NATIONAL BUREAU OF STANDARDS REPORT

2220

THE STABILITY PROBLEM FOR A THEOREM OF GRAMER BY N. A. SAPOGOV

Translated by Ida Rhodes

Edited by Eugene Lukacs

NBS

U. S. DEPARTMENT OF COMMERCE

Sinclair Weeks, Secretary

NATIONAL BUREAU OF STANDARDS

A. V. Astin, Director

THE NATIONAL BUREAU OF STANDARDS
The scope of activities of the National Bureau of Standards is suggested in the following listing of the divisions and sections engaged in technical work. In general, each section is engaged in specialized research, development, and engineering in the field indicated by its title. A brief description of the activities, and of the resultant reports and publications, appears on the inside of the back cover of this report.
Electricity. Resistance Measurements. Inductance and Capacitance. Electrical Instruments. Magnetic Measurements. Applied Electricity. Electrochemistry.
Optics and Metrology. Photometry and Colorimetry. Optical Instruments. Photographic Technology. Length. Gage.
Heat and Power. Temperature Measurements. Thermodynamics. Cryogenics. Engines and Lubrication. Engine Fuels. Cryogenic Engineering.
Atomic and Radiation Physics. Spectroscopy. Radiometry. Mass Spectrometry. Solid State Physics. Electron Physics. Atomic Physics. Neutron Measurements. Infrared Spectroscopy. Nuclear Physics. Radioactivity. X-Rays. Betatron. Nucleonic Instrumentation. Radiological Equipment. Atomic Energy Commission Instruments Branch.
Chemistry. Organic Coatings. Surface Chemistry. Organic Chemistry. Analytical Chemistry. Inorganic Chemistry. Electrodeposition. Gas Chemistry. Physical Chemistry. Thermochemistry. Spectrochemistry. Pure Substances.

Mechanics. Sound. Mechanical Instruments. Aerodynamics. Engineering Mechanics. Hydraulics. Mass. Capacity, Density, and Fluid Meters.
Organic and Fibrous Materials. Rubber. Textiles. Paper. Leather. Testing and Specifications. Polymer Structure. Organic Plastics. Dental Research.

Metallurgy. Thermal Metallurgy. Chemical Metallurgy. Mechanical Metallurgy. Corrosion. Minerà Products. Porcelain and Pottery. Glass. Refractories. Enameled Metals. Concreting Materials. Constitution and Microstructure. Chemistry of Mineral Products.
Building Technology. Structural Engineering. Fire Protection. Heating and Air Conditioning. Floor, Roof, and Wall Coverings. Codes and Specifications.
Applied Mathematics. Numerical Analysis. Computation. Statistical Engineering. Machine Development.
Electronics. Engineering Electronics. Electron Tubes. Electronic Computers. Electronic Instrumentation.
Radio Propagation. Upper Atmosphere Research. Ionospheric Research. Regular Propagation Services. Frequency Utilization Research. Tropospheric Propagation Research. High Frequency Standards. Microwave Standards.
Ordnance Development. These three divisions are engaged in a broad program of research Electromechanical Ordnance.
Ordnance Electronics. and development in advanced ordnance. Activities include testing, and evaluation of a wide variety of ordnance matériel. Special skills and facilities of other NBS divisions also contribute to this program. The activity is sponsored by the Department of Defense.
Missile Development. . Missile research and development: engineering, dynamics, intelligence, instrumentation, evaluation. Combustion in jet engines. These activities are sponsored by the Department of Defense.

- Office of Basic Instrumentation
- Office of Weights and Measures.

NATIONAL BUREAU OF STANDARDS REPORT

The Stability Problem for a Theorem of Cramér

by

N. A. Sapogov

[Published in Izvestiya Akad. SSSR Ser. Mat. 15, 205-218(1951]

Translated by

I. Rhodes

Approved for public release by the Director of the National Institute of Standards and Technology (NIST) on October 9, 2015
ait, is prohibited rds, Washington has been specth: for lts own use.

The Stability Problem for a Theorem of Cramér by N. A. Sapogov
(Presented by the Academician, S. N. Bernstein)
Abstract: If the sum of two random variables X_{1} and X_{2} is almost normally distributed, then each of these random variables is also approximately mormally distributed, provided that X_{1} and X_{2} are either independent or are dependent in a manner specified in this paper. The degree of approximation of the distribution of the sumands to the normal distribution is evaluated.

I. Introduction

1. If X_{1} and X_{2} are two independently and normally distributed random variables, then their sum $X=X_{1}+X_{2}$ is also normally distributed. This is one of the most elementary theorems in the theory of probability. The converse proposition, namely that X_{1} and X_{2} are also normally distributed if their sum X is normally distributed, is far from being elementary. This proposition was first conjectured by P. Lévy and proved in 1936 by H , Cramér [I]. In addition to the proof given by Cramér, there is an alternate proof due to S. N. Bernstein [2], pp. $427-30$. Bernstein uses the more elementary theorem of Liouville instead of Hadamard's theorem on entire functions which Cramér utilized.

However, neither the original proof of Cramér, nor its variant mentioned above, allows us to arrive at any definite conclusion regarding the type of distribution of the random variables X_{1} and X_{2}, if either the distribution of their sum X is not exactly --but only approximately--normal, or if the variables X_{1} and X_{2} are not entirely independent. The pressent paper studies these questions. A previous report on the result of this investigation is contained in a note by the author [3].
2. The main result of this investigation may be stated as follows:

THEOREM: Let

$$
\begin{equation*}
x=x_{1}+x_{2} \tag{1.1}
\end{equation*}
$$

be the sum of two independent random variables and assume that the distribution function $F^{\circ}(x)$ of X satisfies the condiction

$$
\begin{equation*}
\left|F(x)-\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{x} e^{-\frac{1}{2} t^{2}} d t\right|<\varepsilon, \quad \infty<x<\infty \tag{1,2}
\end{equation*}
$$

where $\varepsilon<1$ is given positive number; let also $F_{1}(x)$ be the distribution function of X_{1}, and let

$$
\int_{N}^{N} X d F_{1}(x)=a_{1}
$$

$$
\int_{-\mathbb{N}}^{\mathbb{N}} x^{2} d F_{1}(x)-\left(\int_{-N}^{N} x d F_{1}(x)\right)^{2}=\sigma_{1}^{2}>0, \quad N=\sqrt{\ln \frac{1}{E}}
$$

