NATIONAL BUREAU OF STANDARDS REPORT

1977

On Gauss' Speeding Up Device in the Theory of Single Step Iteration

by
A. M. Ostrowskí

American University and University of Basle, Switzerland

NBS
U. S. DEPARTMENT OF COMMERCE NATIONAL BUREAU OF STANDARDS

U. S. DEPARTMENT OF COMMERCE

NATIONAL BUREAU OF STANDARDS

A. V. Astin, Director

THE NATIONAL BUREAU OF STANDARDS

The scope of activities of the National Bureau of Standards is suggested in the following listing of the divisions and sections engaged in technical work. In general, each section is engaged in specialized research, development, and engineering in the field indicated by its title. A brief description of the activities, and of the resultant reports and publications, appears on the inside of the back cover of this report.
Electricity. Resistance Measurements. Inductance and Capacitance. Electrical Instruments. Magnetic Measurements. Applied Electricity. Electrochemistry.
Optics and Metrology. Photometry and Colorimetry. Optical Instruments. Photographic Technology. Length. Gage.

Heat and Power. Temperature Measurements. Thermodynamics. Cryogenics. Engines and Lubrication. Engine Fuels. Cryogenic Engineering.
Atomic and Radiation Physics. Spectroscopy. Radiometry. Mass Spectrometry. Solid State Physics. Electron Physics. Atomic Physics. Neutron Measurements. Infrared Spectroscopy. Nuclear Physics. Radioactivity. X-Rays. Betatron. Nucleonic Instrumentation. Radiological Equipment. Atomic Energy Commission Instruments Branch.
Chemistry. Organic Coatings. Surface Chemistry. Organic Chemistry. Analytical Chemistry. Inorganic Chemistry. Electrodeposition. Gas Chemistry. Physical Chemistry. Thermochemistry. Spectrochemistry. Pure Substances.

Mechanics. Sound. Mechanical Instruments. Aerodynamics. Engineering Mechanics. Hydraulics. Mass. Capacity, Density, and Fluid Meters.
Organic and Fibrous Materials. Rubber. Textiles. Paper. Leather. Testing and Specifications. Polymer Structure. Organic Plastics. Dental Research.
Metallurgy. Thermal Metallurgy. Chemical Metallurgy. Mechanical Metallurgy. Corrosion. Mineral Products. Porcelain and Pottery. Glass. Refractories. Enameled Metals. Concreting Materials. Constitution and Microstructure. Chemistry of Mineral Products.

Building Technology. Structural Engineering. Fire Protection. Heating and Air Conditioning. Floor, Roof, and Wall Coverings. Codes and Specifications.
Applied Mathematics. Numerical Analysis. Computation. Statistical Engineering. Machine Development.
Electronics. Engineering Electronics. Electron Tubes. Electronic Computers. Electronic Instrumentation.
Radio Propagation. Upper Atmosphere Research. Ionospheric Research. Regular Propagation Services. Frequency Utilization Research. Tropospheric Propagation Research. High Frequency Standards. Microwave Standards.
Ordnance Development.
Electromechanical Ordnance. Electronic Ordnance. testing, and evaluation of a wide variety of ordnance matériel. Special skills and facilities of other NBS divisions also contribute to this program. The activity is sponsored by the Department of Defense.

Missile Development. Missile research and development: engineering, dynamics, intelligence, instrumentation, evaluation. Combustion in jet engines. These activities are sponsored by the Department of Defense.

- Office of Basic Instrumentation

These three divisions are engaged in a broad program of research and development in advanced ordnance. Activities include basic and applied research, engineering, pilot production, field

Abstract

^[]

NATIONAL BUREAU OF STANDARDS REPORT NBS PROJECT

October 8, 1952

On Gauss' Speeding Up Device in the Theory of Single Step Iteration
by
A. M. Ostrowski

American University
and
University of Basle, Switzerland

The publication, reprinting, or reproduction of this report in any form, either in wholelor in part, is prohibited unless permission is obtained In writing from the Office of theDlrector, National Bureau of Standards, Washington 25, D. C. Such permission is not needed, however, by a Government agency for which a report has been specifcally prepared if that agency wishes to reproduce additional copies of that particular report for its own use.

On Gauss' Speeding Up Device in the Theory of Single Step Iteration

by
A. M. Ostrowski*

1. In solving the linear system
(1)

$$
\sum_{\nu=1}^{n} a_{\mu \nu} x_{\nu}=J_{\mu} \quad(\mu=I, \ldots, n)
$$

with the matrix $A, a_{\mu \mu} \neq 0(\mu=1, \ldots, n)$ and non vanishing determinant by the single step iteration we form,
starting from an arbiter: vector ξ_{0}, a sequence of vectors

$$
\begin{equation*}
\xi_{k}=\left(x_{1}(k), \ldots, x_{n}^{(k)}\right) \quad(k=1,2, \ldots) \tag{2}
\end{equation*}
$$

obtained in the following way: for any integer k ($k \geqq 0$) choose a value N_{k} of the "leading index" from the indices $1, \ldots, n$; then if

$$
\begin{equation*}
\rho_{k}=\left(r_{1}^{(k)}, \ldots, r_{n}^{(k)}\right) \quad(k=0,1,2, \ldots) \tag{3}
\end{equation*}
$$

is the k-th residual vector defined by

[^1]\[

$$
\begin{equation*}
r_{\mu}^{(k)}=\sum_{\nu=1}^{n} a_{\mu \nu} x_{\nu}^{(k)}-y_{\mu} \quad(\mu=1, \ldots, n ; k=0,1, \ldots) \tag{4}
\end{equation*}
$$

