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On Gauss' Speeding Up Device in the Theory of Single
Step Iteration

by

A. M. Ostrowski*

1. In solving the linear system

(i) a x - y
Vs

| f-
V V

— x,,,.,n)

with the matrix A, a ^ 0 ( u. = l,...,n) and non vanishing determinant
r

by the single step iteration, we form.

starting from an arbitrary vector % 0 , a sequence of vectors

( 2 ) ^k = (xl^,...,xn^) (k = 1,2,...)

obtained in

value Nk of

(3)

the following way: For any integer k (k *.0) choose a

the "leading index" from the indices l,...,n; then if

vP k ~ ( rl
^

^
' • • * * rn

^
^

) (k= 0,1,2,,..)

is the k-th residual vector defined by

*This work was performed under a contract of the NBS with the Am. Un . I

gratefully acknowledge discussions with T. 3. Motzkin and 0. Taussky-Tod
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(4)

we put

(5)

r ( k ) =

h
la x( k )

(
~ 1 j • • * j k— 0 j 1 > • •

x(k+1)= x(k)(u^ Nk ),

r p
v

(k+D
xNk

00
xKk

H
(k)

k
a,«A

In studying this iteration, we will only consider the case where all

y vanish, since we can always by a convenient change of the origin
P

make all y = 0, without changing the f .

p
^ k

2. Me consider in what follows only the case where the matrix of

the system (l) is symmetric and the quadratic form

( 6 )

r r
defined for an arbitrary vector (x^,...,xn ), is positive definite .

In this case it is well known and immediately verified that if the

vector £k+l is obtained from the vector by the transformation (5),

we have

(7) K ($k+l) = K (jk)

r (k )2X

In using (7) it was proved by Seidel^l874 ^9j that the single step

iteration is always convergent if Nk is chosen at each step so that
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This is the "relaxation " procedure ). On the other hand Schmeidler

( 1949)̂ proved in using ^ S'] ")

^

(7) that the single step procedure is

convergent in the cyclic case when runs periodically through all

indices 1 , 2 , . . .
,n

.

p. Gauss [0 , CO » DO proposed the following modification of

the above procedure in order to speed up the convergence. Put

(9) ,n)

where z
Q

can he arbitrarily chosen. Then the system (l) can be

written in the form (assuming 7,.
= 0)

do)
V\

aOV SV

a z

0

0 1, • • • ,n) )

where the first equation is, of course, not independent of the last

n equations but is useful for the sake of uniformity and for check-

ing purposes.

In particular ^
0o is positive since by (9) ao0 is the value of

the quadratic form (6) for Xy = 1( h) = l,...,n).

4 . From a solution (z0 ,
z^,...,zn ) of the system ( 10 ) we obtain

at once by (9) the solution (x]_,...,xn ) of the system (l) . The idea

of Gauss is now to apply the procedure, described in ( 4 ) and ( 5 ), to

the system ( 10 ) . If we obtain then, starting from a vector





-r , (0) (0) (0),= ^
z
0 >

Z1 ’ • • • 3
zn ) a sequence of the vector:

Tk = ( z 0
(k)

. zl
(lc)

i • • • » zn
(k

) ) .

ve consider at the same time the corresponding vectors

5k = Wi (k) - z o
(kt z

2
< k) - z 0

W,...,z
n
W - z

0«)

If then in the passage from "J k to J the leading index Nk is ^ 0

we have

( 11 )
(k)2i^, z

i
k) =±a (z

n>=o v v -tt: ^
v v v

(k+l) (k) 2. aN v z
k

zNk = %k - = z„
k _

aNk
11k

- zo^
kt = ^

kt

(k)
(k)

r%
a-

®kNk

(k+l) _ z
(k)

'f- t
1

z' - = z'~‘ (k £ Nk ) .

Since here z,
(k+l) — 2

(k)
, ve see that the corresponding n -dimen-

sional vectors 5k. 5 k+l are connec 't e(i exactly by the formulae (5),

so that in this case there is no essential change compared with the

original method.

5. If however = 0, then only z o
(^0 i S changed and therefore all

components X]_( k )

,

. .

.

,xn ( k ) are changed by the same amount. In this

case we have obviously a new possibility and the question arises





b

whether in this case the convergence is indeed speeded up. Of course

under the convergence in this case is not meant the convergence of

the vectors but the convergence of the corresponding vectors 5k •

This question is apparently not as yet settled as widely contra-

dictory opinions are to be found in the literature.

