenvalue with s linearly indepen-

dent eigenvectors corresponding to it , then \ lies in at

leas t s of the Hadamard-Gersgorin disks ® Theorem D of [6J

points out that consideration of )> = 0 implies a theorem about

the rank® The following theorem, formulated in terms of

Problem 1 , is a slight extension of this results

THEOREM 1 ® 1 ® Let A = (
a ^

j

)

be an n x n matrix ® For any

two integers i,m (1 < i < n 5 2 < m <_ n) ,
let b.(m) be the
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maximum, s um of the moduli of m-1 distinct off-diagonal elements

oi the i-th row of A, i.e.

holds for at least m distinct indices i, then the rank r of A

is at least m.

Proof s Consider the m x m submatrix B obtained from A by

deleting the rows with indices for which (1.3) is not satisfied,

and the corresponding columns. By (1,2) and (1.3)? Hadamard’s

theorem applies to B, hence B is non-singular, which implies

F ) IBo

If X is an eigenvalue of A with s linearly independent

eigenvectors corresponding to it, then the rank of A- A I

is n-s, and the theorem of Taussky and Stein follows at once

from Theorem 1.1. It is also easy to see how Theorem 1.1

and the theorem of Taussky and Stein can be generalized by

using Ostrowski's theorem qgotfed above. They may also be

extended by using another theorem of Ostrowski [*+] which as-

serts that if ^ and are the radii of the Hadamard-

Gersgorin disks for A and A* respectively, and 0 £ & < 1,

then =
jpj

0
* < i < n) also' is a solution of Prob-

+ K • | 5 . (1 .2)
m-1

If, for some m,

l
a iil

> b
i
(ra) ( 1 . 3 )

lem 2.

THEOREM 1.2. For any n x n matrix A = (a. .) of rank r,
*P



we have

4-

i
i=1

n
< r, ( 1 . 4 )

P 5a. |

j=1 1J

0(Whenever
q

occurs on the left-hand side, we agree to put

— = 0 )
0

Proof s Let a^ denote the i-ih row vector of A and e^ the

i-th unit vectofo Both sides of (1 <,*+) remain unchanged, if we

multiply any row of A by a number ^ 0 e Hence we may assume

that for each i, |la.|j
2 = S (a. .|

2 = 1 or 0 o We have to
j=1

iJ

prove, under this assumption, that 22? l(a. ,e.)\ < r,

i=1

As A is of rank r, we can find n orthonormal vectors ,

x 0 , o » e ,x such that
d 1 n

( a i » x . ) = 0 for I
1 = 1 - n

J (r + 1 < j < n,

For each i, we have

n _____ r _____
(a

i9
e.) = ZZ (a. ,x .)(e. ,x .) = Z, (a. ,x .) (e. ,x .) ,

j=1 J J j=1 J J

and therefore

l(a.,eJ 2 <ji |(a.,x.)l
2
)( £ j(e.»x.)|

2
).

- j=1 1 3 j=1
1 J

T
Since YZ |(a. ,x .)|

2
= Ija.jf

2 = 1 or 0, we have
j
77 "|

J a

1( a. , e.)j
2

< JZ Ke^xJ! 2
. (1 < i < n)

j=1 1 J - "

Consequently

ZD |(a
i
,e

i )|
2

<. ZD ZL l(* i
>x

i
)l

2 = 2/
II
x.

i=1
11 " j=1 i=1 1 J j=1 J

= r,
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THEOREM 1 o3® For any n x is rara trix A = (a^ . ) of rank r,
J

we have

t ^r^-< r.
1=1 B \^\

j = 1
1J

(1.5)

(We keep our agreement ^
= 0)

.

Proof s For the reason explained at the beginning of the

proof of Theorem 1 „2, we may assume

a
±± 2> ° (1 1 i 1 n) ( 1 . 6 )

and

Z k J = 1 or Oo (1 < i < n)

j=i J - - (1 .7)

It suffices to prove that Z a • < r holds for any matrix
i=1

11

A = with rank r and satisfying (1„6), (1 .7)»
eJ

By Hadamard-Ger^gorio ! s theorem mentioned above, (1.7)

implies that all eigenvalues of A have modulus < 1 . Therefore

£ -ii
i='l

is not larger than the number of non-zero eigenvalues

of A» But the number of non-zero eigenvalues of A is f r

n
hence Z a • • < r

„

i=1
11 “

(*
*)

—1
(*) Let T be a non-singular matrix such that T AT is trian-

gular,, Then the rank of A is same as the rank of T~^ AT and

the latter is obviously > the number of non-zero eigenvalues

of Ao
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Theorem 1 <>3 may be generalized as follows s

THEOREM 1 .4. Let p > 1 ,

~ ~ = 1 . Let CL ,
OrQ , . . . , a

be n positive numbers satisfying (1 . 1 ) . Then for any n x n

matrix A = ( a . .

