NATIONAL BUREAU OF STANDARDS REPORT

1984

PROGRAMMING AND CODING HANDBOOK FOR SEAC

by
Joseph H. Levin

U. S. DEPARTMENT OF COMMERCE NATIONAL BUREAU OF STANDARDS

U. S. DEPARTMENT OF COMMERCE

Sinclair Weeks, Secretary
NATIONAL BUREAU OF STANDARDS
A. V. Astin, Director

THE NATIONAL BUREAU OF STANDARDS

The scope of activities of the National Bureau of Standards is suggested in the following listing of the divisions and sections engaged in technical work. In general, each section is engaged in specialized research, development, and engineering in the field indicated by its title. A brief description of the activities, and of the resultant reports and publications, appears on the inside of the back cover of this report.
Electricity. Resistance and Reactance Measurements. Electrical Instruments. Magnetic Measurements. Electrochemistry.

Optics and Metrology. Photometry and Colorimetry. Optical Instruments. Photographic Technology. Length. Engineering Metrology.
Heat and Power. Temperature Measurements. Thermodynamics. Cryogenic Physics. Engines and Lubrication. Engine Fuels. Cryogenic Engineering.
Atomic and Radiation Physics. Spectroscopy. Radiometry. Mass Spectrometry. Solid State Physics. Electron Physics. Atomic Physics. Neutron Measurements. Infrared Spectroscopy. Nuclear Physics. Radioactivity. X-Ray. Betatron. Nucleonic Instrumentation. Radiological Equipment. Atomic Energy Commission Radiation Instruments Branch.
Chemistry. Organic Coatings. Surface Chemistry. Organic Chemistry. Analytical Chemistry. Inorganic Chemistry. Electrodeposition. Gas Chemistry. Physical Chemistry. Thermochemistry. Spectrochemistry. Pure Substances.
Mechanics. Sound. Mechanical Instruments. Fluid Mechanics. Engineering Mechanics. Mass and Scale. Capacity, Density, and Fluid Meters. Combustion Control.
Organic and Fibrous Materials. Rubber. Textiles. Paper. Leather. Testing and Specifica。 tions. Polymer Structure. Organic Plastics. Dental Research.
Metallurgy. Thermal Metallurgy. Chemical Metallurgy. Mechanical Metallurgy. Corrosion. Mineral Products. Porcelain and Pottery. Glass. Refractories. Enameled Merals. Concreting Materials. Constitution and Microstructure.

Building Technology. Structural Engineering. Fire Protection. Heating and Air Conditioning. Floor, Roof, and Wall Coverings. Codes and Specifications.
Applied Mathematics. Numerical Analysis. Computation. Statistical Engineering.
Electronics. Engineering Electronics. Electron Tubes. Electronic Computers. Electronic Instrumentation. Process Technology.

Radio Propagation. Upper Atmosphere Research. Ionospheric Research. Regular Propagation Services. Frequency Utilization Research. Tropospheric Propagation Research. High Frequency Standards. Microwave Standards.
OOffice of Basic Instrumentation
-Office of Weights and Measures.

NATIONAL BUREAU OF STANDARDS REPORT
 NBS PROJECT
 1102-50-5126
 September 30, 1952
 1984

PROGRAMMING AND CODING HANDBOOK FOR SEAC

by
Joseph H. Levin

Approved for public release by the Director of the National Institute of Standards and Technology (NIST) on October 9, 2015

int, is prohibited

rds, Washington
has been specif-
for lis own use.
Introduction
Summary of SEAC Specifications
Part I - Description of SEAC
1.0 General Characteristios
1.1 Words, Instructions, and Numbers

1. 2 Storage
1.3 Routines
1.4 4-Address and 3-Address Modes
2.0 Memory
2.1 Acoustic Memory
2.2 Electrostatic Memory
3.0 Input and Output Equipment
2. 0 Arithmotio Unit
5.0 Control Unit
6.0 Manual Controls
7.0 Operations
7.1 Arithmotic Operations
7.2 Comparison
7.3 Logical Operations
7.4 Input and Output Operations
7.5 Base Operation
8.0 Coding8.1 Coding in the 4 -Address System
8.2 Coding in the 3-Address System
8.3 Getting a Routine into the Machine

9.0	Subroutines
Part II	Programming and Coding for SEAC
11.0	Systems of Number Representation
10.1	Decimal System
10.2	Binary System
10.3	Comparison of Decimal and Binary Systems
10.4	Arithmetic Operations in the Binary System
10.5	Octal and Hexadecimal Systems
11.0	Conversion Between Number Systems
11.1	Conversion from p-ary to q-ary Using p-ary Computation
11.2	Conversion from p-ary to q-ary Usi ng q-ary Computation
11.3	Conversion Using Known Equivalents
21.4	Exercises
12.0	Representation of Information on Input and Output Media
12.1	Teletype Tape Preparation
12.2	"Machine Hexadecimal"
12.3	Binary Coded Decimal Representation
13.0	Instructions in LuAddress System
13.1	Ways in Which an Instruction May be Written
14.0	Coding of Routines
14.1	Example of a Routine
14.2	Method of Getting Information Into Machine
14.3	Overflow
14.4	Scaling
14.5	Low Order Multiplication
14.6	Shifting
14.7	Example
14.8	Selection of Input and Output Media

14. 9 Compression
25.0 Flow Diagrams
16.0 Exeliminary Coaing in lerms of Symbolio Addresses
16.1 Convorsion to Final Code
17.0 Modifjoation of Instructions
17.1 Examplo 1
27.2 Exoreises
17.3 Example 2
17.4 Function Table Technique of Instruction Modifioation
18.0 Tining
18.1 Addresses in Aooustic Mamory Only
18.2 Addresses in Eleotrostatio Memory only
18.3 Addresses in Acoustio and Clectrostatio Kemories
18.4 Remarks
19.0 Subroutines
19.1 Conventions for Standard Subroutines
15. 2 Transoription of Total Routine Onto Input Ledium
19.3 List of Standard Constants
19.4 Method of Incorporating Subroutines
20.0 Some Special Features of the 3aqdaress System
20.1 Example 1
20.2 Example 2
21.0 Remarks

Introduction

The construction of SEAC is one aspoct of the National Bureau of Standards' digital oomputer program. Know in the promoperation phases of its development as the NBS Interim Computer [1], this machine was constructed by the Eleotronios Division for the Applied Mathematios Division with a major part of the financial support coming from the Office of the Air Comptroller. The projeot was undertaken in an effort to provide a modest scal automatically-sequenced electronic digital computer to fill the noed for computing facilities during the time that larger scale machines wore roaching their completion stages. Emphasis was placed on simplicity in design and on earliness in completion. Thus, for example, there was to bo no division instruction, no absolute comparison instruction, no logical transfor instruction, oto. But during the course of the development it was realized that with comparatively little additional offort, such facilities could be added. The completed machine contains all of these features and others, and is in fact a full scale computer. It took less than 18 months for the planning, design and construction of the SEAC and less than 6 months for testing. The machine performed its first integrated computational operation on April 7, 1950. It carried out some miscellaneous mathematical exercises, such as the factorization of numbers into primes, the computation of sine-cosine tables, and the solution of some diophantine equations, during the months of April and May. On May 9, it carried out its first significant computation, the tracing of optical rays through lens systems, for the NBS

Optics Division; and on June 30, 1950 the Shac was offioially announood and dedicated [2].

Since that time the SEAC has beon in continuous use 24 hours per day, 7 days a weok. At the present time approximatoly 70 per oent of this time is spent on problems of importanoe in mathematios, physios, engineering, managonent, oto. In particular, a high percentago of tho omputing offort on the scac is devoted to problems of importance in artional defense. Approximately 30 percent of the seac time is spent on soheduled engineering work: Ny., research on components, installation of new equipment, and preventive maintenance. Unscheduled maintenance amounts to about 20 per oent of the total time assigned to oomputing, [9].

The procraming for and operation of the SEAC is done in the computation Laboratory of the Applied Mathematics Division. Most of the caloulations on the SEAC are porformed as technical servioes in line with the role of the Applied Mathematios Divigion as a oentral computing laboratory and mathomatical sorvice facility for Government agencies.

This Handbook is direoted toward two classes of readers - one includes those ongineors, mathematiciens, physicists, etc, who are potential customers for SEAC servicos. For such porsons a general familiarity with machine characteristios and coding principles will facilitate the formulation of problems and will make it possible to produco realistio estimates of ooding time and oomputing time. The second olass of reador is composed of omployoes of the computation Laboratory and others who in one way or another bocome ongaged in actual coding for SEAC. Part I of this report is addressed primarily to the first elass of persons and Part II to the second class. Part II is
pitched on the level of the new employeo who is an averago college graduate with a major in mathematics. These employeos may be aware of number systems other then the decimel, but in general they have no working knowledge of such systems; hence Part II begins with a discussion of the binary system which is used by the SEAC and the hexadecimal (base 16) number system which is more convonient than the binary for ooding. Part II also contains a discussion of conversions between number systems and then goes into the details of coding for SEAC.

The intention is to make this report as selfocontained as possible. Hence general descriptions are given of certain SEAC components which are described in great detail olsewhere. For the reader who wishes to go into greater detail on certain aspects of SEAC or othor computing machinery design or operation, a list of references is given. In particular, Reference 4 , listed at the end of Part I, gives a comprehensive treatment of the subject and contains a very complete bibliography up to tho year 1950. It does not, however, contain SEAC design features. Reference 8 deals with devices in terms of design, philosophy, and internal organization, rather than in terms of specific mechanisms or circuits, and therefore aohieves a generality not likely to be outdated by new developments.

The first codes were prepared for SEAC in the Machine Development Laboratory of the Applied Mathematics Division in 1949, considerably before construction of the machine was completed. It was during 'that period that the conventions for standard subroutines described in Part II, Sect. 19, were established. The fact that these conventions are still used and are found to be highly convenient attests to the reasonableness of the decisions
made at that time. In those days of coding for a still nonexistent machine (in the operational sense) the Machine Development Laboratory staff prepared a basic library of fundamental subroutines, most of which are listed among the references at the end of Part II, and the incorporating routine described in Part II, par. 19.4. The members of the Machine Development Laboratory staff who contributed in this effort under the direction of Dr. E. W. Cannon are Dr. Merle M. Andrew, Mr. Ira C. Diehm, Mrs, Florence Mons, Dr, Samuel Lublin, Mrs. Ethel C. Marden, Mrs. Ida Rhodes and Mr. Otto Steiner.

At the time that the SEAC was put into use, programming, coding, and operation were taken over by the Computation Laboratory. An early report, "A Manual For Coding On the SEAC", prepared by Dr. M. M. Andrew, was issued in May 1950, and contained in particular the basic library of subroutines referred to above. As work with the SEAC got under way, practical programming and coding experience was acquired and new techniques were developed. The staff also grew and classes were organized whenever necessary for the in e struction of incoming personnel. Instruction notes were prepared in mimeow graphed form by members of the C. L. Staff, under the direction of the undersigned. Some of these notes have been used extensively in the preparation of this Handbook. In particular, the undersigned wishes to express his appreciation to Mr. Ira C. Diehm for his assistance in the writing of Sections IF, 14 and 18 of Part II, to Mrs. Viola D. Hovsepian for her assistance in the writing of section 17 of Part II, and to Mrs. Ethel C. Marden for her contributions in the writing of Section 19 of Part II. In addition, in* debtedness is acknowledged to Dr . Samuel Lublin whose dittoed notes on number systems have been used almost verbatim in Section 10 of Part II.

1. Number Systom
2. Ford Length

Binary
45 Binary Digits. (44 digits of numerical information, 1 digit fior sign)

3. Momory

Type	Capacity	Average Access Time
(a) Aooustic	512 words	216 mícroseconds
(b) Meotrostatic		
Iotals	$\frac{512 \text { words }}{1024 \text { words }}$	60 microseconds

4. Intermediate Storago

5. Type of Aritho metic Unit

Sorial

(a) 4 -iddress
(b) 3-iddress
8. Numbers of Orders

Available

$$
2^{4}=16
$$

1
9. Speed of Operation (includes access time)

Type of Operation	Acoustic Memory (Average Time)	Mectrostatic Kemory
(a) Addition (b) Multiplication	300 microseconds	200 microseconds

10. Basio Repetition Rato	1 megacyóle
11. Powes Requirements	15 kw.
12. Number of Tubes	1200 (approximately)
13. Kumber of Crystal Diodes	19000 (approximately)
14. Het Floor Space	

PART I

DESCRIPTION OF SEAC

1.0 General Characteristics. The SEAC is a generalmpurpose automatio

 binaxy digital eleotronic calculator. It is generalopurpose in the sense that it is sapable of any computation which can be formulated in terms of numerical operations; i.e., addition, subtraction, multiplication, otc, A complete list and description of the operations performable on SEAC are given later in Part II, Seot. 13 of this report. The SEAC is automatic in the sense that it is independent of a human operator once computations are begun. The automatic fature implies that at any stage in a computation without any intervention crom an operator the machine "knows" what it is to do next. This in turn sequires; (a) the existence of a means of representing "instructions" within the machine: (b) the ability of the machine to "store" both instructions and numbers: (c) the presence of "control" facilities to interpret and execute the instructions in their proper sequence: (d) the presence of facilities for Qarrying out certain arithmetic and other operations; (0) the presence of communication facilities between the machine and its operator.1.1 Words, Instructions, and Numbers. A single instruction is a command to the machine to execute a simple operation such as, addition, subtraction, multiplication, division, comparison, reading, writing, etc. Instructions are written in a numerical code and are indistinguishable in appearance as well as in mothod of storage from numbers. The generio term "information" is used to include both instructions and numbers. The unit of information is the "word" which for the SEAC is defined to be a sequence

Of 45 bimaxy digits, The least signixicant digit position 2 deeverved a * sign digit, zero for plus mad one for minus. Any word my be interpretod - thos an instruction or as number. The particular interpretation made deperde on wothor within the machin the word is chaneled when wiled 108 Prom the componatt in which it is stored into the combrol umit, whore words me interproted 2s instructions, Os into the "arithonic unit", wher worde are interpertod as numbers. A girex word may be interprotod as an instruction at on tage of caloulation, and as numar at another stage of the calculation. A negative number is roprosentea by its absolute value together with a negetive sign. The location of the bingry point in numbers is between the socoma and thire binary positions from the left.
D. 8 Storage. The storage function is porformed by various storage devices whi oh may be classified into two catogorioss internal, or pastpistorages and external, or "slown ztorage (or. Rew. H, Chap. 14)。. The internal storage oro memoryl consists of both qcoustic and elotrostatic systoms each of which is capable of storing 512 worde. There is thus a total internal memory capacity of 1024 words. The memory locations (usually reforred to as "co11s", or "registorig") are numbered serially, $0,120.1023$, and these numbers are called "addrosses"。

The axternal storage media consist of toletype tape, magnetic tape, and magnetic wire. These media are essentially identical with the "imput" and "output" media which are required for purposes of communication between the

1
This oholo was influoncod by a number of factors, one being the convonience of being able to handlo oomonly used numbers such as $1_{2} 2_{9}$ गT $_{2} \theta_{2}$ otcog ix tracclod form. FOr a full discussion of this choico see Ref. 7.
machine and the operator.
Since stored information must be readily accessible at any time, a measure of the efficiency of a storage system is "access time", i.e., the time required to withdraw a word from storage. The access time is much shorter for intermal storage than for external storage $=$ on the order of microseconds as compared with hundredths or tenths of seconds, or seconds.

1. 3 Routines. The sequence of words (instructions and numbers) that must be introduced into the memory in order to carry out a computation is called a "routine". The process of drawing up such a sequence of instructions and numbers is called "programing". The process of translating these numbers and instructions into the ooded form required for feeding into the machine is called "coding". Within the machine, instructions specified in the routine are interpreted in the control unit, which also supervises their execution. The execution involves withdrawing the numbers to be operated upon from storage into the arithmetic unit. Because of the dual aspect of words mentioned in par. 1.1, a word which is an instruction at one stage of a calculation may be called into the arithmetic unit at another stage to be operated upon as a number, and vice versa. This ability on the part of the SEAC to modify or change its own instructions is an essential characteristic of this type of machine.
2. 4 Four-Address and Three-Address Modes. The SEAC was originally constructed as a L-address machine. That is, normally, each coded instruction includes four address references as well as the operation to be performed: (1) address of first operand; (2) address of second operand; (3) address where the result is to be stored; and (4) address of the next instruction
to be performed. Circuitry was later added (March, 1952) to enable it to operate in the 3 eaddress mode. In this mode, item (4) above, the address of the next instruction to be performed is not exhibited. The control normally proceeds through the instructions in their addressesequence. Conditional transfer of control can be performed as described in Part II, Sect. 20.
2.0 Memory. There are many sources where one may obtain as complete and as detailed a discussion of memory devices as is desired (of., for examples Ref. 4). Howevor, in order to make this report reasonably selfmeontained and because some oonoeption of the principles behind the memory devices aid in understanding many features of the coding process and of the machine operation, the essential nature of these devices on the SEAC will be here described.

