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CHANGES OF SIGN OF SUMS OF RANDOM VARIABLES

^7

Po Erdos and G„ A„ Hunt

le Let x-p Xgc, 0 0 0 be independent random variables all hav^

ing the same continuous symmetric distribution^ let ~ x^ + ° ° !

and let N be the number of changes of sign in the sequence
XX

I s 5 n+1

Th 1,

n

k~l

d. Eh}
n

k*l

Here EjN l denotes the expectation of N^ and 0(k) is

2lLk/2.Kll (

k

k+1 \[Jc/2
])

2

Th 2o With probability one lira N^ log n ^ i|* We conjecture
9
but

o“k ^ ( 2 nf k)
”^/2

1
2

'

cannot prove
s
that also Tim N^/ (n log log n) £ l e

By considering certain subsequences we obtain an exact limit

theorem which is still Independent of the distribution of the x^

»

Let e< be positive and a the first integer such that (1 + cx)
a ^ 2|

let I
s

c, 2\ o o o be any sequence of natural numbers satisfying

(k + l)
9 ^ (1 + c*)k

s

|
and N^ be the number of changes of sign in

k+l‘
where s'

J
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Ih 3 e{^} » |
[k/a] and N’/ E^} 1

with probability one

<

It is likely that |[k/a] can be replaced by g-c*n/(l+o<) . For

k" - 2^ it is easy to see that s k/i\% so with probability

one the number of changes of sign in the first k terns of

Si, 09 *5 s ^ 000 is asymptotic to k/U

«

Our proofs are elementary and hardly use more than Lemma 3

of the next section,, which gives Theorem 1 immediately We prove

Theorem 3 In §3 and then demonstrate Th 2 by considering particular

sequences
? 2\ ° ° °

«

A sequence °°° for which

N
r. / log n 1/2 is exhibited in §U« And finally we sketch the

proof of the following theorem^ which was discovered by Paul Levy

when the x. are the Rademacher functions,
1

Th lie With probability one

n sgn s,
K.

k~l
o(log n)

Our results are stated only for random variables with continuous

distributionSe Lemma 3 s
slightly altered to take into account cases

of equality
9
remains true however for discontinuous distributions!

the altered version is strong enough to prove the last three theorems

as they stand and. the first theorem with the exrbreme members slightly

changed,, The symmetry of the x^ is of course essential in all our

theorems
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Let a-] s
° 00

s a
;n

be positive numbers which are free in the

sense that no two of the sums a have the same value

«

n

These, sums^ arranged in decreasing order
s we denote by S,

s
S^ n |

q. is the excess of +'s over - ! s occurring in S,j and Q.~ q +«<,• +q. #
“X X" j_ x

It is clear that Q . s Q for 1 ^ 1 < 2
1

2
n-i

n

Lemma 0 = - i ^ ([n/^i +
n
[n/2 ]

-2b
"1

for i i a
11"1

The proof of the first inequality
s which is evident for n = 1 ,

goes by induction. Let n > 1 and i ^ 2

.n-1 .

n-1
Define St and Qt for

3 3

1 ^ j “ 2 ' just as S„ and Q. above
,
but using only a .

»

<3 <3
1 n-=±

and let k and % be the largest integers such that - a ^ and

Sy + ^ S.« It may happen that no such k exists 5 then 1 ~ % and
jt> il. X>

Qi
s Q

x
+ 2 “ t + t > 1

if i 4 2
n“2

3

Q± - Q’
ri -I

+ t * 2
n“1

^: + t > i1
2
n

if 2
n”2

< £ < a
11"1

,,
and

Q. ® Q®
1 + 2

11"1
- 2

n“1 i i
u 0n-l

if X “ 2
n

'

. The remaining cases are dealt with in the same way.