Then

$$
\begin{equation*}
\left|F_{1}(x)=\frac{1}{\sigma_{1} \sqrt{2 \pi}} \int_{-\infty}^{x} e^{-\frac{\left(x-a_{1}\right)^{2}}{2 \sigma_{1}^{2}}} d x\right|<C \sigma_{1}^{-\frac{3}{4}}\left(\ln \frac{1}{\varepsilon}\right)^{-\frac{1}{8}},-\infty<x<\infty \tag{1.3}
\end{equation*}
$$

where C is a constant which does not depend on ε, σ_{1} or a_{1} 。 An analogous statement can be made regarding $\mathbb{F}_{2}(x)$, the distribution function of X_{2} 。

However, the statement (1.3) is not the ultimate result obtainable and is subject to improvement. At the end of this paper, a generalization of the above result is discussed for the case where X_{1} and X_{2} are dependent; several other observations are also made

II. Reduction to Bounded Variables.

3. We shall assume that the median m, of X_{1} is zero o This is no loss of generality for if moor, then we may investigate $X_{1}-m_{1}$ instead of X_{1} and $X_{2}+r_{1}$ instead of X_{2}. Let now

$$
\begin{equation*}
P\left\{X_{1}<0\right\} \leq \frac{1}{2}, P\left\{X_{1} \leq 0\right\} \geq \frac{1}{2} \tag{2.1}
\end{equation*}
$$

The notation P \{ \} ~ i n d i c a t e s ~ t h e ~ p r o b a b i l i t y ~ o f ~ t h e ~ e v e n t ~ s h o w n ~ within the curly brackets 。

It is easy to show that under these conditions the median m_{2} of the value X_{2} satisfies the inequality

$$
\begin{equation*}
\left|m_{2}\right|<1 \tag{2.2}
\end{equation*}
$$

for any nonnegative $\varepsilon \leq 1 / 20$ 。 In fact, from the definition of a medians it follows that

$$
P\left\{X_{2}<m_{2}\right\} \leq \frac{1}{2} \quad \text { o }\left\{X_{2} \leq m_{2}\right\} \geq \frac{1}{2}
$$

Consequently, taking into consideration also (1.1). (1.2) and (2.1), we have

$$
\begin{aligned}
\frac{1}{4} \leq P\left\{x_{1}\right. & \left.\leq 0 ; x_{2} \leq m_{2}\right\} \leq P\left\{x_{1}+x_{2} \leq m_{2}\right\}= \\
& =\mathbb{P}\left\{x \leq n_{2}\right\} \leq \frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{m_{2}} e^{-\frac{1}{2} t^{2}} d t+\varepsilon
\end{aligned}
$$

from which it follows that

$$
\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{m} e^{-\frac{1}{2} t^{2}} d t \geq \frac{1}{4}-\varepsilon \geq \frac{1}{4}-\frac{1}{20}=0.2
$$

This leads to the inequality

$$
m_{2}>-1
$$

Moreover,

$$
\begin{gathered}
P\left\{x_{1}+X_{2}<m_{2}\right\} \leq \mathbb{P}\left\{X_{1}<0\right\}+\mathbb{P}\left\{X_{2}<m_{2}\right\}- \\
-P\left\{x_{1}<0\right\} \cdot P\left\{x_{2}<m_{2}\right\} \leq \frac{3}{4}
\end{gathered}
$$

since

$$
u+v-u v \leq \frac{3}{4}
$$

if

$$
0 \leq u \leq \frac{1}{2} \quad \text { and } \quad 0 \leq v \leq \frac{1}{2}
$$

Consequently

$$
\frac{3}{4} \geq P\left\{X<m_{2}\right\}>\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{m_{2}} e^{-\frac{1}{2} t^{2}} d t-\varepsilon
$$

from which we have

$$
\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{m_{2}} e^{-\frac{1}{2} t^{2}} d t<\frac{3}{4}+\frac{1}{20}=0.8
$$

This leads to the inequality

$$
m_{2}<1
$$

4. We shall have to produce a number a >0, such that

$$
F_{1}(a)-\mathbb{F}_{1}(-a) \geq \frac{1}{2} \text { and } \mathbb{F}_{2}(a)-\mathbb{F}_{2}(-a) \geq \frac{1}{2}
$$

We shall show that we may take $a=3$, if $\varepsilon \leq 1 / 20$. Let us choose a_{2} such that

$$
\begin{equation*}
\mathbb{P}\left\{\left|X_{2}\right|<a_{2}\right\} \leq \frac{1}{2}, \quad \mathbb{P}\left\{\left|\mathrm{X}_{2}\right| \leq a_{2}\right\} \geq \frac{1}{2} \tag{2.3}
\end{equation*}
$$

Then

$$
P\left\{\left|x_{2}\right| \geq a_{2}\right\} \geq \frac{1}{2}
$$

Consequently, at least one of the following inequalities is true:

$$
\begin{equation*}
P\left\{X_{2} \leq-a_{2}\right\} \geq \frac{1}{4} \tag{2.4}
\end{equation*}
$$

or

$$
\begin{equation*}
P\left\{x_{2} \geq a_{2}\right\} \geq \frac{1}{4} \tag{2.5}
\end{equation*}
$$

Let us assume the hypothesis (2.4). Taking into consideraton the expressions (1.1), (1.2) and (2.1), we have

$$
\frac{1}{8} \leq P\left\{X_{1} \leq 0 ; X_{2} \leq-a_{2}\right\} \leq P\left\{X \leq-a_{2}\right\} \leq \frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{-a_{2}} e^{-\frac{1}{2} t^{2}} d t+\varepsilon
$$

so that

$$
\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{-\frac{a}{2}} e^{-\frac{1}{2} t^{2}} d t \geq \frac{1}{8}-\frac{1}{20}=0,075
$$

Therefore

$$
\begin{equation*}
a_{2}<1.5<3 . \tag{2.6}
\end{equation*}
$$

The hypothesis (2.5) is treated in a similar manner and leads to the same result (2.6).

