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FOREWORD

This report develops various aspects of a

new method of treating extreme-value data® This method,

based on order statistics, has a number of advantages

over existing procedures, and will be useful in the

efficient handling of small or large sets of extreme

gust°load data and extreme data in many other fields

as well e

Ihe present report completes work under a

research project aimed at the improved application of

the theory of extreme values to the analysis of gust

loads of airplanes* This project, supported by the

National Advisory Committee for Aeronautics, was carried

out by Julius Lieblein under the general supervision

of Dr„ Churchill Eisenhart, Chief of the Statistical

Engineering Laboratory,, The Statistical Engineering

Laboratory is Section 11*3 of the National Applied

Mathematics Laboratories (Division 11, National Bureau of

Standards), and is concerned with the development and

application of modern statistical methods in the physical

sciences and engineering*

J, Ho Curtiss
Chief, National Applied
Mathematics Laboratories

A. Vo As tin
Director
National Bureau of Standards
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A NEW METHOD OF ANALYZING EXTREME-VALUE DATA*

by

. Julius Lieblein

1 o SUMMARY

A new method is presented and proposed for

analyzing extreme -value data which may arise in a

wide variety of applications <>

Classical applications of statistical methods,

which usually concern average values, are inadequate

when the quantity of interest is the largest (or

smallest) in a set of magnitudes,, This is the sit<=

uation in a number of fields, e 0 g„, gust loads of

an airplane in flight, highest temperatures or low-

est pressures in meteorology, floods and droughts

in hydrology* creaking strengths in materials test-

ing, breakdown voltage of capacitors, and hpman life

spans, in all of which applications of methbds for

dealing with extremes have already been made 0

Discussion of the proposed method is preceded

by the necessary statistical theory (Section 4) which

also furnishes a basis for evaluating the new method

in relation to existing ones„ The techniques des-

cribed provide a simple means for estimating the

*• Preparation of“this~report was sponsored by the

National Advisory Committee for Aenonautics 0
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necessary parameters* making predictions from the

fitted curvej estimating the reliabili ty* and eval°

uating the efficiency of the method in relation to

other methodSo Moreover* these quantities are all

produced by a single set of computations involving

just two worksheets 0 This background material is

not essential to an application of the method* and

may be omitted if desiredo The method itself is

summarised for practical convenience and illustrated

s tep-by-s tep in Section 5 5 and compared with present

procedures in Section 6 » The latter section also
1

discusses the advantages of the proposed method*

chief among which ares

(1) For the first time there is available

an unbiased estimator of known

effi ciencyl

(2) The proposed estimator appears to be

more efficient than a simplified form

of the Gumbel estimator in many

practical cases* namely* for samples

The te chni c al terms used here are defined and dis-
cussed in the main text* and they can be located
with the aid of the list of symbols in Section 3®
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of about 20 or move s and P = „95>

or more. The improvement in efficien-

cy increases with increasing P or

increasing sample size„ When com-

pared with the original Gumbel

estimator,, the proposed one is up

to twice as efficient,,

(3) The confidence intervals have a more

valid theoretical basis and are

in many cases narrower than the

ones in the Gumbel method,,

Included in the report are several appendices

giving mathematical developments not given in

the text



1

.

'



2 0 INTRODUCTION

The statistical theory of extreme values has

been found to have wide applicability in many diverse

fields, for example, meteorological extremes, floods,

drought’s, breaking strength of textiles and other

types of material?, span of human life, gust loads

experienced by an airplane in flight, breakdown

voltage of capaci torso
I

The two existing methods of analyzing extreme-

value data have several limitations, discussed in

the body of this reportc One of these methods is

known as the method of maximum likelihood and has

been described by B c F« Kimball (references 9? 10) 0

The other, the method of molnents, has been developed

by Eo Jo Gumbel (references 2, 3* 6), and its application

to gust-load problems has been discussed. in detail

in a previous NAGA Technical Note by Harry Press

(reference 18) 0
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The present report gives a new method for

dealing with the problem of analyzing extreme

measurements, treated ih the above Technical Note,

which has certain advantages over the existing

methods o The method of application is presented

in detail, together with the necessary worksheets

and other data, and the new method is compared with

the method of moments previously in use. For

definiteness, the discussion is at time presented

in terms of application to gust loads, but the

methods are also applicable to other fields where

extreme values occur c





3» PRINCIPAL SYMBOLS (Listed Alphabetically)

Note? By ^samples** are meant independent
random samples from the extreme**
value dis tribution

Equation no .

,

etp 0

9 9

X “ l^pcoo^n

Numerical quantities
entering Into weights
of order-statistics
estimator for sample
of n

(4.17)1
Table I

cov(y p s) or

o(y„s)

Covariance of mean
and standard devi-
ation in samples of
n from reduced distri-
bution

Page 110
(Appendix E)

E ( * ® e )
Mathematical expecta-
tion (or mean value)
Of ( * *;« )

Various*,
e.g., (4.6)

E „ E
m* n

Efficiency of order-
statistics estimator
for subgroups' of m
observations , or for
samples of n

(4 . 24 ) , (4-19)
Table m

,

Part B

E (s ) Mean Value of stand-'
ard deviation in
samples of n from
reduced distribution

Page 109
(Appendix E)

F(x) = F(xfu*>(3 )-

expt-e-
(x 'u)/P

]

Probability (emu-
lative) distribution
function (c<,d.f ») of
extreme-value distri-
bution with two param-
eters

(4.D

f(X ) =^ Density (or frequency)
function of extreme-
value distribution
F(x)

Page 11;
Figure 1
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k Number of equal sub- Pages 33 * 36
groups of size m
contained in sample
of n.

m Size of one of the k
equal subgroups con-
tained in sample of n

Pages 33, 36

m 8 Size of remainder sub-
group in sample of n
that is left after k
equal subgroups of m
are taken 9 i 0 e 0 s

n = km + m 8

Page 36

MSE ( . . .

)

Mean square error of
(«..)> equals variance
plus square of bias

(4-13)

n Sample size (N de-
notes sample size in
Gumbel method)

>

Page 23

P Probability level
associated with a
predicted value

Page 13

Qo Numerator in Cramer-
Rao lower bound!

= Q°/n

(4-24)

!

Table III,
Part A.

^LB Cramer-Rao lower
bound to variance of
unbiased estimator of
parameter (see

Qo>

Page 26

%i
9 Qn Variance of order-

statistics Hsub»
estimator” for sub-
groups of.m, or of
estimator for sample
of n„

(4*23><r
(4.i8;
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r Rank of r-th observ
vation (counted from
smallest) in samples
of n whqn arranged in
ascending order from
Smallest to largest
observation

h(t1s t
2 )

=

MSE(T
2 )

MSE ( T )

n
'/

1 2 (y.
n i=l ]

y)‘

fjtelatiye efficiency of
es timator-x to T

2
(greater than unity
when T-, is mor^
efficient)

Standard deviation
(sodo) of sample of
n from reduced dis-
tribution

2 (xo =x)^
i=l

S 0 d 9 of sample of n
original distri-
bution

^, 1=1,2 ^ 0 O O £ k

k

2 To

i=l

Order statistics
wsub-estimator” for
i= th of the k equal-
size subgroups in
samples of n

Average of the sub-
estimators for the k
equal-size subgroups

T° Sub-estimator for
remainder subgroup
(see m®

)

t,t» Weights for T and T®

in grand estimator
£or samples

= tT + t s T®

original
Gumbel ® s/es timator of
mode u for sample of n

Page 54

(E.7)

Page 109
(Appendix E)

(4.11)

(4.21)

(4o22)

( 4 . 25 )

( 4 . 26

)

»

(It. 27)

(E.l)
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! = X -V^x "^^x Simplified expression
used to represent
Gumbel 8 s estimator of
mode u

(E.2)

u Mode or location
parameter of extreme-
value distribution

Random variable
(^unreduced”

)

having extreme-valiie
distribution F(x)

Page 12

( 4a)
( 4 . 5 )

xl*x2* ° ° ° s^n

Xi , X , X
, jAn pr Vn

0< /( <ju< V <1

7s Jj

P

The n order-statistics Page 23
in sample of n, i,e # ,

the observations ranked
in ascending order

Three selected order- Page 86

statistics in Mosteller (Appendix C)
method for very large
samples of n

Sample mean in sample Page 20
from original (

Mun=
reduced’®) distribution

Reduced variate Page 11+

Scale parameter of Page 12
extreme -value dis-
tribution F(x)

A s

p
8 = sK H X

{ = 0o57721,
56649

original
Gumbel 8 s/es timator of (Eol)
(3

1 for sample of n

Simplified expression (E 0 ?)
used to represent
Gumbel 8 s estimator of

P

Euler 8 s constant (I4.08)
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Ax,n
= lo1^

A 9 = 1.11+lBpP

fi = E(x)

fi2 - o

h
A

io

o
2
(s)

y

s u + py.

ax '

f(x) = “J

J(y) = exp(~e”^)

Half-width of 68%
confidence interval
in Gumbel method

(D.l)

Half“Width of 68 % (Doll)
confidence interval
when mqdified by
probability factor

Half“Width of 68 Jo
confidence interval
in method of order
statistics'

First moment or
mathematical expecta-
tion of random vari-
able x

Variance of reduced
dis tribution

The 100P-percent
point of the extreme-
value distribution F(x)

Simplified expression
used to represent
Gumbel estimator of

ip

Variance of standard
deviation in samples
of ^n from reduced dis-
tribution

Population variance of (4»7)
x 1

* y

Plotting position of Page 5>4

r-th observation ranked
from smallest

Table VIII

(4.6)

(4*9)

Page ll|

(E.3)

Table IX

Cod 0 f» of reduced
extreme-value distri-
bution

Page 112
(Appendix E)





4<» STATISTICAL THEORY

4.1 Ex treme-value distribution and
meaning of parameters 0

The method of analysis presented herein is

based upon the assumption that the observed maxima

to be analyzed are independent observations from a

statistical distribution pf the form

F(x) = F(xsu,0t) = exp(=e"
(x “ u)/!3

) c ( 4 . 1 )

This is the cumulative (or ogive) form of the dis-

tribution* which expresses the chance that an observed

extreme value (gust load* for example) will not

exceed x in value. The more familiar concept of

frequency or density function* f(x) - F'(x)* for

this distribution may be obtained by differentiation

but is rather cumbersome (see Appendix A) and is not

needed for present purposes® The general shape of

the density function f (x) is shown in Figure 1 0 The

meaning of the various quantities indicated is ex-

plained below, A more detailed graph for the case

where the parameters are u = 0* [3 =1 (the ‘‘reduced'*)

extreme-value distribution) is plotted in Figure 2 0

The distribution (4»1) has been studied exten-

sively by Gumbel (among others) (references 2*3*6) and
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is known as the asymptotic distribution of largest

values o We shall refer to it briefly as the ex treme-

value distribution ,, The significance of the term

asymptotic" is as follows ft* If the underlying dis-

tribution of all (not merely the largest) gust loads

(e 0 goj, effective gust velocity, normal acceleration)

is considered, then the largest values in repeated

large samples from this distribution have a distri-

bution of their own which, as the sample size becomes

larger; and larger, approaches closer and closer (in

a certain sense) to a limiting distribution,. This

limiting distribution is, according, to evidence
$T3 - •

presented in reference 18 , of the form (I4. 0 I), with

1/(3 replacing the parameter a used in the reference

„

The parameters of the extreme -value distribu-

tion are depicted in Figure 1„ The quantity u is

the mode or highest point of the (frequency) dis-

tribution,, The quantity (3 is a scale parameter,

analogous to the standard deviation a in the case

of the normal dis tribution,, In fact, (3 equals

(about 3 /i|) times the standard deviation of the

extreme-value distribution,.

Although the two parameters u, (3 completely

specify the distribution, it is desirable
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to introduce another quantity j* =u + py which is a

linear combination of the parameters u and p

(and therefore* since we shall assign known values

to y* itself a parameter) * and makes it possible to

estimate u and p simul tapeously * rather than in terms

of two separate problems 0 Thus if we can estimate

as a + by with a* b known * then we can read off at

once the values u = a* p = b Q

The parameter^ has another highly important

meaning o In Figure 1 the area P under the distribu-

tion to the left of the ordinate erected at J repre-

sents the probability that a value larger than ^ will

not occur e If J is very large* then P very nearly

equals the whole area? unity* which means an obser-

vation is almost certain not to exceed fg
j
in other

words* a larger value of i will occur only very rarely,,

Thus if P = o99i> then the corresponding value of

has a chance of only O 01 of being exceeded 0 To

denote this dependence of/ upon the probability

-:$ That is* we are concerned with the transformed
parameters ( ^ *p '

) * obtained from the original
parameters (u*(3) by the linear transformation
|~u4-py *p

8 =B„ We shall henceforth give attention
only to the first parameter J * disregarding the
second parameter p

c of the transformed pair (i*p 8 )c

Whenever it should become necessary to refer to p
?

*

however, the prime will be dropped for simplicity,,
(See second footnote to page 26 )

»
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P we use a subscripts C c This parameter is called
^ P

a percentage point or the lOOP-percent point of the

(extreme-value di stribution) 0 If we can estimate l
^P

for different probability levels such P = o90 s ®95?

e99> etc 0 * then these values are precisely the pre-

dictions we desire for* say* gust-load accelerations

that will be exceeded (on the average) only 10*

1* etCoj respectively^ times in 100 o

The explicit relationship between^
p

and P

can be determined by means of formula (U°l) for the

extreme-value dis tribution „ If x is put equal to

Jpj,
then P* the probability of not exceeding this

value* is simply F(|
p ) 0 Thus

= (£ -u)/S ~
P = F($

p
) = exp (-e P

)
= exp ( -e

Y
)* (4„2)

since ^p = u + py* Hence* for a given (usually

large) probability P* the corresponding
J> p

is obtained

by finding y from the relation (4 o2)„ and then writ-

ing

i P
= u + p (4 - 3 )





where the subscript P has been added to y to denote

dependence on.P, Comparison o,f the right members

of (I4. 0 I) and ( 4 0 2 ) shows that the quantity y bears

the following simple relation to the corresponding

variable x in ( iq 0 1 ) s

or

x s u + (3y
0 (h°5)

Also* if in (4.1) we set u = 0, (3
~ l s then x

has the same distribution as given by the right=

hand side of (4 „2) 0 In other words 9 y as defined

by (4.4) or (4.5) has an extreme-value distribution

whose parameters have the extremely simple values

u = 0 ? (3
1 = lo Thus y is called the reduced variate

”

and is pferfectly analogous to the standardized

variate t = (x- yu)/a of normal distribution theory.