6. In what follows we will prove that in the case of the relaxation

rule (8) the procedure remains convergent , and for n> 2 the con-

vergence is speeded up by Gauss' transformation "in the statistical

sense"
^
i f

< VT~ -Mm VaT“
r r

and is not speeded up in the same sense if

it. a ^ ZL-fT -
' ±77 rr

Kl
r-r-r w rp pu

The probability that the decrease of K(^) is greater for = 0

than for Nk >0 is always positive for some values A of

in the first case and vanishes in the second case.

For n = 2 Gauss ' device has no effect in the second case and

speeds up (this time in the "absolute" sense)" .

It is quite different in the case of the cyclic one step itera-

tion. In this case we will prove that the procedure remains con-

vergent, but for any n^2 there exists matrices for which the modi-

fied procedure is slower and others for which the modified procedure
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is indeed faster than the original one.^)

7. In what follows we will say the two (n+l) -dimensional vectors

J = (z
Q
,z1 , . . .

,zn ) and
'J'

= (

z

Q
»,

z

n
1

) are equivalent

if we have z^ - z
Q = z^ 1 - z 0

‘. In the class of vectors equivalent

to
"J

there exists a reduced one
~J

= (0,x^, . .

.

,xn ) and the corres-

ponding n dimension%lvector (x-^,...,xn ) is uniquely determined.

We have for the component of the residual vector corresponding to

the index 0

(11°) r0
W= £u ° ^ ^ “

- v= t v

and we see from (ll) and (11°) that the residual vector for the

system (10) does not depend on the component zQ but only on the cor-

responding vector . It follows from (9) and (6)

^ a zM = SET a (z00-zo 00) = - 2- r( k ) ,

ViO V V:| OV >>

n a

r r v ~ tn r
a
r
vJ~ a, -z z. =. >_

jV^-0 1

^ / n \

C

- ^
*

a x

i 0

v V--,
'

-
<“

5 B

V: \

r v r o>,) .)

ja-

- T” * > a x %— V c— yu.v p- J
V-

(
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( 12 )

n

a z z =
^ (i v

cl X. X .V
, .

z ^ h
’ 1 hVil

Q
. It is obvious that the algebraic identity corresponding to (7)o

remains also true for the system (10), although the corresponding

quadratic form is only semi -definite . Therefore and from (12) it

(k)
follows that the relation (7) is also true for 1% = 0 where r0

is given by (ll) , and the quadratic form K is the positive definite

quadratic form (6)

.

But then it follows

,(k)2

0 (k-j-oo)
,

(17)

a%Nk

Q
. If now the relaxation rule (8) is used, it follows obviously

(k)2

a
0 (k. -oo

’r
= 0,1, ...,n)

->0 h = 0, 1-,..-,*)

and therefore since
y^

= 0 and the determinant in (4) does not

vanish x ^)__

^

0 (k—>c>0; o = l,...,n), and we see that the
t
1 '

modified procedure in the case of the relaxation rule (8) is

always convergent

.

10. The rate of the convergence in this case can be measured

by the decreases of the quadratic form K(J k ) each step. But

then obviously the convergence is each time speeded up in choosing

% = 0 if we have
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{ 14 )

8

r (k)2
0 _ Max

cl
oo --v-r

a

.002
K

In estimating the probability of (14) we must of course assume
(

)that rQ ^ 0, that is to say, that is not = 0. But then one

of the rW ( |4
= l,2,...n) must vanish. For n = 2 there remains

only one r|k ) ^ 0. If for instance = 1, ipM = 0, we have

= - rQ ( k ) and (14) is true if and only if a00< a22 .

= 0, (14) is true if and only if a00 ^app. We see that In

the case a00 ^Max (app, aP2 ), (14) never occurs and Gauss' device

has no effect at all.

2

If however aQ0<[Max (ap-j_, a^) * the procedure is indeed speeded

up/' (and becomes cyclic if an additional convention is used for

all = a22 ) •

Suppose now n^>2. In order to estimate the probability of (14)

put
Max %- = m2

cl

tr
and ask for the probability of the inequality

yy. 2 v 2

a.‘oo

if one of the r (u-= l,...,n) is = 0. If we put
^ \
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(15) ex' = v/a m, ^ = s/a. m ,

p
o

v
oe,

we have to determine the probability of the inequality

r\

(16)

r
- r

u- >°<o -

= 1 V

in assuming that the r^ are independent variables, uniformly

distributed conformally to the condition

(17) Max ' = 1; V>0 (u = l,...,n; U. ^ = 0,

H--," C< t \ I %
r

where X= Wk _!.