\]

we put

$$
\begin{equation*}
x_{\mu}^{(k+1)}=x_{\mu}^{(k)}\left(\mu \neq \mathbb{N}_{k}\right), \quad x_{N_{k}}^{(k+1)}=x_{N_{k}}^{(k)}-\frac{r_{N_{k}}^{(k)}}{a_{N_{k}} \mathbb{N}_{k}} . \tag{5}
\end{equation*}
$$

In studying this iteration, we will only consider the case where all y_{μ} vanish, since we can always by a convenient change of the origin make all $\mathrm{y}_{\mu}=0$, without changing the ρ_{k}.
2. We consider in what follows only the case where the matrix of the system (1) is symmetric and the quadratic form

$$
\begin{equation*}
k(\xi)=\sum_{\mu, \nu=1}^{n} a_{\mu} \nu x_{\mu} x_{\nu} \tag{6}
\end{equation*}
$$

defined for an arbitrary vector $\xi=\left(x_{1}, \ldots, x_{n}\right)$, is positive definite. In this case it is well know and immediately verified that if the vector ξ_{k+1} is obtained from the vector ξ_{k} by the transformation (5), we have

$$
\begin{equation*}
K\left(\xi_{k+1}\right)=K\left(\xi_{k}\right)-\frac{r_{N_{k}}^{(k) 2}}{a_{N_{k} \mathbb{N}_{k}}} \tag{7}
\end{equation*}
$$

In using (7) it was proved by Seidel, 1874 [9], that the single step iteration is always convergent if N_{k} is chosen at each step so that

This is the "relaxation" procedure ${ }^{l}$). On the other hand schmetdler (1.949) proved in using $[8]^{2}$), (7) that the single step procedure is convergent in the cyclic case when N_{k} runs periodically through all indices $1,2, \ldots, n$.
3. Gauss [2] , [1], [4] proposed the following modification of the above procedure in order to speed up the convergence. Put

$$
\begin{gather*}
x_{\nu}=z_{\nu}-z_{0} ; a_{0 \nu}=a_{\nu 0}=-\sum_{\mu=1}^{n} a_{\nu \mu} \quad(\nu=1, \ldots, n) \tag{9}\\
a_{00}=-\sum_{\nu=1}^{n} a_{0 \nu}=\sum_{\mu, \nu=1}^{n} a_{\mu \nu},
\end{gather*}
$$

where z_{0} can be arbitrarily chosen. Then the system (1) can be written in the form (assuming $y_{\mu}=0$)

$$
\begin{align*}
& \sum_{\nu=0}^{n} a_{0 \nu} z_{\nu}=0 \tag{10}\\
& \sum_{\nu=0}^{n} a_{\mu \nu} z_{\nu}=0 \quad(\mu=1, \ldots, n),
\end{align*}
$$

where the first equation is, of course, not independent of the last n equations but is useful for the sake of uniformity and for checking purposes.

In particular a_{00} is positive since by (9) a_{0} is the value of the quadratic form (6) for $x_{\nu}=l(\nu=1, \ldots, n)$.
4. From a solution ($z_{0}, z_{1}, \ldots, z_{n}$) of the system (10) we obtain at once by (9) the solution $\left(x_{1}, \ldots, x_{n}\right)$ of the system (1). The idea of Gauss is now to apply the procedure, described in (4) and (5), to the system (10). If we obtain then, starting from a vector

$$
\begin{gathered}
J_{0}=\left(z_{0}^{(0)}, z_{l}(0), \ldots, z_{n}^{(0)}\right) \text { a sequence of the vectors } \\
\zeta_{k}=\left(z_{0}(k), z_{1}(k), \ldots, z_{n}(k)\right)
\end{gathered}
$$

we consider at the same time the corresponding vectors

$$
\xi_{k}=\left(z_{1}(k)-z_{0}^{(k)}, z_{2}^{(k)}-z_{0}^{(k)}, \ldots, z_{n}^{(k)}-z_{0}^{(k)}\right)
$$

If then in the passage from J_{k} to J_{k+1} the leading index N_{k} is $\neq 0$ we have

$$
\begin{align*}
& \sum_{\nu=0}^{n} a_{\mu \nu} z_{\nu}^{(k)}=\sum_{\nu=1}^{n} a_{\mu \nu}\left(z_{\nu}^{(k)}-z_{0}^{(k)}\right)=r_{\mu}^{(k)}(\mu=1, \ldots, n) \tag{11}\\
& z_{N_{k}}^{(k+1)}=z_{N_{k}}(k)-\frac{\sum_{\nu=0}^{n} a_{N_{k}} \nu^{z} \nu^{k}}{a_{N_{k}} N_{k}}=z_{N_{k}}(k)-\frac{r_{N_{k}}(k)}{a_{N_{k}} N_{k}} \\
& z_{\mu}^{(k+l)}=z_{\mu}^{(k)} \quad\left(k \neq N_{k}\right) .
\end{align*}
$$