In order to prove the second inequality we note that for each

i the maximum of is attained if the a_« are given such values that

S. > implies q„ ^ qv5 — this happens if the a. are nearly equal.

n_1
If n is odd is positive for i ^ i

Q - 2 " and - i is maximum

for i - i » We have





u

Q. — ±\ 0

in/Z]

k“0

(n - 2
n~1

- ( [ n/2 ] + 1)
n ,n~lW2 L

nA similar computation for n even gives \ ' 2
'^1

•
i^2'

and the

V J
same expression for Q. = i e This completes the proof

„

o

If e.p e
n+^

are real numbers let m(e.p c
^ ) be the

number of indices j for which jc,j >
|
h-j* c. We now consider

3 ' ^ C
i

n + 1 positive numbers °°°
s a

r+
-, which are ‘free* and define

M - M(a^
5

° °

" s a
n+ ]_)

“ 2m(±.a-^
s

•
o

•
s
±a

n+2,)

the summation being taken over all combinations of + and - signs

„

Lemma 2 „ 2
n+1 ^ M * Ii([n/2] + 1) (s«)

It Is clear that M
.n+1

If a + °°° + a „ and we reduceVl 55 ®1 '~n s

the other eases to this one by computing the change in M as a
n+1

is raised to + a^ + 1 „ Let i be the integer between 1 and

2 for which Sc - < a , < Sc (we use the notation of Lemma 1 )

and let a^
+1

be slightly greater than S „ „ Then becomes

> S
±

if a
n+^

is replaced by a^
+1

and we see that there is a

contribution +I4. to M coming from the terms ±a
^

in the four sums

±S^ *a
n4Q_°

In like manner
B
each +a_, occurring in S„ gives =

1| to M

and each -a. in 8, gives +h 9
so that

M
<«i.

•••» V Vi> M < ai- V a
n+i } W'k “ 1 >





“ 5 ~

Thus raising a
n+^

to 1+ aj+»«°+ a
n

lowers M by U(Q^- i) = - 1)

and Lemma 2 follows from Lemma l e

There is another more direct way of establishing the first ine-

quality of Lemma 2 C Considering the n numbers (a,^ + a^s °°°9 a
n -(-l 5

we assume that there are at least 2" i^'“ inequalities of the form

(1) > IJ j > 2

or

(2) (a
1 + ag) > V

where the right members are positive, and U is a sum over

( a!
+ a

2 ) 3
a a..

+13
a
n+1

with appropriate signs,,

and V is a sum over ° ‘
° s

ani i ° From. (1) we obtain an inequality

(l
8

) by dropping the parentheses from (a^ + a^) in Uj from (2) we

obtain (2
!

)s a
p

> a
p

“ F or a^ > V <= a^ according as a
2

is greater or

less than V (we assume without loss of generality that a^ > a
2 ) e We

consider also the n numbers (a^ — a^
5

°°’
s
a
n+,p

and bhe inequal-

ities

(3) a > U J

j > 2

(U) ( aP
- a

2 ) > vS

of which there are at least 2 e From (3) we derive (3
3

) by dropping

the parentheses from (a.-, - a0 ) in U 8

j
from (U) we obtain

(I4,
8

) a^ > a
? + V

3

„ It is easy to see that no two of the primed ine-

qualities are the same* Hence there must be at least 2°2
n - 2

n ^

inequalities
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n+X

in which the right member is positive. Taking into account the four

possibilities of attributing signs to the two members of each ine-=

quality we get the first statement of the lemma..

Lemma 3®
1

n+X
> + 4 0(n)

Here of course the x^ satisfy the conditions imposed at the

beginning of fl and 0(n) is the function defined there. Since the

joint distribution of the x. is unchanged by permutations of the

and multiplication of x, by -X
3 we have

Pr >
3

where m and M are the functions defined above. So Lemma 3 follows

at once from Lemma 2
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Ws cannot prove the inequality

n

=2“ ^ P £ Pr-m+n nun X.c
x 1

n+m

< ,
Vr 0([n/m])