)

of rank r
9
we have

n

£
i=1

* a
ix !1

+

xi<

T7q n
( Z. '

a
ij'

p'j'T7p"<~"f

.

(1.3)

(We keep ©tar agreement
^

Proof s The proof is

it suffices to show that

and

= Os)

similar to that of Theorem 1 *3°

9 if a matrix A = (a^.) satisfies

Here

( 1 . 6 )

i . . I

IX 5
+ Cfc

1/q

n

n

(Z pj/p .

1 or 0, ( 1 < i < n

)

(1 .9)

then 22 a.. < r.
i=1

11 *

According to Ostrowski’s theorem [5] mentioned above,

(1 o9) implies that all eigenvalues of A have modulus 1 <,

n
This fact together with (1 »6) implies 2) a.. iL r.

i=1
11

Theorem 1.3 may be regarded as the limiting case p —* 1 of

Theorem 1.4. Because of its relative simplicity, we state

explicitly the other limiting case p oo of Theorem 1 „4s

COROLLARY 1 . 1 « If, n positive numbers ® , c*
n

satisfy inequality (1.1), then for any n x n matrix A = (a^ .)
1 J

oi rank r , we have

n

c
i=1

ii'

xx 1
or. Max |a .[

—

?|JS“
JFX

< r,

ij
(1 . 10 )
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We turn now to results concerning Problem 2.

THEOREM 1 .5. Let A = (a..) be an n x n matrix* Let p > 1 ,
1 J

“ + ~ = 1 , If G( > 0 satisfies
P q

n ( .5. fa . .

1=1 ( 5- ia..| p)
JFi 1J 1

q/p
< 0^(1 + o<

q
} ( 1 . 11 )

(where we keep our agreement ^
= 0) ?

then every eigenvalue A

of A lies in at least one of the n circular disks?

1

IX- a..
| £ 0f( L la. .|

p
)p . (1 <; i < n)

j/i J
(1 . 12 )

Proof s Let X be an eigenvalue of A and let { x^ ,x 9 » . . .

>

x
n /

be a corresponding eigenvectors
in

Ax. = £ a. . x.o (1 < i < n)
j=1

We may assume that

n
T'£_y
i=1

iJ J
(1.13)

|x.| q = 1 (1 .1*+)

Suppose, if possible that

\X~ a
i;L

l
> Of ( I

a
ij

(1 < i < n) do 15)

Then for any index i such that x. / 0, we have by (1.1 5)?

(1.13), (l.l^s

CX*
<E la |») q/p ix,!

q < U- a
ii|

<1

lx iS
q =

JF1 J

ijfi a
ij

x
j

!

.

q
i ~ !

x
xl
q

) <g. l

a
iji p

)
q/p

and therefore

iXfi
q ^ (1 .16)

i + a
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This inequality is of course also true when x^ = 0 o It follows

that

% a
ij

x
j' =

1

1 +GC

1/q

5,
1 ' 1 '

1

or

U-a !

q
ix |

q < i— (Xi la i)
q

. (1 < i < n)
1 + CX

4 j/l J

Combining (1»l5) with the last inequality, we infer that

a
q c£ Iaij i

p
)
q/p

ixi i

q < -Hr Kj<

>

q
a j^i 1J 1

1 + af
q j^i

holds for every index i such that x. ^ 0. Hence

|x. !

q < ( H. la . .1)

]?i ? jjr
o(
4

(i + oc
4

) s
|

i
p^qTp

JFi ij

holds whenever x. ^ Q. The weaker inequality
1 'sr"'

k

i*ii
s <

+ o(

• (i^i ^

a
ii) q

q
) (jfi i« ij i

p
)
q/!>

is of course satisfied for all i. Thus, summing this inequality

over i and using (U^J, we get an inequality contradicting

(loll).