Since here $z_{0}{ }^{(k+1)}=z_{0}{ }^{(k)}$, we see that the corresponding n-dimensional vectors ξ_{k}, ξ_{k+1} are connected exactly by the formulae (5), so that in this case there is no essential change compared with the original method.
5. If however $\mathrm{I}_{\mathrm{k}}=0$, then only $\mathrm{z}_{0}(\mathrm{k})$ is changed and therefore all components $x_{1}(k), \ldots, x_{n}(k)$ are changed by the same amount. In this case we have obviously a new possibility and the question arises

Whether in this case the convergence is indeed speeded up. Of course under the convergence in this case is not meant the convergence of the vectors J_{k} but the convergence of the corresponding vectors ξ_{k}. This question is apparently not as yet settled as widely contradictory opinions are to be found in the literature.
6. In what follows we will prove that in the case of the relaxation rule (8) the procedure remains convergent, and for $n>2$ the convergence is speeded up by Gauss' transformation "in the statistical sense", if

$$
\sqrt{\sum_{\mu, v=1}^{n} a_{\mu \nu}}<\sum_{\mu=1}^{n} \sqrt{a_{\mu \mu}}-M_{\mu} \sqrt{a_{\mu \mu}}
$$

and is not speeded up in the same sense if

The probability that the decrease of $K\left(\xi_{k}\right)$ is greater for $N_{k}=0$ than for $N_{k}>0$ is always positive for some values λ of N_{k-1} in the first case and vanishes in the second case.

For $\mathrm{n}=2$ Gauss' device has no effect in the second case and speeds up (this time in the "absolute" sense)".

It is quite different in the case of the cyclic one step iteration. In this case we will prove that the procedure remains convergent, but for any $n \geqslant 2$ there exists matrices for which the modified procedure is slower and others for which the modified procedure
is indeed faster than the original one. ${ }^{3}$)
7. In what follows we will say the two $(n+1)$-dimensional vectors $J=\left(z_{0}, z_{1}, \ldots, z_{n}\right)$ and $J^{\prime}=\left(z_{0}^{\prime}, z_{1}, \ldots, z_{n}^{\prime}\right)$ are equivalent
if we have $z_{\nu}-z_{0}=z_{\nu}^{\prime}-z_{0}^{\prime}$. In the class of vectors equivalent to 3 there exists a reduced one $\hat{\zeta}=\left(0, x_{1}, \ldots, x_{n}\right)$ and the corvesponding n dimensiondvector $\xi=\left(x_{1}, \ldots, x_{n}\right)$ is uniquely determined.

We have for the component of the residual vector corresponding to the index 0
(110) $\quad r_{0}{ }^{(k)}=\sum_{\nu=0}^{n} a_{0 \nu} z_{\nu}(k)=\sum_{\nu=1}^{n} a_{0 \nu}\left(z_{\nu}(k)-z_{0}(k)\right)=-\sum_{\nu=1}^{n} r_{\nu}(k)$,
and we see from (11) and (IIO) that the residual vector for the system (10) does not depend on the component z_{0} but only on the corresponding vector ξ. It follows from (9) and (6)

$$
\begin{aligned}
\sum_{\mu, \nu=0}^{n} a_{\mu \nu} z_{\mu} z_{\nu} & =\sum_{\mu=0}^{n} z_{\mu} \sum_{\nu=0}^{n} a_{\mu \nu} z_{\nu} \\
& =\sum_{\mu=0}^{n} z_{\mu}\left(\sum_{\nu=1}^{n} a_{\mu \nu} z_{\nu}+a_{\mu \Delta} z_{0}\right) \\
& =\sum_{\mu=0}^{n} z_{\mu} \sum_{\nu=1}^{n} a_{\mu \nu} x_{\nu}=\sum_{\nu=1}^{n} x_{\nu} \sum_{\mu=0}^{n} a_{\mu \nu} z_{\mu \nu} \\
& =\sum_{\nu=1}^{n} x_{\nu}\left(\sum_{\mu=1}^{n} a_{\mu \nu} z_{\mu}+a_{0 \nu} z_{0}\right) \\
& =\sum_{\nu=1}^{n} x_{\nu} \sum_{\mu=1}^{n} a_{\mu \nu} x_{\mu},
\end{aligned}
$$

$$
\begin{equation*}
\sum_{\mu, \nu=0}^{n} a_{\mu \nu}^{z} \mu z_{\nu}=\sum_{\mu, \nu=1}^{n} a_{\mu \nu} \mu_{\mu} x_{\nu} . \tag{12}
\end{equation*}
$$

8. It is obvious that the algebraic identity corresponding to (7) remains also true for the system (10), although the corresponding quedratic form is only semi-definite. Therefore and from (l2) it follows that the relation (7) is also true for $\mathbb{N}_{k}=0$ where $r_{0}(k)$ is given by (ll), and the quadratic form K is the positive definite quadratic form (6). But then it follows

$$
\begin{equation*}
\frac{r_{N_{k}}(k)^{2}}{a_{N_{k}} N_{k}} \rightarrow 0 \tag{13}
\end{equation*}
$$