The distribution of y in (U<>2) 9 called the reduced

distributions has been tabulated in Table 2 of

reference 1% 9 which also contains a table of the

inverse function as well as a number of other tables

The variate x is sometimes referred to as the
original or wunreduced w variate.
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related to application of ex treme-value theory,,

From the above discussion it is evident that

the solutions of both the problems of estimation

and prediction are embodied in the one quantity

J,p
= u + Py^o Estimation of this quantity will

be the main objective of the remainder of this report,

4 0 2 Determination of method of estimation

To avoid confusion, we distinguish between

a function of sample variables x^ , ? « « -> » xn *

such as the sample mean g (x^

°

0 ° *xn )
s x

= (x,+x„+.,o.+x )/n= and the numerical values
1 2 n ' 9

o o o
gQ

85 g(XpX
2 S .o.‘

1)
xn ) assumed by the function when

o
the actual values of the observations x^ = x^ are

substituted into the function. If the func ti on is

used 'to estimate a parameter, we shall call it an

estimator of the parameter? the particular nume ri c al

value assumed in a given case shall be called an

estimate *

In searching for estimators the first step

is to seek what are known as sufficient statistics ,

A definition of this concept may be found in any
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advanced text on statistical theory, for example

reference 8,Vol 0 II, p„ Qlj but the feature of import-

ance here is that gjiven a set of joint sufficient

statistics, that is, certain functions of the sample

observations, it is often possible to deduce frolh thefa

an estimator with certain desirable properties, pro-

vided that the number of such functions does not

depend upon sample size,, If it turns out that the

only set of sufficient statistics is the trivial set

consisting of the n functions t^ (x^ , „ . » ,x^ )
= x^,

i=l, ooo, n, i 0 e 0 the n sample observations them-

selves, then obviously this furnishes no guide what-

ever for constructing fline ti 6ns of the x*s which are

optimum estimators.

Investigation reveals that, unfortunately,

jDirit sufficient statistics do not exist for the two

parameters of the extreme rvalue distribution, A

probf of this fact, (which was conjectured by Bo F„

Kimball, reference 9? P« 299) has been discovered

by lo Richard Savage of the Statistical Engineering

Laboratory of the National Bureau of Standards, and

is presented in Appendix Ao



.
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It may be note.d that Kimball ( i bid „ ) has studied
i

a broader concept called "set of statistical estimation

functions” whereby the estimators of the parameters

are given, not by explicit formulas involving only

the sample values, but implicitly as the solutions

of a set of simultaneous equations, for example,

the classical maximum-likelihood equations 0 Unfor -

tunately, such estimators do not seem to lend them-

selves to the procedure referred to above for con-

structing optimum estimators, and there seems to be

no analytical means of accurately evaluating the

important characteristics of bias and efficiency,

defined below, for such estimators In the case of

fini te samples „ (Although these estimators may be

asymptotically optimum, i 0 e 0 , for infinitely large

samples, this need not be the case for samples of

finite size.)

A second method of approach to the problem

of estimation is the classical one known as the

method of moments 0 In the case of the extreme-

value population this method is as follows 0

The first two moments of the extreme -value

population (4«1) are
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f*x
~ E(x) = u + (3E(y) (4.6)

= E[x-£(x)]
2

= (3

2
E[y-E(y) ]

2
= (3

2
o
2

(4.7)x y

where y has the reduced ex tr erne ~value distribution

(4«2)p E denotes mathematical expectation* and a

is the variance* the second moment about the mean e

Using the moments of the reduced distribution: (see,
I

*.

e„go, reference 8* Vol 0 I* page 221)

E(y)

y

we obtain

s if - <>577216 (Euler's constant) (4»8)

^2
l c 644934 (4-9)

u' +
°x =JB

P (4.10)

relations which express the population moments in

terms of the population parameters 0 Therefore* if

we had good estimators of the population moments*

we could readily find the parameters c This fact

constitutes the essence of the method of moments

„

It consists in treating the sample as an adequate

representation of the population* replacing the

population moments in the expressions which relate
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them to the parameters by the corresponding sample

moments , e„g 0£) by the sample mean x, and ox by the

sample standard deviation

s
X

TT”
2

i-1
(x, -x)

( 4 * 11 )

This gives x = u + ^fp, s = (n/y^Ps which
X

yield the moment estimators of the parameters;

for p # p = j/&A)sx j

for u, u = x ^A)sx * (4ol2)

These are essentially the estimators which form

the basis of Gumbel s s method (reference 6» Lecture
A A

3 s>
eq 0 (3o29) p with - u, l/a “ P)

w
* Thi s method

is justified by the fact that under general conditions
a a ,

the estimator functions u - u(x 9x 9 „ „ 0 s x ) ,12 n
A A

P = p (x^^x^ii * o »

^

x
n ) in (4»12) approach(in a certain

sense) the values of the corresponding parameters

u 5 p as the sample size becomes infinite 0

The actual estimators used in the Gumbel method
are slightly more complicated (reference 6 g

Lecture 3* eq, (3<>39) s>
but the difference is

not important at this pointo (See Appendix E)»
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This method has apparently given satisfactory

results in practice, It is, however, subject to an

important limitation. In studying estimators it is

highly desirable to know something about their prob-

ability distributions--!! not the exact density func-

tions, then at least their means and variances. The

mean value (mathematical, expectation) of an estimator

indicates whether on the average the estimates given

by it are too high or too low relative to the actual

values of the parameter estimated --in other words,

whether there is any bias in using the estimator.

Similarly, the variance indicates how much the

estimates scatter among themselves and is the basis

for constructing a measure of efficiency which makes

it possible to compare the performances of different

estimators, A more useful concept for some purposes

than variance is mean square error (abbreviated MSE)

which measures how far the estimates deviate, on the

average, not from their own mean, but from the quantity

the parame ter°=whi ch they are supposed to measure.

There is a simple relationship between variance and

MSE, namely,

2
Mean square error = variance + (bias) (4 . 13 )
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Thus* for unbiased estimators * variance and M&E are

identical * and for brevity we shall use thb term
r

’’variance”' in such cases. But it should be remembered

that the concept in view is actually the MSE, This

becomes especially important later when biased esti-

mators are d iscpssed (Appendix E)* and variance and

MSE are no longer identic al „

If we try to determine the mean (or expected)

values of the estimators* u* p*, in (1|<>12) we find

that statistically these functions are quite complicated*

leading to very difficult multiple integrals which

apparently can be evaluated accurately only by 1 arge~

scale numerical integration. This difficulty evidently

persists if we are interested in the parameter

|p = u + (3yp
instead of u or p separately*

4 ,3 Order-statistics approach
for small samples

Apparently the qnly method of estimation which

avoids this difficulty is the method of order statistics ,

* Shorter methods of limited accuracy are possible
and have been used in this report for comparison
purposes, (See Section 6»1 below and Appendix E,)
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If the values in a sample of n observations are

arranged in* say, increasing order of size, and de-

no ted by x , x 0 , . o o , x , x
1 < x 0 < o o o ,

< x .then
L CL “ n J

these values x^ are called order statistics ,. The

smallest is called the first order statistic! the

middle one (if n is odd)*, the median! the one which

is one-fourth the way up from the bottom, the first

quartile, e tc 0 (If there are several equal ones then

suitable modifications are made in the defini tions )

„

There is an extensive literature on this subject*,

chief among which is the comprehensive survey in

reference 20 o

Order statistics provide rapid and practical

methods of analyzing data® The range, xn ° , is

a very common illustration from quality control <>

It is simply the difference of two order statistics,

the largest and smallest, and its properties have

been extensively studied for samples from the normal

dis tribution» The range has been found to yield

estimates of the standard deviation of the population

that often compare very favorably with the theoretically

best obtainable o More general linear functions,

*

C^Xt, + G^X2

-

+ 000 + cnxns> give weight td every
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sample value 9 have also been studied (reference 19 ) s

and values of the coefficients have been found which

make it possible to estimate very simply and remark-

ably well certain quantities which previously were

obtained only by more complicated c alculations

„

We shall carry over and extend this procedure

to the case of samples from the extreme -value distri-

bution (4.1) . The method will in many respects follow

the general approach used in reference 19 for several

other distributions „ The aim is to determine the

weights i-1 , „ «

„

s n 5 for all the n order statistics

in a sample of size n so that the linear estimator

n
L = S w„x 4 (4 ® 14 )

i=l 1 1

has the properties we desire 9 namely

s

(l) The mathematical expectation equals the

parameter to be estimated s i,e. the estlma-

tor is unbiased g
1

E(L) - | (4.15)
P

The MSE s which in this case is the same

as the variance^ is as small as possible^,

consistent with ( 1 )

s

( 2 )
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MSE(L) = o
2
(L) = E[L=E(L)]

2

= a minimum# (4ol6)

An estimator L which satisfies these two

conditions will be denoted by^ps a notation suggested

by condition (1 ) „

Condition (2) is equivalent to saying that

the estimator £ is as efficient as possible under

the given conditions 0 This concept will be discussed

below#

The mathematical formulation of this minimum^

variance problem is developed in Appendix B p and the

solutions (the weights) are shown in Table I for

n - 2 to n - 6# The case n greater' than 6 is dis=

cussed in the next Section,, For each given value

of n 9 n weights w
j_

5 w2 s °°»s wn are determined that

depend on the quantity y^ that occurs in the parameter

£p
- u + Pyp to be estimated# The w^ are each of

'
i

the following forms

^i
” b .^yp p i s lj 2 S o o o p n o ( Lf. o 1 y

)

Substituting these weights for given n into (lf.ol6)

actually gives the minimum value s that the variance

can attain under the above condi tions* and this value

•depends upon quadra tic ally §
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V ,
- Q

min n
= <AnvB

nyp
+c

n )p
2

(4 . 18 )

Table I gives the values a^ 9 b^„ A^, B „ C , which

have been found by exact computation methods as

indicated in Appendix B and Table II there described,.

The quantities V . - Q are shown in Table III.
min n

Part A.

As sample size increases , the estimation is

expected to improve and the variance to diminish,.

In order to have a convenient standard of compari-

t ft
son, in the case of unbiased estimators, we scale

all variances by dividing into a theoretically specified

variance ( Q_ , known as the ”Cramer~Rao lower bound”

(reference 1, pp® 4^0? equation ( 32*3 <>3a) which

Tc For biased estimators, see Appendix E®

JHS’ This Cramer-Rao bound is given for the case where
the distribution has only one parameter to be
estimated® For the extreme -value distribution with
the two parameters (J, p) we can regard 6 as a
^nuisance parameter” and thus obtain a "Cramer-Rao
bound” for § , the expression for which will
involve (3 (see first footnote to Table III)® This
procedure is based on the ^method of nuisance
parameters” discussed in reference 11® (See also
footnote to page 13®)
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is less than or at most equal to the variance of

any (unbiased) estimator of the parameter in ques-

tion"' o The result is then an absolute number
l

.... -

between 0 and 1 which, when expressed as a percent-
t

age 5 is called the efficiency of the estimator for

samples of ns

Efficiency (L) = En (L) s ® (4»19)

The quantities E , whiclp. evidently depend upon y-.,
n e

and therefore upon P, are given for n “ 2 to 6 for

selected values of the probability P in Table III,

Part Be Part A contains the numerical values of
I

the variances

2
of the parameter (3 o The expression for has

been implicitly given in reference 10, p„ 113, and

is indicated in the first footnote to Table III# Part A

of this repprto

and the lower bound in terms

There may or may not exist estimators whose
variances reach the lower limit Qt R o If (as
may happen) there exists a Q,

9 > Q.H; such that the
variance of every estimator is > tp (and of course
» Q_ )„

then Q 9 may be substituted for in
the numerator of the above expression for efficiency
(4ol9) without the fraction exceeding 1„ The
investigation of the existence of Q,

9 is too com-
plex a matter for purposes of this reports How-
ever s the only effect of using a lower bound
which is too low is to understate the efficiency,
so that the results are on the safe, conservative
side*,
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Two points should be noted about the choice

of probability levels shown in Table III 0 The value

P = *,36788 ~ l/e, which corresponds to = 0, is

important because it gives the mode, one of the

desired parameters of the distribution*, This is

evident from the fact that the parameter we are

estimating is = u + py^
” u, the mode* for y.

p
- 0.

Similarly, the limiting value P = 1 corresponds to

the scale parameter (3*, This may be seen as follows.

If P approaches 1, the £ ^
and

y^
both become inde-

finitely large, but their ratio £ - g /y = (u/y )+p
, P P P P

may be considered to be a new parameter which approaches

(3, since the mode u Remains fixed and finite (as does

also (3 ) o Hence we may estimate (3 by first estimating

gp for arbitrary P and then letting P approach 1.

Now from (4»l4) and (4»17)j> the linear estimator
A

L = £p is of the form

i p - f*i + yp
f
2 (4.20)

where f and f are functions of the sample values

which do not involve yp. By the preceding remark,

we can then estimate the parameter (3 by writing down
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the corresponding estimator of gi ,

%' _ i_
" >?

f I— + f 0yP
2

and letting P approach 1 9 obtaining

a
g = t 0
P 2

as the corresponding estimator of (3#

A
In other words *, an estimator g of (3 may be

p

obtained by simply taking the coefficient of y
p

in

gp
when written in the form (4*20) 0 Similarly*, the

a 2
variance of is the coefficient of y

p
in the variance

of gp„ This may readily be seen as follows# From

(4*20)*, we have

°
2
(£j = o

2
(f

1 ) + 2y
p

cov (f s f^

)

1

2 2
+ y O

P 2

2
A + By

p
+ Cy

p

where A*, B*, C are quantities which do not involve

y
p

(though they may involve (3*, in general)^ thus*, as

P approaches 1 and y
p

increases without limit*,

? /
A

oil 1 2 *

2 °

y
p

A
+ C C



.
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2 2 a
the coefficient of y in a (g ) o

From this it follows
/\

also that the efficiency of the estimator being

a ratio of variances, is simply the ratio of the

2
coefficients of y^, the other terms being disregarded.

A

These facts applied to the estimator | make
P

it possible to avoid a separate treatment for the

two parameters u and (3 0 Their estimator are each

represented by a single line in a table (such as

Table III) showing values for various probability

levels :

P = o36788 (or yp = 0) gives u| P = 1 (or yp = 00 )

gives (3 »

The concepts of variance and efficiency have

also a more concrete, practical significance 0 The

lower bound to the variance has the form

Q_ ~ Q /n s where Q, is a quadratic function of y ,
ijB o o P

but is independent of sample size n„ For two samples

of sizes n'and n n
, the variances Q !

« Q* are in
LB LB

Q 1

LB

LB

the ratio
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i.e,, inversely proportional to sample size„ Similarly,

if we had two estimators for the same sample size,

we could form the ratio of their variances and think

of it as representing an (inverse) ratio of (hypo-

the ti cal) sample sizes » Thus, if for a sample of

20, the variance Q» of one estimator were one-half

the variance Q,”' of an alternative estimator, then

the first estimator would require a sample of only

10 to give as much information as could be obtained

with the second from a sample of 20 o This saving

of half the number of observations is expressed by

saying that the first estimator is twice as efficient

as the second o In general, a saving of the fraction

p of the observations makes one estimator l/(l-p)

times as efficient as a second,
A-

The efficiencies of the estimators gpin Table

III are more conveniently compared in graphical form,

as in Figure 3, The heavy horizontal line at the

top indicates perfect or 100 percent efficiency, and

the rising curves as n increases show how closely the

estimator* is approaching the standard of perfection,.

The most outstanding fact is that, in marked contrast

*to a theoretical, perfect estimator, the efficiency of
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A
the actual estimator: depends upon the probability

P, being largest for the middle ranges .i;0 to .60

and dropping considerably at the ends near 0 and 1,

Since analysis df extreme (largest) data is concerned

chiefly with the larger magnitudes associated with

very small probabilities of occurring or being exceeded

we shall limit our interest to the range above P = .90.

For n = 6 the efficiency exceeds the 80 percent level

for all values of P in this range that are apt t©

occur in paractice (i.e., P < o999 )

®

In view of the

satisfactory values of efficiency* further calculation

for n > 6 did not appear warranted at this time,

particularly since it became apparent that the labor

of computation would increase out of all proportion

to the rapidly diminishing improvement in efficiency.