It is possible to represent numbers by a series of disturbances (usually electrioal or sonic pulses) following each other at a single point along a path or a circuit at successive times. It is on the other hand possible to represent numbers by conditions (usually static voltages) at a series of points all occurring at the same time. A pure time distribution is termed "serial" while a pure space distribution is termed "parallel". The former in general is more oconomical as concerns equipment but involves time duration not required for the latter.
2.1. Acoustic Memory. The acoustic memory system exemplifies the serial type of number representation in which numbers are represented as a succession of digits available at a given place in a time sequence. The basic unit of the acoustic storage system is the acoustic delay line (of. Ref. 4, pp. 34l-348). This consists essentially of a mercury filled
glass tube closed at the ends with quartz orystals. These arystals have the property of becoming slightly deformed under the influence of an electrical pulse. Conversely, when one of these orystals is subjected to a mechanical distortion it emits an electrical impulse. In othor words, electrical energy is transformed by these crystals into meohanical energy, and mechanical energy into eleotrical energy. This effect is known ask"piezoelectric" effect.

Electrical pulses representing a sequence of binary digits are introduced at one end of the tube or "tank". These are transformed by orystals through piezoelectric contractions and expansions into sound waves and transmitted through the mercury. The receiving crystal at the exit end of the tube vibrates under the influence of the sonic signals from the mercury, generating electrical pulses which thirough appropriate circuitry are amplified, reshaped and then re-circulated through the mercury. Since the velooity of sound in mercury is very low (about. 06 in. per ficrosecond) compared with the velocity of an electrical impulse this type of device provides means for packing a great many pulses into a small linear range.

In the SEAC in fact each tube is 24 inches long and is capable of storing 384 pulses or 8 groups of 48 pulses each. Only the first 45 of any 48 pulse group represent information and these 45 , as seen before, constitute a word. Thus a single delay line or "tank" is capable of storing 8 words, and since there are althogether 64 tanks, this means an acoustic memory capacity of 512 words. The contents of a tank are available, i.e. may be read one binary digit at a time, after leaving the tube. The time for the complete contents of a tank (i. O_{c}, eight words) to pass a given point in the circuit is called one "major cyoile". Since the pulse rate is one megacycle a major cycle is

304 aroseconds. Oneoelghth of this time is callod anor oyole. That 18, the time for the contents of a single word to pass a given point is 48 meroseconds. The interval botween the time that a word is called for and the time that it has been read is called the "access time". The word nearest the exit end of the delay line has the shortest aocess time and that noarost the entrance has the largeet, the average sooess time boing 216 mioroseconds. This value can sometimes be materially reduced for a speailio problem by special planning of coding talding into acount the time of each operation, but this is not always praotical (of. Part II, Seot. 18). 2. 2 Mectrostatio memory In the SEAC the parallel type of storage 18 realized in the olootrostatio memory (of. Ref. 4, pp. 354-370). This system is composed essentially of a bank of 45 cathode ray tubes. Storage in one of these tubes depends on electrical charges placed at disorete points on the target surface of the tube. Means are provided for oharging these points to desired potentials oorresponding to digits 0 or 1 , under the ine sluence of the eleotron beam in the tube。 Deflection cirouits are furnished for aining the beam at any desired point. The pattern for the charges is chosen to be a rectangular lattice. At the present time this lattioe consists of 32 points along one side and 16 along the other, so that a single tube may store $16 \times 32=512$ binary digits. The states of corresponding lattioe points, one from each tube, represent a set of 45 binary digits, which constie tute a word. The scheme described is thus capable of storing 512 words. Reading and writing oircuits are provided which make it possible to record or call for all the digits of a word simultaneously, thus giving the parallel
feature: The effective access time for this memory is about 60 microseconds as compared with an average access time of 216 microseconds for the acoustic memory ${ }^{2}$.

The use of cathode ray tubes in this kind of memory was first demonstrated by F. C. Williams [5], of the University of Manchester, Bngland. The tubes are frequently called "Williams tubes", and the memory is usually referred to as the "Williams memory" (of Ref. 4, pp. 366-370).
3.0 Input and Output Equipment. In addition to the two types of internal storage just described, the SEAC has various means of external storage which are more appropriately discussed under the heading of INPUT and OUTPUT equipment.

In order for the machine to cerry out a sequence of computations it is necessary to be able to communicate to it the routine to be followed together with all necessary numerical data. Similarly it is necossary to have facilities for communicating results of the machine's computation to the operator. This communication involves the translation (via one or more intermediate stages) from one type of word representation convenient for the coder or operator to a representation suitable for the machine, and vice versa. Typical input information has succossively the forms of characters on a typewritten page, holes in a punched paper tape, magnetized areas on a wire, electrical and sonic pulses in the acoustic memory, or charged spots on the
${ }^{1}$ During this 60 mi croseconds there have really been 5 references of 12 microseconds each to the electrostatic memory: one cycle of reading or writing, and four oyoles for regeneration of the pattern. 2 As of this writing memory check circuits are being installed both in the acoustic and electrostatic memories.
cathode ray tubes in the electrostatic memory. Output information takes these forms in the reverse order. It is clear that all of these forms reprosent types of storage. As listed above they are in increasing order of accessibility to the machine. The first three are varieties of "external storage", while the last two which have already been discussed, are examples of "internal storage". Historically, Tel etype opparatus wes the first inputoutput equipment to be used with SEAG, but with the inauguration of faster magnetio media it has assumed a socondary rolo. It remains, however, a necessary intermediate stage in passing from the printed page to the magnotic wire; i. © input information must first bo manually punohed on Tolotype tape which is then fed into an "inscriber" to make a wire rocording. This recording may be filed away and stored indefinitoly until noedodon the SEAC. For reading wirearecorded information into the SEAC memory the cartridge on which the wire is wound is plugged into an input roceptacle in the control panel. An output receptacle is also provided to accommodate a second cartridge for recording output information. When recording is completed, the cartridge may be removed and plugged into an "outscriber" which reads the wire and makes a punched paper tape. Output information may be fed back into the SFAC by plugging the output cartridge into the input rocoptacle. It is to be noted that the inscriber and outscriber are items of auxiliary equipment not connected directly with the SEAC. Thus the SEAC can generally dovote most of its time to actual computations and relatively little time need be spent on input and output. A variation on the foregoing procedure consists in punching input information on punched cards which are then fed into a "card"towwire" recording device ${ }^{2}$. This recording is again ready for filing

1
Currently under construction.
or for feeding into the SEAC. The SEAG is also provided with a number of magnotio tape units which are intended for intermediate storage。 Each of these units is equipped with a reading, a writing, and on erasing head, so that information read out to these tapes at any stage of the calculation are available for recall into the internal memory at any subsequent stage of the caloulation. These tapes are accessible only through the machine. all of the input and output units may be operated under machine control. The selection of the unit to be employed at any stage of the oomputations is controiled by the oode and the switch settinge on an "external selector" panel whiah is associated with the manual controls (of. par. 6.0). A sohematio diagram showing the possible paths for flow of input and output information, and the interrelation between the SEAC and the various items of ausiliary equipment is given in Fig. 1 .
4.0 Arithmetic Unit. (ef. Ref. 4, Chap 13.) All of the arithmotic operations are performed in the arithmetic units namely the usual operations of addition, subtraction, multiplication, and division. The arithmetic unit is also capable of making either an algebraio or absolute comparison between two numbers and determining which is the largest. Finally it porforms the operations of extraction and logical maltiplication. All of these operations are desoribed in greater detail in Part I, Sect. 7 and Part II, Sect. 13. The binary point is fixed by the arithmetio unit between the second and third binary positions from the left (see Footnote 1, pg. 8). Addition is the fiundamental operation in the arithmetio unit and is performed serially; i. 0_{0}, corresponding digits of the addend and augend are added one pair at a time together with any carry which may have come from the previous steps.

Subtraotion, multiplication, and division make use of addition, and hence are also performed in a serial fashion. For this reason the Stac is said to have a "serial" type arithmetio unit. In contrast a parallel arithmetio unit would simultaneously add all corresponding digits of addend and augend, generating the carries. Another parallel operation simultanoously adds all these carries to the initial sum. This may result in further carries in whioh case the process is repeated.
5.0 Control Unit. The funotion of the control unit is to guide the operation of the machine under the influence of the coded instructions stored in the memory, Dader the supervision of this unit an instruction about to be performed is transferred from the memory into the "instrutotion register" where it is held during the time that it is being interpreted and executed. (The transfor into the instruction register does not olear the memory cell from which the instruction was taken.)
6.0 Manual Contrels. Hearly all the operations of the SEAC may be controlled from a contral group of control:panels. These panels include facilities for clearing the memory and control circuits, for starting and stopping the machine, and for causing the machine to proceed one step at a time through a program. One of the penels of this group is the "oxternal seloctor" panol mentioned earlier. Another contains the recoptacles for input and output oartridges together with necessary control switahes. ddjeining the control panel is Teletype oquipment for input and output. Hear by are the various magnetic motio tape dovices together with their oontrol switches.
P. 0 Operations. The operations that the SEAC is capable of porforming aro doscribod more fully in Part II, Soct. 13. Hero thoy aro olassifiod inte five main catogeries.

7.1 Arithmetio Oporations.

a. Addition and Subtraction.
b。 Multiplication. The produot P of two 44 binary digit numbers

$$
\begin{aligned}
& A=a_{-1} \cdot a_{1} a_{2} \cdots a_{42} \text { and } \\
& B=b_{-1} b_{0} b_{1} b_{2} \cdots b_{42}
\end{aligned}
$$

(whor onch and b_{1} is 0 ar i) is an 88 binary digit number:
 where oach p_{i} is 0 or $l_{\text {. On the SEAC there are throe typos }}$ ef multipilcation operations:
(2) The "high order" product of A and B is

$$
P_{H} p_{-1} p_{0}: p_{2} p_{2} \cdots 0 . p_{42}
$$

(1i) The "high order reunded" product of A and B is

$$
P_{R}=P_{H}+P_{43} \cdot 2^{-42}
$$

(111) The "1ew order" product of A and B is

$$
P_{L}=00 . p_{43} g_{44} \cdots g_{84}
$$

Notes In $2 l l$ oases the digits p_{-3} and p_{-2} are lest. Alse, inall casos the sign of the result is thet of the high order preduot.

- Diviston. This operation giolds the unrounded quotient. The rominder does not appour.
N. B. Thore is no atomatic overmilow indication for any of the above operations.
7.2 Comparison. Soth algobraio and bosoluto.

7.3 Logical Operations.

a. Legical transfor. This instruction enables one te replace eny designated portion of word by the corresponding portion of another word.
b. Logical multiplication. Digit by digit multiplication of two numbers.
7.4 Input and Output Operations: Tape or Wire Movement Operations. Words may be read into the intornal memory from any of the input-output media, or vion versa, in one word or in eight word blocks. Input and outyut media have been described in par. 3.0. The soloction of a particular medium is indicated by the oode and the switch sottings on the external colector panel.
7.5 Base Oporation. This oporation has different meanings depending on whether it is used in the four address mode or three address mode. In the 4 -addross mode, it has the offect of translating references to certain addrosses by any prescribod amount, and also provides a means of switching contrel. In the 3 -address mode it provides a way of switching control only. The basc operation in the two modes will be desoribed more fully in Part II, Socts. 13 and 20.
8.0 Coding. Coding for the SEAC may be done either in the 4 -address or in the 3 maddress system. These systems will now be described.
8.1 Coding in the LuAdiress System. In the Laddress system an in struction word has the following composition:

 © purs. 7.1 and 7.3 , the intergretation of the mutve instruction is the -peration $O p$ is appl mat to the contents of of mid P; the rosult is put into address γ : th next itetruation is found in δ. The comparison operathons in par. 7. 2 provido a way of seleoting bebweon two posible pathe for tho oontrol to follow Por examile, in algobraio conjuxisom, if the mamer in α is Iess then that in β, then tho control soas to γ otherwiso it good to δ. In the caso of an absoluto omparison, the oomparison is facuo botwort gbsoluto velums, For tho input fnd output instruotions in par. 7. L the operations are performed on blocks of one word or eight words deanding on whothor β is odd or even, respectively. In the caso of an odd one word is called into γ on an input instruction or read out of γ on an ontputinstraction. For operating on a block of
-ight werds γ muet be a multiple of oight ${ }^{l}$ and then the eddresses affeotod by the order axe $\gamma, \gamma+1 \ldots, \gamma+7$. The designation of input or output unit oalled for is done partly by the code and partly by the external selector switohes. A iifnus sign after an instruotion is normally a signal to the maohine to halt after ompleting the instruction. Howover, with appropriate awitoh eottiags on the manual panel it is possible oither to overoride all ooded halt signals, or to overwride all halt signals except those associated with input and output instructions.
8.2 Coding in the 3oAderess System. The 3oaddress system for SEAC was designed with a spocial "floating address feature", which will bo dese aribed bolow. A 3address instruction has this composition:

Symbol	α	β	γ	a	b	o	d	0	s
No. of Binary Digits	12	12	12	1	1	1	1	4	1

In this sylsten the α, β, and γ addresses play the same role as in the L-address system. The absence of a δ address is explained by the fact that the control normally proceeds sequentially through the addresses - f the memory. The contrel may be transforred or "jumpod" however, to the \% address of an appropriate comparison instruction just as in the \vdots L-address system. Associated with the control are two "address counters", C_{0} and C_{1}. The 0 and 1 values of the single binary digit d are used to select the first or the second of these counters. Normally each time an

1
The eight addresses $\gamma, \gamma+1, \ldots, \gamma+7$, wher $\gamma=0$ (mod. 8), belong to tank (see par. 2.1). The tanks are numbered (in decimal) 0,1,...63. The number of the tank to which an address belongs is the integral part of the quetient upen division by 6.

 is sot to tho vala

 a. 0 , then in tho wentral umt α is intwereted as an obsolute numbers

Whe fact that 12 binary digtts are provided in the 3nadaress system
 posstible to expend the menory or the shatu from tho raresent 2^{10} words to 2^{12} words. Phe floatine address feature, and the presonce of the two address counters and tiocilatate the handing of subroutines in the 3ucdaross system, Fhis wil bo troated in more detail in Part II, Sect. 20 this manual.
8.3 Gotting a Routine inte the Machino. The question remains how to get a routine into the machine. A reature of shac design is that whon the STAHT button is prossed aftor the memory and contrel drcuits have boen olemed proparatory to atarting a new propzom, the first instruotion porformed

18 call for eight worde of information. These oight werds would normolly consist of a shert routine for reading in the main problem reutine and then ssinding the control to this main routine.
9.0 Subseutines. Certain prooosso such at cenvorision of numbers from binazy to decimal and yice vorsa, calculation of ortain common transo ondental functions ($0, g_{0}$ sin $x, \theta_{, ~ o t}^{x}$), arithmetio oporations with numbors oxprossedin flontixg binary point form, otcocurin a grazt may problems. For precosao of thi cort it is convenient to mintain a library of procodod "ubreutines" Such a library is in oxistonce fos the SEAC and is boing stosaily angmented[6]. Th subentines making up this library are punched as short strips of toletyp tape and filed for ready use. Pregramers are thue reliurod of the task of coding processes of the type described above whon they occurg, but nood neroly to drew the required subroutines from the siIe and copy thon by mean of mechanical reperforating oquipment onto the mestor reutine tape. Duplication of coding offort is thus avoided, the posinbility co coding iprore is seduced, and much time is consequently saved. The libsary subroutinow have boon carofully chocked so that the users may feel securo in using thomo

Subroutines are coded without seference to the actual pesitions they will occupy in the memoryo Nocessary changes ix subroutine instructions to make them conform to their actual positions are made by a special proocoded proparatosy rautin (soo Part II, Soct. 19 of this report).

Associated with each subroutine in the Ilbrary is a description, 1acluding a list of peaifications which briofly summarizos the pertinent information concerning the oubroutine, such as title, file number, number
(a) colle cocupisd. whe the argument goos, whore the result appears, oto.

 inotuded in the subx utimo doccoiption, so thot a more careful study may bo
 the bibliography at the ond of part II.

References

1. Wes Interiwh Computer, Teohnical Nows Bullotin, National Bureau of Stancerve, $\%$. 33, pp. 16-17, (Fob. 1949).
※. SEAC, Th Nationi Bureau of Standards Eastern Automatic Computer, Poomioal Nows EuIIotiz, National Bureau of Standaras, T. 34, pp. $1-1$ (Septentory 1950)。
2. NBS Eloctrin Computers Laboratosy Stafi, the Operating characterintice Of tho SpAC, Mathomatical Tmbles and Other Aids to Computation, V. IV. 9 20. 32, pp.229, 230 (Ootaber, 1950).