9. If now the relaxation rule (8) is used, it follows obviously

$$
\frac{r_{\mu}^{(k) 2}}{a_{\mu \mu}} \underset{I_{\mu}^{(k)} \rightarrow O}{\rightarrow} 0(k \rightarrow \infty ; \mu=0,1, \ldots, n)
$$

and therefore since $y_{\mu}=0$ and the determinant in (4) does not $\operatorname{vanish} \underset{\mu}{(k)} \rightarrow 0 \quad(k \rightarrow \infty ; \mu=1, \ldots, n)$, and we see that the modified procedure in the case of the relaxation rule (8) is always convergent.
10. The rate of the convergence in this case can be measured by the decreases of the quadratic form $K\left(\xi_{k}\right)$ at each step. But then obviously the convergence is each time speeded up in choosing $\mathbb{N}_{k}=0$ if we have

$$
\begin{equation*}
\frac{r_{0}^{(k) 2}}{a_{00}}>\operatorname{Max} \operatorname{Max}_{\mu=1, \ldots, n} \frac{r_{\mu}^{(k) 2}}{a_{\mu \mu}} \tag{14}
\end{equation*}
$$

In estimating the probability of (14) we must of course assume that $r_{0}{ }^{(k)} \neq 0$, that is to say, that $\mathbb{N}_{k}-1$ is not $=0$. But then one of the $r_{\mu}^{(k)}(\mu=1,2, \ldots n)$ must vanish. For $n=2$ there remains on id one $r_{\mu}(k) \neq 0$. If for instance $N_{k-1}=I, r_{1}(k)=0$, we have $r_{2}(k)=-r_{0}(k)$ and (14) is true if and only if $a_{00}<a_{22}$. If $r_{2}(k)=0,(14)$ is true if and only if $a_{00}<211$. We see that in the case $a_{00}>\operatorname{Max}\left(a_{11}, a_{22}\right)$, (14) never occurs and Gauss' device has no effect at all. 3

If however $a_{00}<\operatorname{Max}\left(a_{11}, a_{22}\right)$, the procedure is indeed speeded up. ${ }^{3}$ (and becomes cyclic if an additional convention is used for $\left.a_{11}=a_{22}\right)$.

Suppose now $n>2$. In order to estimate the probability of (14) put

$$
\operatorname{Max} \frac{r_{\mu}^{2}}{a_{\mu \mu}}=m^{2}
$$

and ask for the probability of the inequality

$$
\frac{\left(\sum_{1=1}^{n} r_{n}\right)^{2}}{a_{00}}>m^{2}
$$

if one of the $r_{\mu}(\mu=1, \ldots, n)$ is $=0$. If we put

$$
\begin{equation*}
\alpha_{\mu}=\sqrt{a_{\mu \mu}} m, \alpha_{0}=\sqrt{a_{\Delta \Delta}} m, \tag{15}
\end{equation*}
$$

we have to determine the probability of the inequality

$$
\begin{equation*}
\sum_{\mu=1}^{n} r_{\mu}>\alpha_{0}, \tag{16}
\end{equation*}
$$

in assuming that the r_{μ} are independent variables, uniformly distributed conformally to the condition
(17) $\quad \operatorname{Max} \quad \frac{\left|r_{\mu}\right|}{\alpha_{\mu}=1, \ldots, n}=1 ; \quad \alpha_{\mu}>0(\mu=1, \ldots, n ; \mu \neq \lambda) ; \alpha_{\lambda}=0$,
where $\boldsymbol{\lambda}=\mathrm{N}_{\mathrm{k}-\mathrm{I}}$.
11. In a previous paper [6] we have proved that the probability $F^{*}(\sigma)$ of the inequality $r_{I}+,,,+r_{\mathbb{N}}<\sigma$ under the condition
$\operatorname{Max}_{\mu=1, ., N} \frac{r_{\mu}}{\alpha_{\mu}}=1, \alpha_{\mu} O(\mu=I, \ldots, N)$ for uniformly distributed r_{μ} is given by the formula

$$
\begin{gathered}
F *(\sigma)=\frac{1}{(N-1)!2^{N}} \frac{1}{\alpha_{1} \ldots \alpha_{N}\left(\frac{1}{\alpha_{1}}+\ldots+\frac{1}{\alpha_{N}}\right)} \sum_{\mu=1}^{N} \frac{1+S^{2 \alpha_{\mu}}}{1-S^{2 \alpha_{\mu}}} \prod_{\nu=1}^{N}\left(1-S^{2 \alpha_{\nu}}\right)(\alpha+\sigma)^{N-1}+ \\
\alpha=\alpha_{1}+\ldots+\alpha_{N}
\end{gathered}
$$

and is a strictly monotonically increasing function of σ as long as we have

$$
\begin{equation*}
-\sum_{\nu=1}^{N} \alpha_{\nu} \leqslant \sigma \leqslant \sum_{\nu=1}^{N} \alpha_{\nu} \tag{18}
\end{equation*}
$$

The symbolism used in the formula (18) is the following; we denote by k_{+}
(19)

$$
k_{+}= \begin{cases}k & k \geqq 0 \\ 0 & k<0\end{cases}
$$

and by S^{2} the displacement operator defined by

$$
\begin{equation*}
s^{\eta} f(\sigma)=f(\sigma-\eta) \tag{20}
\end{equation*}
$$