Of course, most samples of observations are

larger than the trivial size of 6* and the question

arises of how to handle the larger samples. This

is treated in the next subjection.
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Extension to larger samples

The key to handling samples with more than

six observations is to treat them as sets or sub-

groups of samples of 6 (or if necessary, 5)° If a

sample size is not an exact multiple of 6 or of 5?

then the sample may be treated as consisting

either of subgroups of 6 with an odd group remaining

having less than 6 items,* or of subgroups of 5 with

a remaining group of 6« We first deal with the simpler

case where n is an exact multiple of 5 or 6,

C ase I o Sample size an exact multiple of 5 or 6 ,

Suppose* in general* n = km, where m is the size of

subgroup, which need not be 6, and k is the number

of subgroups in the sample » If the sample Is so

divided into subgroups that the observations in one

subgroup may be considered to be statistically inde-

pendent of those in any other subgroup, then it is

legitimate to treat the sample as consisting of k

independent subsamples, each of size m 0

One way of obtaining independent groups is

by use of random numbers 0 This, however, will lose

valuable information embodied in the order in which

’the data were actually observed 0 If the data are
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truly random, so that, for example, there are no

seasonal effects, then this implies that subgroups

formed in the order in which the data are observed—

the first m values observed put into the first group,

the next m into the second, etc®— should be independent®

This assumption, of course, underlies the entire method

of estimation described in this report, and we shall

adopt it in our procedures®

From each subgroup we form the "sub-es timator ,s

m
T = 2 wx, , i = 1, 2, » 0 ®, k , (4.21

)

i j=l J J

where the weights w-^, W
2 , ®®®, are those taken

1

from Table I for sample size m and are the same for

each subgroup of m values (but, of course, are different

for different sizes m) ® Thpse k sub ~estimators T^

are then combined by simple averaging to form the

grand sample estimator?

1
k

T = = 2 T. , (4*22)
k i=i 1

The variance of this estimator is simply
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since we are taking the variance of a mean of k

independent quantities T^, each of which has the same

variance'* Var(T^) = Q,^| denotes the variance tab-

ulated in Table III, Part A, for m = 2, 3, 4* 5* 6°

The efficiency of T is, since n = km.

%,B E5 Qo 1 Qo
E = mmr

i = ”T“— = = E
Var (T) Qm

m (4 ° 24 )

Where Q^g = QQ/n
- QQ

/km, and Qq
is independent of n,

Thus we have the important fact that if a sample is

broken into equal-size subgroups, the efficiency of

the order-statistics estimator depends only upon the

size (m) of the subgroup (and, of course, P) »

Since, according to Table III, Part B, efficiency

increases with sample (or subgroup) size, it follows

that when there is a choice, a sample should be broken

into subgroups as large as possible for best efficiency,

i 8 e, into subgroups of 6„ If this is not possible,

but if the sample size n is an exact multiple of 5*

then subgroups of 5 may be used with not much loss in

x These variances are equal because they depend only
upon m, P, and (3, which are constant for all the
subgroups of the same sample.
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efficiency. The last two columns in Table III,

Part B, show that the loss is 2 0 i|
.
percent

(= o8647 ~ 08404 ) at P = c95j> rises to a maximum

of 3 08 percent for the limiting value P = 1

»

Case II «
1 Sample size not an exact multiple of $ or 6 „

In most cases, of course, the sample size will have

a remainder when divided by both £ ar>d 6 0 There are

then a great variety of choices as to how to partition

n into subgroups of 6 and 5> and perhaps other sizes.

Many 'of these possibilities have been examined, the

aim being to establish as simple rules as possible

without too great a, loss in efficiency. Fortunately,

most of the methods of partitioning a sample of given

size n do not lead to greatly different efficiencies.

Thus the following rules can be laid down for n > 7

1

(n <; 6 does not involve breaking into subgroups) based

on writing n in the form either 6k + m® or 5>P + 6,

where m* < Gt

(a) n = 7 up to large values ,

(!) Use n = 6k + m 8
s split up into k

subgroups of 6 and a remainder sub°

group of m 1 <6 items, unless n = 31 # 61,

etc,, i,e,, a multiple of 30 plus 1
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(ii) If n = 3Qk + 1, write it as

n = ( 30k~5 ) + 6 = (6k-l) x 5

+ 6 , i.e, split sample into

(6k-l) subgroups of 5 ana a

’’remainder” subgroup of 6 0

(b) n extremely large 0 If sample size Is
j

of the order of several hundred or more,

so that the number of subgroups is of the

order of £0 on 100 , then the amount of

computation becomes increasingly lab~

orious o For such very large samples of

extremes, which are rather rare, a short=>

cut method is available which is explained

in Appendix C e While its efficiency is

. i

substantially less then the longer method

presented here, it is nevertheless of

practical value inasmuch as the loss

in efficiency, which in practical terms

means an effective loss in number of

observations, is not very important when

a very extensive amount of data happens

to be available
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The variance and efficiency of an estimator

for most sample sizes. (Rule (a)) can be discussed

readily in general terms » Assume that n = km + m’

represents the separation of the sample into two

parts s one consisting of k equal subgroups of size

m = % or 6; the other consisting of the remainder

subgroup of size m f < m except for the exceptional

case where m = 5, m' =6 (Case II, rule (a) (ii) )

•

The average, T, is formed from the first part as

described under Case I, Then a sub=es timator T' is

formed from the remainder subgroup of m 1 values using
i

the weights w^ for samples of size m'

s

m* i
<

T* = 2 w‘x. , . (4o2£)
i=l 1 1

j

where x. , i = 1, 2, m !

, denotes the m* values
i *

in the subgroup e Finally a weighted average of T

and T ! is formed, and this is the grand sample
A

estimator

f = tT + t'T» v ( 4 » 26 )
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where the multipliers
•St-

are

(4 * 27 )

Since all the subgroups are independent, sc are

T and T ?
? whence

Var (f

.

2
t> Q.m

1
since the variance of the mean T is » 0 9

k m
Prom the above it is evident that once the

partitioning of sample size n into n = km + m' is

determined, the variance and efficiency may be

obtained except (in the case of the variance) for a

factor (3^ which must be estimated from the data.

Table IV lists for convenience the efficiencies at

two probability levels, P - *99 and the limiting

value P = 1, for most of the sample sizes that

Sc Other multipliers are possible-. In particular,
there is an optimum set of multipliers which nroduces
an unbiased estimator fp with slightly smaller variance,
and hence slightly greater efficiency. The optimum
multipliers are, however, less simple than the pro=-
portions! ones- for example, they are not constants
but depend on P=— and the gain in efficiency is not
great® This was shown by a number of trials and by
the fact that In any event, the efficiency cannot,
exceed that for the larger subgroup size, E (or En ,

|fm ! >m), and does not differ much from It if the
total sample size n is at all sizable , say > 20®





may occur in practice t^i th gust-load data, provided

the sample is split up according to the above rules

®

The levels P = ®99 and P = 1 furnish a convenient

basis for comparing the efficiencies of two differ-

ent partitions of the sample size® At this end of

the probability scale the difference between the two

efficiencies decreases monotonically as P decreases®

Thus,, if the difference in efficiencies is 3 percent at

P - ,99 and 4 percent at P = 1 , then the difference

is between 3 and 4 percent at P - ®995# say, and at

P = ®95> and under is apt to be substantially below

3 percent, a difference negligible for practical

purposes® The partitions shown in Table IV are those

recommended, by rule (a) above® In certain eases, the

efficiencies of alternative partitions are shown in

the footnotes to Table IV for use in case the extra

few percentage points in efficiency are considered to

be worth a little loss of simplicity in computation®

There are some useful a priori guides for

judging the efficiency in any given case .even beyond

the limit n = 4^ of Table IV® Thus, if n = km + m 5

,

it is clear that the efficiency cannot exceed that

for the subgroup sizes m and m s
, but must lie
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somewhere between the efficiencies corresponding to

these two sample sizes® If m and m 9 are not far

apart* then* regardless of the number of subgroups

k, the efficiency Is determined between narrow limits®

Again, if k is substantial, say near 10 or more, then

the efficiency is practically that for the larger

sstfnple size m® Of course the maximum efficiency

obtainable by the procedure outlined here is for

Case I when the sample size is an exact multiple of

6« For P = *99 the efficiency in such case is 83*2,

and for P = 1, it is 76*8* If any given partition

results In efficiencies within, say, 2 or 3 percent

of these values, then there Is nothing significant

to be gained by using any other partition, unless

it is such as to simplify the computation*



'



SUMMARY OF PROCEDURES

The above method of analysis will now be

summarized for ease of reference® The use of the

method has been considerably simplified by the con-

struction of speci ally designed worksheets, represented

by the pair of blank specimen forms following this

page, A completely filled-out pair (Worksheets 1

and 2) will be found immediately preceding the tables

at the end of this report® With the aid of such work-

sheets about two hours should be sufficient for all

the calculations for a moderate-size sample, such

as the sample of 23 observations analyzed below, and

It has been found that this period is even sufficient

to include the graphical analysis also presented®

The materials needed for application of the

method, besides Worksheets 1 and 2 and a sheet of

extreme probability paper, are, in the order in which

needed 2

(i) Table IV, showing efficiencies for
various methods of splitting sample
into subgroups

„

(ii) Table I, giving the weights a^, bi,

(iii) Table III, furnishing the quantities
Q. 9 Q0 9 Q.- 1 Q, 9 Qj-.* Qx*023456
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ESTIMATION OF EXTREMES

Worksheet 1 - Determination of Estimators

Sources
Computers

Dates

Record
No.

Observed
extremes

I. SUBGROUP SIZES AND PROPORTIONALITY FACTORS

s

n = = k m + m 1

= x +

m =

t = km/n =

t2/k = 0;_

t 1 = m'/n = 0.

t' 2 = 0.

IIA. MAIN SUBGROUPS

s

Weights a^, (from Table I)

i = 1 2 3 k 6 Check sum

b. =

Subgroup X]_

No.

1

2

3

is

5

k

SUJTl

Observations x^ in increasing order from i = 1 to i - m

x
2

Xj x^ xg xg Check sum Sa-x.^ Zb.jX.j_

T = Sa^x^/k + (Zb-XjAJyp =

ITB. REMAINDER SUBGROUPS

Weights a!^ b^ (from Table I)

1 2 3 41 =

a. =
i

b. =

6 Check sum

Observations x.* in increasing order from i = 1 to i= m»

*L
x' Check sum Za. x. Zb.x.
6 a i x x

T' = Za^xx + (Sb
i
x
i )yp = +

III. ESTIMATORS

5

5
= t T + t'T*

/ l
P
=





estimation of extremes

kb

Worksheet 2 - Predicted values, confidence band, efficiency, plotting positions

p y
p

PREDICTED VALUES

£p
= + y

?

= Qm Q_,= Qm 1
Tar(lp)

t
2 2

682-CONFIDENCE

BAND HALF-WIDTH
Q
IS

= Qo
/n

(Q0
from

Table III)

EFFICIENCY

E- QLB
(from Tatle ni) o(Ep) = </var(£

p ) yar(C
p

)

(D (2) (3) a) (5) (6) (7) (8) (9)

t
2
/k =

2
t» =

P
=

Estimate of u:

.36788 0 p
2

p
2

P
2

P
2

.50 0.36651 P
2

p
2

P
2

P
2

.90 2.25037 P
?

p
2

P
2

P
2

.95 2.97020 P
2

p
2

P
2

P
2

.99 it. 60016 P
2

p
2

P
2

P
2

.999 6.90726 P
2

p
2

P
2

P
2

1 - - - ypP
2

yp
2? y

2
P
2 ... yp

2
P
2

PLOTTING POSITIONS

Observed extremes in increasing rank from 1 to n =

Rank Observed Plotting Position Rank Observed Plotting Position Rank Observed Plotting Position

r Extreme r/(ntl) r Extreme r/(ntl) r Extreme r/(ntl)

1 n 21

2 12 22

3 13 23

it lit 2it

5 15 25

6 16 •

7 17 •

8 18 •

9

10

19

20

n

Sum
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The assumptions upon which the method is based

are that the data in the given sample (arranged in

the order in which observed''*) may be treated as

independerit random observations all from the same

population

F(x) = exp(-e-
(x "u) /P)

(In cummulative form), with constant unknown parameters

u, (3 to be estimated.

For concreteness, the rules below refer to

an actual example, worked out in Worksheets 1, 2,

and Figure consisting of the 23 maximum positive

acceleration increments observed in 23 flights of an

airplane and identified as "NACA-Langley-Sample III,"

which are listed in the column headed "Observed extremes

(+An) M in Worksheet 1. These data are assumed to be

given in the order of observation, so that under the

above assumptions this arrangement may be considered

to be a random one

,

Vf If the observations are not available in their
original order, it will first be necessary to
randomize them by use of a table of random numbers

.
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Each rule (except Nos« 2 and 7, which are

subdivided) consists of a single paragraph and this

is followed by a detailed explanation of its use,

inserted for conveniencehfof the user. This makes
* v

the list unavoidably lengthy, but the rules them-

selves are brief and simple to apply*

Before starting the calcul ations , it is

desirable to plot the data on special probability

paper according to the directions in rule 6 (a),

’’Graphical anal ysi s

,

rt below, in order to obtain

a crude judgement of how well the data fit the

assumed distribution.' In rearranging the data in

order of size, however, care should b'e taken not to

lose the record of the original order in which the

data were taken; because randomness will then have

to be reintroduced.

Determination of estimators — Worksheet I .

1. Enter the observations in the second

column in the>’ order in which given. The

first Column is for identification pur-

poses
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2, Determine partition of sample size (if 7

or more, but not extremely large) and

split sample into subgroups according to

the following rules (a), (b) or (c)» If

n is extremely large, say several hundred

or more, see Appendix C»

(a) If n is an exact multiple of *> or 6,

write n = k *5 or n = k*6; if both, use

n = k*6.

(b) If n is not an exact multiple of 5 or

6, write n = k*6 + m* , m’ <6, uni ess

n = 31 > 61 , etc., i.e., one plus a

multiple of 30 *

(c) If n Is of the form 30k + 1, write it

as n ~ (30k-£) + 6 = (6k-l)5 + 6, i.e.

split n up into (6k-l) subgroups of 5

it
1 H .

and a remainder" subgroup of 6*

Once k, m, m ! are determined the

blanks in Section I can be filled in.

At the same time, in Worksheet 2, the

numerical values of m, m’ should be

on bored' as subscripts in the headings

W
Q

u and "Q,
H for columns k and

respectively. In the worked example,
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n= 23 = 3 *6+5 (rule (b)), so the

data are split into 3 main subgroups of

6 and a remainder subgroup of 5*

Number of decimal places . - As a result of

considerable experimentation it is recommended'

that all computations be carried to exactly
I

the number of places shown for each item on

the two worksheets*

3* Find estimators for the parameters £ , u,

ty .filling' in the blanks and following the

directions indicated in Worksheet 1, Sections

IIA, II B, III.