From (2.3) and (2.6) it follows that

$$
F_{2}(3)-F_{2}(-3) \geq \frac{1}{2}
$$

A similar inequality is true for $F_{1}(x)$. For, let us choose a_{0} satisfying the condition

$$
\begin{equation*}
\mathbb{P}\left\{\left|X_{1}\right|<a_{0}\right\} \leq \frac{1}{2}, \mathbb{P}\left\{\left|X_{1}\right| \leq a_{0}\right\} \geq \frac{1}{2} . \tag{2.7}
\end{equation*}
$$

Then

$$
P\left\{\left|X_{1}\right| \geq a_{0}\right\} \geq \frac{1}{2}
$$

and two cases arise

$$
P\left\{X_{1} \leq-a_{0}\right\} \geq \frac{1}{4}
$$

or

$$
\mathbf{P}\left\{\mathrm{X}_{1} \geq \mathrm{a}_{0}\right\} \geq \frac{1}{4} .
$$

Both cases are analogous. Let us fix our attention on one of these, say the first case. We have

$$
\begin{aligned}
\frac{1}{8} \leq P\left\{X_{1} \leq-a_{0} ; X_{2}\right. & \left.\leq m_{2}\right\} \leq P\left\{X \leq-a_{0}+m_{2}\right\} \leq \\
& \leq \frac{1^{-a_{2}}}{\sqrt{2 \pi}} \int_{-\infty}^{+m_{2}} e^{-\frac{1}{2} t^{2}} d t+\varepsilon ;
\end{aligned}
$$

therefore

$$
\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{-a_{2}} \int^{+m_{2}} e^{-\frac{1}{2} t^{2}} d t \geq \frac{1}{8}-\frac{1}{20}=0.075
$$

this leads to the relation

$$
a_{0}-m_{2}<1.5 .
$$

From this inequality and (2.2), we obtain

$$
a_{0}<3 .
$$

Therefore, in view of (2.7)

$$
\begin{equation*}
F_{1}(3)-F_{1}(-3) \geq \frac{1}{2} \tag{2.8}
\end{equation*}
$$

5. Let us introduce--instead of X_{1} and $X_{2}-$ two new variables X_{1}^{*} and X_{2}^{*}, such that

$$
\begin{aligned}
& x_{i}^{*}=x_{i} \text { when }\left|x_{i}\right| \leq N, \\
& x_{i}^{*}=0 . \text { when }\left|x_{i}\right| \geq N,
\end{aligned}
$$

where $N=\sqrt{\ln \frac{1}{\varepsilon}}$.
Clearly x_{1}^{*} and X_{2}^{*} are also independent.

We denote by $F_{1} *(x)$ and $F_{2}{ }^{*}(x)$ the distribution functions of the variables $X_{1}{ }^{*}$ and $X_{2}{ }^{*}$ respectively and by $F *(x)$, the distribution function of the sum

$$
x^{*}=x_{1}^{*}+x_{2}^{*}
$$

We note, first, that

$$
\begin{equation*}
\left|F^{*}(x)-F(x)\right| \leq\left[\int_{|x|>N} d F_{1}(x)+\int_{|x|>N} d F_{2}(x)\right]=\Delta \text {. } \tag{2.9}
\end{equation*}
$$

This results from the fact that the probability of the inequality

$$
x \neq x^{*}
$$

does not exceed \triangle. Let us evaluate \triangle. Since

$$
\mathbf{P}\left\{\mathbf{x}_{1} \leq 0 ; \mathbf{x}_{2} \leq \mathbf{y}\right\} \leq \mathbb{P}\{\mathbf{x} \leq \mathbf{y}\}<\varepsilon+\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\mathrm{y}} \mathrm{e}^{-\frac{1}{2} t^{2}} \mathrm{dt}
$$

then

$$
F_{2}(-N)<2 \varepsilon+\frac{2}{\sqrt{2 \pi}} \int_{N}^{\infty} e^{-\frac{1}{2} t^{2}} d t .
$$

Similarly, from

$$
P\left\{X_{1} \geq 0 ; X_{2}>y\right\} \leq P\{x>y\}<\varepsilon+\frac{1}{\sqrt{2 \pi}} \int_{y}^{\infty} e^{-\frac{1}{2} t^{2}} d t
$$

we obtain

$$
1-F_{2}(N)<2 \varepsilon+\frac{2}{\sqrt{2 \pi}} \int_{N}^{0} e^{-\frac{1}{2} t^{2}} d t
$$

Therefore

$$
\begin{equation*}
\int_{|y|>N} d F_{2}(y)<4 \varepsilon+\frac{4}{\sqrt{2 \pi}} \int_{N}^{\infty} e^{-\frac{1}{2} t^{2}} d t . \tag{2.10}
\end{equation*}
$$

In the very same manner, --remembering (2.2)--, we find that

$$
\begin{equation*}
\int_{|y|>N} \mathrm{dF} F_{1}(y)<4 \varepsilon+\frac{4}{\sqrt{2 \pi}} \int_{N-1}^{\infty} e^{-\frac{1}{2} t^{2}} d t . \tag{2.11}
\end{equation*}
$$

The inequalities (1.2), (2.9), (2.10) and (2.11) lead to
the relation

$$
\begin{equation*}
\left|F^{*}(x)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{x} e^{-\frac{1}{2} t^{2}} d t\right|<9 \varepsilon+\frac{8}{\sqrt{2 \pi}} \int_{N-1}^{\infty} e^{-\frac{1}{2} u^{2}} d u=\varepsilon_{1} \tag{2,12}
\end{equation*}
$$