The probability of (16) under the conditions (17) is therefore

$$
\begin{equation*}
2\left(1-F\left(\alpha_{0}\right),\right. \tag{21}
\end{equation*}
$$

where

$$
\text { (22) } F(\sigma)=\frac{2^{-n+1}}{(n-2)!} \frac{1}{\alpha_{1} \ldots \alpha_{n}} \frac{1}{\sum_{v=1}^{n} \frac{1}{\alpha_{\nu} \alpha_{\lambda}}-\frac{1}{\alpha_{\lambda}^{2}}} \sum_{\substack{\mu=1 \\ \mu=\lambda}}^{n} \frac{1+s^{2 \alpha_{\mu}}}{\left(1-s^{2 \alpha_{\mu}}\right)\left(1-s^{2 \alpha_{\lambda}}\right)} \prod_{v=1}^{n}\left(1-s^{2 \alpha_{v}}\right)\left(\alpha_{\lambda}-\alpha_{\lambda}+\sigma\right)^{n-2}+
$$

for $\sigma=\alpha$. In the case $n=3$, (22) becomes for $\lambda=3$, for instance,

$$
\frac{1}{4} \frac{1}{\alpha-\alpha_{3}}\left[\left(1+s^{2 \alpha_{1}}\right)\left(1-s^{2 \alpha_{2}}\right)+\left(1+s^{2 \alpha_{2}}\right)\left(1-s^{2 \alpha_{1}}\right)\right]\left(\alpha-\alpha_{3}+\sigma\right)_{t}=\frac{1}{2} \frac{1}{\alpha-\alpha_{3}}\left(1-s^{2\left(\alpha-\alpha_{3}\right)}\right)\left(\alpha-\alpha_{3}+\sigma\right)_{+}
$$

and more generally for any λ
(23) $\quad \frac{1}{2} \frac{1}{\alpha-\alpha_{\lambda}}\left[\left(\sigma+\alpha-\alpha_{\lambda}\right)_{+}-\left(\sigma-\alpha+\alpha_{\lambda}\right)_{+}\right]$.
12. (21) is positive if and only if $\alpha_{0}<\alpha-\alpha_{\lambda}$. It is easy to prove that

$$
\alpha_{0}<\sum_{\mu=1}^{n} \alpha_{\mu}=\alpha
$$

that is
(24)

$$
\sqrt{a_{00}}<\sum_{\mu=1}^{n} \sqrt{a_{\mu \mu}}
$$

Indeed (24) follows immediately from

$$
\left|a_{o 0}\right| \leqq \sum_{\mu=1}^{n}\left|a_{\mu \mu}\right|+\sum_{\substack{\mu, \nu=1 \\ \mu \neq \nu}}^{n}\left|a_{\mu \nu}\right|<\sum_{\mu=1}^{n} a_{\mu \mu}+\sum_{\substack{\mu, \nu=1 \\ \mu \neq \nu}}^{n} \sqrt{a_{\mu \mu}} \sqrt{a_{\nu \nu}}=\left(\sum_{\mu=1}^{n} \sqrt{a_{\mu \mu}}\right)^{2},
$$

since we have for $\mu \neq \nu$

$$
a_{\mu \mu} a_{\nu \nu}-a_{\mu \nu}{ }^{2}>0 \quad(\mu \neq \nu)
$$

On the other hand the inequality $\alpha_{0}\left\langle\alpha-\alpha_{\lambda}\right.$ is not necessarily satisfied even for one λ only. Consider indeed the symmetric determinent

$$
\left|\begin{array}{lll}
1 & x & x \\
x & 1 & x \\
x & x & 1
\end{array}\right|=(x-1)^{2}(2 x+1)
$$

the condition that the corresponding quadratic form is positive definite is obviously $-\frac{1}{2}<x<1$ and we have here

$$
\alpha_{1}=\alpha_{2}=\alpha_{3}=1, \quad a_{0}=3+6 x, \quad \alpha_{0}=\sqrt{3+6 x}
$$

and we have here $\alpha_{0}\left\langle\alpha-\alpha_{\lambda}\right.$ if $x\left\langle\frac{1}{6}\right.$ and $\left.\alpha_{0}\right\rangle \alpha-\alpha_{\lambda}$ if $\left.x\right\rangle \frac{1}{6}$. In the general case (21) is positive for all λ if we have $(25, a)$

$$
\alpha_{0}<\sum_{\nu=1}^{n} \alpha_{\nu}-\operatorname{Max}_{\nu} \alpha_{\nu}
$$

and (21) vanishes for all λ if we have
$(25, b)$

$$
\alpha_{0} \geqq \sum_{\nu=1}^{n} \alpha_{\nu}-\operatorname{Min}_{\nu} \alpha_{\nu}
$$

14. In the example considered by Gauss the matrix of the equations
(I) is

$$
\left(\begin{array}{rrr}
3 & -1 & -1 \\
-1 & 4 & -1 \\
-1 & -1 & 3
\end{array}\right)
$$

and we have with $m=1$

$$
\alpha_{0}=2, \alpha_{1}=\sqrt{3}, \alpha_{2}=2, \alpha_{3}=\sqrt{3}, \alpha=2+2 \sqrt{3}
$$

and we have for every $\lambda: \alpha_{0}<\alpha-\alpha_{\lambda}$ and the probability (21) becomes

$$
1-\frac{\alpha_{0}}{\alpha-\alpha_{2}}=1-\frac{2}{2+2 \sqrt{3}-\alpha_{\lambda}}
$$