In Section IIA, obtain the weights

a
^ 9 b^ from Table I for n = m, the size

of the main subgroups* Mark off the sub-

groups by any convenient means," arrange the

observations in increasing order within

each subgroup and enter horizontaly opposite

* It was found convenient here to determine the sub-
group size m before entering the data in the extreme
left columns, so that the subgroups could be
plainly indicated by means of a space after every
m-th observation.
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the proper subgroup number in Section

IIA, Obtain the two product sums

m m
2 a.x., 2 b.x. as indicated in

1=1 11
A =1

two right-hand columns and sum all

columns as shown* The two product-

sums evaluated for the line labelled

’"Sum'* will serve as a check, Form

the average. T, by dividing by the

number, k, of main subgroups*

The work in Section I IB is

analogous, except that the weights
i t

, b^ are the and b^ shown in

Table I for n = m* , the size of the

remainder subgroup; also, since there

is only one subgroup, averaging is

unnecessary.

Section ITT combines the (sut)esti-

mators T and 11 w' th the proportionality

coefficients t, t s

, determined in

Section I, to produce the final over-

all sample estimator

= tT + t 1 T ? = *929^6 + *16774 yp ,

on collecting the coefficients of y^
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and the constant terms. The estimates

of the parameters u, p are read off

A
at once from the coefficients of £

and entered. This constitutes the fitting

of an extreme-value distribution to the

given data.

Predicted values (etc.) - Worksheet 2«

4.
A

Compute the values of in column 3 for

the values of P apd y^ shown in columns

1, 2, These values constitute the set

of predictions for the respective prob-

ability levels.

Additional probability levels may

b8 inserted between those shown, if desired*

The value of y = -log (-log P) is found
Jr 00

most conveniently from Table 2 of reference

15.

5. Confidence-band half-width (68-percent

control curves) are computed from the stan-

dard deviations as indicated
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The numerical values of the variances

v in columns and 5 are found under

these same headings in Table III, Part

A, and entered as shown* The values of

2 2
t /k, t* are entered above these values,

as indicated, in order to facilitate com-

putation of the variances of the overall

es timator,

V" (h> =T Q™ + t,2q
m '

in column 6* Column 7 gives the standard
A

deviation of the estimator £ » I t is most
P

easily computed by taking the square root

2
of the coefficient of (3 in column 6 and

by
mul ti plying Athe value (3 found in Section

A

III of Worksheet 1* Thus a(£p) for

P = *50 i s /*0605T times the value

(3 = »1677U (written at the top of column

7 for convenience), giving the value »0ij.l3

shown*

The standard deviation of the estimator

measures the reliabili ty , that is the extent

to which repeated application of the procedure
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to repeated samples taken under the same

conditions would give values clustering

more or less closely about the unknown

parameter value® For example, for a fixed

probability P # in about 68 percent of the

time (when the assumptions are satisfied)

the ' computed interval
£

plus or minus one

standard deviation will contain the true

unknown parameter^ ^ = u + pjp® For two

standard deviations the percentage rises to

95" '^wo curved lines, one joining the left-

hand endpoints of these intervals and one

joining the right-hand endpoints, are called

control curves (see rule 7 for graphical

analysis, below) and these two curves define

a confidence band consisting of the area be-

tween ' them. The interval of values of the

abscissa x = ^ included between the

These percentages are only approximate since they
assume £p to be normally distributed. As indicated
in Appendix D, this assumption is sufficiently
correct for practical purposes for samples of the
order of 100 or more. This may, of course, not be
the case for much smaller samples* However, normality
assumptions of this kind must often be made in
practice in the absence of large-scale investigations
"to establish more precise distributions® Results
obtained in this manner have often been found to be
satisfac tory«
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control curves, when P is given a specific

value, is called a confidence interval „

The standard deviation in Column 7 is

thus the half-width of a 68-percent con-

fidence band (or interval)* If levels of

95 percent, etc*, ar-e desired, the values

can be readily obtained by adding another

column consisting of twice (etc*) the entries

in column 7*

6> Efficiency is computed as follows* The

values of Q for the indicated values of
o

P are taken from the column headed in

Table III, Part A, divided by the given

sample size n, and entered in the column,

8, of Worksheet 2* The efficiency is

obtained by dividing this by the correspond

-

2
ing entry in column 7? canceling the (3

(which was one reason for carrying it along

separately) , and finally entering the result

in column 9®

7 » Graphical analysis consists of plotting

the data on suitably ruled paper, draw-

ing the estimated straight line, drawing .
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in the control curves, and seeing how well

the data fall within them. The method is

essentially due to Gumbel (c£« -reference

5 ) •

(a) In the section of Worksheet 2 called

Plotting Positions , arrange all n obser-
/

vations in the sample in a single ascend-

ing series from smallest to largest

and enter them opposite the rank nun®

bers r = 1 to n„ Compute and enter

the plotting positions fj)(x) = r •

• n + 1
Then, on a sheet of Extreme Probability

Paper"
11

such as used In Figures 4 and

5, plot the points (xr , The

observation x^ is plotted on the uniform

scale along the horizontal axis? the

fraction is plotted along the

nonuniform vertical scale <{)(x)o These

points are plotted as shown in Figure

4 *

# I.e., coordinate paper with one scale (x) uniformly
spaced and the other (y) distorted In such manner
that the extreme -value distribution exp(-e~y) will

. plot as a straight line*
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(b) After the points are plotted the

estimated line ‘X - u + 3y , i.e„,

x = ,9295 + .1677y (see Rule 3,

above), is drawn tkrough them* This

is easily done from columns 2 and 3

(Worksheet 2), since column 3 gives
A

the predicted values of x(=£p) cor-

responding to the values of y(=yp)

in column 2, An even simpler method

is to take two or three widely separated

values P in column 1 together with the
A

corresponding values £ p , plot them on

the <j)(x) and x scales, respectively,

and draw the line through them*

(c) The 68-percent control curves are

obtained by measuring off horizontally,

at each value of P in column 1, the

A
distance a(£

),
taken from column 7, to

the right and left of the fitted line,

and then joining all the right and
i'

’

all the left endpoints of the intervals

so formed, as in Figure Ij. The area

included between the two control curves
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is the 68-percent confidence band*

If most -or all of the plotted points

fall wi thin the band, as in Figure ii,

then we conclude that the fit is sat-

isfactory and furnishes no evidence

that any of the basic assumptions are

violated.

(d) The fitted straight line provides the
'•

i

predictions for any desired probability

level P," For example, the prediction

for P = .995? which means a value of

acceleration increment which has only

one chance in 200 of being exceeded,

is obtained (in Figure 4) by reading

across to the solid (fitted) line at

P = .995? and down to find the value
i

x = l
,

0 82g« This Is sufficiently close

to the value 1.8176 obtained by cal-

culation, using the value y^^ = 5,29531.

The 68-percent curves give a confidence

interval for this value of approximately

1.66 to 1*98. This means that there

On the probability paper (Figures k?5)? P is
denoted by |T(x)

.
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is a probability of about two- thirds

that such' an interval includes the

true predicted value at we are
w P

trying to estimate* The efficiency

associated with this estimated is

between 80,3 percent and 82,6 percent

(column 9) ,
••slUff':ic;iently narrow limits

for practical purposes, r f a more

accurate, value for the prediction

or measure of efficiency is desired,

it can be readily obtained by insert-

ing a M P = *995 line” in the first

table on Worksheet 2 and performing

the computations indicated in columns

2 through 9®
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6, COMPARISON WITH METHOD IN PRESENT USE

It Is of Interest to compare the proposed

order-s tatistlcs method with the method of moments

of E, J. Gumbel which has been used up to now In

extreme gust-load computations (reference 18) • The

comparison is presented in two aspects — theoretical.

Involving an empirical attempt to evaluate the bias

and effi ciency'
k

of the Grumbel estimator; and practical,

showing how the two methods work out in an actual

example

»

6oX Theoretical Comparison

Only the general results will be indicated

here, the details being furnished in Appendix E.

The comparison consists in writing down the Grumbel

estimator, a function of the observations involving

the sample mean, standard deviation, and the profe-

ability factor Jp,. and then obtaining the bias and

the relative efficiency of the proposed order-statistics

estimator to the Gumbel estimator,,

# For theoretical comparison of confidence bands,
see Appendix D„
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Of the two characteristics bias and efficiency*

the main interest at this point is in determining the

efficiency of the proposed method, since that is the

important feature whereby possibilities of cost

savings, through taking fewer observations 5 can arise

,

Bias is less important for this purpose, and its

consideration is therefore limited to the appendix

(E),

As shown in Appendix E, (Section 1 relative

efficiency involves the first two moments of the

sample mean and sample standard deviation, and the

covariance of the mean and standard deviation. Of

these, only the first two moments of the sample

mean can be obtained readily by standard procedures,

while the remaining three quantities would require

a prohibitive amount of numerical integration to

evaluate accurately.

^T'l’he present 'discussion compares the order-statistics
estimator with the Gumbel estimator i ~ x +

,/7
~

. Cr

#(yp-/)sx * As explained in Appendix E, this estimator
is

r
a simplified form of Gumbel 1 s original estimator,

and is used when the sample of extremes is large.
Appendix E also considers the original Gumbel
estimator, which is a more complicated expression
used for small samples, and shows that this estimator
is both more biased and much less efficient than
the simplified estimator.
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Resort was therefore had to a method whereby

the theoretical extreme -value distribution was repre-

sented by a large set of suitably constructed random

numbers* By means of these numbers a large number

of actual random samples were drawn and the results

tabulated* This was carried out mechanically with

high-speed IBM equipment* By using 12,000 random

numbers, 1200 random samples of 10 were drawn and a

single average figure for relative efficiency was

computed for each set of 100 samples* All these

computations were made for the single probability

level P = Other values of P are considered

below®

The results are shown in Table V and portrayed

in Figure 6* For samples of 10, the efficiency was

greater for the proposed order-statistics estimator

in 5 rases out of 12 (relative efficiency R (column

8) greater than 1) and greater for the present moment

estimator in 7 cases out of 12® The average of all

12 relative efficiencies was very nearly unity, These

results suggest that, for samples of 10, the two

methods are equally efficient.
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The entire procedure was repeated for samples

of 20, obtaining 6 (instead of the previous 12) values

for the 6 sets of 100 samples each. As Table V (column

9 ) and Figure 6 show, the balance now was £ to 1 in

favor of the proposed method, with the average being

1.11, representing 11 percent greater average

efficiency for the proposed method.

For samples of 30, there were 1| sets of 100

samples each, and the results (column 10) were 3

to 1 in favor of the proposed method. The average

relative efficiency was 1 . 13 , representing a 13

percent gain in average efficiency.

To see the effect of different probability

levels on these results, computations were under-

taken for several values of P beyond *95 • However,

in order to avoid needless calculation, in view of

the fact that only qualitative conclusions are

warranted, the above procedure was modified as

follows. The sets of 100 samples were combined for

each sample sise, and a single overall average for

relative efficiency was obtained for the 1200 samples

of 30, the computations being carried out for the

selected probabilities P = .95 , » 99 > *999 , and the
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limiting value, unity* The results are shown in

Table VI. In addition,- theoretical calculations**

were made to obtain the asymptotic relative efficiencies

as sample size increases without limit* These values

will be found at the bottom of column 9 of Table VI,

The above add! tional results indicate that

increasing the probability P tends to increase the

efficiency of the proposed method relative to GurabeX ' s

,

It should be pointed out that these values

obtained from the empirical sampling method are

indicative, rather than conclusive, on account of

the random variation inherent in the method, as man-

ifest in the wide fluctuation in efficiencies shown

in Table V for the individual sets of 100 samples.

Nevertheless, the above results do give strong in-

dication for the following statement:

For samples of 10, the proposed order-
statistics method is about as efficient
as the method of Gumbel, while for
samples of 20 or 30 or more, the pro-
oosed method is more efficient.

Since these calculations are mainly of theoretical
interest, they have been omitted in order to keep
this report from becoming unduly long.
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For ? = *95 or greater, this Increase in
efficiency is about 12 to 15 percent
for samples of 28 to 30, and ultimately
rises to 25 to 30 percent for indefinitely
large samples

*

If, in the comparison presented above, the

simplified Gumbel estimator is replaced by the

original form of the estimator (Appendix E, Section

2), then the comparison becomes much more favorable

to the proposed order-statistics method and it can

be stated that:

For samples of 10, 20, and 30, and
? = .95 or more, the order-statistics
method is up to twice as efficient as
the Gumbel method using the original
estimator. Moreover, this 100 per-
cent difference in efficiency between
the two methods is of sufficient mag-
nitude not to be significantly affected
by the sampling errors inherent in the
method of evaluation.

6*2 Comparison based on a
sample of actual observations

We shall use the same data already analyzed

by the order-statistics method, consisting of the

23 maximum acceleration increments listed in Work-

sheet 1. For convenience we shall use a standard

form of worksheet, employed by the Environmental
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Protection Section of the Office of the Quarterm&s ter

Genral, Department of the Army, (reference i 7 )

for applying the method of moments of E, J» Gumbel,

To avoid confusion with the Worksheets 1 and 2 dis-

cussed previously, these new worksheets shall be

referred to as Table VII—' Part A and Part 3, The

items are filled in on both parts as directed, except

that the factor N/^N-l) is ignored in Sections I

and IV, since subsequent theoretical investigation

has shown its use to be incorrect; also, the values

x^q and x^
Q^

in Section III, and the entire Section

V are not needed for our purposes. The values of

on and yn In Section II are taken from a table

supplied with the worksheets but omitted here.

Comparison is best shown graphically, as in

Figure 5>. It will be seen that in this particular

case the fitted lines given by the two methods are

not greatly different, the predicted values difer-

Ing by amounts varying from .03 g at the P ~ ,95>

level (1 chance in 20 of being exceeded) to nearly

.10 g for P = .999 (1 chance in 1,000 of being exceeded).

The most striking and significant feature about

the coroparisD n in Figure £ is the narrowness
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of the confidence band for the order-statistics method

compared with that of the Grumbel mthod. This is

attributable mainly to that fact that in the case

of the order-statistics estimator the confidence-

band width is based on the standard deviation of

the estimator, computed by the methods indicated in

this report, whereas in the case of the moment (Gumbel)

estimator, the standard deviation, whose value is not

known, is replaced by a standard deviation that can

be readily calculated, but which results in an un-

necessarily wide confidence band (for details see

Appendix D)

„

6,3 Advantages and Limitations
of Proposed Method

From the discussion given herein it appears

that the proposed order-statistics method offers

the following advantages over the method of moments

now in use:

a. The proposed method provides for the
first time an estimator known to be
unbiased, whose efficiency can be simply
and accurately evaluated.
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b. The new estimator is more efficient
than a simplified form of

.
the Gumbel

estimator, for samples of about 20
or more and P ~ 221^ more

•

Compared with the original form of
the Gumbel estimator, the new
estimator is up to twice as efficient
for the same range of values of P
and for samples of 10 or more

*

c. The calculations necessary for the
proposed method are simple and uni-
fied, giving simultaneously (i) estimates
of both parameters, (ii) the predicted
values corresponding to assigned prob-
abilities and the reliability of these
values, and (iii) estimates of the
efficiency of the method,

d. The proposed method uses a more
valid procedure for obtaining the re-
liability of predicted values, and
this procedure yields smaller
confidence intervals in many cases,
(See Appendix D#)

The following two limitations of the proposed

method should be kept in minds

a. As is true of any other method of
analyzing data, its use is appropriate
only when the assumptions upon which
it is based may be considered to be
approximately satisfied, namely?
all the observations constitute an
independent random sample from the
same population P(x) = exp (e“ (x-u)/p)

(in cumulative form)®

b« The assumption that the data are ’to
be available in the order in which
observed is of some importance.
For if the data are first rearranged,
grouped or processed in any manner.
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their randomness must be con-
sidered lost. In order to use the
proposed method it will then be
necessary to restore randomness
by use of a table of random num-
bers to rearrange the data. This is
less desirable and the original
order should therefore be preserved
if possible.