4o Dugineoring Rescareh Associato, HighoSpeed Computing Doviceso McGraw Hi 11 Book Co g 2950 .
5. WiIlians, FoC. and T。Kilburn, A Sterage System for Use With Binary Digital Computing Machino Procoodings of the Institute of Electranio Exginonsix, Part III, pp. 81-100 (March, 1949)
6. Lovimg $\mathbb{J}_{0} H_{0}$ Construction and Uso of Subroutinos for the SEAC, Ereocedings of the Association for Computing Machinery, (May 195\%).

To Lubzin, S. Decimal Point Location in Computing Machinos. Mathematioal TabIes and Other Aids to Computation, V. III, ne. 21 g pp. 44-50 (Janumy 2948).
 of Illinois Prose, 1949.
9. Alemandor, S. W., The Wational Burcau of Standards Easterm Automatic
 Computer Conteronce, Peb. 1952.

PART 11

PROGRARMTMG AND CODING 马OKZ SEAE
10.0 Systoms of Wuber Representtion Sevaral number systemsome inte piny in comeation with sthe progrenminco the principal ones, of courso, are tin decimal and the binary. In dditien, hewover, tho "octal" (base 8), and ${ }^{m}$ losecerimal (base 16) hey number of convoni ent features. These systems will be described in thi waction.
10.1 Decimal Systom, 1 m the usual ramualy periormed arithmetic, number are zopesented in the doomal systom. In this system number is representied by uriered squence of chamoterg, called digits (in remombxance, of the (yytumg origin). Sucoossive characters occupy successive horizontal positioms 2a* have unequal woights in the ratio of 10 to 1 for the same character whileg 2o my position, ton different characters are used to prosent the numbere O through 9. A similar systom can bo used in machines. For oxample, ten levels of voltage can be usod to ropresent the numbers 0 through 9 ors each Q1 a group of lines with ok of which is associated a power of 10 .
10.2 Binary Systom. A more comon number system for digital computers is tho minary. In this system (used on the SEAC), there are only 2 characters ${ }_{2}$ n and I_{9} representing the numerical values of zero and unity, and different positions ase associated with different powers of 2. The use of only 2 types

1
The words "octal" and "hexadocimal" are hybrid words which have bocome ostablishod through usage. Though actually "octaral" or "octadic", and "sedecimal" or "hexadecadic" would have been preferable, this Handbock will oonform to the ostablished parlance.
of digite makes thil ayntem partioularly conveniont for representation by cortain types of olectrical and mochanical devicos; 0.g. the digits 1 and 0 may be sade to correspond to tha conduoting and non=oonduoting states of - vacuim tuba, to the prosemoe or absence of a pulse, to the closed and open etates of a relidy, sto. Mereover, rules of oomputation are particularly simple for the himary aystein in viow of the oxdstence of only 2 types of digits and oan, thorefore, be maily mechanized.
10.3 Comparison of Docinal and Binary Systoms. To emphasize some similaritios as well as differences between the decimal and binary systems ooneider the following sxamples of number representation in the two systems, reapeotively:
(a) $38.701 \equiv 3 \cdot 10^{1}+8 \cdot 10^{0}+7 \cdot 10^{-1}+0 \cdot 10^{-2}+1 \cdot 10^{-3}$
(b) $1011.01 \equiv 1.2^{3}+0.2^{2}+1.2^{1}+102^{0}+0.2^{-1}+1^{-2}$.

In (a) the point is called a "decimal point", and the "base" or "radix" is 10. In (b) the point is called "binary point", and the baso or radix is 2. In both cases the decimal or binary point sorves to separate the integral and fractional parts of the number. In arithmetio operations in the binary syatem, the binary point is handlod quite analogously to the decimal point, as will be illustrated in the examples which follow. Systematic methods for converting from binary to decimal and vice versa will be discussed in Sect. 11. 10.4 Arithmetic Oporations in the Binary Systom. Addition in the binary systom uses the following rolations:

$$
\begin{aligned}
& 0+0=0 \\
& 1+0=0+1=1 \\
& 1+1=10(0 \text { and carry 1) }
\end{aligned}
$$

With these rules for individual digit, it is simple to add any two binary numbers. For oxamplo, 11002. 01 may be added to itsolf as followes

$$
\begin{aligned}
& 11001.01 \\
& \frac{11001.01}{11 \quad 1} \text { arries }
\end{aligned}
$$

Thi rosult could, of oourse, be obtained immediately by noting that the adartion of a zoro to tho right of an integer in the binary system causes multiplication by 2 analogous to the multiplication by 10 resulting from a similar operation in the doakmel systom.

Subtraction is equally eimple, using the relations

$$
\begin{aligned}
& 0-0=1 \\
& 1-0=1 \\
& 0 \infty 1=1 \text { and berrew } 1 .
\end{aligned}
$$

For example, .1101 may be subtracted from 1.1010 as follows:

$$
1.1010
$$

$$
.1102
$$

$\frac{111}{.1101}$ difference

Tho Multiplication Table in the binary system is much simpler than in the deoimal systom and is givea by

$$
\begin{aligned}
& 0 \times 0=0 \times 1=1 \times 0=0 \\
& 1 \times 1=1
\end{aligned}
$$

Excopt for this simple table and the above rules for addition, multiplioation in the binary system is porformed in the same way as in the docimal system. For oxample, 1.101 may be squared as follows:

1.101	
$\frac{1,101}{1101}$	
11010	Sirst partial product
1101	Fourth partial product
10.101001	Final product

Division is also accomplished in a manner similar to that used in the decimal system. For example, 1010.1100 is divided by 11.01 as follows:

$11.01) \frac{1010.1100(11.01}{}$| $\frac{1101}{10001}$ |
| :---: |
| $\frac{1101}{10000}$ |
| |
| 1101 |
| 11 |

giving a quotient of 11.01 and a remainder of .0011.
It should be noted that since 2^{n} is an unrepeated factor of $10^{\text {n }}$ the precess of conversion of a binary fraction into decimal form terminates With the same numbers of decimal digits after the decimal point as there were binary digits after the binary point. However, 10 is not a factor of any power of 2 ; hence, in general, the binary fraction equivalent to a given decimal fraction does not terminate after a finite number of digits. It a limited number of digits were to be retained and the remainder dropped, it would result in making most numbers too small with an average systematio
ercore of about half in the last retained digit. The same difficulty erises whenever a value is given to more digits than can bo retainod. The process of multiplication, for example, produces more digits, in genoral, than wore present in sither of the original factors. The same is true in divisions in fact, most divisions yield quotients which cannot be exactiy expressed in any finite number of digits. To terminato a number after a given number of digits, the smiliar "Round=Off"procedure is commonly used. This consists of ohossing that number having the desired number of digits which is olosest to the origimal unrounded valuo, and, in the special ouse wisere the latter IIes exactly midway between two consecutivo numbers of the desired type, of choosing the higher in absolute value. This is particularly simple in the binary system sinco it merely requires that, for roundooff to n digits, we take the first n digits and add unityto the last place if the ($n+1$)st digit is a one, adding nothing if it is a zero. fnother way of stating this is that we add the (ndi)st digit to the last place of the number formed by the first n digits. The bias remaining after such roundmoff is negligible ${ }^{1}$. For example, round ooff of the binary number 1011.00011100... by this method gives, for 2 through 6 digits after the binary point:

| | 1011.00 |
| :--- | :--- | :--- |
| | 1011.001 |
| | 1011.0010 |
| | 1011.00100 |
| and | |
| | 1011.000111 respectively. |

2

For full discussion of roundroff error, of. Ref. 2.

$$
-31 \infty
$$

10.5 Ootal and Hexadeoimal Systems. Ono difficulty of the binary system is the large number of digits required as compared to the decimal system where equivalent aocuracy is desired. Since $\log _{2} 20 \simeq 3.3$, the former sequires about 3.3 times as many digits as the lattor. The fact that only the two digits 0 and 1 occur, while adrantageous arithmetically and in the design of a computing machine, makes typographical orrers likely when typing a long sequence of digits. It is, therefere, advantageous to group several binary digits together for cenvenienco of handling. If each 3 binary digits are handled as a unit, we have the number base $2^{3}=8$ and call the resulting number system the "octal number system". This system has only about 1.1 times as many digits as the decimal fer equal accuracy, involves no new digits, and conversion botween it and the binary system is trivial, using the fellowe ing equitralenoes:

Binary	detal
000	0
001	1
010	2
011	3
100	4
101	5
110	6
111	7

Obviously, ne 8 or 9 is used in the ootal system. Tho srithmetio for this system is very similer to that for the decimal system, noting that 8
$($ decimal $)=10($ octal $), 9($ decimal $)=11($ octal $), 10($ decimal $)=12$ (ootal), etc. For many purposes, however, it is preferable to consider each octal digit as merely a shorthand representation for 3 successive binary digits.

Similarly if each 4 binary digits are treated as a unit, we have the number base $2^{4}=16$. The corresponding number system is the "hexadecimal number system". This system requires approximately .83 times as many digits as the decimal system for a given accuraoy. Sixtoon characters are required in the hexadeoimal system for number ropresentation. Wio introduce 6 new characters, A, B, \ldots, F, in addition to the usual decimal characters and have the following equitalonces:

Binary	琵exadecimal	Decimal
0000	0	0
0001	1	1
0010	2	2
0011	3	3
0100	4	4
0101	5	5
0110	6	6
0111	7	7
1000	8	8
1001	9	9
1010	A	10
1011	B	11

-33-		
Binary	Eexadacimal	Decimal
1100	0	12
1101	1	13
1110	8	14
1111	F	15

For parposes of shat coding the hexadocimal system has been found to be more useful than the ootal and has been generelly adopted,
11.0 Conversion Betwoen Number Systems. It is convenieat and useful to discuss this subject first in terms of a number systen with base p and another systen with base q^{\prime}. Two distinct cases of conversion from pary to qeary arise: (a) using paary computation; and (b) using qaary computation. It oan then be seen at once that the mothod ombodied in case (a) applies to (1) conversion from decimal to binary using decimal computation; and (2) binary to decimal using binery computation. Likewise case (b) applies to (1) conversion from docimal to binary using binary computation; and (2) binasy to decimal using decimal computation. Sinco a human computor working at a desl calculator generally profers the docimal system for computing purposes, ho would convert from ono system to the other by mothods ($a, 1$) or ($b, 2$). But the seac being a binary computer, would use methods (2,2) or ($b, 1$) o In any event only two of these four methods are ossentially distinct, as noted above. The integral parts of the numbers will be separated from the fractional parts, and each part will be treated separately.
11.1 Conversion From paary to gaary Using pary Computation. Consider first the conversion of an integer P. This number may be represented in quary as follows:

$$
\begin{equation*}
p=a_{k} q^{k}+\ldots+a_{2} q^{2}+a_{1} q+a_{0}, a_{k} \neq 0 \tag{1}
\end{equation*}
$$ where the a_{i} are integers in the quary system, and are to be determined together with k. The calculation is accomplished by successive divisions by q in the following manner:

$$
\begin{aligned}
& p / q=n_{0}+m_{0} / q=a_{1} q^{k=1}+\ldots+a_{3} q^{2}+a_{2} q+a_{1}+a_{0} / q \\
& n_{0} / q=n_{1}+m_{1} / q=a_{k} q^{k-2}+\ldots+a_{3} q+a_{2}+a_{1} / q \\
& n_{1} / q=n_{2}+m_{2} / q=a_{1} q^{k-3}+\ldots+a_{3}+a_{2} / q
\end{aligned}
$$

$$
n_{k-1} / q=n_{k}+n_{k} / q=a_{k} / q
$$

In each stop, the quotiont n_{i} and remainder m_{i} are integers, and $m_{i}<q$. Then $a_{i}=m_{i}$ (exgressed in quary) since all terms on the right exoept for tho last are integers. The process terminates when for some $i=k, n_{k}=0$. brample 1. Convert the decimal number $P=213$ to binary using deoimal oomputation.

Solution. In this oase $p=10, q=2$. The calculation may be arranged as follows:
2) 213 Remainders:
2) 1061
2) 530
2) 26 1i
2) 130
2) 6
2) 30
2) 1

01
The result of the conversion is therefore 11010101. This conversion is an example of case ($a, 1$) in par. 11.0.

Example 2. Convert the binary number $P=11010101$ to decimal using binary computation.

Solution. Here, $p=2, q=10(=1010$ in binary)。

The result of the conversion is 213. This is an oxamplo of case (0,2) in par. 11.0, and illustrates how the conversion would be aoomplished in the SEAC.

The conversion of a fractional quantity is performea simiarly. A fraction P may be written in q-ary as followst

$$
\begin{equation*}
p=a_{-1} q^{m 1}+a_{-2} q^{-2}+a_{-3} q^{-3}+\ldots \tag{2}
\end{equation*}
$$

In this case the a_{i} are dotermined by successive multiplications by q thus:

$$
\begin{aligned}
& P q=a_{-1}+a_{2-2} q^{-1}+a_{-3} q^{-2}+\ldots \ldots a_{=1}+a_{a 1} \\
& n_{o l} q=a_{-2}+a_{n-3} q^{-1}+a_{-4} q^{-2}+\ldots \sum_{-2}+a_{-2} \\
& n_{-2} q=a_{-3}+a_{0-4} q^{-1}+a_{-5^{q}} q^{-2}+\ldots=a_{03}+n_{-3} \\
& \text { otc. }
\end{aligned}
$$

fit eech step the corrasponding a_{1} is obtained as the integral part of the product. Only the fraotional part of this product is used in the nexd multiplication.

Example 3. Convert $F=.213$ to binary using decimal oomputation ($p=10, q=2$).

Soluticn. The oelculation j.s as follows:
-37-

Intoger carry:		. 213
	5	2
0		. 426
	\pm	2
0		. 852
	I	2
1		. 704
	I	2
1		.408
	-	2
0		. 816
	x	2
1		. 632
-	\mathbf{x}	2
1		. 264
	x	2
0		. 528
	x	2
1		.05s.

so that .213 . $001101101 .$. in binary form
Erample 4. Convert the hinary number $P=.001301101$ to docimal usiag binary computation ($p=2, q=10$).

Solution:

Integer carry:	.001101101
	$\pi \quad 1010$
10 (=2 in decimal)	.001000010
	z 1010
1 (-1 in decimal)	.010010100
	$\times \quad 1010$
10 ($=2$ in decimal)	. 1110010
	+ 1010
1000 ($=8$ in decimal)	.1110100

The converted result is thus .213 to 3 decimal places.
11.2 Conversion From pwary to q-ary Using q-ary Computation. The integer P in (1) would have the following form in pary:

$$
p=b_{s} p^{s}+b_{s-1} p^{s-1}+\ldots+b_{1} p+b_{0}=\sum_{i=0}^{s} b_{s-i} p^{s-1}
$$

This number could also be written

$$
p=p\left(\ldots p\left(p\left(p \cdot b_{s}+b_{s-1}\right)+b_{s-2}\right)+\ldots+b_{1}\right)+b_{0}
$$

Using the quary representations of p and $b_{i}(i=1, \ldots, s)$ and performing the indicated operations starting with the innermost parentheses, the geary representation of P is obtained.

Example 1. Convert the decimal number $P=213$ to binary, using binary compatation.

Solution. Here, $p=10, q=2 ; b_{2}=2, b_{1}=1, b_{0}=3$. The calculations are given in the left hand colum of the following table:

Binary	Decimal	Notation
10	2	b_{2}
$x 1010$	± 10	$\times \mathrm{p}$
10100	20	$b_{2} p$
$+\quad 1$	$+1$	$+\quad b_{2}$
10101	21	$b_{2} p+b_{1}$
x 2010	$\times 10$	$x \quad 0$
11010010	210	$p\left(b_{2} p+b_{1}\right)$
± 11	$+3$	b_{0}
11010101	213	$p\left(b_{2} p+b_{1}\right)+b_{0}$

Thus the binary equivalent of 213 is 11010101. This examples illustrates the method used by Sinc in decimal to binary conversion [9.4].

The computation may be laid out in the following convenient arrangement:

m	b_{2-m}	$\sum_{i=0}^{m} b_{2 a i} p^{m-i}$	$p \sum_{j=0}^{m} b_{2-i} p^{m=i}$
0	2	1010	10100
1	1	10101	21010010
2	3	11010101	

Trample 2. Convert the binary number $P=10111$ to decimel.
Solution. Here $p-2, q=10 ; b_{4}=1, b_{3}=0, b_{2}=1, b_{1}=1_{0}$
b_{0} 1. The calculations are as follows:

m	b_{4-m}	$\sum_{i=0}^{m} b_{4-i} p^{m-i}$	$p \sum_{i=0}^{m} b_{4-i} p^{m i n}$
0	1	1	2
1	0	2	4
2	1	5	20
3	1	11	22
4	1	23	

The result is thus 23.
If P is a fractional quantity, as in (2), we prooeed in a similar manner. Supposing that P is a terminating fraction whon writen in prary, it may be represented in the following ways:

$$
\begin{aligned}
p & \left.=b_{-1} p^{-1}+b_{-2} 2^{-2}+\ldots+b_{-8} p^{-s}=\sum_{i=0}^{s-1} b_{-(s-1}\right)^{p-(s-1)} \\
& =1 / p\left(\ldots 1 / p\left(1 / p\left(b_{s} / p+b_{s-1}\right)+b_{s-2}\right)+\ldots+b_{1}\right) .
\end{aligned}
$$

Again, making use of the last of these representations, and starting with the innermost parentheses, the indioated caloulations are performed using q-ary reprosentations.