This is $.46410, .42265, .46410$ according as $\lambda=1,2,3$. The probability for $\mathbb{N}_{k}=0$ is therefore in this case $>.42265$, that is fairly great, due to the $a_{\mu \nu}(\mu \neq \nu)$ being negative.
15. We consider now the cyclic case. Here it follows from (13)

$$
r_{N_{k}}^{(k)} \rightarrow 0 \quad(k \rightarrow \infty)
$$

and therefore from (5) and the corresponding formula for J_{k} and. $\mathbb{N}_{k}=0$ 。

$$
x_{\mu}^{(k+1)}-x_{\mu}^{(k)} \rightarrow 0 \quad(k \rightarrow \infty ; \mu=1, \ldots, n)
$$

and therefore by (4)

$$
r_{\mu}^{(k+1)}-r_{\mu}^{(k)} \rightarrow 0 . \quad(k \rightarrow \infty ; \mu=1, \ldots, n)
$$

Or more generally for each constant integer γ

$$
r_{\mu}^{(k+\gamma)}-r_{\mu}^{(k)} \rightarrow 0 \quad(k \rightarrow \infty ; \mu=1, \ldots, n)
$$

But for any fixed μ, among $n+l$ consecutive values of k there is one for which $\mathbb{N}_{K}=\mu$, therefore it follows that

$$
\underset{\mu}{(k)} \rightarrow 0 \quad(k \rightarrow \infty ; \mu=1, \ldots, n),
$$

and, since the determinant in (4) does not vanish,

$$
x_{\mu}^{(k)} \rightarrow 0 \quad(k \rightarrow \infty ; \mu=1, \ldots, n)
$$

- see that the modified procedure is inge overeat.

16. In comparing the rate of convergence of the ort ing and , Le modified cyclic single step iteration it is better to change our acutions in the following way. If we stem with a vector ξ o and apply the complete $n-c y c l e$ of single steps corresponding to $M_{k}=1, \ldots, n$, the obtained vector will be denoted by ξI and the rectors obtained in repeating each time the complete n cycle will be denoted by $\xi_{2}, \xi z, \ldots$.

In the same way, in the modified cyclic procedure we obtain, starting from a vector To and applying each time the whole $(n+1)$ cycle corresponding to $I_{k}=0,1, \ldots, n$ the sequence of vectors $\mathcal{I}_{1}, J_{2}, \ldots$.
17. The rate of convergence of the usual cyclic single step iteration depends on the maximum modulus $\lambda_{\text {il }}$ of the roots of the equation
(26) $N(\lambda) \equiv\left|\begin{array}{ccccc}\lambda a_{11} & a_{12} & \cdots & a_{n-1} & a_{1 n} \\ \lambda a_{21} & \lambda a_{22} & \cdots & a_{2 n-1} & a_{2 n} \\ \cdots & , & \cdots & \cdots & \vdots \\ \lambda a_{n-1} & \lambda a_{n-1} & \cdots & 1 & a_{n-1} \\ \lambda a_{n 1} & \lambda a_{n 2} & \cdots & \lambda_{1} a_{n n-1} & \lambda a_{n}\end{array}\right|=0$

We have then, if $\lambda \geqslant 0$
(27)

$$
\xi_{k}=O\left(\lambda_{N}^{k} k^{\cdots-\hat{2}}\right) \quad(11 * \cdots)
$$

while the starting vector ξ_{0} can be chosen so that $\xi_{K} \lambda_{N}^{-k}$ does not tend to 0 with $k \rightarrow \infty .^{4}$)
18. We will now characterize in a similar way the rate of convergence of the modified cyclic single step iteration.

We decompose A in the following way

$$
\begin{equation*}
A=L+D+L^{*} \tag{28}
\end{equation*}
$$

where D is the diagonal matrix with the elements all,.... $a_{n n}$, while in L all elements to the right and on the main diagonal and in L^{*} all elements to the left and on the main diagonal vanish. We have then for the matrix \hat{A} of the system (10) the corresponding decomposition

$$
\hat{A} \equiv\left(\begin{array}{ll}
a_{00} & a_{0} \nu \tag{29}\\
a_{V O} A
\end{array}\right)=\hat{L}+\hat{D}+\hat{L}^{*}
$$

Then we have between J_{0} and J_{1}, as in the theory of the usual cyclic one step iteration, the relations

$$
\begin{align*}
& (\hat{I}+\hat{D}) \zeta_{1}+\hat{I} * \zeta_{0}=0, \\
& J_{1}=-(\hat{I}+\hat{D})^{-I} \hat{L} * 了_{0} \tag{30}
\end{align*}
$$

19. As has been mentioned above the result of this operation is not changed if T_{0} is replaced by the corresponding reduced vector

$$
\left.\hat{J}_{0}=\left(0, x_{1}(0), \ldots, x_{n}^{(0)}\right) \text {. Before we go on Prom }\right]_{1} \text {, wo replace }
$$

therefore J_{I} again by the corresponding reduced vector $\widehat{\zeta}_{I}=\left(0, x(1), \ldots, x_{n}(I)\right)$. For this purpose we apply the transformation $x_{k}=z_{\mu}-z_{0}(\mu=1, \ldots, n)$ which is equivalent to the moltiplication by the matrix

$$
N_{0}=\left(\begin{array}{ccccccc}
0 & 0 & \cdot & \cdot & . & 0 & 0 \\
-1 & 1 & \cdot & \cdot & \cdot & .0 & 0 \\
& \cdot & \cdot & \cdot & \cdot & \cdot & \cdot
\end{array}\right)
$$