This necessity of avoiding preliminary

processing imposes a disadvantage on the proposed

method, as compared with the Gumbel method of

moments, when the sample is very large (several bun-

dred or more, say). In the latter method the data

may be groupie1 , simplifying the computations. The

method of order statistics, on the other hand, is

not applicable with grouped data - each observation

must be treated on an individual basis - and hence

is not suitable for occasional enormous samples,

as is the Gumbel method. However, for such masses

of data an even simpler method, described in Appen-

dix C, is available.
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7* CONCLUDING REMARKS

This report has developed and illustrated a

new method of analyzing extreme-value data based on

order statistics that is simple to use and offers

certain important advantages over the method of

moments of Gumbel now in use, as well as being subject

to certain limitations (see Section 6*3),

In view of these considerations, this new

method is recommended for practical use in place

of the present method of estimation.

In developing an estimator intended to be

useful and efficient a number of subsidiary questions

were encountered and treated* The most important

of these were (i) obtaining mini mum-vari ance unbiased

linear functions of order statistics for small samples,

and (ii) finding the most feasible v/ay of breaking

up a large sample into subgroups small enough to

take advantage of the results in (i). In addition,

considerable attention was given to a number of

theoretical points of difference between the pre-

sent and proposed methods.

Such theoretical study showed that one

feature of the present Gumbel method, namely deter-

mination of the confidence intervals or control curves
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for large values of P, does not have a suitable

theoretical basis., and that certain adjustments

should be made in the formulas,, These adjust-

ments would have the effect of replacing the parallel

control lines by diverging curves in the regions

of high values of P, resulting in smaller confidence

intervals for the more common values of P and larger

intervals for the higher values of P that occur

less often in practice.

The solutions to the above two main auxiliary

problems have been incorporated into a simple set

of tables and a pair of unified worksheets designed

so that the computations show at a glance the essential

quantities of interest - the actual predictions, their

reliability, and the efficiency of the methocU The

method includes provision for showing these results

graphic ally.

The present study has also devoted some at-

tention to a method involving empirical random

sampling and IBM tabulating equipment in cases

where direct numerical evaluation is prohibitive.

The use of 12,000 random numbers and from 400 to

1200 random samples was found insufficient to yield
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accurate quantitative results for one form of the

Gumbel estimator (the simplified form) on account of

sampling variation. However, definite qualitative

results in favor of the proposed method were indicated

in the case of samples of 20 and 30 and theoretical

calculation, showed that this advantage was consider-

ably greater for indefinitely large samples.

As a result of the experience gained in these

studies it seems likely that for accurate results

perhaps ten times the number of samples used (or

more) should be taken and the computations performed

through specialized procedures on high-speed electronic

computing equipment.

Further calculation showed that in the case

of the original form of the Gumbel estimator,

much more definite statements were possible concerning

efficiency. In this comprison the proposed estimator

turned out to be up to twice as efficient as that of

Gumbel, not only for the sample sizes 20 and 30, but

down to samples of 10 as well. For very large samples

this advantage dropped somewhat, but the proposed

estimator remained at least 20 to 30 percent more

efficient.
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APPENDIX A

PROOF THAT SUFFICIENT STATISTICS DO NOT EXIST
FOR THE PARAMETERS OF THE ^
EX TREME-VALUE DI S TRI BUTTON

(Relates to Section ij.,2 of text)

Problem ; We have a sample of n from the

extreme-value population whose density function

is

a (x^u)

-SHf

a (x~u)
f(x) = ae

(3 = 1/a > 0 and u are unknown and we wish to find

sufficient statistics for them.

Theory ; (1) If t = (t
f

,, 9 .,tk ) is sufficient

(i.e., is a set of jointly sufficient statistics)

>r 9

x = (x-

for 9 - (9~,...,9 tm ) then the density function of
1 1*1

$ a © o $ x ) may written in the form

P(x,9) = f (t,9) g(x)

( 2 ) If t(x) = t(x 8

) for sample points x and

x ’ , then

P (x,9) _ g (x

PTF^T©! gTScTJ
- h(x,x 1

) e

This AppendIx'lias'lTe en prepared by I* Richard Savag
of the Statistical Engineering Laboratory, National
Bureau of Standards.

For convenience the symbol a is used in place of
the parameter (1/p) of the text.
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(3) Hence for all those points where t(x) has

a constant value the ratio A is free of 9, and thus

we can find sufficient statistics by seeing for

which point sets A is constant.

(ij.) Evidently* if 0 = g(9 f

) G.
X

i y

= (9^, . . . , 9^) , i = l,**.,k) is a non-singular trans-

formation of the parameters, then also

P(x,9» ) = f (t,9» ) g(x )

PTxt79tT f(t,9«) glx)
h (x,x !

) *

using the same (set of estimators) t as for 0. In

other words, if a set of statistics t is sufficient

for a set of parameters 0, the same set t is sufficient

for any other set © J obtained from 0 by a non-singular

transformation*

Results ; We will now apply the above theory

to the problem at hand and shovr that the largest point

set on which A is constant contains nl points, that is,

it takes n functions to describe t, so that the

resulting sufficient statistic Is the trivial set,
2 n

t = (x , ..*,x ) or In other xjords,

the only sufficient statistics are the n observations

themselves, so that we do not have a basis upon which

to construct optimum estimators,,
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Analysis ; For the distribution f(x) we have

a f r ? v S ? r -a(x.-u) -a(xj ~u)ll
A = exp < a

(
2 x» - 2 x. )

- 2 (e 1 -e i J

«

l 1 1=1 1 i=l J.1 i=l

If A is free of the parameters (3 and u then it is

also free of a = 1/6 and u, and so are log A and

6^log

A

. Hence

8 a*

, , ,
- - v _ r

-a(x^-u) --a(x, -u

)

log A = na(x“X' )- 2 [ e 1 -e x
n
2

i=l
]

Let u approach - go «, We first find that x - x * in

order to have log A free of u and a. Next,

6
k
logA , , x

k+1 Sr/ ~a(x «u) « k -afx^-u)
%- = (-1) 2 [(x,~u) e 1 - (xi-u) e 1

6a* i=l

0 , k >« #|

and this is true for k = 1 as we 11, since x = x».

Since this is an Identity in u let us set

u = 0c We then get

n .... n

" x . e
1=1 1

ax- ;; i k - ax

.

= l x. e i

i=l 1

These are finite suns; and therefore, since

they are identitites in a, it is clear, since a

may converge to zero, that

k «k
2x> 2x.

1 _ i

n n
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Thus the largest set of points of constancy of A

are those points which give the same sample moments,

and this fact implies the desired result®

Note c Statement ( 4 ) above implies that the

result also holds if the parameter u is replaced by

£p
= u + (3y

p
= u + y

p
/a®

Example ; To show how this method works for

a familiar problem consider a sample of n from a

normal distribution! here

-l/2a2 [X(x, -G) 2 - 2 (x! “0

)

2
] ,

A - e 1 ±

=21ogA = [2 (x^»x^
2

)
- 2©2(x. -x^ ) ]/a

2
,

and clearly the necessary and sufficient condition

? 2
for A to be constant for all a and © is that -

>2 t

2x. 2x^ = 2x^ , which is the classical result that

the first two moments are sufficient statistics®
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APPENDIX B

MATHEMATICAL FORMULAHON AND SOLUTION OF
MINIMUM-VARIANCE PROBLEM

(Relates to Section Ij. «. 3 of text)

rv

We consider an estimator of = u + (3y of

the form
n
2 WjX. 9

i=l
J '

(B.l)

where x_ < x 0 < . < x are the n order statistics

of a sample of n from the extreme -value distribution

(4*1)* and seek to find the w^ which minimize Var(L)

subject to

E(L) = |p • (B,2)

The estimator L in (B. 8) below with weights so

determined is called the minimum-vari. an c e , unbi ased ,

(linear) order-statistics estimator for sample size

n 0

Wri ting

x = u + (3y , (B,3)

where y is the reduced variable corresponding to

x, we also have

X
1

— u + py
j

. (B.4)

where y < yP < ... < y are the n order statistics

of a sample of size n from the reduced distribution
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exp (-e~^
r

) 9 free of parameters. From the above it

follows that

E(x
i

)
= u + pE(y

i ) , (B. 5 )

since u and
(
3 , though unknown , are constants not

subject to sampling variation when the operation of

expectation is performed® The values E(y^) have been

tabulated in reference ll| for i = n(l )niin (1 ,n-25>) t

n = 1(1)10(5)60(10)100*.

These results give readily

E (L )
= Sw

i
(u+pEy

i ) = gp = u +
(
3 yp . (B.6)

This is required to be an identity for all values

of the parameters u, Equating their coefficients

gives the two conditions on the weights :

n
2 w, = 1

i=l 1

(B. 7 )

n
2 (Ey )w = y

i=l 1 1 p

where Ey^ are the numerical values tabulated in

reference II4.

«

-Ve The notation in the table cited differs from that
used here: E(y.

)

in this report corresponds to
E(y . ) in the table®Jn-i
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Turning to the variance, we have

n
2 w.w .

n 2 2 n n
Var (L )

= 2 w. a
'

+ • 2 2 w,w
i=l 1 .1=1 i=l 1 J ~x,x

i J

From (Boii.) and the properties of the variances and

covariances of linear estimators we have
2 _ 2 2

'Xj P o
* = 6

2a?
}

y*
ox-x .

1 J

p
2
°y

1 y j

= p2
°ij '

making an obvious simplification in notation, whence

V
R = Var(L) = (2o^w?+22 1 jW^w

j
)p

2

= minimum subject to (B.7)® (3.8)

This is a constrained minimum problem for

variation in the unknown w^, and is equivalent to

finding the (uncons trained) minimum of
”

G
1

=
^ 2aiwi+S2?ci j

w
iw j?p

2 + ^
1
(2w

i
-l) + ^i

1
[2(Ey

i
)w

i
-yp ],

where jiu are the Lagrange multipliers. Since

2
(3 > 0 is constant, though unknown, this is the same

as minimizing
G^ ? 2

G — ki w 22^ o
^

w
j ^ v Sw

^
X )

^i[2(Ey
i

)v;
i
»yp J ,

WYhe~"temporary notation yu,
fj-

should not be confused
with the symbols for moments.
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2 2
whereas

?[ /$ » f
1 ~

p
* Setting the derivatives

with respect to w, , k = 1, 2, , n, equal to 0
K

and dividing by 2, we have

2 n
.

°k
W
k

+
°ik

W
i

+
'
/
'

+yuE7j
c
= 0, k = l,2,»,,^n (B,9)

i~l
(i+k)

These latter are n linear equations which, with the

two in (B.7), form a simultaneous system of (n+2)

equations in the (nd-2) unknowns w^, W£, . w ,

p
6 The values of X and

p
are useful as a check, since

if (B.9) is multiplied by w^ and summed, the result,

in view of (B.?) which the wr’s satisfy and (£ 0 8) is

V . + yf+ /UY—n,mn /v
/

J ?

that is, we should have

0

Vn,min 7

The minimum value V„ » „ x-d.ll be denoted bv Q, »

Before solving the set (3„7)*> (B.9) it is

necessary to determine the coefficients in these

linear equations. The values of Ey^
f
are tabulated,

as already mentioned. The variances and covariances

2
Ok, involve complicated integrals. The author

has been successful in expressing these integrals
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in terms of simpler ones already tabulated (reference

12), The results ar-e, for the variances

of " E(yf) » (Ey
i )

2

j
p 00 i ^ jj

E
<yf> =TTrifn^T)T

rf0
(
-1)cr g2

(i+I,) »

1 = 1 .2 8 . •t $ • * 9 f n

where

g^(i+r) = f + (/+logi+r ) ]

and { = Euler *s constant = ,57721 5&61j.9«»®J and for

the covariances^

= E(y
t yj)

- (Eyi ) (Eyj)

E(y
iyi }

s
IT-17TT3^1-I)T( jTT

j-i-1
2

r=0 s=0

°C

jB
‘“ i “ 1

C
n'"%(i+r, j-i -r-J-s),

r s

i < j j > *j
-• 1 J «J J e » , s ^ y

where the function 0 is defined by

2tu0(t,u) = (u-t)g
2
(t+u) + t'*[g

1
(t)] ~ 2L(1+^-) + ,

in which g2 is the same function as before,

g (t) = |(3
/
+logt) , and

All 1og ar i thms are natural logarithms, to the base e
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3 +x
L (1+x) =

_(

'

dw
CO t - 1 )

n+1

xn

n

2 2
= Idog x) + ^- l ^ +

x)

is Spence ? s integral, which has re^r: lost extensively

tabulated (to 12 places) in reference 16, The function

g^ also occurs in an expression for the means:

E(yP =
irnriTn-oTT 2 (-u

r
c

n 1
s.

l

o.+r*} .

The above formulas have been evaluated as far

as n = 6 and the results are listed in Table II,

The values in the table are believed to be accurate

to the number of places shown. Those for the means

agree (to within a unit in the 7^ pi see) to the 7

places to which the means have previously been tabulated..

Table II thus provides the coefficients in

the system of equations (B*7)> (B»9) in the w and/1

,

jUc The right-hand sides of these (n+2) equations are

1, Yv>* * . » , 0 and the solutions w.
, /v> jx are

linear combinations of these with numerical coefficients
2

which involve only o.
? , a, and Ey^, but not y^.

Hence the solutions are all of the form

w
i

= y + h yp *

A = o
x + d

xyp

p
= °2 + d

2yP •

i = 1, 2, n
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Substituting these w^ in (B.8) we have an expression

of the form

<4 = V
.n n,imn

(Anyp+ B„yD+n-'P n (B ,10)

The quantities h^ for the weights w , and the

coefficients An , Bn , Cn , of Qn , are given in Table

I for n = 2 to 6, The solution of the system of

equations became increasingly lengthy for increasing

values of n, with correspondingly diminishing accuracy,

so that the computations were discontinued beyond

n = 6, The procedures for handling samples larger

than n = 6 are explained in the text of this report.





APPENDIX C

SHORT-CUT METHOD FOR VERY LARGE SAMPLES

(Relates to Section of text)

If we have a sample of several hundred or

more extreme observations, as may sometimes be the

case (e.g. reference 18, where a sample of ij.85

extremes was analyzed) it is possible to select just

three out of all the observations and from them obtain

useful estimators.

This technique is based on a method used by

F. Mosteller (reference 13) for samples from the

normal distribution,. If the n -sample values from a

(continuous) population whose density is f(x) when

arranged in ascending order are denoted by the order

statistics x , x^j, •••, x^, and n Is very large, the

application of Mosteller ' s method involves taking the

observations whose ranks are^n, yun, -Jn, where

0 < /l<
p

< V< 1 with/}, ju, -j suitably determined,

and choosing a and b so that''

When [as will generally be the case) the ranks 2 n,
pn, zJn are not Integers, they will be defined to
he the nearest integers to these quantities.
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E = ax + b (x - x« ) (C *1

)

v jun i/n

is an (asymptotically) unbiased estimator of the

parameter g = u + py^* (The reason for choosing

this particular form is discussed below)®

The mean and variance of the estimator £ in

(C.l) are computed from the corresponding moments of

order statistics of the form x% , with n very large
An

andX a proper fraction not too near 0 or 1* Under

these circumstances the theorem used by Hosteller

states that in the limit, as n increases indefinitely,

(i) becomes normally distributed, with mean
4n

and variance

E(x, )
= t.