Eriample 3. Convert the binary number $P=.001101101$ to decimal ($p=2, q=10$).

Solution:

The result of this conversion is .212890625 .
Example 4. Convert the decimal number $P=.213$ to binary ($p=20$, $q=2$), giving the result to 9 places.

Solution.

m	$b_{-(4-m)}$	$\sum_{i=0}^{m-1} b_{-(3-i)^{p-(m-i)}}$	$1 / p \sum_{i=0}^{m-1} b_{i n}(3-i)^{p m(m-i)}$
1	3	11	.0100110011
2	1	1.0100110011	.0010000101
3	2	10.0010000101	.001101101

The result is . 001101101.

11. 3 Conversion Using Known Equivalents. The number to be

 converted may be broken up into a sum of simple numbers whose q-ary representations are known or tabulated. For example a conversion table for the decimal digits and for positive and negative powers of ten would in many cases be a highly useful tool. To convert 213 , one would then merely have to determine from the table that 3 (decimal) $=11$ (binary), $10($ decimal $)=1010$ (binary), and $100($ deoimal $)=1100100$ (binary). Then $213=2 \times 100+1 \times 10+3 ;$ i. $0 .$,so that 213 - 11010101 in binary.
The examples in the foregoing paragraphs have all been in terms of the decimal and binary systems. For purposes of hand oomputations, however, it is easier to work in terms of decimal and octal, or deoimal and heradecimal, the latter being more appropriate for the SEAC. The conversion from hext docimal or octal to binary, or vice versa, is immediate.
11.4 Ezeroisos.

1. Using a decimal computation convert the following integers to hexadecimal: 1023, 18756, 783113.
2. Using decimal oomputation check the results of Ex. 1 by converting back to decimal.
3. Using hexadecimal computation oonvert the integers of Bx. 1 to hexadocimal.
4. Using hexadeoimal oomputation check the results of Ex. 1 by converting back to docimal.
5. Jaing decimal computation convert the following numbers to hexadecimal: .1, .0023577, 73.40961.
6. Using decimal computation chock results of Ex. 5 by oonverting back to decimal.
7. Using hexadecimal computation, convert the numbers of 5. 5 to hexadecimal.
8. Using hexadecimal computation oheck the results of Rx. 5 by converting back to deoimal.
9. Using the decimal onexadecimal equivalences $10=A_{i}, 100=64$, $1000=3 E 8,10000=2710,100,000=18640$, convert the following numbers to hexadecimal: 1023, 18756, 783113
10. Using the hexadecimal - decimal equivalonces $10000=65536$, $1000=4096,100=256,10=16,1=1$, cheok the results of $\begin{gathered}\text { 区. } 9 \\ 9\end{gathered}$ by converting beck to deoimal.

Ansprers:

1. 3FF, 4944, BF309
2. 1999... , .009A834, 49.68DC3

12.0 Representation of Information on Input und Output Kedia.

 As indicated in Part I, the unit of information is a "word" which may be oither an instruction or a number. It is convenient in writing a word to group the 45 binary positions into a sequence of 11 hexadecimal positions, followed by a sign position. The reasons for this are: (I) Hexadecimal notation is much more compact, more rapidly written, and less subjeot to orrors in writing or transoription than binary notation. (2) Hexadecimal notation is well adapted for use with the auxiliary equipment, particularly the Teletype equipment whioh uses a 4 -hole code; i.e., information is punched on Teletype tape in groups of 4 binary digits. The Teletype keyboard characters are also in hexadecimal. Fig. 2 shows how successive hexadecimal oharaoters es well as plus and minus signs, space, and carriage return symbols look when purched on Teletype tape. The tape engages with a sprocket in the reading unit by means of the small perforations to the left of the oenter. Note that a plus or minus sign is represented by a single binary position.

Fig. 2. Represontation of keybourd symbols on Toletype tape

In input or transcribing operations the Teletype tape moves into the reader in the direction of the arrow, so that in the figure, the bottom characters would be read first.

In representing numbers on input and output media it must be kept in mind that the SEAC has a "built in" fixed binary point, between the second and third binary positions from the left (See Footnote 1, Part I, pg. 8). This means that only numbers less than 4 in absolute value can be represented. in "unscaled" form. The location of the binary point is imaterial in adi"... dition or subtraction operations, but it is significant in multiplication and division. In the representation of instructions, it is ignored' (of. Sect. 13).
12.1 Teletype Tape Preparation. In preparing Teletype tape, it is necessary to punch 13 characters per word: a space character, followed by 11 hexadecimal characters, and a sign. Any character at all may bo punched in the space position, It does not affect the contents of the memory. However, for use with auxiliary equipment it is desirable to punch either a carriage return symbol, or a "plus" symbol in this position, Fig. 3 illustrates the punching of two numbers on Teletype tape: the number on line 3 of Fig. 4, and the number ADF85 458A2 C- (the sign is customarily Written after the hexadecimal or binary representation to conform to the representation within the machine), whose decimal equivalent is $-2.7182818284590=0$ (of. par. 12.2). In Fig. 3 a plus sign has been used in the space position in the first word, and a carriage return in the epcond word.

Fig. 3. Number representation on Teletype tape

Teletype punching is a preliminary step required for putting inform mation on any input medium. If the input medium in to be magnetic wire, the information must first be punched onto Teletype, then read from this onto the wire by means of auxiliary apparatus (the "inscriber").
12.2 "Machine Hexedecimel". Care must be taken in preparing hexadecimal representations of numbers for punching on Teletype tape, inasuruch as the representation required for Teletype punching differs from the "true hexrodecimal" representation obtained by the methods of Section Il. For example, the number $\pi=3.1415926535898$ appearing in line 1 of the tebulation in Fig. 4, when converted by any of the methods already discussed, either to binary or to "true hexadecimal", yields the number shown on line 2 or line 4. respectively. Assembling the 44 binary digits on line 2 in groups of 4 as shown (ignoring the binary point), and substituting for each group the corresponding hexadecimal digit, the representation on line 3 is obtained, and this is what would be punched on Reletype tape for purposes of feeding into the Teletype input or for tranacribing onto magnetic wire. This is also what would be printed by the output typewriter if the machine were asked
to print the contents of some address in which the number on line 2 were stored. It is referred to in the NBS Computation Laboratory as the "machine hexadecimal" representation as distinguished from the "true hexadecimal" representation in which the "hexadecimal point" separates the integral and fractional parts of the number.

Fig. 4. Forms of number representation

The binary point does not appear explicitly in any punching or printing operation, but it is always understood to be between the second and third binary positions from the left. Ignoring the binary point it is seen that the machine hexadecimal form may be obtained from the true hexadecimal by multiplying the latter by 4 , and vice versa.

To convert a number from decimal to machine hexadecimal it is convenient to use a slight adaptation of the method of par. 11.1: Multiply by 4 to get the first hexadeoimal digit, and by 16 to get succeeding hexadecimal digits. The converse problen is to interpret decimally a hexadecimal form
printed out by the output typewriter. To perform this conversion, the "hexadecimal point" may bo assumed to be at the extremo left. convort this fractional number to decimal by any of the mothods discussed in Seot. 11, and multiply the result by 4. This is the desired decimel quivalont.

Exoroises 2:

1. Convert the following numbers to the machine hexadecimal form for punching on teletype tapes $3.209125,10^{-3}, 1 / 2$ 有 .1591549431218
2. Convert the following numbers, assumed to have been printed out by the typewriter, to deoimal: 10907 DCl82 5, 00A3D 70A3D 7, 6666666666.

Answars:

1. CD624 DD2FI B, 00106 2LDD2 F,OA2F9 836502
2. . $2588190451000, .0100000000000,1.6000000000000$
12.3 Binary Ooded Deoinal Keprosentation. In genoral it is desirable to have facilitiof for feeding input data, and recelving output data in decimal form. This may be done by representing decimal numbors in "binary coded dooimal" form, In this reprosentation, oh dooimal digit is reprosentod by a group of four binary digits. For ezample, the number on line 1 in Pig. 4 in binary codod decimal form would be written as shown on lime 5 . Since decimal and hexadecimal notations are identical for digita $0,1, \ldots, 9$, the Teletype apparatus would here print 31425 26536. It should be notod that in a einglo oell a number can bo rupresented in binary coded docimal form to at most 11 significant dooimal digita. On the other hand,
the 44 digits of a number stored in binary form, as on line 2, are equiva $=$ lent to slightly over 13 (i.e., 屾 $\frac{3}{3} 3$) decimal digits (lino 1) A subroutine (decimal to binary conversion [9.4]) is available to convert from binary coded decimal form to binary. Another subroutine (binary to decimal conversion $[9.4]$) converts from binary to binary coded decimal.
 sectione the discuesion will be primarily in terms of the 4 maddress system, since that is the system, which wes first installed, and which has been used almost exclusively to date. Most of the discussion, however, will also apply to the 3-address system, The 3-address system has been describod in Part I, par. 8.2. It will be discussed further in soct. 20.

In the 4 wadress system the form of instruction word is:

	lst address	and adress	addross	add adross	Opera tion	Sign
Usual Notation	α	β	γ	δ	$0 p$	\pm
No. of Binary Digits	10	10	10	10	4	i

The binary point has no significance in on instruction. The sign is usually plus. A negative sign at the end of an instruction will oause the machine to halt after the execution of the instruction, provided the switches on the manual panel are properly set. The point at which such halt is programed is called a "breakpoint".

The symbols $*, \beta, \gamma, \delta$ stand for 10 binary digit addresses, ten position being required to refer to $2^{10}=1024$ addrosses, Operations in both the 3 and 4 -address systems are represented by a 4 binary digit. (1 hexadecimal digit) code. This code is fully described in the acoompanying table. In this table and elsewhere in this Handbook, the notation (x) neans "the contents of address $x^{\prime \prime}$.

Operation Symbol	Operation	Result of Operation (Next Instruction Always in δ Unless Otherwise Specified)
0	Input	If β is odd, 1 word is read from Input medium into γ. If β is
		even, and $\gamma=0$ (mod 8), then 8 words are read into $\gamma, \gamma+10 \ldots 0 \gamma+7$
		Designation of Input medium is by means of 5 digit binary codo number
		occupying last 3 positions of α and first two positions of β, and by
		switch settings on External Selector Panel (cf. Refs. 8.1 and 8,2).
1	Logical	Digits of (γ) in positions which correspond to $1^{19} \mathrm{~s}$ in (β) are replaced
	(\%xtraco tion)	by corresponding digits of (α). .
2	Clear	Clear (γ)
3	Logical Product	(γ) is the digit by digit product of (α) and (β). Hence:
		the logical product of two numbers either of which is positive, is
		positive; the logical product of two negative number: is negative.
4	Subtraction	$(\gamma)=(\alpha)-(\beta)$ (Of, also par. $^{(14.3)}$
5	sddition	$(\gamma)=(\alpha)+(\beta)$. (Cfo, also par. 14.3)

Operation Symbol	Operation	Besult of Operation (Fext Instruction Alsays in δ. Unless. Otherwise Specified)
6	$\begin{aligned} & \text { File Or. } \\ & \text { der } \end{aligned}$	Has meaning in 3-address system only. (σ) NHPFFUVWXYZ, the letters being hexadecimal digits. I is 0 or 1 , indicating address counter in operation, UVU is contents of address counter $C_{0 \text {, }}$ and $X I Z$ is contents of address counter C_{1} 。
7	Reverse	For magnetic tape only. Reverse through one word or eight vords. according as β is odd or even, respectively.
8	Mult1-plication (high order)	$\begin{aligned} & (\gamma)=p_{-1} p_{0} \cdot p_{1} \cdots p_{42} \\ & \left(O_{0},\right. \text { also, par. 24.3)} \end{aligned} \quad \begin{aligned} & \text { where }(\alpha)=a_{-1} a_{0} \cdot a_{1} \ldots a_{42} \end{aligned}$
9	Multiplication (rounded)	$\begin{aligned} & (\gamma)=p_{-1} p_{0} \cdot p_{1} \ldots p_{42}+p_{43} \cdot 2^{-42} \\ & (\text { (fro. also, par. 14.3) } \end{aligned}\left\{\begin{array}{l} (\alpha) \cdot(\beta)= \\ p_{-3^{p}-2^{p}-1 p_{0}, p_{1} \ldots} \ldots p_{84} \end{array}\right.$
A	$\begin{aligned} & \text { Multiplim } \\ & \text { cation } \\ & \text { (low order) } \end{aligned}$	$\begin{array}{ll} (\gamma)=00 . p_{43} & \cdots p_{g 4} \\ \text { sign is that of high order product. } \end{array} \int \begin{aligned} & \text { the } a_{1}, b_{i,} p_{i} \text { being } \\ & \text { binary digits. } \end{aligned}$
B	Division	$(\gamma)=(\rho) /(\alpha)$. The quotient is rounded off. never rounded up. If overflow occurs, the result, though it could be determined in any given case, is not useful (cfopar. 14.3). If $(\alpha) \approx(\beta)=0$, then

13.1 Ways in Which an Instruction May be Written. An instruction may

 be written down in a number of different ways, all equivalent, depending on the tastes of the coder. Some of these are illustrated in Fig. 5. line 2 illustrates an instruction in binary form, and it is seen to conform to the composition given in par. 23.0. This representation corresponds most closely to the form in which the instruction is stored within the machine: 1.0 .9 L^{8} and O^{9} corresponding to pulses or no pulsess, respectively. However, in coding a routine, it is inconvenient to write instructions directly in binary. The binary representation is long and it is easy to make orrors in writing down, reading, or transoribing a lengthy series of $0^{\circ} \mathrm{s}$ and $1^{\circ} \mathrm{s}$ 。 It is more convenient to number the addresses and to code in docimal or in hosadocimal. It is easily soon, for oxample, that the instruction on line 2 could be written as on line 5 in decimal, or as on line 4 in hexadecimal. In any case, howerer, before punching the code on teletype tape, it would first be necessary to rewrite the code in appropriate form. Just as in the oase of numbors, this appropriate form is roferred to as "machino hozadecimal", and is illustrated on line 3. It is obtained as in par. 12.2, by dividing the word into eleven groups of four binary digits each, and a sign, and substituting for each group its hexadecimal equivalent. This representation is also often called the "composed form" of the instruction. The "true hexadecimal" representation on line 4, in wioh ach address is written as a group of 3 hexadecimal digits, is also frequently called the "decomposed form" of the instruction.| 1 | Notation | α | | | ∞ | | γ | | | δ | | | Op. | | s |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2 | Binary | 0111001001 | | | 0111001001 | | 0100101000 | | | 1311100110 | | | 0101 | | $+$ |
| 3 | "Machine Hex." | 7 | 2 | 5 | 6 | 9 | 4 | 1 | 3 | | E | 6 | 5 | | + |
| 4 | "Irue Hex." | 109 | | | 209 | | 128 | | | 326 | | | 5 | | * |
| 5 | Dodimal | $45 ?$ | | | 457 | | 296 | | | 998 | | | 5 | | * |

Wis. 5. Forms of instruotion representation

The rewriting in machine hexadecimal may bo seem like unnecossary daplication of labor, and the coder may prefer to code directly in this ultimate system. While this is quite practioal with a littie experience, it may seem rather awkward at first. For example, it will be noticed in the foregoing illustration that, inasmuch as 4 is not a factor of 10 , the last two binary digits of the α address may be combined with the first two binary digits of the β address to form the third hexadecimal aigit on line 3. Similariy, the last two digits of the γ address must be combined With the first two adeite of the δ address to form the eighth hexadecimal digit on line 3. Thus the machine hexadeoimal form of the instruction does not exhibit as readily as the other forms given the actual addresses belag referred to. Indeed, it will be noted in the example that although the α and β addresses are identical, this fact is not immediately evident in the machine hexadeoimal representation. (1 similar statement would apply for identical γ and δ addresses.) Upon oloser inspection, however, it will be observed that the first five hexadecimal digits in line 3 may be obtained from the α and β eddresses in line 4 by the formula $2^{10} \alpha+\beta$.

Similarly the next five hexadecimal digits may be obtained from line 4 by the formula $2^{10} \gamma * \delta$. The procedure for converting an instruction from pure hexadecimal to machine hexadecimal may be reduced to a simple rule:
(1) Multiply the of (or γ) address, expressed in hexadecimal, by 4_{2}
(2) Align the right hand nexadeoingl digit of this product with the Ieft hand hoxadecimal difit of $\left.\rho(o)_{8} \delta\right)$ and add. The sum gives the first five (or second five) digits of the machine hexa= decimal representation. It has been found convenient to use an auxiliary multiplioation table to facilitate the hexadeaimal multiplioation by 4 .