We have then finally in putting

$$
\begin{equation*}
Q_{0}=-N_{0}(\hat{I}+\widehat{D})-I \hat{L}, \tag{32}
\end{equation*}
$$

$$
\begin{equation*}
\hat{T}_{k}=a_{0}^{k} \hat{S}_{0} \quad(k=1,2, \ldots) \tag{33}
\end{equation*}
$$

20. We use now the following result due to Werner Gautschi [3]. It for any matrix $c=\left(c_{p,}\right)$ we define as its "nom"

$$
\pi(c)=\sqrt{\sum_{\mu v} \mid o_{\mu \nu} V^{2}}
$$

and if B is a square matrix of the order n for which the greatest modulus of the fundamental root is A then we have
(34)

$$
N\left(B^{k}\right)=0\left(\Lambda^{k} k^{p-1}\right) \quad(k \rightarrow \infty)
$$

Where p is the greatest multiplicity of a fundamental root of B with the modulus Λ.
21. If we apply this to the singular matrix (32) and denote the maximal modulus of a fundamental root of Q_{0} by λ_{g}, the maximal multiplicity of a root with modulus λ_{g} is $\leqslant n-1$ if $\lambda_{g}>0$, as will follow later from (42). We have therefore
(35)

$$
N\left(Q_{0}^{k}\right)=O\left(\lambda_{a}^{k} k^{n-2}\right)(k \rightarrow \infty)
$$

On the other hand it follows from (33) in applying Cauchy-Schwartz inequality

$$
\left|\hat{\zeta}_{k}\right| \leqq N\left(Q_{0}^{k}\right)\left|\hat{\zeta}_{0}\right|
$$

and we obtain therefore
(36)

$$
\hat{J}_{k}=0\left(\lambda_{g}^{k} k^{n-1}\right) \quad(k \rightarrow \infty)
$$

22. On the other hand it is easy to show that for a conveniently chosen starting vector \hat{J} o the expression $\hat{J}_{k} \lambda_{g}{ }^{-k}$ does not tend to zero. Indeed if η is an eigenvector of Q_{0} corresponding to a fundmental root λ with $|\lambda|=\lambda_{g}$, we have

$$
\lambda \eta=Q_{0} \eta
$$

and iterating

$$
\lambda^{k} \eta=Q_{0}^{k} \eta
$$

But, since the first row in Q_{0} consists of zeros, the vector η is a reduced one and can be taken as $\hat{\zeta}_{0}$. Then we have

$$
\hat{\zeta}_{k}=\lambda^{k} \hat{\zeta}_{0}, \hat{\zeta}_{k} \lambda_{g}^{k}=\left(\frac{\lambda}{\lambda_{g}}\right)^{k} \hat{\zeta}_{0}
$$

and this does not tend to zero with $k \rightarrow \infty$. $)^{5}$ 23. We are going now to transform the fundamental equation of Q_{0} and introduce for this purpose the matrix
(37) $\quad \mathbb{N}_{\epsilon}=\left(\begin{array}{cccccc}\epsilon & 0 & 0 & 0.0 & 0 \\ -1 & 1 & 0 & \cdots & 0 & 0 \\ -1 & 0 & 1 . & .0 & 0 \\ -1 & 0 & 0 & & 1 & 0 \\ -1 & 0 & 0 & \ldots .0 & 1\end{array}\right)$,

Which corresponds to the transformation
(38)

$$
y_{0}=t z_{0}, \quad y_{\nu}=z_{\nu}-z_{0}
$$

$$
(\nu>0)
$$

and goes for $\Leftrightarrow 0$ into \mathbb{N}_{0}. Since the inverse of (38) is for $\leqslant \neq 0$:

$$
z_{0}=\frac{1}{\epsilon} y_{0}, z_{\nu}=y_{\nu}+\frac{1}{\epsilon} y_{0}
$$

we have
(39) ${\underset{\epsilon}{\epsilon}}_{N_{\epsilon}^{-I}}=\left(\begin{array}{lllll}\frac{1}{\epsilon} & 0 . & . & .0 & 0 \\ \frac{1}{\epsilon} & 1 . & . & 0 & 0 \\ \frac{1}{\epsilon} & 0 . & . & .1 & 0 \\ \frac{1}{\epsilon} & 0 . & . & .0 & 1\end{array}\right)$

The fundamental equation of Q_{0} can be written in the form
(40)

$$
\operatorname{Lim}_{\epsilon \rightarrow 0}\left|\lambda_{E}+\mathbb{N}_{\epsilon}(\hat{I}+\hat{D})^{-I} \hat{L}^{*}\right|=0
$$

24. On the other hand we have identically since $\left|\mathbb{N}_{\epsilon}\right|=\epsilon$
(41) $\quad(|\hat{I}+\hat{D}|)\left(\left|\lambda E+{ }_{\epsilon}{ }_{\epsilon}(\hat{I}+\hat{D})^{-1} \hat{L}^{*}\right|\right)=\epsilon\left|\lambda(\hat{I}+\hat{D}) N_{\epsilon}^{-1}+\hat{I}^{*}\right|$
and obtain therefore the fundamental equation of Q in taking the limit for $\epsilon \rightarrow 0$ on the right in (41).