As limiting case p —> oo of Theorem 1.5? we have

COROLLARY 1.2. Let A = (a..) be an n x n matrix. If
‘ ““ 1 J

“

(X > 0 is such that

l ilHSfs +0( >

i=1 J

(1 .17)

(where we keep our agreement ^
= 0) ,

then every eigenvalue

of A lies in at least one of the n circular disks

1 X “ a . . \ < 0( Max la. A . ( 1 < i < n)
11 _

j^i
lj = - 0 .18)
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In the same way that Theoreiss 1 *3? 1 <>*+ are derived from

Hadamard-Gersgorin 1 s theorem and Os trows ki ; s theorem respec-

tively, other lower bounds for the rank can be derived from

our Theorem 1 0 5° In particular, as a consequence of Corollary

1.2, we have

COROLLARY 1 o3» Let A = (a, .} be an n x n matrix of rank r 0

J

If a is a positiv-e- number satisfying (1.17)> then

n

£
i=1

Ki'
|a

ijLl
+ °t Max |a

i ,|

jr i J

< To (1.19)

Using theorem 1 »2, we may improve the case p = 2 of Ostrow-

ski's theorem [53-

THEOREM 1 »6o Let ^ be an eigenvalue of an n x n matrix

A = (a^ .} and let s be the number of linearly independent

eigenvectors corresponding to A * If n positive numbers

ft
-j ? ft 2 »

* * * ? ft 0
are such that

n

2 < S»
i=1 1 +

&i =

then A lies in at least one of the n disks s

i\” a.. I < ( Z la |

2
)
2

. (1 < i < n)
11 " 1

j/i 1J '

(1 o 20)

( 1 . 21 )

Proof § Since s is the number of linearly independent

eigenvectors of A corresponding to the eigenvalue A
, the rank

of the matrix A - A I is n-s . Applying Theorem 1 0 2 to A - A I,

we get

f Ki-M 2

i=1 |a . . - Al
2

+ /ii
JFi

U
xj'

2 i< n-s
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As (1 o 20 ) may be written

n 6 *

n - s < S *—~ j

~ i=i 1 +

we have

o

2
i=1

*
a
ii

Ki - ^ 2

. f ji
AS

2
+ T

f
h ±i \

2 ~ i=i 1 +^|
jri J

Therefore at least one index i satisfies

6.
<

W i i
- A | + 2, |aj_ \

~
1 +

JFi

which is precisely ( 1 » 21 J 0

Similarly, from Theorem 1 0 3 9
we can derive the following

theorems

THEOREM 1 o?» Let X be an eigenvalue of an n x n ma t fix

A = (<k
j)

and let s be the number of linearly independent

eigenvectors corresponding to X ° If h positive numbers

|S
1 3

(ftp , o o o
, /3 satisfy (1 » 20} , then X lies in at least one

of the n disks s

|A~ a
ijLl < ^ jfi

)a
ij

l . (1 < ii ») (1.22)

It is interesting to compare this result with the theorem

of Taussky and Stein discussed in connection with Theorem 1 »1

above

o



Several inclusion theorems for the eigenvalues of a normal

matrix are already known® Among them., recent results are due

to L® Collate [l], H® Wielandt [12], A. G® Walker and J® D,

Weston [11 ]o All these results are concerned with a single

eigenvalue® In this *j we shall give inclusion theorems con-

cerning k eigenvalues of an n x n normal matrix, k being any

positive integer < n, Our results are based on the following

extremal property of the eigenvalues of normal matrices? Let

the eigenvalues X^O^i^u) of a normal matrix N be so arranged

tha

t

| X-jf > IX
2

'

S >o 0 o>_ I XJ o Then for any positive integer

k n, we have

k k

£ |> |

2 = Max £) ft Nx IS

2
, (2,1)

i=1
1

j=1

£ |X
n_i+1 l

2 = Min £ iNXjll
2

, (2.2)

where, for both maximum and minimum , x^ ,x
2

? » * « ,x^ runs over all

sets of k orthonormal vectors in the unitary n-space . As

N*N is a Hermitian matrix with eigenvalues {A^r (1 < i <_ n) ,

this follows from a similar property for the eigenvalues of

Hermitian matrices ([2], Theorem 1) 0

THEOREM 2 ® 1

®

Le

t

N be an n x n normal matrix with eigen-

values * (1 < i £ n) . Let x^ ,x
2 , . . . be k (< n) orthonor-

mal vectors and ^ be a complex number, 6 a non-negative real

number such that



k

D
j=i

12

II (N - y I ) x . I| < 6 . (2.3)

Then there exist k distinct indices ^ ^ ? ° ®
® ^ among

1 ?
2

? oo 0? n such that

t IX, - *|
2
4 6 » (2.4)

i=1 i

The theorem remains true., when both signs *®< ,! in ( 2 o 3 ) ? (2.4)

are reversed ®

Prooi i Consider the normal matrix N - whose eigen-

values are (1 < i < n) . If we rearrange the A .
s s into

’ X ?»o»? such that
1 _ 2 n

I A^ — ^.1 S. I A^ " ^ £® 8 «S lAw ~
ft ^ ?