11. In a previous paper C6 3 we have proved that the probability

F*(o-) of the inequality r^ +,,,+r^<’C“ under the condition

Max = 1, o<
. o(u = 1 N) for uniformly distributed r is

r-(-,K ** r v
t
4

given by the formula

N

F* (<r) =
+ -A 2V N-l

0< - o(L + +

and is a strictly monotonically increasing function of as long as

we have

(18)

N N

V-l Vi I

The symbolism used in the formula (18) is the following; we denote

by Iq.
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(19) k+
5

0

k t 0

k < 0

and by S

( 20 )

the displacement operator defined by

f(T-) = f (<J“- ^ )

The probability of (16) under the conditions (17) is therefore

( 21 )

where

(22) F(<T) =

2(1 - FK,) ,

\ 4S ^

for ^3" =o^. In the case n = 3, (22) becomes for ^- = 3, for instance,

i^ [(' • s*>- s”3h-

and more generally for any ^

- «r- * *0* )

.

(23)





It is easy to12. (21) is positive if and only if ^ .

® A
prove that

that is

(24)

m

“<<,< 2_\ =
u-1 r~

n

v/5°° < 2—
p

s i rn

Indeed (24) follows immediately from

since we have for u £ \)

satisfied even for one X only. Consider indeed the symmetric de-

terminant

1 x x

I

X 1 X

X x 1

the condition that the corresponding quadratic form is positive de-

finite is obviously x C 1 and we have here

= (x-1) 2 (2x + 1) ,

)
°<1= °<3=

> V 3 + 6 *
;

°<
0
= 4 3+ 6X



.

"• ’
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and we have hereof 4 and °^o > ©<—

^

if
. In

the general case (21) is positive for all X if we have

(25, a)

and (21) vanishes for all X if we have

n
(25,b) V ^ ^ - Min °<

"V= 1
v v

14. In the example considered by Gauss the matrix of the equations

(1) is

3 -1 -1 \

and we have with m = 1

“<;= 2, 0^= /3 , o^= 2, O^ - s/5, o< = 2 + 2/3 ,

and we have for every A : cV < o< - ©< and the nrobability (21) becomes
t> A

o< - o( 2 \I~S
~~ °^-

x *





13

This is .46410, .42265, .46410 according as A. = 1,2,3. The prob-

ability for Ujj. = 0 is therefore in this case > .42265, that is fairly

great, due to the a ^ ( ^ ^ >>> ) being negative.

15. "We consider now the cyclic case. Here it follows from (13)

rM 0 (

k

~ y )

and therefore from (5) and the corresponding formula for 3k arid-

Nk = 0.

x (k+l) _ x (k)
0 (k^ooj u. = l,...,n) ,

r- r*
r

and therefore by (4)

Pk+i) _ r
(k)

0> (k -*oo; M - 1, ...,n) .

^ r 1

Or more generally for each constant integer

r
i
k+if ) ' ri

k)
0 (k-*<sO; M =

f* r

h
But for any fixed ^ , among n+1 consecutive values of k there is

one for which Nk = ^ , therefore it follows that

(k -> 00 ; = 1, . . . ,n) ,

and, since the determinant in (4) does not vanish,

(k-.oo
; ^

= 1, . . ,,n) .

hk)-» 0

h

x^—> 0
r





T

r. see that the modified procedure is indee.. 3 *. -oversant

.

16. In comparing the rate of convergence of the ori inal and.

l le modified cyclic single step iteration it is better to change our

xG nations in the following way. If we start with a vector
^ 0

and apply the complete n -cycle of single steps corresponding to

Nr = l,...,n, the obtained vector will be denoted by and the
P -L

vectors obtained in repeating each time the complete n cycle will

be denoted by J 2 * ^ 3 » • • • •

In the same way, in the modified cyclic procedure we obtain,

starting from a vector ~^
0 and applying each time the whole (n-fl) eye

corresponding to II-^ = 0 , 1 ,..., n the sequence of vectors "J .. . .

17. The rate of convergence of the usual cyclic single step

iteration depends on the maximum modulus Ajj of the roots of the

equation

( 26 ) N ( Jp =

3, - • 6 ^
i

• -

u

1

> * a **

1 A a
n - , , -v a

! 7 a
V) , A a .

H 2.