An A

2, s ? a-a).
° x

;m
- TrfrhpT2

h
where t is defined by A

A J1

(C ,2)

(C®3)

f(x)dx; and

(ii) the covariance of any two order statistics

x^
n

and x
, ^ < fa, is given by

oov (X
/In* V’

= nH
"t^ry) •

(c *w
where t is defined similarly to t/\«

P *
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For £ in (G ,1 ) to be unbiased in the case

where f(x) is the extreme value distribution*

E (|) " Ip ~ u +
(G ®5)

must be an identity in u, (3. Vie first note that

from previous discussion in the text (see Section

4.1), the parameter | is precisely the abscissa of
P

the ordinate which cuts off the area P to the left®

Hence we have simply

= u + py^ . (c ,6)

Equations (C.l), (C.2), and (C*5>) then give

at + b(tv - t
3 ) = u + py

A
1

.

or

a(u + py^) + b(y^ - y^)p = u + y
pp #

from which, on equating coefficients of u and p,
yp - y,

a = 1, b LE (C.7)
ll/ - \

In principle, the fractions A
, p, if might be deter-

A
mined so as to minimize the variance of £ and thus

make its efficiency a maximum, but this would require

very extensive computation which would not be warranted

on account of the limited importance of efficiency

when the available sample is very large. (For example,

a 5>0 percent efficient estimator with a sample of
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1,000 gives results equivalent to using a sample of

900 —- still a large sample,'*) Instead

we consider estimators of f of the form

t A A

l = u + ypi8 , ( 0 a
B

)

A A
where u, (3 are estimators of the two parameters u,

(3, that Involve the fewest possible number of order

statistics x without undue sacrifice in efficiency
sn

as computed for idenfinitely large samples*.. The

aim is to find, with a minimum amount of computation,

o A
separate unbiased estimators u, {3, of the parameters

u, (3, each of which has minimum variance or best

efficiency in some sense, in the hope that the linear

combination (0,8), i^jhich will also be unbiased, will

turn out to have efficiency which is not unreasonably

small* ‘Aiis is a heuristic method, since the fact

A a
that u and B are efficient does not Imply that their

These considerations assume that the sample of
data is already at hand, perhaps by a survey already
made, such as the Thunderstorm Project mentioned in
reference 18, Of course, if it is a question of
planning for the securing of data, it is desirable
to use as efficient an estimator as possible, but
in that case, the Investigation will rarely be
sufficiently extensive to provide samples large
enough for the method described in this Appendix
to be applicable.
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A /\

combination u 4- ypP is efficient. Much better

estimators probably exist, but we are content to

obtain just one of reasonable efficiency.

It turns out that the modal parameter u can

be estimated by a si ngl

e

order statistic. E* J,

Gumbel has shown (reference ii, equation ( 5>0 ) ) that

the value of u for which x^n best (i.e,, with least

variance or most efficiency) estimates u is ju - .20319®

For simplicity, we therefore replace u in (C.8) by

“ = x
.20n * (C<9)

The scale parameter p requires at least two order

statistics, or rather their difference x - x „ ,
fc/n ^n

for estimation, multiplied by a suitable unbiasing

factor which will become absorbed in the expression

for b in (C»7)® A considerable number of trials

indicates that the pair of values } - .03, *85

gives an estimate of p with efficiency probably close

to the maximum, if not actually maximum. Since we

are not seeking very precise results, this pair of

values is adopted here. Thus (C.l), in view of

(C.7)» becomes

i = x
. 20n

+ °.32S6(yp+o.U7S9)(*. 8Sn
-*

>03B
) . (C.XO)

The variance of this estimator is obtained from the
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rule

m m 2 2 m
Var( 2 a.x.) = 2 a. a + 2 ° 2 a„a^ cov(x.ji.)»

1-1
11

1=1 1 X i i,J=l 1 J 1 J

i<j

which after simplification gives

o
2

{ |) - 8o6916 - O 0O68I d + lo 51^2 , (Coll)

where

a = 0.3256 7p + 0.1549 .

A
Since g is, unbiased* a measure of its efficiency

may be obtained by dividing its variance into the

Cramer-Rao lower^feouacL Q,__ (see equation ( iq 0 1 9 ) and
ho

accompanying text* numerical values are given in the

Q, column of Table IH, Part A, The results are as

follows g for several values of P of interests

P Efficiency of H
79^ jSU5-
°99 Jbij.9

°999 0652
1( limiting O660

value

)

Thus , this 1 arge~ sample method of estimation is

slightly less than two- thirds efficient 0 However*

as noted above* such apparently low efficiency need

not be a serious matter in practice 0

For convenience* a summary of the method

described above is given here
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Summary of Large -Sample Procedures

1. Arrange all n observations (assumed to be

independent and from the same extreme-value dis-

tribution) in order of increasing size* and then

rank them from 1 to n,

2 0 By hand or mechanical sorting* select the three

observations x whose ranks are the nearest in-
r

tegers to G Q3n* o 20n* and 0 85n 0 Denote these by

x
«Q3n*

X
o20n*

x
»Q$n°

A
3* Compute the predicted values ^ * for various pro-

bability levels P* by formula (C o 10) o

lj.«. For each P cor^pute the variance from formula

(caih

5* Take the square root of the variance to obtain

the standard deviation* This gives the half-width

of the 68 “percent confidence b an d * since for
A

large samples the distribution of £ approaches

normal! ty 0 Sinilarly* twice the standard deviation

determines the 95 percent confidence band„ and

2 o58 standard deviations determines the 99 par-

cent bando

Go Obtain the efficiencies by dividing the variance

into the Cramer-Rao lower bound in Table III,,

Part Ao



*
• •

.

'

.



APPENDIX D

ANALYSIS OF CONFIDENCE INTERVALS IN ORDER-S TATI STICS
METHOD AND METHOD OF MOMENTS OF GUMBEL

(Related to Section 5* Rule 5? and Section 6,2 of text)

1. Confidence intervals in order-
statistics method (based on
normality assumption)*

In the text s Section 5s> Rule 5s the confidence

intervals given for various confidence levels in the

proposed method are obtained by laying off a certain

number of standard deviations 9 computed for the estima-
A

tor gp, on either side of the estimated value given

by the fitted line. If this Is done for different

values of F and the ends joined,, as in Figure 4s a

confidence band is obtained. The number of standard

deviations given in the method — one for a confidence

level of 68 percent , two for a level of 95 percent —
A

is based on the assumption that the estimator | Is
P

normally distributed. The purpose of this section

Is to investigate this assumption more closely.

It will be recalled that the estimator ^ is

obtained by splitting the sample Into a number of

equal groups with perhaps a remainder of different

size (see text In connection with equations (4*22) a

(4.25) and (4.26)). Then 2 can be written :ion
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( 4 . 26 )

£ = t T + t !
-

T

s

>

where T is the average of a certain linear function

of the sample variables (equation (4.22)) taken over

the k subgroups , T> is another linear function and
A

t, t 9 are constants. Thus £ is the sum of two parts:

(1) an average of k independent random variables

(tT^)'
f

all with the same di stribution, and (2) a

single variable (t'T 1

) with a somewhat different

distribution. By the Central Limit Theorem in prob-

ability (reference 1, page 2l£), according to which

the average of a number of random variables having

the same distribution (with first two moments existing)

is asymptotically normal as the number of variables

increases indefinitely, the first part is approximately

normal for large k. In fact, extensive experience

has shown that a normal distribution is often a re=

markably close approximation even if the number of

variables k is under 10. Furthermore, the first two

moments (actually all) of each variable certainly

exist ~= in fact the proposed method is based upon

'These variables are independent because the subgroups
were assumed to be formed independently.
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their computed values, ^ence, it is safe to say that

for k = 10 or more the first part is very closely

normal o The second part (t ! T 5
) is a variable which

has the same general character as T (a weighted sum

of order statistics [equation ( 4 « 25 ) 3 ) and hence is

believed not to impair significantly the approximate
A

normal! ty of V Its influence is likely to be small,

especially if the number of other variables , k, is

large

»

For samples as large as 100, k = 16 if broken

into subgroups of 6, or k = 20 if broken into sub~

groups of 5* Since these values of k are considerably
4

?' ;

larger than 10, the preceding discussion shows that it is

A
quite safe to assume normality for for samples

of 100 or more, so that the corresponding multiples

of the standard deviation given above are sufficiently

accurate in such cases. In fact, it is likely that

the normal approximation remains good for practical

purposes down to samples of 50 or 60„ becoming, of

course, worse as sample size decreases still further.

However, in the absence of knowledge about the exact
A

distribution of the order=s tatis tics estimator £

for smaller samples, the normal approximate



*
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apparently the only simple one available for de term-

ing confidence limits. It may be noted that approximate

methods are also involved in determination of confidence

limits in the Gumbel method. This point is further

discussed in the following section.

A comparison of the confidence intervals (or

bands) for predicted extremes in the order-s tatistics

method and in the Gumbel method is of interest and is

presented in Table VIII, columns 2 and 4, < and 7s>

8 and 10. It Is to be noted that for prediction prob-

ability P not beyond .99 the method of order-stati sties

gives an appreciably narrower band for sample sizes

20 and 30 , and a significantly wider one for samples of

10. On the other hand, for values of P much beyond

.99, the order statistics band widens very rapidly, as

compared to a constant width for the band in Gumbel ! s

method. However, there appears to be some question as to

the theoretical validity of the Gumbel confidence-band width

for large values of P. This point is also considered in the

following section.
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2 0 Confidence intervals for largest
extremes in Gumbel methodo

2 d Gumbel* s derivation of
confidence intervals

„

The purpose of this section is to inquire

into the theoretical validity of the confidence in-

tervals (or confidence band) given for extreme pre-

dictions in Gumbel* s method®

In the Gumbel method the 68-percent confidence-

interval half-width for the largest in a sample of

n extremes and for all larger predicted values"' is s

in Gumbel * s notation (Table VII s Part Section IV)

A
x,n -^ = l-une* f>

= i/a, (D.X)

where (3 is the scale parameter (or rather*, an estimate of

it) of the extreme -value distribution from which the

observations are assumed to come® To obtain the

confidence Interval for a given prediction prob-

ability P > n/(n+l), the value A is added to* and
“ x

j,
n

subtracted from® the estimate given by Gumbel^ de~
1

noted by him by x (Table VII 9
Part B* Section III)

That is 5 for all values of P beyond n/(n+l ) g which
is the probability assigned to the largest value
in the sample s xn . For smaller ? 9 the confidence
interval Is given by a different method with which
we shall not be concerned inasmuch as the primary
interest is in large values of P correspond? ig to

extreme predictions.
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and in this report by £ Gumbel 8 s (68 percent)
G

confidence interval for 'predictions beyond the largest

observed extreme x is thus given by
n o j

t G ± l.Uilp, (D.2)

where (3 is the scale parameter (or an estimate there-

of) of the extreme -value population from which the
e?£

observed extremes x have been assumed to comes

F(x) = J(y) = exp(-e^) s y= (x-u)/(3 0 (D. 3 )

The multipier l„lipl used for the 68 percent confidence

band is obtained by setting G = ,68 and solving for

y the equation ,

J(y) » J(-y) - C (Do4)

which is parame ter -free 9 and gives y(C) ” y( 0 68 )

= 1«14073 (reference page 6) 0 Thus

y = - 1 O l4073 to y = ld4073 (D„ 5 )

is the interval for the reduced variate that cuts

off (or corresponds to) a central area of 068 under

the extreme-value density curve shown in Figure 2 0

The corresponding interval that cuts off the same

¥ From the theory of extreme values the distribution
of the largest of the observed value s s x

n?
in a

sample of n extremes, is exactly an' extreme -value
distribution that has the same scale parameter p c
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area under the original (^unreduced®9
) x-dis tribution

thus has width given by the values (D„5) multiplied

by the scale factor (3, since

x = u + yp

The half-width is therefore 1„ 14073 p s i 0 e op (D 0 1)«,

The following discussion indicates that this

method of obtaining confidence intervals is inaccurate

in two respects? (1) the confidence interval ie of

constant instead of increasing width for large P|

(2) the scale parameter used is inappropriate®

2,2 Constant width of
confidence interval

The above me thod‘ of Gumbel of obtaining con-

,
A

fidence intervals (D„2) treats the estimator as

though it has an ex treme^value distribution with the

same shale parameter p as in the population underlying

the observed extremes (including the largest

extreme xn )o This assumption cannot be considered

strictly valid since it implies that the confidence

width remains constant for all large values of P p as

(Dol) does not involve P„ In other words, this asserts

that from a sample of 20 observations or e en 0 P

for example p we can make



\.
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statements about events that will occur with prob-

ability 1 in a million or billion yet have the s ame

uncertainty of only A in our estimate for x as
x ^ n

for predictions about events with probability, say*

1 in 100o It does not seem reasonable that a limited

sample can tell anything at all meaningful about such

extremely rare events, let alone predict them with

the same amount of uncertainty no matter what the

probability of occurrence*

This lack of agreement with common sense indicates

£ A a
that the Gumbel estimator = u + ypP cannot be treated,

for all large values of P, as if it has an extreme-

value distribution with constant scale parameter*

Besides these common-sense considerations,

there is another reason why the ex treme -value distri-

bution is not appropriate for the Gumbel estimator,

at least for large samples of data* The estimator

is a sample characteristic of the form

t Q
= * + k

p
s
x » £D ° 6 )

where k is a constant for given values of P and n.

The appropriate distribution of such an expression

is given by a general limit theorem in probability

(reference 1, page 3^7^ to the effect that under broad
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conditions any sample characteristic based on moments

(such as £ ) is* for large values of n, approximately

normally distributed* Thus for large values of n

the Gumbel estimator (D*6) should be considered to

be approximately normal , with variance given by an

2
expression which increases as k^* Moreover s this

would yield a confidence band that diverges with

increasing P s avoiding the difficulty of the parallel

curves mentioned above*

2*3 Inappropriate scale parameter

Little is known about the exact distribution
/\

of the Gumbel estimator particularly for small

sample sizes* Yet even if It were an ex treme-value

distribution (of the form (D*3))* it would seem that

its scale parameter would not be p, but a certain

multiple of it s B , found below* This multiple may

be determined by considering the relation between

the variance of the distribution (assumed extreme-
A

value) of
Lr

tributions

and the scale parameter
(3^

of this dis-

2 .£ N
x2 2

° V = T h (D.7)



,,
.

* f;
.

v '

>• " UY': '- ? \
:

•

:
1

;

,

.

.

;

. ... V

'

. :

'

'

• ;
;f

-

-

'

'

• :

•-t - : '

.
:

«« v S K 4 ,
,

.

-

v : h "• V;

;

::ii l vif;:

'

-
- -t* ;

:• .> . '. V '

- '

. -V

- VC?!: 1 : .

. \j
.