Some of the awkwardness of codint directly in mechine hexadecimal may be alleviated by coding on a fosm with a double column down the side. One colum lists all the addresses serially, in hexadecimal. The second column is $4 \times$ (Ist, column) so that this form also constitutes a convonient multi* plication table. Sach instruction is written on the line corresponding to its address, and the rule just given for composing instruotions in machine heradecimal may be readily applied. An example of the use of such a form is giton in the next section.
14.0 Coding of Routines. The solution of any problem requires the introduction into the machine of an appropriate routine, consisting of instructions and numerical information. The planning of a routine generally involves many considerations apart from the mathematical formulation; e.g.s considerations relating to the range of magnitudes of quantitites involved in the calculations, cell capacity, memory capacity, number of significant figures maintained during calculations, time of computation, oto. Some of these matters will be discussed in the following paragraphs.
14. 1 Sample of a Routine. To illustrate the proparation of simple routine the following exercise will be proposed: To produce the first 100 triangular numbers. (The nth triangular number is defined to be the sum $\left.\sum^{n} k\right)$ $k=1$

The routine may be written for any part of the memory. In this case, it will be put in successive cells starting with 008 . The routine is as follows:

$\begin{aligned} & 4 \mathrm{x} \text { Add } \\ & \text { ross } \end{aligned}$	Address	Instruction in		Explanation
		Machine Hex	$\begin{aligned} & \text { True Hex } \\ & \alpha \beta \gamma \delta \text { op } \end{aligned}$	
020	$\Gamma 008$	0300E 030095	OOF OOE OOF 0095	$n=1+(n-1)$
024	009	OLOOF 0400A 5	010 OOF 01. OOA 5	$\sum_{i}^{n} k=\dot{n}+\sum_{I}^{n-1} k$
028	00.A	00001 OL00B F	000001010 00B F	$\text { Print } \sum_{1}^{n} k$
02C	OOB	0350D 0200C D	OOF OOD 008 100 CD	
030	00 C	0000000000 c-	000000000000 cm	Halt
034	OOD	00000000064		$100 \cdot 2^{-42}$
038	O0E	0000000000 I		$1 \cdot 2042$
030	OOF	[00000 0000000		0
040	010	[00000 00000 0]		$\sum_{1}^{n} k$

The instructions have first been written in true hexadecimal, and the conversion to machine hexadecimal is facilitated by the presence of the two columns to the left. Each word in the routine is explained in the right hand column.

Though extremely simple, this example illustrates a number of points about SEAC coding. It will be observed that at the end of the fourth instruction the control is sent back to address 008, provided that $n<100$. Each time through this cyole of four instructions a new triangular number is generated. This iterative type of computation is typical of most, if not at all, routines. An iteration is frequently enclosed in half brackets, $\Gamma\rfloor$, as in this example, to make it more conspicuous. No entries have been made in the last four lines of the fourth oolumn, because the words in
these addresses are numerical quantities and would not normally be written in the true heradocimal form of instructions. Brackets, such as in the last two lines of column 3, mean "subject to change". In this case, 00F and 010 initially contain eeros, but are used in the course of the computation to store the successive values of n and $\sum_{1}^{n} k$. Since these quentitios quickly become greater than 4 , all integers are multiplied by the scale factor 2^{-42} so that they can be accommodated in the storage. With this choice of scale factor the l00th triangular number elearly does not overflow. ft the end of the 100 th iteration OOF will contain 100.2^{-42}, so that the comparison in address $O O B$ will send the control to $O O C$. The instruction in 000 olearly does not affect the contents of any cell in the memory, but since it is followed by a negative sign, it will oause the machine to halt (with proper initial settings of the switches on the manual panel). In order to make this routine complete it is necessary to add proper input instructions, and this will be explained in the following paragraph.
14. 2 Method of Getting Information Into Machine. As explained in Part I, par. 5.0, instructions are held in the instruotion register while being interpreted and oarried out. When the computer is halted, the last instruction executed remains in the instruction register. If the MMORY CLEAR button on the manual panel is now depressed the contents of the menory will become all zeros, but the instruction in the instruction register remains unaffected. It the STAFI button is now pressed, the δ of that instruction specifies the eddress of the next instruction. But sinoe the memory hes been cleared this is (when writton in decomposed hexadecimal form):
(1) $0000000000000+$.

The interpretation of this instruction is: "Read eight words into cells 000 through 007, and go to 000 for the next instruotion." For the example of the foregoing paragraph, it is readily seen thet this noxt instruotion must be an input instruotion:
(2)

$\begin{aligned} & 4 \times \text { Add }= \\ & \text { ress } \\ & \hline \end{aligned}$	Address	Instruction in		Explanation
		Machine Hex	$\begin{aligned} & \text { True fex } \\ & \alpha \beta \gamma \delta{ }_{0 p} \end{aligned}$	
000	000	00000020080	0000000080080	Read 8 words into colls 008-005

As a result of this instruction the routine of par. 14.1 will be read in and the control will then be sent to the first instruction of this routine. The romaining seven words called in by the instruction (I) could be anything, since they are never referred to. The components of the routine would be punched on Teletype tape in the following order:
(a) the input instruction (2),
(b) seven words of arbitrary information,
(c) the first eight words in colum 3 of the routine in par. 14.1.

Clearly the routine of par. 14.1 could have been coded to go into tank 0 of the memory; i.e., into addresses 000.007 (see Footnote, Part I, par. 8.1). It could then have been read into the memory at once by activating the instruction (1) in the manner described, and no other readmin instruction such as (2) would have been necessary. If, however,
the routine of par. 14.1 were to consist of a number of tanks of information then an equal number of read=in instruetions such as (2) would bo roquired. and it would be convenient to use tank 0 for the purpose of storing or generating (cf. Sect. 17) these instructions. After the information has been read into the memory, the road=in instructions are no longer noeded, and the addresses they occupy are available for other purposes. It is a generally recommended practíco to keop tank 0 available for contingencies that arise in the course of operating the machine. for example, one may wish to insert corrections, additions, or other nodifications to the routine after it has been fed into the merrory. Or, at some stage of the oomputation it may be decided to "dump" the contents of the menory onto magnetic wre for storage or for checking. To accomnodat the inatructions for doing such things ass these and other auxiliary operations, it is nocessary at least to have address 000 atailable, and preferably ail of tank 0 . The examples in this Handbook conform to this recommendation.

The design of the manaal panel makes it especially convenient to reserve tank O for the uses described. For, by simple manipulations of the switches it is possible to clear the instruction register, thus activating the ine struction (1). It is Iikewise possible to activate the instruction for a single word input: 0000010000000 .

This last facility makes it easy to introduco a singlo word into any desired address at any time. For example, suppose it is desired to read a word W into address 224, and to then send the oontrol to 086. This may be done by first activating the single word input instruction aboveg and then
typing on the keyboard the instruction $000014 \mathrm{~A} 8860+\left(i, e_{0}, 00000112 \mathrm{~A} 0860+\right.$, in decomposed form). This is another single word input instruction which will put the word W in its assigned location. The actual manipulations of the controls for performing these and other operations will not be described here. Basic instructions for operations of the manual controls are given in Refs. $9.1,8.1,8.4,8.5$.
14. 3 Overflow. In operations 4,5,8 and 9, binary digits which over flow are lost. In the B operation, if overflow occurs (that is, if $|(\beta) /(\alpha)| \geq 4)$, the result of the operation, although it could be determined in any given case, is not useful.
14. 4 Scaling. If quantities larger than 4 appear in the data or may appear in the computation, difficulties may frequently be avoided by "scaling". The data may be multiplied by a constant small onough to make all quantities less than 4 before they are read in, or the multiplication may be done in= ternally. In the triangular number routine, a scaling factor of 2^{-42} was used. In other cases it is dosirable to scalo in the other direction; i.e., to make quantities larger. In nearly all cases the scaling factor must be kept in mind as the coding is done. If the ranges of the quantities appearing in a computation are very large, it may be necessary to resort to storage of numbers in double procision form, or in floating binary point form. The ordinary arithmetic operations can then no longer be performed by single instructions, but require the use of rather elaborate subroutines (cf. Sect. 19, and Refs. 9-13).
14. 5 Low Order Multiplioation. The appearance of the 2 zeros to the left of the binary point in low order multiplication should be borne in mind each time that instruction is used. Thus (using the symbol A to denote low order multiplication), $\left(p-2^{-m}\right) A\left(q \cdot 2^{\omega n}\right)=p q \cdot 2^{42-(m+n)}$ provided $p q:<2^{(m+n)-42}$. Otherwise the integral part of the low order product, pqe $2^{42-(\dot{m}+n)}$, is lost. Examples of the results of this instruction are: (1) $2^{-42} A 2^{-1}=2^{-1} \quad$ (2 2^{-42} acts as a unityolement),
(2) $p \cdot 2^{-28}$ a $2^{-32}=p \cdot 2^{-18}$ for $p<2^{+18}$ (a left shift of 10 places),
(3) $\left(4-2^{-42}\right)$ A $2^{-42}=1-2^{-42}$ (because of the dropping of the two 1 's to the left of the binary point).
14. 6 Shifting. Right and left shifts are frequontly needed in coding. Right shifts may be accomplished by multiplication by negative power of 2 . A left shift of one binary place may bo accomplished by adding the quantity to itsolf. Other left shifts may bo made by low order multiplication (as in the second example of the proceding paragraph) if the two most significant binary digits are not neoded, or by division, if no overflow will occur. If the two left hand digits are needed, and overflow may occur, the shift cannot be made in a single instruction.
14. 7 Example. The D and F type bars on the Teletype printer or Plexowriter may be replaced by a decimal point and space respectively. This facility permits the coder to improve the appearance of results by inserting deoimal points, and suppressing unwanted informetion.

Assume that a coded decimal quantity is in cell 100, in the form

$$
d_{1} \cdot 2^{-26}+d_{2} \cdot 2^{-30}+d_{3} \cdot 2^{-34}+d_{4} 2^{-38}+d_{5} 2^{-42},
$$

that the decimal point is between d_{1} and d_{2}, and that d_{4} and d_{5} are not significant. Prepare a routine for printing numbers of this form out as far to the left as possible, beginning the instructions in cell 030. The printed copy should exhibit the decimal point, and any non-significant figures are to be suppressed.

Solution: The code is as follows:

$\begin{aligned} & 4 \times \text { Add }-1 \\ & \text { ress } \end{aligned}$	Address	Instruction in		Explanation
		Machine Hex	$\alpha \beta^{\text {True }} \delta \delta \delta 0 p$	
000	030	OD900 OFL31 A	036100 03D 031 A	Shift left 20 places
024	031	O6037 OF432 1	$03803703 D 0321$	Insert dec. pt. and spaces
068	032	OE500 OFO 33 B	03910003 C 033 B	Shift left 24 places
OCC	033	0 FO 350 F 4341	$03 C 03503 D 03411$	Insert d_{1}
ODO	034	00001 OFL $000 \mathrm{~F}=$	00000103 D 000 Fm	Read Out
OD4	035	F0000 000000		Fi, ${ }^{-2}$
OD8	036	00000100000		2^{-22}
ODC	037	OFOOF FFFFF F		Extractor
050	038	ODOOF FFFFF F		Dec. Pt. and spaces for extraction
OEL	039	00000 OL000 0		2^{-24}

14. 8 Selection of Input and Output Media. There are at the present time (September 1952) 12 units from which it is possible to read information into the memory, or onto which it is possible to record information from the
memory. These are (seo also Summary of Stac Specifications):
(1) 1 Teletype unit - inoludes tape, roporforator and typowriter,
(2) 2 magnetic wire units, one for input and the other for output,
(3) 4 reel-less magnetic tape units, single channol,
(4) 1 sorvo-magnetic tape unit, 5-channols (count as 5 units).

Any combination of units, up to 10 units, can be used in a single routino. As pointed out earlier (Part I, pars. 3.0, 7.4; Part II, par, 13.0) the selection of the medium used in a given input or output instruction is doter = mined both by the code and the external seleotor panel switch settings. For both input and output instruotions the first 19 biaary positions (constituting the α address and all but the unit's position in the $\mathcal{\beta}$ address) have not yot boen assigned any signifioance. The 5 positions oonsisting of the 3 lowest order positions of α and the 2 highest order positions of β are used to identify correspondingly numbered switahes (of whioh there are 10) on the parel. Each switch has 10 possible settings and each setting selects an input-output unit. When the tape reverse operation, 7, is used, the desired magnetic tape is selected in the same way as for input and output instructions. In addition to the facilities described above, a "Direct Solection" switch is present which onables one to override the seleotion specified by an instruction. By means of this switch one can substitute any desired unit in place of the unit in= dicated by theinstruction word (even when the instruction word fails to indicate any active oode number).

Details concerning the use of the external selector panel, and the solection code are given in Refs. 8.1 and 8.2. The reader should not attampt
${ }^{1}$ carrently boing installed.
to prepare a complete program without first studying these references.
14. 9 Compression: For many types of operation with magnetic media, input and output speeds may be materially increased by reducing the gaps bow tween blocks (1 word or 8 words) of recorded information. A longer gap is required when the magnetic unit has to stop while the machine computes, and then restart, than when the input or output instructions follow each other in quick succession. The reduction of gap size is called "compression!". It is accomplished by coding in α of all pertinent readoout instructions a " 1 " in the 4 th binary position from the left. Input and output speeds may be increased by a factor of as high as ten by the use of the compression feature. The greater the number of blocks read in or out under compression, the greater the saving. A greater time saving is achieved by use of the compression feature on magnetic wire then on magnetic tape. The tape and wire speeds given in the Sumnary of SEAC Specifications are maximum speeds under compression.

Further details on the use of the compression feature are given in Refs. 8,2 and 8.4. Again the reader should not attempt to prepare a complete program without first studying these references.
15.0 Flow Diagrams. The first stop in the programing of most probleas is the preparation of "flow diagram". This is a block diagram or schamatic which prosents an overall picture of the calculation prooedure. It sorves number of purposes:
(1) Once a careful flow diagram has been worked out, writing the code is much simplified. Careful attention must nevertheless be given to such matters as scaling.
(2) The flow diagram presents a graphic view of the calculation process. It is much easier to grasp the logical organization of a program by looking at this diagram than by looking at the code. The flow diagram is therefore a convenient and useful means of communicating information
(3) It is frequently necessary to correct, amend, or modify a code. a change in one part of a code generally entails changes in other parts also. Since the flow diagram shows more conspicuously than the code the inter = relationship between the various parts of the program, it is a recommended practice to first make any required changes in the flow diagram, then in the code.

A flow diagram may be draw up in as much detail as desired. At one extreme only the broad outlines of the calculation may be shown, or at the other extrome there may be a $1-1$ correspondence between the flow diagram symbols and the coded instructions. Sometimes it may be found convenient to have two types of flow diagrams for a given program, a rough one and a more detailed one.

For comprehensive disoussion of the procedures for flow diagram preparation, the reador is referred to Rof. 1. The llow diagrams in this

Handbook for the most part use the conventions and notation described in that reference. One minor deviation is in the symbolism for the "comparison box". The flow diagrams included in this report indicate comparisons in the following ways:

As a simple oxample, the flow diagram for the triangular number routine in par. 14.1 would appear as follows:

15.1 Example. Prepare flow diagram and code for computing $\sqrt{31}$, (<4), by solving the equation $x^{2}=N$ using the Newton-Raphson method [7].