III. Investigation of Characteristic Functions

6. Let $f^{*}(z)$ be the characteristic function of the variable X*:

$$
f^{*}(z)=E\left(e^{i \varepsilon X^{*}}\right)=\int_{-\infty}^{\infty} e^{i z x} d F^{*}(x)
$$

Since $\left|X^{*}\right| \leq 2 N$, then $f^{*}(z)$ is an entire function of the complex argument z. Similarly, the characteristic functions

$$
\begin{equation*}
f_{1}^{*}(z)=E\left(e^{i z X_{1}^{*}}\right) \quad \text { and } \quad f_{2}^{*}(z)=E\left(e^{i z X_{2}^{*}}\right) \tag{3.1}
\end{equation*}
$$

are also entire functions.
Our immediate goal is to find a lower bound for the modulus $\left|f^{*}(\mathbb{Z})\right|$, when Z is in the circle.

$$
|z| \leq T=\frac{N}{8}=\frac{1}{8} \sqrt{\ln \frac{1}{\varepsilon}} .
$$

It is well known that

$$
e^{-\frac{1}{2} z^{2}}=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} e^{i z x} e^{-\frac{1}{2} x^{2}} d x .
$$

so that $e^{-\frac{1}{2} z^{2}}$ is the characteristic function of the normal distribution

$$
\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{x} e^{-\frac{1}{2} u^{2}} d u=\Phi(x)
$$

We have therefore

$$
\begin{align*}
\mid x^{* *}(z)- & \left.e^{-\frac{1}{2} z^{2}} \right\rvert\, \leqslant \int_{-2 N}^{2 N} e^{i z x} d\left[F^{*}(x)-\Phi(x)\right]+ \\
& +\frac{1}{\sqrt{2 \pi}}\left|\int_{|x| \geqslant 2 N} e^{i z x} e^{-\frac{1}{2} x^{2}} d x\right| . \tag{3.2}
\end{align*}
$$

The first term of the right-hand side is now evaluated:

$$
\begin{gather*}
\left|\int_{-2 N}^{2 N} e^{i z x} d\left[F^{*}(x)-\Phi(x)\right]\right|= \\
=\left|\left\{e^{i z x}\left[F^{*}(x)-\Phi(x)\right]\right\}_{2 N}^{2 N}-\int_{-2 N}^{2 N}\left[F^{*}(x)-\Phi(x)\right] i z e^{i z x} d x\right| \leqslant \\
\leqslant 2 e^{N^{2} / 4} \varepsilon_{1}+\frac{N^{2}}{2} e^{N^{2} / 4} \varepsilon_{1}=2 \varepsilon_{1} e^{N^{2} / 4}\left(1+\frac{N^{2}}{4}\right), \tag{3.3}
\end{gather*}
$$

In (3.3) it is assumed that $|z| \leqslant T=N / 8$ and ε_{I} is defined by (2.12). The second term of the right-hand side of inequality (3.2) is evaluated in the following manner:

$$
\begin{align*}
& \frac{1}{\sqrt{2 \pi}}\left|\int_{|x| \equiv 2 N} e^{i z x} e^{-\frac{1}{2} x^{2}} d x\right|<\frac{2}{\sqrt{2 \pi}} \int_{2 N}^{\infty} e^{T x-\frac{1}{2} x^{2}} d x< \\
& <\sqrt{\frac{2}{\pi}} \frac{e^{\frac{1}{2} T^{2}}}{2 N-T} \tag{3.4}\\
& 2 N=T
\end{align*} \int_{2}^{\infty} u e^{-u^{2} / 2} d u<\frac{1}{2 N} e^{-7 N^{2} / 4} .
$$

Putting together the inequalities (3.2), (3.3) and (3.4), we obtain

$$
\begin{gather*}
\left|f^{*}(z)-e^{-\frac{1}{2} 2^{2}}\right|<2 \varepsilon_{1} e^{N^{2} / 4}\left(1+\frac{N^{2}}{4}\right)+\frac{1}{2 N} e^{-7 N^{2} / 4}< \\
<\left(18 \varepsilon+\frac{16}{\sqrt{2 \pi(N-I)}} e^{-\frac{1}{2}(N-1)^{2}}\right) e^{N^{2} / 4}\left(1+\frac{N^{2}}{4}\right)+\frac{1}{2 N} e^{-7 N^{2} / 4}< \\
<18 \varepsilon N^{2} e^{N^{2} / 4}+N^{2} e^{-21 N^{2} / 128}+e^{-7 N^{2} / 4}= \\
=18 \varepsilon^{3 / 4} \ln \frac{1}{\varepsilon}+\varepsilon^{21 / 128} \ln \frac{1}{\varepsilon}+\varepsilon^{7 / 4} \tag{3.5}
\end{gather*}
$$

provided $N=\sqrt{\ln \frac{1}{\varepsilon}}$ is sufficiently large and $|z| \leq T=\frac{N}{8}$. In the circle under consideration the following relations hold

$$
\begin{equation*}
\left|e^{-\frac{1}{2} z^{2}}\right| \geq e^{-N^{2} / 128}=\varepsilon^{1 / 128} \tag{3.6}
\end{equation*}
$$

From (3.5) and (3.6) we obtain

$$
\begin{equation*}
\left|f^{*}(z)-e^{-z^{2} / 2}\right|<\frac{1}{2}\left|e^{-\frac{1}{2} z^{2}}\right| \tag{3.7}
\end{equation*}
$$

Equation (3.7) is true when $|z| \leq T$, and if ε is so small that

$$
18 \varepsilon^{3 / 4} \ln \frac{1}{\varepsilon}+\varepsilon^{21 / 128} \ln \frac{1}{\varepsilon}+\varepsilon^{7 / 4}<\frac{1}{2} \varepsilon^{1 / 128} .
$$

Therefore in the same circle $|z| \leq T$

$$
\begin{equation*}
\left|f^{*}(z)\right|>\frac{1}{2} e^{-\frac{1}{2}\left|z^{2}\right|} \tag{3.8}
\end{equation*}
$$

From this we conclude that $f^{*}(\mathbb{z})$ has no zeros in the circle $|z| \leq T$.
\% According to (3.1) we have

$$
\mathbb{1}^{*}(\mathbf{z})=\mathbb{1}_{1}^{*}(\mathbf{z}) \mathbb{1}_{2}^{*}(\mathbf{z})
$$

Therefore both functions $\mathbb{f}_{1} *(z)$ and $\mathfrak{f}_{2} *(z)$ have no zeros in the circle $|z| \leq T$, so that their logarithms

$$
\phi_{1}(z)=\ln f_{1}^{*}(z) \text { and } \phi_{2}(z)=\ln f_{2}^{*}(z)
$$

are regular functions.