'
'



102

But we have an approximate expression for the left

side
j, namely, (E„ 6 ) in Appendix E below,, This is of

the form

°
2
(|g

) = q(y
p

) ^ (o 08 )

where p is the scale parameter of the original

( extreme “Value ) x-dis tribution, and q(yp ) is a

quadratic expression in the probability factor yp

with coefficients involving the quantities o (s) and

covfyjs), whose computation by empirical sampling is

indicated in Appendix E ; q(yp ) may be regarded as a

known value, depending on P 0 Hence

o
2
(t0

) = p
2

. (D.9)

Substituting in (D»7) gives

P = {— S
p ) p = BpP , (D.io)

1

which defines the multiple B^o Thus the confidence^

interval half<=width (D 0 1 ) must be replaced by

A 9 = 1.141 B
pp , (D 0 11)

where now A 9 is no longer constant with P, but

on account of B , actually increases very rapidly
P

for large values of
y^

corresponding to values of

P near 1. Thus we obtain a modified confidence

band whose divergence states that the amount of un=

certainty increases without limit as we attemp
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estimate increasingly improbable events. This also

avoids the conflict with common sense mentioned in

Section 2.2.

Ihe actual values of Bp are of interest and

are given in the following table for several important

values of P and for the three sample sizes for which

tLsy were computed in Appendix E.

B
P

35 SP
=
ir

p
n = 10 n = 20 n = 30

95 .749 .560 .458
99 1.093 .825 .673
999 1.593 1.208 .986

In this table the values of B
p

less than 1 indicate

that the modified confidence band (equation (D.ll))

is better (i.e. narrower) than the Gunbel confidence

band and vice versa for the values of B
p
greater

than 1. Thus, the modified band is indicated to be

considerably better in the region P = *95 to *99 for

samples of 20 and 30. For samples of 10, the advantage

is less at P = .95 and becomes reversed in favor of

the original Gumbel confidence band at P = .99 ,
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The above comparison remains exactly the same

for any other confidence level, it being merely necessary

to replace 1.1|1 in equations (D.l) and (D*ll) by the

corresponding value y(C ) determined from (D„l|)« Thus,

for the 95 percent level, y(,95) = 3»06685 (reference

6, Lecture 3> Table 3«l)o At each level the con-

fidence intervals of the two methods are affected in

the same ratio by such multipliers, that is, their

ratio to each other remains Bp, regardless of confidence

level C*

3 » Comparison of confidence intervals in
the Gumbel method and the
method of order statistics

Table VIII shows the actual confidence inter-

vals (in terms of the scale parameter (3) for the two

levels C = ,68 and C = *95 for the Gumbel method and

as modified by the factor Bp, and also compares these

(where applicable) with the intervals given by the

order-statistics method. Except for samples of 10,

for which the Gumbel interval is apt to be narrower,

the modification denoted by B , discussed in the
P

previous section, reduces the interval-width for P = ,99

(and less) by significant amounts — by about one-

sixth or more for samples of 20 (columns 8) and by



'
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about one-third or more for samples of 30 (columns 8,

9). These results are of course implied by the values

of Bp., given in the preceding section* Also, as

noted in Section 1 above, the order-s tatistics con-

fidence interval is narrower than the (unmodified)

Gumbel interval in many cases, for P not beyond .99*

and sample sizer not below 20. However, it increases

beyond the constant Gumbel width for larger prob-

abilities, in- agreement with theoretical requirements.

At P = .99 or less, there are two additional features

to be noted. (1) With increasing confidence level,
numerical

the/factor in the Gumbel interval A increasesx p n

faster in either the modified interval A 8 or in the

order-statistics interval (denoted by A in Table

VIII ), so that both the modified method and the order-

statistics method reduce the confidence interval of

the Gumbel method by constantly Increasing percent-

ages as the confidence level increases. For example,

for P = .99 and for samples of 20 the order-statistics

interval is about 11 percent narrower than the Gumbel
t

interval for a confidence level of 68 percent and

about 30 percent narrower for a level of 95 percent

(columns 5j> 7)® (2) Similarly, the percentage



\

'



106

reduction increases with sample size. Thus* for

P = .99 ana a confidence level of 68 percent* the

reductions are 11 percent for samples of 20* and 29

percent for samples of 30 (columns 8* 10)*





APPENDIX E

DETAILS OF THEORETICAL COMPARISON BETWEEN ORDER-
STATISTICS ESTIMATOR AND MOMENT ESTIMATOR OF GUMBEL

(Related to Section 6.1 of text)

Since the order-statistics estimator has been

fully discussed in the text, the remaining problem

in making the above comparison is, essentially, to

develop the characteristics of the Gumbel estimator*

The method of moments of Gumbel In present

use provides the following estimators for the param-

eters u, p (reference 18, page 11, equations (26),

( 27 )? also reference 5> page 10* equation (29 ), but

read (

»

yn/a ) for (+yn
/a)) :

where x, s are the mean and standard deviation ofA

the given sample of size n; y^ is a certain computed

quantity, depending on the sample size n, which

approaches Euler’s constant Y - .577^0.® from below

as n becomes infinite; and a is another computed

quantity, depending on n, which approaches %/ </E

= 1.28255®°° from below as n becomes infinite.
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For sufficiently large samples the quantities

y and a may be replaced by their limiting values",
n n

This gives the somewhat simpler estimators, for

computation purposes

It is shown below that the net effect of this

simplification is to diminish the bias and to greatly

understate the relative efficiency of the order-

statistics estimator to the Gumbel estimator. Since

the asymptotic form (E.2) involves simpler notation

and is occasionally used In practice, it has seemed

desirable to present this case in detail below (Section

1) and also in the main text. The corresponding

results for the original form (E.X) are Indicated in

Section 2 below and tabulated In Table ¥1.

1. Comparison with simplified
Gumbel estimator

From the estimators (E.2) the following

estimator of can be built up, which will be denoted

by i G i

This has been done, e.g„, in reference 3s pp® 18l
ff. an4_l88, and in reference 18 , p. 10

„
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t3 = u> + P’y
p

= X + (y
p - /) ^ Sx . (E.3)

This is a function of the n sample values x^ , x^, .

xR and it is desired to find its mean and variance,

and thence its bias and efficiency.

The mean is

E(|g )
= u +/p + (y

p
-/) ^ E(s)p ,

which can be rearranged to give

E(|
g ) = |p + pf E(s)-l](y

p -f)p . (E.4)

where g p - u + , E(x) = u + and E(s) is the

expected value of the sample standard deviation, s,

when the sample is from the ^reduced*1 extreme=value

distribution exp(=e”^) e Equation (E e i|) shows that

the Gumbel estimator is biased, (unless E (s) = 'k/./E for

all sample sizes, which seems highly unlikely), with bias
A

unblasEd~~e s t 1mator analogous to is

l
o

= * + (yp " f ) s
x
/e(s) ,

for, as in equation (E«4)

E (ia )
= u + /p + (yp -() E { s )p/E (s

)

= u + Py
p

= l
p

However, this estimator could not be used in an
actual problem since E(s) is not known. Computation
of this quantity was one of the aims of the IBM
computing procedures discussed in the text.
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no

b(S0 >
= e( ^G } " 6p = &T E(s)-1] (yp-/1p . (e.5)

A

The variance of the estimator is

°2(^g )
= 4 + h + 2(yp^ )!!7 oov(*’ 3x>

^ TI 2
where o_ = ^ o (s) is the variance of the sample

standard deviation for samples from the reduced dis-

tribution exp(-e”^); and cov(y,s) is the covariance

of the mean and standard deviation in such samples.
A

The efficiency of could be evaluated by

suitable generalization of equation (2+ 0 19

5

to biased

estimators. The variance in the denominator would

be replaced by the MSE (mean square error)." The

numerator would have to be replaced by a complicated

expression which, for unbiased estimators, would

reduce to 0,LB «> Instead of evaluating efficiency for

the biased estimator Ig* therefore, the discussion

will be greatly simplified by limiting it to relative

efficiency. The relative efficiency of one estimator

* For discussion of mean square error see equation
O4..I3 ) and accompanying text.
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(T^) to another (T2 ) Is defined as the ratio of

mean square errors,

MSE (
t
2 )

H (T
x
,T

2 )
= (E.7)

MSE (T
x )

This ratio has been used as an index of comparison

of two estimators (e.g. reference 7)0 Thus, the

relative efficiency of the order-s tatis tics estimator
A

Cp to the Gumbel estimator £ is, by (4«13) and the

fact that the former estimator is unbiased,

a a
MSE (|Q ) a2(| ) + (bias(L ))

2

=
MSE

(f ) 27J~o (ftp)

(E.6) + (E.5) 2
= (lA)Qm

. (E-8)

where k is the number of subgroups of size m into

which the sample of n is par ti tioned (equation

(^., 23), assuming there is no remainder subgroup), and

the expressions needed for the numerator are given

by the equation numbers indicated.

The key quantities needed in the calculation

of relative efficiencies are, from equations (E.5)

and (E.6), E(s), o (s), and cov(y,s). For general

Thus, n = 10 = 2 x 5 gives k = 2, m - 5l n = 20 =

4x5 gives k = 4> m = 5> n = 30=5 x 6 gives k = 5#
m = 6.
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sample size n, their exact values are given by mul-

tiple integrals whose evaluation would apparently

require a prohibitive amount of labor „ Instead , the

following method of empirical sampling was used with

the aid of IBM calculating and tabulating equipment.

The universe of (reduced) extreme values |)(y)

= exp(-e was approximated by constructing a pop-

ulation of 12,000 suitable random numbers and punch-

ing each number on an IBM punch card. These were

then mechanically separated into 1200 random samples

of size n = 10 and for each sample the mean y, standard

deviations, and their product ys were obtained.

This was equivalent to having a Mpopulationwof 1200

means, one of 1200 standard deviations, and one of

1200 products of the mean and standard deviation.

It was then assumed that the arithmetic mean of each

of the three populations would be a close approximation

to the mathematical expectations (averages) of the

desired quantities, so that these approximations

could be taken as estimates of the moments 'E(s) s

E(ys), From these values, and the relation

y-, / 2 \ _ n-1 2
E(s >

= — y
n-1 it

~rT T
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the variance

2

a (s) = EC's
2

) - [E (s ) ]
“ = “ fE ( s

)

was computed* and also the covariance

cov(y„s} = E(ys) - E(y)E(s) = E ( ys ) - Ye(s),

2 p
The five quantities E

( y) , o (y) , E(s), c^(s)* and

cov (y,s) are shown in Table IX * together with the

corresponding theoretical values that can be readily

calculated

.

In actual use this procedure was modified some-

what* since only one value of each of the desired

quantities would be produced by the 12,000 cards and

1200 samples. This single value would be subject

to the fluctuations of random sampling and would be

difficult to rely on in making inferences 0 This

difficulty was 1 met by breaking the npopul at ion®* of

1200 samples into 12 sets of 100 samples and obtaining

12 values of each of the desired moments instead of

only one. These 12 values* although each was based

on fewer samples* served to furnish an idea of how

the single value based on 1200 samples was affected

by sampling variation* Such analysis has provided a

far firmer basis for judgement of relative efficiency*





H4

The above procedure resulted in moments cal-

culated for samples of size n = 10. In like manner,

600 random samples of size n = 20 were drawn, after

starting afresh by putting all 12,000 cards together,

but this time only 6 instead of 12 sets of 100 samples

were available, resulting in 6 values of the desired

quantities for comparisoa Finally, the 12,000

cards were reprocessed to yield 400 samples of

size n = 30, giving 4 values each based on a set of

100 samples.

The resulting sets of 12 , 6, and 4 values each

were substituted in the appropriate formulas (Eo5)»

(E06)® (E.8) in order to obtain the relative efficiency

of the order-statistics estimator to the (simplified)

Gumbel estimator. These formulas, all of which depend

upon yp, were evaluated at the probability level P = .95*

All these results are summarized In Table ¥ which shows

the values of the bias, mean square error, and relative

efficiency calculated for each set of 100 samples of

sizes 10, 20, and 30, together with the corresponding
N

average values obtained from all 1200 samples combined.
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For ease of comparison, the relative efficiencies

are also charted in Figure 6®

These results constitute the basis of the

statement in the text that at the probability level

P = ,95, for samples of 20 and 30, the proposed method

has greater efficiency than the Gumbel method using

the» simplified estimator, while for samples of 10

the efficiencies are about the same®
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Gumbel estimator
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The estimator corresponding to £ ^ in (E„3)p

built up from the estimators (E„l) is

A
£ 0 ,„

= u + PyF = x + knsx (E.9)

where

kn
VTP

an
d (E.10)

Here

d = A
and

_ %(JE yp
-y

n
°n,P cr-

’

(E.ll)

is the conversion factor for passing from the

multiplier, d, of sx in (E.3) to kn in (E„9) ° It

is apparent from the discussion at the beginning

of this Appendix that for infinitely large n, b. p =1,

so that (E.9) Includes the asymptotic case. For

finite n, however, on < yn < ff''
* Hence, bn pi,

being a product of two factors each greater than 1,

may considerably exceed 1, so that the multiplier

b n p
in (E.10) and (EJ1) becomes appreciably larger

than the multiplier in (E„3)° Thus, for samples of

10, 20, 30 * computation shows that, for P = „95>s
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k
10

= 1.397 d

k
2Q = 1.234 d

k
3Q

= 1.173 d e (E * 12

)

The bias of H is, i
G,n

Section 1, in view of (E o 10) s

in manner similar to

b (|G>n ) = t-(y
p
-/) - k

n
E( 3 )]p

= Vtf> E(s)bn»P " 1] P (E.13)

Table VI (columns 2 and 3) indicates that the presence

of the factor bn ^p converts the small negative biases

into larger positive ones.

For the variance we have from (E.9)* analogously

to Section 1,

The corresponding expression (E.6) may be written

Comparison of these two expressions shows, since

cov(y,s) was found to be positive, that replacement

of d by the larger value kn considerably increases

the variance of the Gurribel estimator. Values of the

variance for the original and simplified estimators

are listed in columns II and 5 of Table Vl„
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Comparison of these columns indicates that the variance

of the original estimator can become more than half

again as large as the variance of the simplified

estimators, depending on sample size and probability

P„ The effect is most marked for the lower levels

of P and smaller sample sizes and disappears as shown

when both these factors increase,,

The result of the above increases in bias and

variance is to greatly increase the mean square error

(columns 6 and 7, Table VI), and thus to increase the

relative efficiency of the order-s tatistics estimator

(columns 8, 9)« As a result the order-statis tics

estimator is up to twice as efficient as the original

Gumbel estimator even for samples as small as 10

«

This tremendous increase in efficiency falls off
i

slowly, as shown, when sample size increases. For

fixed sample size the efficiency increases for

large values of P„ These differences In efficiency

are sufficiently large to completely outweigh any

fluctuations of random sampling attributable to the

empirical sampling method of evaluation usedo

It must be conclude^ therefore, that the

original Gumbel estimator is both more biased and much

less efficient than its simplified form, A '"suit.



T
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comparison of the order-statist ics estimator with

the original Gumbel estimator gives very conservative

results and greatly understates the actual improve-

ment in efficiency of the proposed method over the

method in present use„
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1
2

3
1*

5
6

7

8

9
10
n
12

13
1U
IS
16
17
18

19
20
21

22
23
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ESTIMATION OF EXTREMES

(For instructions see Section 5)

Worksheet 1 - Determination of Estimators

! NACA - Langley — Sample III
Computers J. 1.