Solution. Denoting the $i^{\text {th }}$ approximation to the root by x_{i}, the Newton Raphson method yields for the $(i+1)^{\text {th }}$ approximation:

$$
x_{i+1}=\frac{z}{2}\left(x_{i}+I / x_{i}\right),
$$

An initial approximation near zero would produce a larger now approximation and there is danger of overflow. An approximation which is too large is preferable; and since $\mathbb{N}<4$ in this case, $x_{0}=2$ is satisfactory. With this choice of x_{0} it follows that $x_{i+1}<x_{i}$. This is evident, for example, from a graphical interpretation of the recurrence relation. The flow diagram can be drawn as follows:

Not that both the flow diagram and codo bolow are arranged to call in another argument after each computed result is printed. All that is necessary to continue from the halted condition is to press tho START button. Note also that the printed results will be in binary form. The coding including readein instructions may be done as follows:

$\begin{aligned} & 4 \times \text { Addm } \\ & \text { ross } \end{aligned}$	Address	Instructions in		Explanation
		Machine Hox	$\alpha^{\text {True Hox }} \beta_{0 p}$	
000	000	00000020010	0000000080010	Read in
004	001	00000040080	0000000100080	Read in
008	002	00000000000		
00 C	003	0000000000		
010	004	00000000000		
014	005	0000000000		
018	006	0000000000		
016	007	0000000000		
020	008	00001058090	0000010160090	Read in N
024	009	05813 O440A	016013011001 c	Is $N<0$?
028	OOA	04813 O500B 5	0120130140085	Store x_{0}
02\%	$\sqrt{008}$	05016054018	0140160150068	\%/x ${ }_{1}$
030	000	05015054005	0140150150005	$x_{i}+N / x_{i}$
034	OOD	04815 0540E B	012015015005 B	$\frac{7}{2}\left(x_{i}+N / x_{i}\right)=x_{i}+1$
038	OOE	0542403010	$01501400 \% 010 \mathrm{C}$	$\begin{aligned} & x_{i+1}<x_{i} ? \\ & Y_{00} \rightarrow 00 \% \\ & H 0 \rightarrow 010 \end{aligned}$

$\begin{aligned} & 4 \times \text { Add= } \\ & \text { rese } \\ & \hline \end{aligned}$		Instruction in		Explenation
	Address	Machino Hox	$\begin{aligned} & \text { True Hex } \\ & \propto \beta \gamma \delta O p \end{aligned}$	
035	OOF	05413050085	0150130140085	$x_{i+1} \rightarrow x_{i}$
040	010	$0000105008 \mathrm{~F}=$	000001014008 Fa	Road out $\sqrt{81}$, Halt.
044	011	0000000000 -	000000000000 c	Halt.
048	012	80000000000		+2
040	013	00000000000		+0
050	014	00000000000		
054	015	00000000000		
058	016	00000000000		
050	017	00000000000		

16.0 Preliminary Coding in Terms of Symolic Addresses. It is recome

 monded thet after completion of the flow diagram for a problem, the code be propared first in terms of "symbolic addresses instoad of actual numerical addresses. The latter normally would not be assigned until nearly the last stage of the code preparation process. A common practice is to classify storage looations according to the kinds of words they aro to store, and to assign a letter to each classification. Distinct storage locations within oach classio fication are then identified by distinct subscripts. For example, it is usually found that cortain addresses are used oxclucivoly for constant quantities, otheres axclusivoly for instructions, eto. Still others are working positions, which may stor differoat catogories of words at different stages of the Qalculation. Such positions have been referred to among Computation Laboratory stafi as "Temporaries". Thoy may bo left empty by the readmin instructions. Ealdowing ere some storage classifications and symbols that have been used in the initial proparation of a number of SEAC codes:| Constents | $\mathrm{K}_{1}{ }^{\text {g }} \mathrm{K}_{2}{ }^{\text {a }}$ |
| :---: | :---: |
| Temporari es | $\mathrm{T}_{19} \mathrm{~T}_{2} 9$ |
| Variablee | $\nabla_{19} \nabla_{2}$ |
| Instructions | $\mathrm{L}_{2}, \mathrm{~L}_{2}$ |

In practioe it is feasible to mix actual addresses with symbolic addresses in the initial code. Care should be taken not to confuse these symbolic addresses with the contents of the addrosses; 0.g., the contents of the fixod addrese I_{1} may be modified during the course of the calculation in breys to be doscribed in Soction 17. In genoral the choice of notation may Bo loft to the disaretion and teste of the coder.

There are several advantages in first coding in the manner desoribed above: (1) The notation may be chosen so as to suggest the categories of quantities being worked upon. This makes it easier not only to write the oode in the first place, but to read it afterwards and to cheak it visually. Thus, for example, using the illustrative notation above, the instruotion

$$
\begin{array}{lllll}
\mathrm{K}_{3} & \nabla_{2} & \mathrm{~T}_{2} & L_{3} & 8
\end{array}
$$

clearly conveys the meaning, "the constant in address K_{1} is multiplied by the variable in ∇_{2}, the result goes to the temporary storage oell T_{2}, and the next instruction is foumd in $L_{3}{ }^{n}$. This is somewhat more inforination than can be gleaned from an instruction such as:

$$
05412 A \quad 239 \quad 176 \quad 8 .
$$

(2) It is usually desirable or convenient to assign a blook of the memory to each classiffcation of storage location; e.g., one block for constants, one bloak for variables, etc. However, it is usually not oertain until the initial code is completed how large a block is required in each oategory. Once this is determined, numerical assignments may be made for the addresses. (3) Onoe a code in terms of actual addresses is completed, any correotion in the address of, let us say, a constant would necessitate correcting all instructions where reference is made to this constant. If, however a preliminary code were prepared using a symbol K_{1} for the location of this constant, no actual address assignment need be made until this preliminary oode is completed. Deoisions as to actual assignments made at this later stage are not very likely to require changing afterwards.

$$
-76=
$$

16.1 Conversion to Final Code. After the preliminary code has been completed and checked, and the actual numerical address assignments have been made, it can be converted directly to the machine hexadecimal form without first converting to true hexadecimal. This conversion is facilitated by the use of a form similas to that doscribed in par. 13.1 but which contains a third address column on the left. On each line of this column is entered the symbolic address corresponding to the numerical address given (see, for example, codes in pars. 17.3, 17.4).

There are several adventages in first coding in the manner desoribed above: (1) The notation may be chosen so as to auggest the oategories of quantities being worked upon. This makes it easier not only to write the oode in the first place, but to read it afterwards and to oheak it visually. Thus, for example, using the illustrative notation above, the instruction

$$
\mathbb{Z}_{2} \quad \nabla_{2} \quad T_{2} \quad L_{3} \quad 8
$$

clearly conveys the meaning, "the constant in address K_{1} is multiplied by the variable in V_{2}, the result goes to the temporary storage oell T_{2}, and the next instruction is foumd in $L_{3}{ }^{n}$. This is somewhat more information than oan be gleaned from an instruction such as:

054 12A 2391768.

(2) It is usually desirable or convenient to assign a blook of the memory to each olassification of storage location; e.g., one block for oonstants, one bloak for variables, etc. However, it is usually not oertain until the initiel code is oompleted how large a block is required in each category. Once this is determined, numerical assignments may be made for the addresses. (3) Onoe a code in terms of actual addresses is completed, any correotion in the address of, let us say, a constant would necessitate correcting all instructions where reference is made to this constant. If, however a preliminary code were prepared using a symbol \mathbb{X}_{1} for the location of this constant, no actual address assignment need be made until this preliminary code is completed. Deoisions as to actual assignments made at this later stage are not very likely to require changing afterwards.
16.1 Conversion to Final Code. After the preliminary code has been completed and checked, and the actual numerical address assignments hate been made, it can be converted directly to the machine hexadecimal form without first converting to true hexadecimal. This conversion is facilitated by the use of a form similar to that described in par. 13.1 but which contains a third address column on the left. On each line of this column is entered the symbolic address corresponding to the numerical address given (see, for example, codes in pars. 17.3, 17.4).
17.0 Modification of Instructions. If was pointed out in Part I, par. 1.3 that the ability of the SEAC to qperate an and modify its instructions is one of its essential features. Much of the machine ${ }^{8} s$ flexibility and versatility springs from this facility. All except the most trivial of routines involves variable instructions. Some comon cases will be described.

Frequently it is necessary to subject successive arguments of a given sequence of arguments to a prescribed arithmetic process. This may be done in two principal ways, both of which give rise to variable instructions. (1) The argument about to be worked upon is first transferred to a standard location as a starting point. A variable instruction is required to accomplish this transfer. (2) Each argument is worked on from its initial location。 There is no transfer to a standard location and every instruction which refers to the initial locaíions must be modified in passing from one argument in the sequence to the next. The first method is frequently more economical, both time and spacemise, when the processing consists of severai references to the argument. The second procedure is more economical when each argument is to be operated on only once. This wall become more evident in the followiag two examples.
17.1 Example 1. Prepare a flow diagram and code for sumning the memory, starting with address 008, and printang the sum. Neglect all overflows.

Solution: Since the sum is supposed to begin with address 008, this leaves addresses $000=007$ available for the summation routine. The summation process involves only a single operation on each quantity - that of adding it into a cumulative sum. It therefore appears that procedure (2) described in paragraph 17.0 is suitable. The flow diagram and code can bo dsawn up as shown below:

Note $1_{8} a_{i} \equiv$ contents of address i^{2},
Note 2: In view of the fact that overflow is being neglected, all sums are understood to be modulo 4 .

Note the instructions to be iterated, indicated by the half brackets. In this code, the instruction to be modified is in cell 000 , and the modification is accomplished by adding 1 to its α address each time through the iteration。 The memory sum is highly useful as a check number in determining whether a routine has gone into the memory oorrectly, and is almast always inspected befiore starting in on a oomputation. In normal practice the δ of the readrout instruction in 004 would be the address of the first instruotion of the routine proper. With proper initial switch settings on the manual panel. (HALT-PHASE switoh on BREAKPOINT) the machine will halt after performing the negative instruction in 004. Then, after the memory sum is inspected and found to be correct, the START button is depressed and the control proceeds to the main computation. If the memory sum is in error, then the routine would normally be fed in again, and another check mado.

17.2 Exercises.

1. Propare a flow diagram and routine to go into tank 0 for flling the memory, starting with address 008.
2. Propare a flow diagram and routine to go into tank 0 fos dumping (i, θ_{0}, reading=out) the contents of the memory, starting with address 008.
17.3 Example 2. Prepare a flow diagram and routine to compute the quantities

$$
u_{i}=\frac{x_{i}\left(1-x_{i}\right)}{2+x_{1}+x_{i}^{2}}, i=1, \ldots, 8,
$$

Solution. In ordes to illustrate the techaiques of Seotion 16 an initial code will be prepared using symbolic addresses instead of numeriaal
addresses. The x_{1} will be assumed to be read into conseoutive addresses V_{1} \& $000{ }_{8} V_{8}$ where we will require that V_{1} 黄 $0(\bmod 8)$. Sinoe each x_{i} unst be referred to several times in computing u_{i}, the first of the procedures of paragraph 17.0 will be found to be mosto economical, both in terms of space and time. Two variable instructions are required here: one to transfer the x_{1} to a standard location; and a second to place the u_{i}, as they are produced, into the addresses where they are to be stored preparatory to priating. The Plow diagram Por this problem is similar to others that have already been presented. It will therefore not be drawn here but will be lait as an exercise for the reader.

In the initial code the notation used for addresses will be the same as in paragraph 16.0. \& convenient way to proceed with the coding is to begin with the computation of the successive u_{i}, and leave the preparatory and other auxiliary steps to be coded later. Brackets, [d, are used to distinguish addresses which will have to be modified in the passage from i to $i+l_{\text {。 }}$ Symbolic addresses (K_{1}, K_{2}, \ldots) for constants, and working positions ($T_{1}, T_{2}, \ldots .0$), are assigned as needed. The problem will be coded with variable instructions being trensferred to the working positions for modification end execution.
-81-

Thus far the routine will compute the eight u_{i}, store them, and read them out. Note that the word in L_{6} serves a dual purpose: it serves as a constant against which the instruction in L_{1} is compared to determine when eight values of u_{i} have been computed; and it is also an instruction for reading out the 8 words in $W_{1}, \ldots, \nabla_{8}$. The δ of this final instruction
will be left blank for the time being and will be filled in later after the rest of the routine has boen written. In the above routine, the α address of the instruction in s_{2} will take on the values V_{1}, \ldots, V_{8}, and at the end of the serios of calculations will stand at the value V_{6} and similarly for the γ address of the inetruction in 5°. If it is desired to compute the function u for asoond set of oight $x^{i} s$ it will first be necessary to set up the instructions T_{1} and T_{5} to their initial states. Likewice, it would be neoessary to set up these instractions if during the course of caloulating the u_{i} it is desired for any reason to restart the computing without having to read the routine in egain ${ }^{2}$. These two possible contingencies iliustrate why it is always wise, if not ossential, to eresot the initial state of a variable instruction before performing the instruotion the first time. The presetting prooess can be dome as collow:

$1_{\text {The instruction }} 0000000 a_{1} a_{2} a_{3} D+$ (where a_{1}, a_{2}, a_{3} are hexadecimal digits), typed manaliy on the keyboard or read in on teletype, will send the control to address $a_{1} a_{2} a_{3}$.

To make the routine complete and self -contained we shall add an instruction to read in the x_{1};

L_{13}	000	000	\forall	L_{9}	0	Input instruction: $x_{i} \rightarrow V_{i}, i=1, \ldots, 8$

The δ of the instruction in L_{6} will now be filled in as L_{13}. Thus, after reading out eight values of u_{1}, the routine will call in eight more x_{1}.

The method (2) of handing the instruction modification would have required four variable instructions instead of two. Each one of these would have had to be set up at the bagiming, and each would have had to bo modified in passing from u_{i} to u_{1+1}.

It is now possible to assign addresses in the foregoing code. To do this one need merely write beside the symbolic address for each instruction, independent variable x_{1}, constant, and working position, its assigned address. By inserting an additional column labelled 4 x Address, it is possible to go through the instructions and write them dow in machine hexadecimal form directly without having to go through the intermediate stage of writing them in true hexadecimal. While in practice no rewriting of the initial code is necessary prior to writing the final code, this will nevertheless be done here for purposes of presentation, At the same time the addresses will be rearranged slightly in order to keep words of the same kind together in the memory. The read -in instructions for this routine will be left to the reader.
-84 -

An inspection of this code will rereal that no word in the blook of colls from 008 to 018, Inolusite, is changed in the course of the calculation. This fact can be used to chock the machin by sumang this blook at intervals daring the running of the problem.
17.4 Runction Sable Teohnique of Instraction Modification. Tp to now wo here been modifyiter instructions in regular manner. It is somotimes neceso sary to sot up an instruction as a fanotion of an argument which parios in an unprediotable fashion. The instruction is made to dopend on the argument by introducing the ergument into one or more address components of the instruction. The toohnique is illustrated in the following example.

Example. A sequence of "quasimrandom" numbers n_{m}, m $=0, \ldots, M$ aan be gonerated by low order multiplication of $n_{0}=5^{17}$ (with scale factor 2^{-42}) by ittelf to produce the first number, low order multiplication of this reault by 5^{17} (again with scale factor 2^{-42}) to produce the noxt number, oto. Each number, n_{m}, obtained in the sequence becomes the multiplicand for the constant maltiplier $5^{770} 2^{-42}$. Datormine a frequency distribution for this sequence of numbers, using 32 oqual oless intervals.

Solution. The procedure may bo outlined as follows
(1) Generate a quasi mandom nuuber, n n°
(2) Dotermin the class interval to which it bolongs.
(3) ially one in cull corrosponding to this class interval. The imstruction whi oh does this is variable instruction and is in fact a function of the muber generated.

Legend:

(i) t_{i} is tally for olass interval $i \cdot 2^{37} \leq n<(i+1) \cdot 2^{37}, i=0, \ldots, 3 n$.
(2) $\mathrm{P}(1)$ is instruation whath adds 1 to tally t_{1},
(3) Oporation aymbol a in the second box following the remote connection
(2) signifios low ordor multiplication.
(4) M is maximum value of m.

As in the example of par. 17.3 this problem will also be coded initially in torms of symbolic addresses. Aftor this is cone, the addross assignments will be writton alongside the symbolic notation, and the conversions to machine hoxadecimal will be performed without rewriting the initial code. It is to be noted parenthotically that the process of clearing the tallies involves instruotion modification, and this has been done by method (1) of par. 17.0. Note also that the storage locations C_{0}, \ldots, C_{31} for the tallies must bogin with $C_{0}=O(\bmod 8)$ in order to make use of 8 word output instruotions.