From (3.7) it follows that

$$
\begin{equation*}
\left|f^{*}(z)\right|=\left|f_{1}^{*}(z) f_{2}^{*}(z)\right|<\frac{3}{2} e^{\frac{3}{2}|z|^{2}} \quad,|z| \leq T . \tag{3.9}
\end{equation*}
$$

Let $z=t+i s$, where t and s ane real numbers. Then, in view of (2.8), we have

$$
\begin{gather*}
F_{1}^{*}(3)-\mathbb{F}_{1}^{*}(-3) \geq \frac{1}{2} \text { and therefore } \\
f_{1}^{*}(i s)=\int_{-\infty}^{\infty} e^{-s x} d F_{1}^{*}(x) \geq \int_{-3}^{3} e^{-s x^{\prime}} d F_{1}^{*}(x) \geq \frac{3}{2} e^{-3|s|}, \tag{3.10}
\end{gather*}
$$

From (3.9) and (3.10) it follows that

$$
\begin{equation*}
\left|f_{2}^{*}(z)\right| \leq f_{2}^{*}(i s)=\frac{f^{*}(i s)}{f_{1}^{*}(i s)} \leq 3 e^{3|z|+\frac{1}{2}\left|z^{2}\right|} \tag{3.11}
\end{equation*}
$$

Similarly, we find that

$$
\begin{equation*}
\left|\mathbf{f}_{1}^{*}(\mathbf{z})\right| \leq 3 e^{3|z|+\frac{1}{2}\left|z^{2}\right|}, \quad|z| \leq \mathbf{T} . \tag{3.12}
\end{equation*}
$$

Moreover, the inequalities (3.8), (3.11), and (3.12) allow us to evaluate the moduli i $\left|f_{1}(z)\right|$ and $\left|f_{2}(z)\right|$. In fact,

$$
\frac{1}{2} e^{-\frac{1}{2}\left|z^{2}\right|}<\left|f^{*}(z)\right|=\left|f_{1}^{*}(z) f_{2}^{*}(z)\right|
$$

therefore, and because of (3.11)

$$
\begin{equation*}
\left|f_{1}^{*}(z)\right|>\frac{\frac{1}{2} e^{-\frac{1}{2}\left|z^{2}\right|}}{\left|f_{2}^{*}(z)\right|} \geq \frac{1}{6} e^{-3|z|-|z|^{2}} \tag{3.13}
\end{equation*}
$$

Similarly, by utilizing (3.12), we obtain

$$
\begin{equation*}
\left|f_{2}^{*}(z)\right|>\frac{1}{6} e^{-3|z|-|z|^{2}}, \quad|z| \leq T \tag{3.14}
\end{equation*}
$$

8. Let us note first, that

$$
\begin{equation*}
\frac{1}{\sigma_{1}^{2}} \leq \frac{1}{4}\left(\ln \frac{1}{\varepsilon}\right)^{1 / 3} \tag{3.15}
\end{equation*}
$$

We see then from the inequalities (3.11), (3.12), (3.13) and (3.14) that for large values of T, the logarithms of $\mathbb{f}_{1} *(2)$ and $\mathbb{1}_{2} *(2)$ do not differ much from certain polynomials of the second degree, as long as $|z| \leq T_{1}=\sqrt[4]{\left.\frac{T}{\sigma} \right\rvert\,}$.

Let us use the well-known formula representing a function which is regular within a circle, by means of its real part given on the circumference of the circle (Schwartz's formula)

$$
f(z)=\dot{i} v(0)+\frac{1}{2 \pi} \int_{0}^{2 \pi} u(R,) \frac{\xi+z}{\xi-z} d \phi,
$$

where $f(z)=u(r, \psi)+i v(r, \psi)$ is a function regular in the circle $|z|=\left|r e^{i} \psi\right| \leq \mathbb{R}$, and $\xi=\mathbb{R} e^{i \phi}$. Applying this to the function $\phi_{1}(z)=\ln \mathbb{f}_{f}^{*}(z)$ and assuming $\mathbb{R}=T$, we have

$$
\phi_{1}(\mathbb{L})=i \operatorname{Im} \phi_{1}(0)+\frac{1}{2 \pi} \int_{0}^{2 \pi} \ln \left|f_{1}^{*}(\xi)\right| \frac{\xi+z}{\xi-2} d \phi
$$

whence

$$
\begin{equation*}
\phi_{1}^{\prime \prime \prime}(z)=\frac{6}{\pi} \int_{0}^{2 \pi} \ln \left|f_{1}^{*}(\xi)\right| \frac{\xi \alpha \phi}{(\xi-2)^{4}} . \tag{3.16}
\end{equation*}
$$

From the inequalitios (3.12) and (3.13) it Hollows that

$$
\begin{equation*}
|\ln | \tilde{q}_{1}^{*}(\xi)| |<(|\xi|+3)^{2} \tag{3.17}
\end{equation*}
$$

for any

$$
|\xi| \leq T .
$$

Let us recall that we are considering only those values of z which according to (3.15), satisfy the condition

$$
\begin{equation*}
|z| \leq T_{1}=\sqrt[4]{\frac{T}{\sigma_{1}}} \leq 4 T\left(\ln \frac{1}{\varepsilon}\right)^{-1 / 3} \tag{3.18}
\end{equation*}
$$