Dates 5/29/52

I. SUBGROUP SIZES AND PROPORTIONALITY FACTORS:

n = 23 = km + m' t = km/n = 0.78261

= 3x6+5 t
2A = 0.20lil6

k = 3 m = 6 m' = 5

t' = m'/n = 0.21739

t' 2 = O.Oii726

MAIN SUBGROUPS:

Weights a^ s b^

i = 1 2

(from Table I)

3 1* 5 6 Check sum

a
± = . 355U5 .2251*9 .16562 .12105 .08352 .01*887 1

\ = -.1*5928 -.03599 .07319 .12673 .11*953 .11*581 - .00001

Cfoservations x. in increasing order from i => 1 to i = TO

Subgroup x.
No.

1
x
2

x
3 *1*

x
5

x
6

Check sum 2a^ Sb^x.^

1 .75 .81 .90 1.08 1.20 1.38 6.12 .89669 .20978

2 .75 .80 .88 .90 1.08 1.20 5.61 .85052 .11*168

3 .98 1.00 1.02 1.15 l.3l 1.1*3 6.89 1.06127 .13870

li

5

k

Sum 2.I18 2.61 2.80 3.13 3.59 1*.01 18.62 2.808I18 .!|9016

T = Sa
i
x
iA + (2b

1
x1A)yp = .93616 + .16339 y

p

IIB. REMAINDER SUBGROUP:

Weights a^, b^ (from Table I)

1 2 3 1* 5 6 Check sum

.1*1893 .21*628 .16761 .10882 .05835 .99999

-.50313 .00651* ,1301*5 .18166 .181*1*8 0

Observations in increasing order from i =1 to i =m'

x
2

x
3

x
l*

„! „l
x
5

x
6 Check sum Za’x

1

“ixi a
J*i

.75 .93 1,01 1.15 1.16 5.00 .90535 .1831*0

T' = 2a^ + (7bjx[)y
p
= .90535 + .l83l|0 yp

III. ESTIMATORS:

6 =t f + t'T' = .9291*6 + .1677U yp

u = ,929l|6 , p = ,l677ll
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ESTIMATION OF EXTREMES

Worksheet 2 - Predicted values, confidence band, efficiency, plotting positions

p y
P

PREDICTED VALUES

Ir
= .929h6+.l677iiy

p

Cm* = «5

cjCJ

<3"

$
I

II

68?-C0NFIDENCE
BAND HALF-WIDTH

= VVar(£p)

Q =Q /n
LB °

(Q0
from

Table III)

EFFICIENCY

(from T able m) E-
Var(fp)

(1) (2) (3) (U) (5) (6) (7) (8) (9)

t
2
/k = .2Ql*l6 t'

2
=.0l*726 p = .16771+

Estimate
.36788

of u:
0 .9291*6 g .19117 p

2
.2311*0 p

2
.01*997 p

2
.0375 .01*820 p

2
.965

.50 0.36651 .99091+ g .23189 p
2

.27870 p
2

.06051 p
2

.01*13 .05991* p
2

.991

.90 2.25037 1.3069lt g 1.00065 p
2

1.22831 p
2

.26231* p
2

.0859 .23235 p
2

.886

.95 2.97020 l.lt2768 g 1.51*171 1.9031*9 p
2

.1*01*71 p
2

.1067 .31*777 P
2

.859

.99 It. 60016 1.70109 g 3.27230 p
2

1*. 07062 p
2

.8601*5 p
2

.1556 .71035 p
2

.826

.999 6.90726 2.C8808 g 6.9201*1* p
2

8.65173 p
2

1.82176 p
2

.2261* 1.1*6361* p
2

.803

Estimate
1

of p: — 0.13196y
2
p
2

|

0.l6665y2 p
2 0.03l*82y

2
p
2 — 0.0261*3y

2
p
2

.759

PLOTTING POSITIONS

Observed extremes in increasing rank from 1 to n = 23

Rank Observed Plotting Position Rank Observed Plotting Position Rank Observed Plotting Position

r Extreme r/(n+l) r Extreme r/(n+l) r Extreme r/(R+l)

1 .75 .01*17 n 1.00 .1*583 21 1.31 .8750

2 .75 .0833 12 i.ea .5000 22 1.38 .9167

3 .75 .1250 13 1.02 .51*17 23 1.1*3 .9583

i* .80 .1667 li* 1.08 .5833
Sum 23.62

5 .81 .2063 15 1.08 .6250

6 .88 .2500 16 1.15 .6667

7 .90 .2917 17 1.1S .7083

8 .90 .3333 18 1.16 .7500

9 .93 .3750 19 1.20 .7917

10 .98 .1*167 20 1.20 .8333
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TABLE 1 122 ‘

Weights for mnimum-variance s unbiased, linear order-statistics estimator

^ n
of percentage points £ p = u + (3 y 5 and variance

P i=X 1 1 P x
- P P

^
Var(Cp) ” - (A^rj + B^.

p + Cn)£ , for sample size n = 2 to 6S Xj4 x € •••4 X
q
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Efficiency of ordersstatistics estimators for various sample sizes

n = km+ra' partitioned into subgroups as indicated for P = *99 s P=1

(Discussed in Section k*b)

n km + m'
EFFICIENCY

n km + m fl

EFFICIENCY

P = o99 P - 1 P = *99 P = 1

(percent

)

(percent

)

2 or k°2 5^o o £*2*7 21 3x6 + 3 8O08 73-6
3 or k°3 68*7 58-8 22 3x 6 + 1* 8l®8 74-9
h or k®ii 75.9 67-5 23 3x 6 + 5 82o6 75.9
5 or k»5 80.3 73o0 24 bxS 83®2 76-8
6 or k«6 83® 2 76o8 25 5x5 80®3 73oO

7f 1x5 + 2 70-5 60 o 7 26 l*x 6 + 2 79 o9 72-3
8 v" 1 x 6 + 2 73o3 63-8 27 kx 6 + 3 81o3 74.3
9 1 x 6 + 3 77®7 69 ol 28 1* x 6 + U 81 o9 75.3
10 2x5 80o3 73oO 29 kx 6 + 5 82o? 76 ol

30 5x6 83®2 76o8

11 1x 6 + 5 8lo9 75oO 31 5x5 + 6 80 e 8 73o7
12 2x 6 83o2 7608 32 5'x 6 + 2 80o5 73*1
13

c
2x5 + 3 77®3 69 el 33 5x 6 + 3 8l ®6 74-7

Ilf. S 2x6 + 2 7U.7 66 e? 3U . 5x 6 + 4 82o3 75-6
15 3x5 80-3 ?3e0 354 7x5 G0o3 73«0

16 2x6 + U 81® 3 7U-2 36 6x6 83®2 7608
17 2x6 + 5 82o3 75-6 37 7x5 + 2 78 o 2 70-3
18 3x6 83® 2 7608 38 6x6 + 2 80o9 73-7
19 3x5 + h 79®3 71*7 39 6x6 + 3 81 o9 75oO
20 kx 5 80®3 ?3«0 liO^ 8x5 80®3 73o0

61 11x5 + 6 8O06 73®3

If partition is 7 = lx h + 3 S then efficiencies ares

P = o99, effo = 72® 7^1 P = 1, eff„ = 63*k%
v If partition is 8 = 2xk$ then efficiencies ares

P = *99 , eff® = ?5®9$| P = 1, effo = 67 *5%
^ If partition is 14 = 2x 5 + then efficiencies ares

P = .99, effo = 79d%$ P = 1, effo = 71*3%
v If partition is 35 - 5x 6 4- 5.» then efficiencies ares

P = -99* effo = 82o8#s P = 1, effo = 16*2%
If partition is UO = 6 x 6 + then efficiencies are s

P = o 99, effo = 82M°s P = 1, effo = 75-7$





127

>
w
$
<
e-«

0

o
«H
o

U\

OJ
H
CH
O

UN

Go

H
A
P3

§
45

s
CD

•V
©
W
o
a,
o

&
©
cC&
o
<P

©
rH

rt

G
o

&
«H

10

‘S
to

«H
o

G
O
•H

e
a
o
£

oo
e

s
e
o
•rt

&

©
©
(0

O’

o

G
o
“H

[£i

*





128

o ©
0) txO

Hi
co !-l

t
o

CO U
O

CD «H

«H "H

o •H P.

CD

f-! ©
G\ «} -P

<*>

GO s?3
o

a ^© c
m •H °H
r—

!

o -

O •H ©
O «H CO

§
Ch rH
© ©

© CO

CO S'
H

I
•S'SH «H

«! 2 m
CD

Xt U &
<r» © £*%

O
CD

X «H
© ©

<*>

<y &g
«H H .£
o o

a«
CO bD
©

H'H
CH

© oH
n S CO

> P* © ©
u p

U u a rH
o o j? ctf

{x« Pn w >

*





TABLE VII - PART A

PROBABILITIES OF EXTREMES
(Discussed in Section 6.2)

129

Extremes Frequency

P

Meon ond Standord Deviaiion

x p x 2 • p

Cumulative Frequency

m
Plotting Positions

m/(N+l)

75 3
— to —

f

0

0.OS33
t0

‘ 75 .? O. /250 „
Q

• $Q V O . /<£ (a 7 t0

Si 5
• *S £, 0.2SCO

f0

9o 7 0. 29 1C,
t0

fo * 0.3333
tc

93 9 0.37SO
f0

9% ~ /o 0. 4/6,7
t0

/ . oo II 0.4orS3,.
1.51 /z 0.S0OO

t0

/02 13 o.s4/c>
t0

/.of /4 0.5*33
t0

/.of /s 0.6,250
tr

I./5- 1L 0.6,60 7 t0

/./S' / 7 0.7CS3
t0

1 » /

G

/S 0.750 0
t0

/. 20 19 0.79/7
t0

/. 20 10 0.S333
t0

/.3! 2/1 o.fiso
t0

t.3f 22 <?. <7/4 7 t0

1.43 23 0.95*3
t0

—to to

Sums: N = 3, 3

Computer: 7M/P.T/

336 3.

X(xp)

Arbitrary Mean:

Date Data: NACA - Zfl^/gy g M.
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TABLE VII - PART B

PROBABILITIES OF EXTREMES
(Discussed in Section 6.2)

I. Mean and Standard Deviation:

N = H ^ I ( x p )
= <2.3

.

<g Z

VTT = 4 - 7?Sa 3 Mean: x' = Ll 03 70

Arbitrary Mean: x
0 = Q.

True Mean 7 = LJ2JL2JL

n/(N- 1) =

n. Parameters!

cr„ -- J.at/i

I (x*p) «. 2S. 132 a

U0937
(x'r = =— <s x

)’ = —
Standard Deviation: s„ = _

/' 05-41

o dSXo

a • I9&

o

Q.S3S3

l/a=s,/a„ = 0 • ItO 4-

l/(aV
r
N)=(l/a)/v

r
N = Q . 0376,

TTT Line of Expected Extremes:

x= u! (l/a)y = 0 - 73 ! 7

y: -2.00 0.00

y ( 1 /a ) :

~ • 36,03 0 00

>5709 - u = > 93n

3.00

s4 /2

1-4729

: n/a) = 6- a

3

*V (l/at = o- 93/ 7 - mode

V' NOTE Upper sign
lower sign

used for maxima,
for minima

o . !%o4

5.00 2.25 4.60

.9030 4059 . X2 9*

1,333 7

NOTE: Volues x, 0 and x l00 are for return periods of 10 and 100 —
Ha f-width of 0.68269 Confidence Band, <rxm cr

j m Vn/

(

aVTT) = (O-^VN) [(I/o)/-/n|:

4> (x) : .150 .200 .300 .400 .500 .600 .700 .800 .850

O’y.nn VTJ : 1.255 1.243 1.268 1.337 1.443 1.598 1.835 . 2.241 2.585

.0472 -04U 7 ,0477 .0503 .0543 .06,01 .06,90 0*43 .0972

For largest value, A
X _ M

= 1.141 (l/a) = o. sort

For next - to - lorgesf value, A x „., = .759 [N /(N- 1)] ( 1 /a) = 0. 136 9

Expected Extreme, in T periods (years, etc.): X T = *10 + (*100 “ *lo) : *100“ * 10 '

T Z T (XK30"X,0 ) X T T Zr Z t(*ioo~*io) *t T Z T ^*IOO~*lo) X r

1 5 1 ft o 60 .781 140 1.144

20 30 6 70 .847 150 l.l 73

25 404 80 .905 200 1.2 96

30 4ft 3 90 .955 300 1 .4 69

35 54 9 100 1.000 400 1.592

40 607 1 10 1.041 500 1.687

45 65ft 120 1.0 78 750 1.8 59

50 .703 130 l.l 1 2 1000 1.990

ce :

a :
NAC.A — Langley SamhJe. No. J1L

Computer

:

3l.fi li Da te

:

S'//3 /s2
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TABLE IX
132

Empirical sampling values of first and second moments of sample mean y

and standard deviation s for samples of n - 10s 20s 3-0

»

compared

with the corresponding theoretical value where obtainable

(Discussed in Appendix E)

Estimate
n - 10

(1200 samples)

n - 20

(600 samples)

n = 30

(1*00 sables)
of

Empirical Theoretical Empirical Theoretical Empirical Theoretical

values values values values values values

E(y) 0*5698 0,5772 0*5698 0*5772 0,5698 0*5772

o*C?) 0*1663 0*161*5 0*0881* 0*0822 0*0535 0o 051*8

E(s) 1*1656 1*2211 1*21*59

a2 (s) 0*1321 0,0775 0,0513

cKy 5 §) 0e 0800 0e 01*38 0,0297
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Figure 4* “ Graphical analysis of a sample of 23 maximum
acceleration increments by method of order statistics

(Data from Worksheet 2)
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THE NATIONAL BUREAU OF STANDARDS

Functions and Activities

The functions of the National Bureau of Standards are set forth in the Act

of Congress, March 3, 1901, as amended by Congress in Public Law 619, 1950.

These include the development and maintenance of the national standards of

measurement and the provision of means and methods for making measurements

consistent with these standards; the determination of physical constants and

properties of materials; the development of methods and instruments for testing

materials, devices, and structures; advisory services to Government Agencies on

scientific and technical problems; invention and development of devices to serve

special needs of the Government; and the development of standard practices,

codes, and specifications. The work includes basic and applied research, de-

velopment, engineering, instrumentation, testing, evaluation, calibration services

and various consultation and information services. A major portion of the

Bureau’s work is performed for other Government Agencies, particularly the

Department of Defense and the Atomic Energy Commission. The scope of ac-

tivities is suggested by the listing of divisions and sections on the inside of the

front cover.

Reports and Publications

The results of the Bureau’s work take the form of either actual equipment and

devices or published papers and reports. Reports are issued to the sponsoring

agency of a particular project or program. Published papers appear either in the

Bureau’s own series of publications or in the journals of professional and scientific

societies. The Bureau itself publishes three monthly periodicals, available from

the Government Printing Office: The Journal of Research, which presents com-

plete papers reporting technical investigations; the Technical News Bulletin, which

presents summary and preliminary reports on work in progress; and Basic Radio

Propagation Predictions, which provides data for determining the best frequencies

to use for radio communications throughout the world. There are also five series

of nonperiodical publications: The Applied Mathematics Series, Circulars, Hand-

books, Building Materials and Structures Reports, and Miscellaneous Publications.

Information on the Bureau’s publications can be found in NBS Circular 460,

Publications of the National Bureau of Standards ($1.00). Information on cali-

bration services and fees can be found in NBS Circular 483, Testing by the National

Bureau of Standards (25 cents). Both are available from the Government Print-

ing Office. Inquiries regarding the Bureau’s reports and publications should be

addressed to the Office of Scientific Publications, National Bureau of Standards,

Washington 25, D. C.
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