9 , A 2

1 n

2
> r\

%
- 0

t !

n V- -

1

We have then, if A >0

( 07 \
\£- ( !

\ - KJ ( X
- a o

K J C -

)
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while the starting vector

4 \
not tend to 0 with k—>oc>. j

can be chosen so that ? tC does

18. We will now characterize in a similar way the rate of con-

vergence of the modified cyclic single step iteration.

We decompose A in the following way

where D is the diagonal matrix with the elements an,..., ann , while

in L all elements to the right and on the main diagonal and in L*

all elements to the left and on the main diagonal vanish. We have
A

/ Xthen for the matrix A of the system (10) the corresponding decom-

position

( 28 ) A = L + D + L* ,

Then we have between J0 and Jq_, as in the theory of the usual cyclic

one step iteration, the relations

(L+'b)-5 1 + L*T0 = 0 ,

(30) Jl - - (L + D)-1 i«T 0 •

19. As has been mentioned above the result of this operation

is not changed if To I s replaced by the corresponding reduced vector





To = (°> x
:

( 0 ) / Q \

, . . . ,xn
'

*
) . Before we go on from j i_ rep „ce

therefore ~J again by the corresponding reduced vector
'N

7 l « (o,x£1) , . . .
,xn
W

) . For this purpose we apply the trans-

formation - zQ ( m # n) which is equivalent to the mul-

tiplication by the matrix

¥e have then finally in putting

- -K„ (L + D)"1 L* ,

35)
A
T
Hi

- k A
' - 3 o ( k = 1,2,...)

we use now the following result due to Werner Gautschi

£

5 i

If for any matrix c = (c ) we define as its "norm”

and if B is a square matrix of the order n for which the greatest

modulus of the fundamental root Is 2\^ then ire have
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(34) N(Bk )
= 0 (y^ kP -1

) (k ->oo ) ,

where p is the greatest multiplicity of a fundamental root of B with

the modulusA .

21 o If we apply this to the singular matrix ( 32 ) and denote

the maximal modulus of a fundamental root of Q0 by A
g , the max-

imal multiplicity of a root with modulus Ag is 5 n -1 ifAg^ 0 , as will

follow later from (42) . We have therefore

(35) K (Q0
k

)
= 0(A?

3

On the other hand it follows from (35) in applying Cauchy-Schwartz in-

equality

Ipswon.'

and we obtain therefore

(36) !k 0(A„
k
kn_1 )

(k->oo
)

22 <, On the other hand it is easy to show that for a conveniently
A Cl y

chosen starting vector 0 the expression
j y ^ does not tend to

zero Indeed if is an eigenvector of Q0 corresponding to a funda-

mental root A with l*|-* g, we have

and iterating
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But, since the first row in Q0 consists of zeros, the vector^ is a

reduced one and can be taken as . Then we have

Ik - x
k
T W = (jt)

k
T

and this does not tend to zero with k—

2J>, We are going now to transform the fundamental equation of Q0

and introduce for this purpose the matrix

which corresponds to the transformation

(38) r0 = fV \ = S- Z
,

(
» > °)

and goes for £ 0 into N0 . Since the inverse of ( 58 ) is for

f Os

z
0 = J y0 > 2 v = \ ~ yQ ( 'O 0 )

we have



n..I
-
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(39) N
-1

0 . . .0

1 . . .0

0 0 + 9

0 . . .1

Oo . .0

\

0

1

The fundamental equation of Q0 can "^e written in the form

(40) Lim \ /\.E + N (L + 'b)
1

L* 1 = 0 .

24 „ On the other hand we have identically since
)
N

|

= &

(41) ( |
L + D

| ^ f | A E + I (L +l>)~
1
L*f) = &\ (iftD)N^

1
+ L*

|

and obtain therefore the fundamental equation of Q in taking the limit

for f-)0 on the right in (4l) .

Now we have

1 a
£

00
0 * •

0 0

f(a. +a- 1£ x
lo II

1
a

•I

0 0 0

e • » » »
&r

z(b +.,tl )* Mo n-in-l

a
h-i i

^ . .
H-l z.

a 0

~r (a +
. • + a.

e v ^ 0 liny)

3-M
a. • *

2.

a a /
r\ ^ /
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where a + a + . ,± a
no * i n

n

0 by (9) and we have therefore identically

tkct^M'+LT- a:

cL
0 0

a
0 \

a
o-a.

"*

a + a
lo IJ

A a
11

a
.v

•

a. +• a + a
10 2 1 i-i.