Keeping in mind (3.17), we have from (3.16)

$$
\left|\phi_{1}^{\prime \prime \prime}(z)\right|<\frac{12 T(T+3)^{2}}{(T-|z|)^{4}}
$$

Whence, in view of (3.18), we have for small values of $\varepsilon>0$

$$
\left|\phi_{1}^{\prime \prime \prime} \quad(\mathbb{Z})\right|<\frac{c_{1} T^{3}}{T^{4}}=\frac{c_{1}}{T}
$$

(c_{1}, c_{2}, \ldots are constants).
After three successive integrations of this inequality,
we obtain

$$
\begin{equation*}
\left|\phi_{1}(z)-a_{1}-i \beta_{1} z+\frac{1}{2} \gamma_{1} z^{2}\right|<\frac{c_{1} T_{1}{ }^{3}}{T}, \tag{3.19}
\end{equation*}
$$

where $\alpha_{1}, \beta_{1}, \gamma_{1}$ are certain constants, $|z| \leq T_{1}$.
A similar inequality may be derived for $\phi_{2}(z)$, the logarithm of the characteristic function $f_{2} *(z)$ of the variable X_{2} * 。

IV. Proof of the Basic Theorem

9. Since $\phi_{1}(0)=0$, it follows from (3.19) that

$$
\left|\alpha_{1}\right|<\frac{c_{1} T_{1}^{3}}{T}
$$

therefore

$$
\left|\phi_{1}(z)-i \beta_{1} z+\frac{1}{2} \gamma_{1} z^{2}\right|<\frac{2 c_{1} T_{1}{ }^{3}}{T} .
$$

Consequently,

$$
f_{1}^{*}(z)=e^{\phi,(z)}=e^{i \beta, z-\frac{1}{2} \gamma_{1} z^{2}+H(z)},
$$

where $H\left(z\right.$ is regular for $\mid<T_{1}$ and in this circle

$$
|H(\mathbb{Z})|<2 c_{1} \frac{T_{1}^{3}}{T} \leq 2 c_{1}
$$

since $T_{1} \leq \sqrt[3]{T}$. But in this case

$$
e^{H(z)}=1+H_{1}(z),
$$

where

$$
\begin{equation*}
H_{1}(z)=\lambda_{1} z+\lambda_{2} z^{2}+\ldots \tag{4.1}
\end{equation*}
$$

is a certain entire function, such that in the circle $|z| \leq T_{1}$

$$
\begin{equation*}
\left|H_{1}(z)\right|<c_{2} \frac{T_{1}^{3}}{T} . \tag{4.2}
\end{equation*}
$$

Therefore

$$
\begin{align*}
& f_{1}^{*}(z)=e^{i \beta_{1} z-\frac{1}{2} \gamma_{1} z^{2}}\left(I+H_{1}(z)\right)=\left[1+\left(i \beta_{I} z-\frac{1}{2} \gamma_{1} z^{2}\right)+\right. \\
& \left.+\frac{1}{2!}\left(i \beta_{1} z-\frac{1}{2} \gamma_{1} z^{2}\right)^{2}+\ldots\right]\left(1+\lambda_{I} z+\lambda_{2} z^{2}+\ldots\right) . \tag{4.3}
\end{align*}
$$

Here

$$
\lambda_{1}=\frac{1}{2 \pi i} \int_{|z|=T_{1}} \frac{H_{1}(z) d z}{z^{2}}, \quad \lambda_{2}=\frac{1}{2 \pi i} \int_{|z|=T_{1}} \frac{H_{1}(z) d z}{z^{3}} .
$$

Consequently, considering (4.2), we find

$$
\left|\lambda_{1}\right|<c_{2} \frac{T_{1}}{T}, \quad\left|\lambda_{2}\right|<\frac{c_{2}}{T}
$$

But as an entire function $f_{1} *(z)$ allows an expansion
where

$$
\begin{aligned}
& f_{1}^{*}(z)=1+i a_{1} z-\frac{a_{2}}{2!} z^{2}+\ldots+\frac{i^{k} a_{k}}{k!} z^{k}+\ldots \\
& a_{k}=M\left[\left(X_{1}^{*}\right)^{k}\right], \quad k=1,2, \ldots
\end{aligned}
$$

Comparing this expansion, with (4.3), we obtain

$$
\beta_{1}-i \lambda_{1}=a_{1} ; \quad \gamma_{1}+\beta_{1}^{2}-2 i \beta_{1} \lambda_{1}-2 \lambda_{2}=a_{2}
$$

Remembering the previously obtained values of λ_{1} and λ_{2},
we have

$$
\left|\beta_{1}-a_{1}\right|=\left|\lambda_{1}\right|<c \frac{T_{1}}{T}
$$

and for small $\varepsilon>0$
since $\mathrm{T}_{1}{ }^{2} / \mathrm{T} \rightarrow 0$, as $\varepsilon \rightarrow 0$. Here $\sigma_{1}{ }^{2}=\mathrm{a}_{2}-\mathrm{a}_{1}{ }^{2}$ is the variance of $X_{1} *$. From the above results, it follows that

$$
\begin{equation*}
\left|\phi_{1}(\dot{z})-i a_{1} z+\frac{1}{2} \sigma_{1}^{2} z^{2}\right|<2 c_{1} \frac{T_{1}^{3}}{T}+c_{4} \frac{T_{1}^{2}}{T}<c_{5} \frac{T_{I}^{3}}{T} . \tag{4.4}
\end{equation*}
$$

A similar inequality is true for $\phi_{2}(z)=\ln f_{2}{ }^{*}(z)$. Denote by

$$
g_{1}(z)=e^{i a_{t} z-\frac{1}{2} \sigma_{1}^{2} z_{z}^{2}} .
$$

Then we conclude from (4.4) that

$$
\begin{equation*}
\mathbf{f}_{1}^{*}(\mathbf{z})=g_{1}(\mathbf{z})\left(1+H_{2}(z)\right), \tag{4.5}
\end{equation*}
$$

where $H_{2}(z)$ is an entire function, such that in the circle $|z| \leq T_{1}$

$$
\begin{equation*}
\left|H_{2}(z)\right|<c_{6} \frac{T_{1}^{3}}{T} . \tag{4.6}
\end{equation*}
$$

Moreover, $H_{2}(0)=0$, since $f_{1} *(0)=1$ 。
10. The relation (4.5), which indicates the degree of closeness between the characteristic functions $f_{1} *(z)$ and $g_{1}(z)$, also allows us to evaluate the deviation of the corresponding distributions from each other. For this purpose, we shall make use of the Theorem of Esseen [4]. See also [5] pp. 212-214.