$\begin{aligned} & 4 \text { 玉 Add- } \\ & \text { ress } \\ & \hline \end{aligned}$	Address	Symbolic Address	$\Leftrightarrow \beta \gamma \delta 0$	Machine Hex,	Explanation
020	008	L_{1}		OLLIF 7FIFC 5	
024	009	I_{2}	$000000 \mathrm{C}_{0} \mathrm{~L}_{3}{ }^{2}$	00000 01004 2	Clear tallies
028	OOA	\sum_{3}	$\begin{array}{lllllll}\mathrm{I}_{1} & \mathrm{~K}_{8} & L_{4} & L_{5} \\ \end{array}$	7 FO 21 ozcoc d	t_{0}, \ldots, t_{31}
02C	OOB	L_{4}	$\begin{array}{llllll}\mathrm{K}_{7} & \mathrm{~T}_{1} & \mathrm{~T}_{1} & T_{1} 5\end{array}$	081FC 7PIFC 5	
030	00.5	L_{5}	$000000 \mathrm{~S}_{2} \quad \mathrm{~L}_{6}{ }^{2}$	000007 CCOD 2	Sot m=0
034	000	L_{6}	$000001 \mathrm{~S}_{1} \mathrm{~L}_{7} \mathrm{O}$	00001 7F80E 0	Read in n_{0} 。
038	O0:	$\sqrt{6}$	$\begin{array}{llllll}\mathrm{t}_{2} & \mathrm{~S}_{1} & \mathrm{~S}_{1} & L_{8}\end{array}$	06DFE 7F80F A	
03C	OOF	L_{8}		7F81a 7F010 3.	$\mathrm{n}_{\mathrm{m}+1}^{8^{8}-2^{-5}}$

4 rldd.	Add.	8ymb. Add.	$\alpha \beta$ ¢ $\quad<0$	Wachine Hox.	Explanation
724	2FD	T_{2}	$\left[\begin{array}{llll} K_{4} & c_{n_{m+1}^{\prime}}^{\prime} & c_{n_{m+1}^{\prime}}^{\prime} L_{12} & 5] \end{array}\right]$		Tomporary: $P\left(n_{m+1}^{2}\right)$
728	175	81	*		n
7FC	IRF	S_{2}			

Dofore ending the control to the above routine, the number Must be inserted in K_{5}, to control the number of quasi-random numbers to be generated. It oan be seem that the process need not bogin with $n_{0}=17$, but could just es well begin with any number in the sequence $\left\{n_{m}\right\}$, This is the reason for printing n_{4} at the conclusion of the run. On the next ran, this can be the n_{0}, and the generation process can resume from where it left off the provious time. The tallios, of course, would all start from zero again.
18.0 Timing. Calculation of timing is dome differently for the scoustio memory, because of its serial mature, than for tho lootrostatio somory, which is parallel in nature. Th discuneion of tining will firat bo carried out for ach of these momorios separately. It will then be sinpl to understand how timigg is dotormined when both memories are usod.
18.1 Addresses in Acoustio Momory Only. In the acouctio memory, 48 bimary positions are required for the storage of okoh word, 45 of which axe for information. The basic ropotition rate of the seic is 1 mogaoyalo (1 million pulses per sooond) so that 48 meroseconds (milionths of a soond) ase required for a word to pass a giten point. A tank in the aooustic memory bolds 8 words, or $8.48=384$ binary digits. Therefore 384 nicroseconde are required for a complete ciroulation of the contents of a tank This unit of time is called one major oycle\%. One aighth of this time, or 48 morow seconds, is called a "minor cycle". The pontents of all tanke are oirculated synohronously. The number of minor cycles within a major cycle are counted By a "minor oycle counter" which takes one step each minor cyole, counting from 7 to 0 . All words whose addresses have the same rosidue modulo 8 (i, θ_{0} whose addresses heve the same remainder upon division by 8) move simaltanew ously into position to be read (though only on can aotually be read at a time), and at this instant the reading in the oountar is this reaidue.

The execution of an instruction (not input, output, or tape reverpe) in the instruction register involves four phases. Starting from the halted condition these are:
(1) Location of new instruction, specified by δ (normally) or γ of instruction currently in instruction registor, and bring new instruction
into the registor.
(2) Lotation of β addross of this now instruction.
(3) Locution of ad adress of the now inetruction and perform pporation.
(4) Result of operation (for noneoomparison operations) goes to γ of the new instruotion. In oomparition this is a "dumm" phase.

The time soquirea in minor oycles for the axecution of phase is the number of atepa taicen by the counter during thet phase. At least one stop 1s taken durint any phase. This inplies that if the ounter readings are the sam at the boginning and ond of phase, then at least 8 stops wore taken duriag that phase. With the oxceptions (2) and (3) noted below, the countor reading at the ond of phase is always the leact positive rosidue modulo 8 of the address associated with that phase. Counting the minor cyoles oorresponding to a pooified phase is facilitated by the following sigures

Qiver the addresses in hexadecimal assooiated with 2 successive phases, count in the figure from the last digit of the first address to the last digit of the cocond address in the direction of the arrow. The number of stope obteined (which will vary from 1 to 8) normally is the time in pinor oycles for the second of the two phases, for all operations. Bxceptions to the foregoing rules are as follows:
(1) For multiplication and division operations, ad 44 minor oyoles tb the Itime obtained by application of the above rule.
(2) In oomparison operations, phase 4 is always 1 minor oycle, regerdlese of what γ is.
(3) In the base operation, I , phases 2 and 3 ere always 1 minor oyole oach. The time for a complete instruction is the sum of the times for 4 successive phases, starting with phase 2。

The times for input and output instructions are obtainable from the Sumary of SEAC Specifications preceding Part I.

Example l. Find the time for executing the following instruction:

The caloulation is conveniently exhibited in tabular form:

	Minor Cycle Counter Reading at		$\begin{gathered} \text { Tim in } \\ \text { 用 Syor } \end{gathered}$	Remarke
	Beginning	Enad		
Phase 2 - 3 - 4 2	2 2 1 0	2 1 0 $\left\{\begin{array}{l} 0 \\ 7 \end{array}\right.$	8 1 1 $\left\{\begin{array}{l} 8 \\ 1 \end{array}\right.$	Item (2) in list of "Excepo tions" $\begin{gathered} \text { Control goos to } \gamma \\ \end{gathered}$
		Total	$\left\{\begin{array}{l}18 \\ 11\end{array}\right.$	$\begin{gathered} \text { Control goes to } \gamma \\ n \end{gathered} n \quad \text { n } \delta$

Example 2: Find the time for executing the following instruotiong

Address	α	β	γ	\mathcal{S}	op
017	100	115	100	206	A

Caloulation:

	Minor Cycle Counter Reading at		Time in Minor Cycles	Remarks
	Beginning	End		
Phase 2	7	5	2	
3	5	4	40	Item (1) in list of "Excopo tions"
4	4	5	7	
1.	5	6	7	
		Total Time:	65	

18,2 Addresses in Bloctrostatic Memory Only. If all addresses are in the electrostatio memory the rules for oaloulating timing are particularly simple:
(1) Phases (1) and (2) are always 1 minor cyolo each.
(2) Phase (3) is 1 minor oycle for all operations excopt multiplication and division. These operations require 45 minor oycles.
(3) Phase (4) is 2 minor cycles for all operations except $\mathbb{C} \mathbb{D}, \mathbb{E}_{0}$
(4) For operations C,D,E, phase (4) is 1 minor cycle.
18. 3 Addressos in Acoustic and Electrostatio Memorios. The rules given in paragraphs 18.1 and 18.2 are sufficient for this case. The method of onlculation will be illustrated by some examples.

Exampla 1.

Address	α	β	γ	δ	$0 p$
$10 A$	340	$20 D$	019	018	3

In this example, addresses 34C and 20D are in the eleotrostatic memory, The calculation is as follows:

	Mnox Cycle Countor Reading at		Time in Minor Cyclos	Remarks
	Beginning	End		
Phase 2	2	1	1	Par. 18,2
1 3	1	0	1	Par. 18.2
. 1.4	0	1	7	
9 1	1	0	1	
	Total:		10	

Example 2.

10. 4 Remarks. It is generally not advisable to pend much time in trying to minimize the time for a routine by rearranging addresses, to. Such a procedure is generally difficult, time consuming, and likely to give rise to coding errors. Moreover, the timataved on the marine by optimum timing is likely to be balanced by the time lost in coding. And finally, the overall time for problem in often determined principally by speed of input and output, rather than by speed of computing. It is usually more desirable to reduce computing time by sol voting an efficient method of solution and by reducing input and output time than by rearranging addresses. Some of the early stat subroutines were coded for the acoustic memory with a view to minimizing computing time. This practice was abandoned in the preparation of most later aboroutines.
19.0 Subroutines. The need for certain types of mathomatical calculations may be anticipated, and they may be coded, rocorded, and filed in advance of their use. The series of instructions comprising guch onloulation is callod a "subroutine". The same series of instructions my be used may than in ay problem, with varying arguments (or initial conditions). Some examples of Skin subroutines are: converaion of numbers from deoimi to binary, conversion from binary to decimal, generation of trigonomotric functions, otc.

This procedure of prewcoding and filing results in a considerable saving of coding tine. For before filing, these subroutines will elways bave been cerefully checked, propared on tape, and tested. Duplioation of mach work is thus avoided. Furthermore, these subroutines may be coded mith epeoial attention to conomy in mexpry space as woll as computing time.

A list and desoription of selected spac subroutines available as of this iriting (8opt., 195) is given at the and of this Handbook (Eofs. 9-13).
19.1 Conventions for Standard Subroutines, In preparing SEAC subroutines oertain conventions have been adopted which render these subroutines nore convonient for general use and eliminate unnecessery duplication and oonsequent whste of memory space. Subroutines conforming to these conventions are referred to as "standard subroutines".
(1) The second tanic (0011s $008=005$) is reserved for temporary storage in all stendard subroutines. Certain constants commonly used in subroutines and elsowhere are called "standard constants", and are assifned standard locations in addresses 010-027. It should bo kopt in aind that these constants must bo read into thoir asaignod loontion whenovar using the
unbroutines. For this purpose they have been prepared on tape and are on file together th the subroutines. In paragraph 19.3 is apponded a list of the standard constants. Addtional constants noeded in any subroutine are placedat the end of the subroutine.
(2) For convenience in use all standard sadc subroutines are coded with the instructions beginning in cell 100. In general, however, the coder will want to specify a different set of locations for oach sub routine used. This becomes a necessity, in any cese, whenever more than one subroutine is used. The desired locations for the subroutines are determined by the coder, and the subroutines are accordingly read into those positions in the memory. Certain modifications are then required in the instructions to make them conform to their actual positions in the memory, and this is accomplished by the modifying routine described in par. 19.4.
(3) In all standard subroutines the argument is sent to OOD before entering the subroutine, and the result of the calculation is also sent to OOD. The control then goes to OOF for the exit instruction. Care must be taken that the exit instruction in OOF is properly set up before entering a subroutine.
19.2 Iranscription of Total Routine Onto Input Medium A problem ina volving subroutines may be transcribed onto the input tape or wire in various arrangements. On convenient arrangement might be as follows:
(1) Input instructions (000 007),
(2) Temporary storage (008 00 F),
(3) Standard constants (010-027),
(4) (a) Instructions for incorporating subroutines (028-037),
(b) One word for each subroutine, followed by word containing 211 zeros $(038,039, \ldots)$: (See par. 19.4),
(5) Subroutines in succession,
(6) Body of main routine.
10.3 List of Standerd Constants:

Standard 4ddress	Constant	Machine Hezadecimal Representation
" 010	0	00000000000
011	-3	00000 0000000
012	-2	800000000006
023	41	400000000004
014	$+2^{-91}$	200000000004
025	+2020	1000000000 0*
016	$+2=4$	0400000000 Ot
027	$+2^{-8}(-1$ inos)	10040000000 Ot
018	+ 2^{-16}	0000400000
019	$+2^{-32}$	0000000040 \%
O1A	$+2=42$	000000000014
01B	$+2^{-38}(+1$ inS $)$	00000000080 \%
016	+2-28(-1 in γ)	000000040004
O1D	+2-22	0000010000 Ot
01E	$+2=20$	$00000400000+$
015	$+2^{-18}(+1$ in β)) 0000100000 Ot

Standard Address	Constant	Machine Hexadecimal Representation
020	$+2^{-12}$	00040 00000 0+
021	$+2^{-10}$	001000000004
022	+ $4=2^{-8}$ (α extrector $)$	FF000 00000 0\%
023	$+2^{\infty 8}-2^{-18}\left(\beta_{\text {extractor }}\right)$	003 FF 0000004
024	$+2^{\infty 18}=2^{-28}$ ($($ extractor)	00000 FFCOO 0+
025	$+2^{-28}=2^{-38}$ (δ extractor)	00000003 FF O+
026	$+4=2^{-42}$	FPFPF FFFFF $\mathrm{F}_{\text {t }}$
027	+ [Reserved for Absolute	values.]

19.4 Method of Incorporating Subroutines. This code incorporates subroutines into the main routine without a manual modification of the orders making up the subroutines.

As pointed out earlier, all subroutines are written as though they are tored in the memory starting with hemadecimal address 100. However, when used in a problem they are read into blocks of memory locations asoigned them by the coder, which will not usually begin with cell number 100. Any reference to addresses 100 and over in their instructions must therefore be modified by the differenoe between 100 and the beginning of the aotually assigned block.

For example, suppose that the decimal to binary conversion subroutine [9.4] is placed in the block of memory cells 090 - 0A7. Then we have the following condition in the first two cells of the block:

Address	True Hex
O9C	OOD 013 103 10B D
O9D	OOD 016008107 A

In order to make the subroutine work in its assigned location, the above two instructions must be modifled to read:

Address	\quad True Hex
O9C	OOD 013 09F OA7 D
O9D	OOD 016008 OA3 A

For each subroutine the addresses of the first and last words to be changed are specified in cells 038, 039,... Constants and instructions not to be modified are placed at the end of the subroutines to which they belong. The routine for incorporating subroutines takes the subroutines one at a time and performs the required modifications.

It is to be noted that 027 is assumed to contain to to accomplish the logical transfer operation in the seventh instruction of the routine. This is permissible because to is read into address 027 with the standard constants, and since this is the first routine executed by the computer, 027 still contains +0 .

Preliminary Information for Use of Routine for Incorporating Subroutines

1. Let $a_{i}=$ address containing first word of ith subroutine。
2. Let $b_{i}=$ number of words of ith subroutine to be changed.
3. Store $2^{-8}\left(a_{i}+b_{i}-1\right)+2^{-28} a_{i}$ in locations $038,039, \ldots, 037+n$, where n is the number of subroutines: and store 0 in location $038+n$.
4. The instruction to be executed after the completion of this subroutine is located in 007.
5. The number of addresses occupied by this preparatory routine is $17+n$.
6. In order to restore a " + " sign to address 027 before performing calculations, make sure subroutines are arranged with positive sign for last instruction of last subroutine to be modified.
(column hoaded me indicates timing in minor cycles)

		Instr	ction in		
$\begin{aligned} & 4 \times \text { ddd- } \\ & \text { ress } \end{aligned}$	Address	Hachine Eox	$\&^{\text {True Hox }} \boldsymbol{\beta} \delta \text { op. }$	no	Explanation
0.10	028	0502405432 1	038 024 02D 0321	14	Set up correction instruction
068	032		038019 004 0334	55	Obtain $2^{-18} a_{1}$
OCC	033	08404 02837	021 OOA OOA 037 -	52	Obtain $2^{-8} s_{i}$
ODC	037	ORER2 OA434 2	001 0220290341	19	Set up storing instruction
ODO	034	02813028294	0010130010294	11	$\begin{aligned} & 0 b \operatorname{tain} 2^{-8} a_{1}-1= \\ & 2^{-8}\left(a_{1}-100\right)^{-1} \end{aligned}$
014	029	00010020365	$\left[a_{1}\right] 0100080365$	12	Store word of subroutine
OD8	036	02035096201	0080350270261	10	Extract 2nd binary digits of addresses
080	O2C	09004 02c2D 8	027 OOA OOB O2D 8	63	Find correction term
084	O2D	O200B 00031 5	OOB OOB [a ${ }_{1}$] 0315	14	Correction instruotion
0 CL	031	O4438 O482\% C	029038 02A 02E	15/11	Test for end of subroutine
048	02A	05629044305	0170290290305	10	Modify (029) for noxt word
0 CO	030	07020 01429 5	O1C O2D O2D 0295	15	Modify (O2D) for next word
088	028	O2HIO ODO2F 5	$[039] 010 \quad 03802 F 5$	16	$\begin{aligned} & \operatorname{Stor}_{8}\left(a_{i}+b_{j}-1\right) 2^{-8} \\ & a_{1} 2^{-28} \end{aligned}$
OBC	02F	O5625 OB82 5	0170250280285	12	Modify (02F) for next subroutine
OAC	028	04038080070	010038028007	29/20	Iest for last subroutine
OD4	035	40100401000 m	$1001001001000=$		Extractor
050	038				$\left(a_{1}+b_{1}-1\right) 2^{-8}+a_{1} z^{-28}$
024	039				$\left(a_{2}+b_{2}-1\right) 2^{-8}+a_{2} 2^{-28}$
ODS 6 +18	037*n				$\left(a_{n}+b_{n}-i\right) 2^{-8}+a_{n} 2^{-28}$
$050+40$	038*n	00000000000	0000000000000		

Time required is approximately $6 \frac{1}{2}$ milliseconds per instruction requiring modification.
20.0 Sone 8poodal Foatures of the 3madrepg Syatom. There aro a number of advantages in the use of the 3 addrese syetem on the sple. One obriout advantage can be seen by rocalling the ooppouttion of a 3-adirose inetriotion (af. Part I, par. 0.2). BLnoe omah adress in represcented by 12 binary digits (oxnctly 3 hexadeolmal digita) instend of ten, the decomposed (true hemadecimal) form of am 1mstriotion, is

ABo, it we indiceted in Part I, par. 0. 2 that the handing of subroutines in the 3 eaddress system is fealitated in 2 mays: (1) She neoe日sity to print an exit instruction before antering a aubroutine (see pax. 19.1 (3)) aan bo eliminated by use of the binary digit d to seleot one or the other of the address counters C_{0} and C_{1}. charactoristically, daring the course of the main routine wo would hare $d=0$, the control being thus referred to counter Co_{0} One would get into a subroutine by means of a comparison inetruction in which $(\alpha)<(\beta)$, γ is the address of the first subroutime instruotion, and $d=1$ 。 counter c_{y} would then be reset to γ, and the control womld be estabilened by T_{1} as long as d. Tho last subroutine ingtrmotion executed mould have $a=0$, thus causing the control to return to co, poling up were: it left off. (2) The reat for the incorporation ratine of par. 19.4, axidiag from the fact that oubroutines aro usually procoded for blooks of cells bogimaing with a standard address, is oliminsted by uife or the digits a,b, 0 . Reforences in the subroutine instructions to worde stored in standard loations outside the subroutine (such as standard donstante, and standard temporary locations) do not depand on the actual location of the subroutine in the memory. On the other hand, references to words
within the subroutine (such as other ingtructione, or non-stenderd constants included with the subroutine) mast be edjusted to conform to the actual subroutine location. For each address in the Former category, the oorreaponding digit a, b, or c is made 2 oro, ind ceting thet the addrese is to be interpreted in an abeolute sense. The effect of assigning the value one to ony of these digits is to cuse the oorresponding eddrese to be interpreted relatively to the address of the instruction itself. Thus, for example, letting k be the hexedecimal digit formed by the binary digits a, b, o, d, the instruction

Address	α	β	γ	K	Op
268	013	003	005	7	5

would be interpreted during execution as

Address	α	β	γ	K	$0 p$
$2 C 8$	013	$2 C B$	$2 C D$	7	5

One complioation that arises in this type of applioation is that the base with respect to which floating addresses are interpreted ohanges each time the control advances. Suppose, for example, that a subroutine in its originally coded form contains the two instructions

Address	α	β	γ	K	$0 p$
009	$00 E$	010	008	9	1
\ldots	\cdot	\cdot	\cdot	\cdot	\cdot
OOB	013	$00 E$	009	5	5

Suppose further that in actual use the above two words are stored in 057 and 059, respectively. Then \propto of the first instruction will be interpreted as $057+00 \mathrm{E}=065$; and β of the second instruotion will be interpreted ac $059+00 \mathrm{~m}=067$. Thue, whereas it wes originally intended
that α of the first instruction and β of the second refer to the same location, this is no longer the case. The address that we really wish to transform 00E to is clearly 95C. The difficulty is resolved by rewriting the subroutine before use, so that every address to be interpreted relatively is decreased by the address of the instruction of which it is a component. If the application of this rule would yield a negative address, then add 1000 (in hexadecimal) to the address in question before subtracting the address of the instruction. Thus, in the example given, replace 00R in the first instruction by $00 \mathrm{E}=009=005$; and in the second by $00 \mathrm{E}=00 \mathrm{~B}=003$. Then in the actually used locations, the interpretations will be $057+005=056$, and $059+003=056$, respectively, as desired.