A a.
m

0 9 * »

a. +. .+ 2 A a.
\w-| In— * 1 vv-l E»

0 a_
>> »

a
n z.

a 2
oh-

1 no

IV>-| 'h

a 2
Zr\-\ ZY\

2.
*>-1

•'-i n-i ^

2 a
«h-| VI irj

^Q> ^"
S ^iere^01’e maxi^uKi modulus of the fundamental roots of the

equation

a_
0 o

a
\o \ t

(*2) GOO

O I

xa
M

a +..+ a
h . 1

V>-> 0 -I n *l 1

0 cL
Vi

|

* a.
0 \n~\

<9 ®

o n

a
u-i » n

A a a
h-m-i n-t n

a.
w h-1 h n

- o
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25 . In specializing for n = 2 we obtain in particular
3 if we put

a12 = a22 = &2 3 a12 = a21 ”
'o~ anc^- assume q

-
/ 0 for

G :
/*-) 5

2.

ai + a2 + 2 -a^ - CT -a
2 - (p

- cr ai
“*

0 0" a2

(45)

- Cap +a2 + 2 “) a
2 X- - p (a 2. 'Kr) ( a2 +Cr) >

C a <a (a + a + ^
1 2. I

"2-

while the equation for

n
2 U)

A N reduces

_
Aa or* I

Aa2

to

= 0

and gives

(44)
a-j a

2

From (45) and (44) we have

It. - I a-i-t^ri I

\ I o-l (a., -v a.
z + jt)

( 45 )





26. If we square this, subtract 1 and. multiply by the square

of the denominator we obtain

[ ( i*r)( 4^ q-) - iyw 1
] [ ( i,^)( 1+t) -+ <r(a 1+ a.p+ z<r J

] =

^ + 3^ 1
).

Since the first factor is positive, we see that Aq =^jj according

as the second factor is = 0, but this factor is ~( a. 7. ^7 ) (<3. vZt) — <T

and we see that 'X

q

according as

(46) a1 + 2cr) (a2 + 2 3") =- cj“

9 ^
Here qp ^ 0 is subject only to the condition 0“ < ^-,3*2

In particular for CT > 0 we have always A^. ^A^. ¥e see that for
7y

2 71 can be as well > A as C A
) Gr H N /) Or

27 . To prove the corresponding result for n>2 consider the matrix

A corresponding to the quadratic form

(47) K(^) - a^ Xj_ + 2q'x
1
x2 + a2x 2

2 +
VO

In the corresponding determinant

first column are

(--3 h
for G(/L) the elements in the

^
o + a

|M. 1 + 0 • «+a — "(a + . . .+a )

f

Ain

and vanish therefore for k i 2. The same is true for the elements





to the left of the main diagonal A <3. with i*. > 2 and and th
I**

is
I

|

elements a ( \>< n), while the elements on the diagonal A a

and & n become respectively A- and 1. we obtain therefore

i i u >
/r i

G(7l) »2 (a)

so that A a is in this case given also by (tyjj) .

28. In the same way it follows from (26) that H in our caseA
is equal to A n_1 m2 (a) and therefore A pj

is given by (44) . We

can have therefore in this case according to the chosen values of

CP as well A q >A ^ as well G ^^ N *

It may be finally remarked that the value of A,, is not changed

if the (n+l) equation in (10) and the corresponding new variable

z0 are not put at the beginning but interpolated between two Indices

|u, 3 U + 1 or even put at the end. Indeed this amounts to the old

process applied to a transformation of T by a finite sequence of
/s J U

single step iterations, but then 0 is carried over in the general

reduced vector and the Invariency of /t q follows then from the

characterization of A n contained in the development of numbers 21





Footnotes

This special rule goes hack to F. R. Helmert (1872) [ 5 *] . The

relaxation rule indicated previously by Gauss [G and Gerling DO
is different as well as that proposed by Southwell 0-G , but the

rule (8) is apparently the most advantageous one.

The same result was proved, 1949, by E. Reich [ J~\ independently

and with a completely different method .j^The proof of it is

quite similar as in what follows the proof of the corresponding

results for the modified single step iterations, (see (35))*

If - 0,, then already J n vanishes identically and the
in)

solution is obtained at the most n steps,

5. If q. = 0, then already 3 n+l vani sbes identically. |3.This

agrees with the results mentioned in the paper [ia] of Forsythe

and Motzkin, footnote 24.
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