1. n+1

for m = n
?
which would make our later proofs somewhat easier e But

we shall use

(5) P 60([n/m]) < 3[n/m]'
J2

and establish, it in. the fallowing manner; Let a ~ C n/m] and write

» + xz •• X , +
n+1

° + X. » u i, + • » « + x , +
.1 am+ am+1

w = x , + ° » ° + x e It follows from Lemma 3 that the set E on
n+1 ari+m

which the four inequalities \z\ < ju ± v ± wj hold has probability

at least 1 - U0(a + 1) and that the set F on which the two inequal-

ities jv ± wj < ju
j

hold has probability at least 1 - 20(a). So

a;PrjEFj * 1 - 20(a) - U0(a + 1) > 1 - 60(

And clearly |u + irj > jzj on EF«
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3«, It is easy to see that

E

n n
ir,|

-
i>—*->—o /> •>

X ^fk ®k+i
< °.

1 V“"l f.
, .

•

- 5X H > |s
k^

T V
ksl k*l J

so that Lemma 3 implies Theorem 1,

Let us turn to Theorem 3„ Clearly the probability of and

,2k

2k'
i. differing in sign is l/h° Also

K-+S,

S-. j

is inde=

pendent of s£. and s9 ,j 9
for (k + a)

5

* (1 + oC) X i 2k\ Since

s l o
has an even chance of taking on the same sign as

1
we must have PHs,8

s-f < 0
k u-a 2

Pr < o| = 1/8 » Eow
5

if

s’ s^.
+a < 0 there must be at least one change of sign in the sequence

SV Sk+U 5
s£+a . Hence pk + Pk+1.

+ °°° + Pk+a-1 “ VS, where

Pk
~ Prjsk s

k+2
< oj 0 Consequently

( 6 ) E n
k

k.

a]

and the first part of the theorem is proved

«

¥e next show that the variance of Nk is 0(k) by estimating

p- . “ Pr4s ! s!,-i <0 and s! si n < Of for i < Let u - si,
|
i i+i. j J"*'i J

i

v “ s! “ s! . w “ s! - s! ~i q z = s! -= s! and define the events
i+l i 5

j i+l 5 j+l j

Ag uv < 0

Bs |u| < |v|

Cs (u + v + w)z < 0

D
g

|u + v + wj <
|
z

j

D's lw 1 < |
z

j

Eg jz - wj > Ju + vj





so that = Pr{AB}-
a - Pr{CD}

s p^ , = Pr{ABCDj-e One sees imme-

diately that A s B
5 C 5

D" are independent and that ED ~ ED' 0 Writ-

ing E for the complement of E
5 we have

ABCD « EABCD + EABCD”
1 ^

c E + ABCD 9

and

D* c E + D .

Hence

Pr{AB3D) ^ Pr{I} + PrfABC} Et{d
!

]

Pp{e| + Pr{ABC}(Pr{E) + Pr{D})

^ Pr{AC} Pr{cj Pr{D} + 2Pt{e}

s P± P
1
+ 2Pt{e]>

How z - f is the sum of (j + l)
8 - (i + l)

9

of the x” s and u + v is

the sum of (i + l)
8

of the x’sj moreover

(j + l )

8 - (i + l )

8

* {(1 + ^) d
”i -

1} ( i+1 )

5

.

We may thus apply the inequality (5) following Lemma 3 to obtain

Pr{E} < 3{(1 +

provided j = i ^ a 9 A similar argument gives a lower bound for p_.

We have finally
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for all ± 9 2 ° This estimate yeilds

l“ij

>. p. p .
+J i J

0-i (l + 0<) 2

e{^}2 + 0(k) .