THEOREM (Esseen)。 Let A, L, and λ be positive constants. Let $F(x)$ be a non-decreasing function and $G(x)$ a function of bounded variation. If:

1) $\quad F(-\infty)=G(-\infty), \quad F(\infty)=G(\infty)$;
2) $\int_{-\infty}^{\infty}|F(x)-G(x)| d x<\infty$;
3) The derivative $G^{\prime}(x)$ exists for all x and $\left|G^{\prime}(x)\right| \leq A$;
4) $\int_{-L}^{L}\left|\frac{f(t)-g(t)}{t}\right| d t=\lambda$,
where $f(t)$ and $g(t)$ are the characteristic functions of $F(x)$ and $G(x)$ respectively, then

$$
|F(x)-G(x)| \leq k \frac{\lambda}{2 \pi}+c(k) \frac{A}{L},
$$

for any $k>1$, where $c(k)$ is a finite positive number, defined by k.

This theorem is immediately applicable to our case, if we assume

$$
L=T_{1}, f(t)=f_{1}^{*}(t), g(t)=g_{1}(t) .
$$

In fact, from (4.5), we have

$$
\left|\frac{f_{1} *(t)-g_{1}(t)}{t}\right| \leq\left|\frac{H_{2}(t)}{t}\right|,
$$

for any real t. Since $H_{2}(0)=0$, then $H_{2}(z) / z$ is an entire function and, in view of (4.6), the following is true for

$$
|z|=T_{1}
$$

$$
\left|\frac{\mathrm{H}_{2}(\mathrm{z})}{\mathrm{z}}\right| \leq \mathrm{c}_{6} \frac{\mathrm{~T}_{7}{ }^{2}}{\mathrm{~T}} .
$$

Since the modulus of a regular function reaches its maximum on the boundary of the region, then for $|z| \leq T_{1}$, we also have

$$
\left|\frac{H_{2}(z)}{z}\right| \leq c_{6} \frac{T_{1}{ }^{2}}{T} .
$$

Therefore

$$
\int_{-T_{1}}^{T_{1}}\left|\frac{f_{1}^{*}(t) g_{1}(t)}{t}\right| d t \leq \int_{-T_{2}}^{T}\left|\frac{H_{2}(t)}{t}\right| d t \leq 2 c_{6} \frac{T_{1}^{2}}{T}=\lambda
$$

Moreover, the distribution corresponding to the characteristic function $g_{1}(t)$, namely

$$
\frac{1}{\sigma_{1} \sqrt{2 \pi}} \int_{-\infty}^{x} e^{-\frac{\left(x-a_{1}\right)^{2}}{2 \sigma_{1}^{2}}} d x=G(x)
$$

has a bounded derivative

$$
\left|G^{\prime}(x)\right|=\frac{1}{\sigma_{1} \sqrt{2 \pi}} e^{-\frac{\left(x-a_{1}\right)^{2}}{2 \sigma_{1}^{2}}} \leq \frac{1}{\sigma_{1} \sqrt{2 \pi}}
$$

In consequence, the Theorem of Esseen allows us to state that

$$
\begin{gather*}
\left|\mathrm{F}_{1}^{*}(x)-\frac{1}{\sigma_{1} \sqrt{2 \pi}} \int_{-\infty}^{x} e^{-\frac{\left(x-2_{1}\right)^{2}}{2 \sigma_{1}^{2}}} d x\right|<c_{7} \frac{T_{1}^{3}}{T}+\frac{c_{8}}{\mathrm{~T}_{1} \sigma_{1}}= \\
=\frac{c_{9}}{\sigma_{1}^{\frac{3}{4}}\left(\ln \frac{1}{\varepsilon}\right)^{\frac{1}{8}}}, \quad-\infty<x<\infty . \tag{4.7}
\end{gather*}
$$

In the above, we assumed the hypothesis (3.15). If that does not hold, in other words, if

$$
\frac{1}{\sigma_{1}^{2}}>\frac{1}{4}\left(\ln \frac{1}{\varepsilon}\right)^{\frac{1}{3}}
$$

then the inequality (4.7) is trivial, provided the constant c_{9} is larger than $2^{3 / 4}$, for under those conditions

$$
\frac{c_{9}}{\sigma_{1}^{\frac{3}{4}}\left(\ln \frac{1}{\varepsilon}\right)^{\frac{1}{8}}}>1 .
$$

In order to obtain a proof of (1,3), it is sufficient to note that

The often repeated condition that ε must be sufficiently small does not have any bearing in the final formulation of the theorem, for we can obviate this condition, by raising the value of the constant C.

Let us note, in particular, that if $\sigma_{1} \geq \sigma>0$ for all sufficiemtly small $\hat{C}>0$, where σ is a constant, then we have

$$
\left|F_{1}(x)=\frac{1}{\sigma_{1} \sqrt{2 \pi}} \int_{-\infty}^{\infty} e^{-\frac{\left(x-a_{1}\right)^{2}}{2 \sigma_{1}^{2}}} d x\right|<\frac{1}{\left(\ln \frac{1}{\varepsilon}\right)^{\omega}}
$$

for any $\omega<1 / 8$, provided $\varepsilon>0$ is sufficiently small.