1 2 n

then applying the minimum property (2.2) to N - jf I, we obtain

- <£,. IX, - *1
2
i g *(«- «I)Xj«

2
• (2.5)

i=1 i j=1

In view of ( 2 « 3 ) ? (2.5) implies (2.*+).

Similarly one proves the second part of the theorem by

applying the maximum property (2.1) to N - jfl.

Remark s Let and ft be any two complex numbers. Put

Then in the theorem just proved, condition (2.3) becomes

k

he £ ((N- o(l)x., (N- /3l)x.) <0.
j=1 J J ~ ( 2 . 6 )
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Using this form (2»6} of condition (2»3) ?
we see that the

case k = 1 of Theorem 2d implies the following results

COROLLARY 2.1, Let N be an n x n normal matrix ,. Let

x = {x^ ,X
2 ? ... 3 xJ be a vector different from the zero-vector 0

Let Nx = jy
1
,y2 , . . . ,y n]

. If qr? Q are two complex numbers

such that

He £ (y ± - Gi x^CyT- (3 x
±

) < 0, (2.7)

i=1

then N has at least one eigenvalue in the disk

The corollary remains true, when both signs are reversed.

This result improves slightly an inclusion theorem *givea

independen tly by Ho Wieiandt [ 1 2 J and Walker-Wes ton [11 ].

These authors assume

Re [(y i - ax.Ky. ~ (3 x
± )] £ 0 , (1 <i<n)

'which is stronger than (2 0 7)o On the other hand, the inclu-

sion theorem of Wieland t-Walker-Wes ton generalizes an inclu-

sion theorem of L 0 Collatz [l] concerning real symmetric

matrices

.

THEOREM 2o2o Let N be an n x n normal matrix with eigen-

values A a
(1 < i < n) o For any k(ln) orthonormal vectors

x^ ,x 0 , o o o ,x^ in the unitary n-space , there exist k dis tine t

indices
, ^) ooo s \ among 1 , 2

,

0 »

»

, n such that



There also exist k distinct indices ^ ^ satisfying

the reversed inequality of ( 2 0 8 } o

Proofs Let

v 1
k

t = I Z
j=1

6 = Z IlNx.ll
2
- { j Zj (Nx.,x.)I

2
.

j=1 J k
j=1 3 J

One sees that

Z II (N - f I)x . Il

2 = 6,
j=1 3

which incidentally implies that 6^0,

Hence the first part of Theorem 2,1 implies the existence

of ^ » • -» o 9 ^ satisfying (2,8), and the second part of

Theorem 2,1 implies the existence of
, • , •

, ^ satisfying

the reverse of inequality (2,8),

The case k = 1 of Theorem 2,2 is a known result obtained

independently by Wielandt [12] and Walker-Wes ton [ll]«

For its simplicity, we state explicitly the following

special case of the case k = 1 of Theorem 2,2, Let

N = (a^ j ) be an n x n normal matrix . Let denote the

disk |z - a . < (2 la..!
2
)^i Then for each i = 1 ,2, . . , ,n,11 ~ iiZ-;

1 J

contains at least one eigenvalue of N and the interior of

never contains all n eigenvalues of N,
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special needs of the Government; and the development of standard practices,

codes, and specifications. The work includes basic and applied research, de-

velopment, engineering, instrumentation, testing, evaluation, calibration services

and various consultation and information services. A major portion of the

Bureau’s work is performed for other Government Agencies, particularly the

Department of Defense and the Atomic Energy Commission. The scope of ac-

tivities is suggested by the listing of divisions and sections on the inside of the

front cover.

Reports and Publications

The results of the Bureau’s work take the form of either actual equipment and

devices or published papers and reports. Reports are issued to the sponsoring

agency of a particular project or program. Published papers appear either in the

Bureau’s own series of publications or in the journals of professional and scientific

societies. The Bureau itself publishes three monthly periodicals, available from

the Government Printing Office: The Journal of Research, which presents com-

plete papers reporting technical investigations; the Technical News Bulletin, which

presents summary and preliminary reports on work in progress; and Basic Radio

Propagation Predictions, which provides data for determining the best frequencies

to use for radio communications throughout the world. There are also five series

of nonperiodical publications: The Applied Mathematics Series, Circulars, Hand-

books, Building Materials and Structures Reports, and Miscellaneous Publications.

Information on the Bureau’s publications can be found in NBS Circular 460,

Publications of the National Bureau of Standards ($1.00). Information on cali-

bration services and fees can be found in NBS Circular 483, Testing by the National

Bureau of Standards (25 cents). Both are available from the Government Print-

ing Office. Inquiries regarding the Bureau’s reports and publications should be

addressed to the Office of Scientific Publications, National Bureau of Standards,

Washington 25, D. C.