A further complication in the use of 3oaddress coding as compared with 4 -address is that much more care has to be taken in arranging instructions in proper sequence. While in the l-address system the path of the control is completely flexible, in the 3-address system a change fram the originally coded path can be achieved only by inserting an appropriate comparison instruction.

The standard constants in par. 19.3 were chosen primarily with convenience for Leaddress coding in mind. These constants, while numeri oally the same regardless of the coding system used, sometimes have different applications in the two systems. For example, in L-address, " 1 " in the α, β, γ, and δ addresses are, respectively, equivalent to $2^{-8}, 2^{-18}, 2^{-28}$, and 2^{-38}. In 3-address, however, " 1^{n} in α, β, and γ are equivalent to $2^{\infty 10}, 2^{-22}$, and 2^{-34}, respectively. Similarly, in Lmaddres̨s, the α, β, γ, and δ extractors are represented
by $2^{2}-2^{-8}, 2^{-8}-2^{-18}, 2^{-18}-2^{-28}$, and $2^{-28}-2^{-38}$, respectively; whereas In 3-address the α, β, and γ extractors are given by $2^{2}-2^{-10}, 2^{-10}-2^{-22}$, and $2^{-22}-2^{-34}$, respectively. It will be noted that 2^{-34} and the 3 -address extractors are not included among the standard constants.

Timing is oalculated in the 3 -address syatem oxactly as in 4 -address. It must only be noted that in phase 4, the location of the now instruction is specified by the appropriate counter, since there is no δ address.

The preparation of a code in 3-address will be illustrated by the following two examples.
20.1 Example 1. Prepare a subroutine for the caloulation of the square root.

Solution, A flow diagram and 4 -eddress routine for square root computation was given in par. 15.1. The same notation and method of conputation will be used here. The subroutine will be coded beginning in adress 000 . Some of the assumptions for standard 4 -address subroutines (par. 19.1) will be made here; namely, that the standard constents of par. 19.3 are in the memory, that the argument is in OOD, and that the result goes to OOD. Addresses $008-00 \mathrm{~F}$ will be available as temporaries. The code is as follows:

Address	α	β	Y	K	Op	Explanation
000	OOD	010	009	3	0	$\mathrm{N}<0$?
001	013	010	001	1	5	$x_{0}=1$
$\sqrt{002}$	004	OOD	00\%	1	\%	N / x_{1}
003	006	OOA	OOB	1	5	$x_{1}+N / x_{1}$
004	OOB	014	00\%	1	8	$\frac{3}{2}\left(x_{i}{ }^{\prime}+N / x_{1}\right)$
005	008	004	007	3	\pm	$x_{1+1}<x_{1}$?

Adaress	α	β	γ	k	$0 p$	Explanation
006	001	010	$00 D$	0	5	$\sqrt{N} \rightarrow 00 D$
007	002	010	001	1	5	$x_{i+1} \rightarrow x_{i}$
008	000	001	002	F	D	Control $\rightarrow 002$
009	000	001	$00 D$	0	$F-$	Frror halt

In this code, we have made $d=1$ on all instructions except that in 006, the last to be performed, and in 009 where it is rather imaterial since on orror is indicated and the machine halts. The only instructions where addresses are to be interpreted relatively are in 000 (γ interpreted relatively, $c=1$), 005 (γ interpreted relatively, $c=1$), and $008(\alpha, \beta$, γ interpreted relatively, $a=b=0=1$). If we rewrite these instruotions according to the rule desoribed in par. 20.0 , we see that the instruotion in 000 is unchanged and the instructions in 005 and 008 become

Address	α	β	γ	K	$0 p$
005	001	$00 A$	002	3	D
008	FP8 FF9	FFA	β	D	

20.2 Example 2. Using the subroutine of Example 1, write a routine for the computation of

$$
u_{i}=\frac{x_{1}^{\frac{1}{2}}}{1+x_{i} 3 / 2}, i=1, \ldots, 8
$$

including read-in instructions, and read-out instructions for the u_{1}.
Solution. As in Example 1, addresses 008-00F will be used for temporaries, and the standard constants will be assumed to be in 010-027. The input instructions for the routine will be written in tank 0 . The eight x_{i} will be stored in 0L8-0hif, and the u_{i} will be sent to the same address. The subroutine of Example 1 will be stored in 038-041. As in
the example of par. 17.3, all variable instructions will be preset to their initial states before entering the actual computation. This example illustrates, among other things, how the base operation, E, may be used as a tally (In addresses 001 and 032; see tabulation of operations in par. 13.0).

Address	a	β	γ	δ	Op	Explanation
02E	010	013 !	038	1	D	Enter subroutine
02F	OOD	008	008	0	9	$\mathrm{x}_{\mathrm{i}} 3 / 2$
030	013	. 008	008	0	5	$1+x_{i} 3 / 2$
031	008	OOD	[048]	0	B	$x_{1} \frac{1}{2} /\left(1+x_{i}^{3 / 2}\right)=u_{i}$
032	[02F]	036	033	0	E	If $1<8$, go to 033 If $i=8$ g go to 037
033	02 C	021	02C	0	5	Add 1 to a of 02C
034	031	045	031	0	5	Add 1 to γ of 031
035	032	021	032	0	5	Add 1 to a of 032
036	010	013	02 C	0	D	Control \rightarrow O2C
037	000	000	048	0	F-	Read out $u_{i}{ }^{\text {® }} i=l_{8000,} 8$
038	OOD	010	009	3	C	
039	013	010	OOA	1	5	
$\sqrt{03} \mathrm{~A}$	OOA	OOD	OOC	1	B	
03B	OOC	OOA	OOB	1	5	
036	OOB	014	OOE	1	8	Square Root Subroutine
03D	OOE	OOA	002	3	D	
03E	00A	010	OOD	0	5	
03F	OOE	010	OOA	2	5	
040	FF8	FF9	FFA	F	D)
047	000	001	000	0	F-	
042	048	010	008	0	5	Constant instruction
043	008	OOD	048	0	B	Constant instruction
044	02 F	036	033	0	E	Constant instruction
045	000	000	001	0	E	$2-34$

\(\left.\begin{array}{|c|ccccc|}\hline Addrass \& \alpha \& \beta \& \gamma \& k \& 00

046 \& 000 \& 000 \& 000 \& 0 \& 0

047 \& 000 \& 000 \& 000 \& 0 \& 0\end{array}\right\}\)| Explanation |
| :--- |
| 048 |
| \vdots |
| $0 i_{4}$ |

21.0 Remarks. Ther aro many apects of SEAC programing and operating that have not been discussed in this Handbook. Such topies as the use of the manual controls, techniques of code-checking both on and off the sEAC, use of breakpoints, assembly and composition routines, instructions for us of auriliary equipment, descriptions of subroutines, etc., have been omitted. However, information is available on these subjects in the Computation Laboratory Technical Memoranda, and the Glo otronio Computers Laboratory Technical Memoranda listed in the references below. These memoranda are prepared in an effort to maintain a reoord of current developments in SEAC operating and programing.

REFERENCES

1. Goldstine, H. H. and von Neumann, J., Planning and Coding of Problems for An 盟ootronie Computing Instrument, Institute for Advanced Study, Prinoeton, M.J., 1947.
2. Von Noumann, J_{0}, and Goldstine, H. H., Numerical Inverting of Matrices of Bigh Order, Bulletin of the American Mathomatical Sooioty, Pp. 1021-1099 (Nov., 1947).
3. Isaac, E. J., and Trabka, E. A., Machine Aids to Coding, Cornell Aeronautioal Laboratory, Mar., 195.
4. Wilks, M. V., Wheoler, D. J., Gill S., The Preparation of Programs Por An Elactronic Digital Computer, Addison* $\begin{aligned} & \text { Hesley Press, Inc., } 1951 .\end{aligned}$
5. Leiner, A. L., Provision for Expansion in the SEAc, Mathematical Tablos and Other Aids to computation, pp. 232-237, (October, 1951)
6. Machitne Developmeat Laboratory Staff, The Inoorporation of Subroutines into a Complete Program on tho NBS Eastorn Aatomatic Computer, Matmematical

Frabes and Other Aids to Computation, pp. 164-168 (July, 1950).
7. Soarborough, J. E., Mumerical Mathematical Analysis, pp. 178 184, The Johns Hopkins University Press, 1930.
8. Eloctronic Computers Laboratory, National Bureau of Staudards, Technical Memoranda,
8.1 Ho. 16 M , Extornal Solector Unit for SME, Oct., 1951.
8. 2 No. 19 M , Installation of External Selector Panel on Sext, Oct., 1951.
8.3 No. 30 M, The Outscriber, Mar., 1952.
8.4 No. 42 M , Operating Instructions for Magnetic Input-Output Devices in SEAC, June, 1952.
8.5 No. 43 M, Three-Address Operation of SEAC Control Panel, Jul., 1952. 8.6 NO. 44 M, E1.1, E1.2 (512), E2.2 (1024) Dump Routines, Jul., 1952.
9. Computation Laboratory, National Bureau of Standards, SEAC Operating and Programming Notes, I2 (April, 1952): includes following:
9.1 Tech. Memo. No. 1, Operation of SEAC Control Panel as of Oot., 1951.
9.2 Tech. Memo. No. 2, Non Mathematicel Routines.
9.3 Tech. Memo. No. 3, Conversion Subroutines for Integers.
2.4 Tech. Memo, No. 4. Decimal to Binary and Binary to Decimal Subroutines.
9.5 Tech. Memo. No. 5, Subroutines for 2^{x} and $e^{x^{3}}$.
9.6 Tech. Memo. No. 6, Subroutines for $\sqrt{\mathrm{N}}, \sqrt[3]{\mathrm{N}}, \sqrt[n]{\mathbb{N}}$.
0.7 Tech. Memo. No. 7, Subroutines for $\operatorname{Sin} x$ and $\operatorname{Cos} x$.
10. Computation Laboratory, National Bureau of Standards, SEAC Operating and Programming Notes, II, (July, 1952): includes following:
10.1 Tech. Memo. No. 8, Subroutine for Tan ${ }^{-1} \mathrm{a} / \mathrm{b}$
10.2 Tech. Memo, No. 9, Hexadecimal-Decimal Converter Table
10.3 Tech. Memo. No. 10, Four wifiex Converter Table.
10.4 Tech, Memo. No. 12, Subroutine for Docimal to Binary Conversion of a Double Prooision Kumber with Pized Binary Point.
10.5 Tech. Memo. No. 13, Subroutine for $1^{\text {th }}$ Differences, $2=1,2, \ldots, 6$
10.6 Toch. Memo. No. 1L, Three-Addrese System and Base Order.
10.7 Tech, Memo. No, 15, Preparation of Pure Hezadecimal Coding for Punched Card Composition.
11. Compratation Laboratory, National Bureau of Stendards, SEAC Operating and Programming Notos, III, (Aug., 1952): includes following:
11.1 Tooh. Memo. No. 16, Magnetio Tape to Wire Pransfer and Check Ioutine.
11. 2 Tech. Memo. No. 17, Subroutines for Basic Arithmetio Operations and Square Root in Ploating Decimal Form,
11. 3 Tech. Memo. No. 18, General Dump Routine (512 or 1024 Word Memory)
11. 4 Teoh. Memo. No. 19, Memory Decomposition Routine (512 or 1024 Nords)
11.5 Tech. Meno. No. 20, Flow Charts for Magnetic Tape Cheoking Routines.
12. Computation Laboretory, National Bureau of Standards, SEAC Operating and

Programming Notes, IV, (Sept., 1952): includes following:
12.1 Tech. Memo. No. 21, Composition Routine (SEBEE).
12.2 Tech. Hemo. No. 22, Basic Arithotic Operations I, Floating Binary Point, Single Precision Numbers.
12.3 Teoh. Memo. No. 23, Subroutine for Cubo Root, Single Precision, Floating Binary Foint.
12. 4 Teoh. Memo. No. 24, Subroutine for $\sin 2, \cos 2,2=x+i y$
12.5 Tech. Memo. No. 25, Corrections and Changes to Techaical Memoranda Numbers $1=24$.
13. Computation Laboratory, National Bureau of Standards, SEAC Operating and Programming Notes, V, (Sept., 1952): includes following:
13.1 Tech. Memo. No. 26, Interpretive Subroutine for Operations on Complex Numbers.
13.2 Teoh. Memo. No. 27, Subroutine for Square Root of Single Preoision Number with Floating Binary Point.
13.3 Tech. Mera. No. 28, Subroutine for Sinh y, Cosh y, $|y| \leq 2.0634$.
13.4 Tech. Memo. No. 29, Code Chocking.
13.5 Tech. Memo. No. 30, Basic Arithmetio Operations for Double Precision Numbers with Fixed Binery Point.
13.6 Tech. Memo. No. 31, Interpretive Subroutine for Operations on Double Precision Numbers.

THE NATIONAL BUREAU OF STANDARDS

Functions and Activities

The functions of the National Bureau of Standards are set forth in the Act of Congress, March 3, 1901, as amended by Congress in Public Law 619, 1950. These include the development and maintenance of the national standards of measurement and the provision of means and methods for making measurements consistent with these standards; the determination of physical constants and properties of materials; the development of methods and instruments for testing materials, devices, and structures; advisory services to Government Agencies on scientific and technical problems; invention and development of devices to serve special needs of the Government; and the development of standard practices, codes, and specifications. The work includes basic and applied research, development, engineering, instrumentation, testing, evaluation, calibration services, and various consultation and information services. A major portion of the Bureau's work is performed for other Government Agencies, particularly the Department of Defense and the Atomic Energy Commission. The scope of activities is suggested by the listing of divisions and sections on the inside of the front cover.

Reports and Publications

The results of the Bureau's work take the form of either actual equipment and devices or published papers and reports. Reports are issued to the sponsoring agency of a particular project or program. Published papers appear either in the Bureau's own series of publications or in the journals of professional and scientific societies. The Bureau itself publishes three monthly periodicals, availablc from the Government Printing Office: The Journal of Research, which presents complete papers reporting technical investigations; the Technical News Bulletin, which presents summary and preliminary reports on work in progress; and Basic Radio Propagation Predictions, which provides data for determining the best frequencies to use for radio communications throughout the world. There are also five series of nonperiodical publications: The Applied Mathematics Series, Circulars, Handbooks, Building Materials and Structures Reports, and Miscellaneous Publications.

Information on the Bureau's publications can be found in NBS Circular 460, Publications of the National Bureau of Standards (\$1.25) and its Supplement (\$0.75), available from the Superintendent of Documents, Government Printing Office. Inquiries regarding the Bureau's reports and publications should be addressed to the Office of Scientific Publications, National Bureau of Standards, Washington 25, D. C.