5. Supplementary Notes.

11. Let us turn our attention to the fact that the theorem just proven may be paraphrased in terms of moments. In fact, the closeness of the distribution function $\mathbb{F}(x)$ of the quantity X to the normal distribution function indicates that several first moments of $\mathbb{F}(x)$ and the corresponding moments of the normal distribution are also close. It follows then that several first moments of the distribution $F_{1}(x)$ and the corresponding first moments of some normal distribution $\Phi_{I}(x)$ are also close.

In our investigation we found that the hypothesis assuming complete independence of X_{1} and X_{2} was not essential.

Let now X be the sum of two dependent variables X_{1} and X_{2}, whose distribution functions areapriori $F_{1}(x)$ and $F_{2}(x)$. Assume that the distribution function $F(x)$ satisfies the condition

$$
|F(x)-\Phi(x)|<\varepsilon^{\prime},-\infty<x<\infty,
$$

and that the dependence betweer X_{1} and X_{2} is such that

$$
\left|\mathbb{P}\left\{X_{1}+X_{2}<x\right\}-\int_{-\infty}^{\infty} F_{1}(x-y) d F_{2}(y)\right|<\varepsilon^{\prime \prime},-\infty<x<\infty
$$

We consider two independent variabies X_{1} and X_{2} with distribution functions $F_{1}(x)$ and $F_{2}(x)$, and assume that

$$
\overline{\mathrm{x}}_{1}+\overline{\mathrm{x}}_{2}=\overline{\mathrm{x}},
$$

We then have

$$
|F(x)-\Phi(x)|<\varepsilon^{\prime}+\varepsilon^{\prime \prime},
$$

where $F(x)$ is the distribution function of X. Now we may apply the Theorem of section II. A corollary of Cramér's theorem:

Let the sum X of two random variables X_{1} and X_{2} be subject to the Gaussian law but the two addends may, in general, be dependent. If there exists a constant a, such that x_{1} and $x_{2}-a X_{1}$ are independent, then X_{1} and X_{2} are normally correlated.

Indeed, in this case the quantities $(1+a) X_{1}$ and $X_{2}-a X_{1}$ are independent, and moreover, their sum is equal to \mathbb{X} and is normally distributed. Then each of the above quantities is individually subject to the Gaussian law, and it
follows that X_{1} and X_{2} are comnected by a normal correlation. Finally, it might be of value to mote act which, though it is not in the direct line of our investigation, is closely connected with Cramérs theorem. Similar to the Gausian distribution, Poisson's distribution possesses a property, stated in a theorem of D.A. Raikov [6] whtich is completely analogous to that of cramér. At the same time, both of these distributions are the limits of binomial distributions. For these, a theorem holds which is amalogous to Cramer's and Raikov's. That is: if the sum of two independent random variables is binomially distributed, then each addend is also binomially distributed (or is non-random). This results from the fact that the generating function $(p+t q)^{n}$ of the binominal distriburion has polynomial divisor's of the same type.

Bibliography

1. Cramér, N. Uber eine Eigenschaft der normalen Verteilungsfunction. Math. Zeitschrift, 41, 405-0 +14, (1936).
2. Bernstein, S. No Theory of Probabilities, Moscow-Leningrad, 1946.
3. Sapogov, N. A. On a property of the Gaussian distribution, Doklady Akad. Nauk SSSR (N.S) 73, 461-462, (1950).
4. Esseen C. G. Fourier analysis of distribution functions. A mathematical study of the Laplace-Gaussian law. Acta Math., 77, 1-125 (1945).
5. Gnedenko B. V. and Kolmogorov A. N. Limit distributions for sums of independent random variables. Gosudarstv. Isdat, Telin. Moscow-Leningrad 1949 (264 pp).
6. Raikov, D. A. On the decomposition of Gauss and Poisson laws. Izv. Akad. Nauk, Leningrad $S S S R$, Ser. Mat. (2) 91-124 (1938).

2391090	12tsker		
F	18		- Flaty
\dagger	5		f^{2}
K	10		
1	48	$\|x\|=\frac{1}{4}$	$\sqrt{4} x^{x}>$
9	\%		
11	$1{ }^{3}$		$=\int_{6}$
31	\$		
4	S		

THE NATIONAL BUREAU OF STANDARDS

Functions and Activities

The functions of the National Bureau of Standards are set forth in the Act of Congress, March 3, 1901, as amended by Congress in Public Law 619, 1950. These include the development and maintenance of the national standards of measurement and the provision of means and methods for making measurements consistent with these standards; the determination of physical constants and properties of materials; the development of methods and instruments for testing materials, devices, and structures; advisory services to Government Agencies on scientific and technical problems; invention and development of devices to serve special needs of the Government; and the development of standard practices, codes, and specifications. The work includes basic and applied research, development, engineering, instrumentation, testing, evaluation, calibration services and various consultation and information services. A major portion of the Bureau's work is performed for other Government Agencies, particularly the Department of Defense and the Atomic Energy Commission. The scope of activities is suggested by the listing of divisions and sections on the inside of the front cover.

Reports and Publications

The results of the Bureau's work take the form of either actual equipment and devices or published papers and reports. Reports are issued to the sponsoring agency of a particular project or program. Published papers appear either in the Bureau's own series of publications or in the journals of professional and scientific societies. The Bureau itself publishes three monthly periodicals, available from the Government Printing Office: The Journal of Research, which presents complete papers reporting technical investigations; the Technical News Bulletin, which presents summary and preliminary reports on work in progress; and Basic Radio Propagation Predictions, which provides data for determining the best frequencies to use for radio communications throughout the world. There are also five series of nonperiodical publications: The Applied Mathematics Series, Circulars, Handbooks, Building Materials and Structures Reports, and Miscellaneous Publications.

Information on the Bureau's publications can be found in NBS Circular 460, Publications of the National Bureau of Standards (\$1.00). Information on calibration services and fees can be found in NBS Circular 483, Testing by the National Bureau of Standards (25 cents). Both are available from the Government Printing Office. Inquiries regarding the Bureau's reports and publications should be addressed to the Office of Scientific Publications, National Bureau of Standards, Washington 25, D. C.