Let us denote e[k^| by bj_. It follows from (6), (7) and Tchebyeheff ' s

inequality that

l| > €| < 4-
£ k

for an appropriate c and all positive 6„ Hence

i > e

is the j“th term, of a. convergent- series if k(j) ~ so that

one* Since also b
k
Q)/b

and

N,
k(j) 7 b

k(j) 1 with probability
k( j+1)

1

K.
^

M
k(j+1)

b
k

b
k(j)

for k(j) ^ k < k(j+l)c, the proof of Theorem 3 is complete*

Theorem 2 is obtained in the following way* Let r be a large

integer and let l', 2'
s

° °
° be the sequence





n

r 5 (r + 1),

r% r(r + l)
s (r + l)

2

coo

/^(r + l)
a

°° % (r + 1)-
J

'

5

Kl ni“l / » % / _ x rri

r 9 r (r + 1),
00 % (r + 1)*%

with in defined by /1+1 ^ (r + 1)^+1 > rm 0 Let us call 3 “favorable'

if (3 + l)
8 “ (1 + l/r)3 " c Then

a) (1 + l/r)j * ^ (3 + 1)
6 ^ (1 + rOj' for all 3

b) There are k + o{k) favorable 3 less than k (as k 00) .

We see at once that

log k
! - k log (1 + l/r) + o(k)

Furthermore
§ if 3 is favorable then 3

8 s r |(j + 1)
1 - 3

8

j-° sc
3

according to Lemma 3 S





and consequently

lira 21L lim 2N,'
*l \ k

n “»oo log n k ~»oo log(k + l)
8

- lim
2N

k

(k + 1) log(l + l/r)

N.

lim
k

+ 1) log (1 + l/r)

_
1 -

(r + 1) log 1 + l/r

Letting r we have Theorem 2
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ho Our construction of a sequence Xp Xg
5

° ° ° for which

K
n/

log n —5* 1/2 depends on the following observations* For a given

k define the random index i = i(k)

max |x,
l.dj^n+1

and let A^. be the event |xjJ > Z |x. |, where the summation is over

j £ i
3 1 ~ j “ k + lo Let f^ and g^ be the characteristic functions

of the events *sk sk+1
< 08 and 8 i(k) - k + 1 and xk+1(xy + ° ° ° + Xfc ) < 0o

It is clear gp g2 ^
000 are independent random variables « that

2Pr|g
k ^ lj- *= l/(k+l)

5
and that - gk on Ap If moreover

Z Pr|A^.| < 00 (here A^. is the complement of A^.) then with probability

one for all but a finite number of indices k* In this case

we have

n

n
f.

k“l
k

n

E gk
+

fc-1

1

HF+TJ + o(log n) 3

the last step being the strong law of large numbers applied to

gp g2 $
000 Thus we have only to show that the x^ may so be chosen

that Prj^j s ojk jy
say e

To do this we take x. = ±exp(exp l/ti = ) where u-,
5

000 is a

sequence of independent random variables each of which is uniformly

distributed on the interval (0 5 1) » For a given k let y and z be





the least and next to least of u^ s u
2 $

° ° ° $
u
k+l?

density

function of y and z is

(k + 1) k(l - z)
k ^

0 < y < z <1

Consequently the event % 1/y > 1/2 + 1/k
2 has probability

k
2/(k2+l)

dy (1 - z)
k“X

dz - 1 + 0(k“
2

)

L2L__

-y/k"

t
‘

\r

and the event E^s l/z > 3 log k also has probability 1 + 0(k,

It is easy to verify that as defined above contains D^E^l

PrjAjl = ojk and our example is complete.

so
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5?o We prove Theorem 1* in the form

f

n " y
l/k s

| log n + ©(log n)

l“k~n
s, > 0
k

First EjT^J- - l/k = |
log n + o(l)„ Next, the inequality

following Lemma 3 yields

“ S
’J

<
l
s
k!}

“ t> k
9

so that

Pr|s
k

> 0 and > oj- - |
+ 0(|)^

/;i %>k „

This implies

!

(
T
n} * | ^ Vk * 2 {l/U - <*$)*} £

1 2= t (log n) + O(log n)

Tehebycheff “s inequality and the Borel-Gantelli lemma then yield

( 8 )

\ . 1
ci=s^» CD

2 5

iog ^

where ~ 2 "
° arid the sequence is dense enough for (8) to imply

the theorem,,

[1] P 0 Levy Theorxe de l 8 addition des variables aleatoires Paris 1937°

October 1.3, 1952
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