Now we have
where $a_{n_{0}}+a_{n 1}+\ldots \hbar a_{n n}=0$ by (9) and we have therefore identically

$$
\epsilon\left|\lambda(\hat{L}+\hat{D}) N_{\epsilon}^{-1}+\hat{L}^{*}\right|=\lambda^{2}\left|\begin{array}{cccccc}
a_{00} & a_{01} & a_{02} & \cdots & a_{0 n-1} & a_{0 n} \\
a_{10}+a_{11} & \lambda a_{11} & a_{12} & \cdots & \cdots & a_{1 n-1} \\
a_{1 n} \\
a_{20}+a_{21}+a_{22} & \lambda a_{21} & \lambda a_{22} & \cdots & \cdots & a_{2 n-1} \\
0 & & a_{2 n} \\
0 & 0 & \cdots & \cdots & 0 & \cdots \\
a_{n-10}+\ldots+a_{n-1 n-1} & \lambda a_{n-11} & \lambda a_{n-12} & \cdots & \lambda a_{n-1 n-1} & a_{n-1 n} \\
0 & a_{n 1} & a_{n 2} & \cdots & a_{n n-1} & a_{n n}
\end{array}\right|
$$

λ_{G} is therefore the maximum modulus of the fundamental roots of the equation
(42) $G(\lambda) \equiv$

$$
\equiv\left|\begin{array}{ccccc}
a_{00} & a_{01} & \cdots & \cdot & a_{0 n-1} \\
a_{0 n} \\
a_{10}+a_{11} & \lambda a_{11} & \cdots & \cdot & a_{1 n-1} \\
a_{1 n} \\
0 & 0 & 0 & 0 & 0 \\
a_{n-10}+\ldots+a_{n-1 n-1} & \lambda a_{n-11} & 0 & 0 & \lambda a_{n-1 n-1} \\
0 & a_{n-1} & 0 & & a_{n-1 n} \\
0 & a_{n n-1} & a_{n n}
\end{array}\right|=0
$$

25. In specializing for $n=2$ we obtain in particular, if we put

$$
a_{11}=a_{1}, a_{22}=a_{2}, a_{12}=a_{21}=\sigma \text { and assume } \sigma=0 \text { for }
$$

$$
G_{2}(\lambda):
$$

$$
\begin{aligned}
& \hat{q}_{2}(\lambda)=\left|\begin{array}{ccc}
a_{1}+a_{2}+2 \sigma & -a_{1}-\sigma & -a_{2}-\sigma \\
-\sigma & \lambda a_{1} & \sigma \\
0 & \sigma & a_{2}
\end{array}\right|= \\
&=\left(a_{1}+a_{2}+2 \sigma\right) a_{2} a_{1} \lambda-\sigma\left(a_{1}+\sigma\right)\left(a_{2}+\sigma\right), \\
&(43) \quad \lambda_{6}=\frac{\left|\sigma\left(a_{1}+\sigma\right)\left(a_{2}+\sigma\right)\right|}{a_{1} a_{2}\left(a_{1}+a_{2}+2 \sigma\right)}
\end{aligned}
$$

While the equation for $\lambda_{\text {IV }}$ reduces to

$$
N_{2}(\lambda)=\left|\begin{array}{cc}
\lambda a_{1} & \sigma \\
\lambda \sigma & \lambda a_{2}
\end{array}\right|=0
$$

and gives
(44)

$$
\lambda_{N}=\frac{\sigma^{2}}{a_{1} a_{2}}
$$

From (43) and (44) we have
(45) $\quad \frac{\lambda_{G}}{\lambda_{N}}=\frac{\left|a_{1}+\sigma\right|\left|a_{2}+\sigma\right|}{|\sigma|\left(a_{1}+a_{2}+2 \sigma\right)}$.
26. If we square this, subtract 1 and multiply by the square of the denominator we obtain
$\left[\left(a_{1}+\sigma\right)\left(a_{2}+\sigma\right)-\sigma\left(a_{1}+a_{2}\right)-2 \sigma^{2}\right]\left[\left(a_{1}+\sigma\right)\left(a_{2}+\sigma\right)+\sigma\left(a_{1}+a_{2}\right)+2 \sigma^{2}\right]=$ $=\left(a_{1} a_{2}-\sigma^{2}\right)\left(a_{1} a_{2}-2\left(a_{1}+a_{2}\right) \sigma+3 \sigma^{2}\right)$.
Since the first factor is positive, we see that $\lambda_{G} \equiv \lambda_{\text {If }}$ according as the second factor is $\equiv 0$, but this factor is $=\left(a_{1}+2 \sigma\right)\left(a_{2}+2 \sigma\right)-\sigma^{2}$ and we see that $\lambda_{G} \equiv \lambda_{N \mathrm{~N}}$ according as

$$
\begin{equation*}
\left(a_{1}+2 \sigma\right)\left(a_{2}+2 \sigma\right) \geqq \sigma^{2} \tag{46}
\end{equation*}
$$

Here $\sigma \neq 0$ is subject only to the condition $\sigma^{2}<\alpha_{1} a_{2}$
In particular for $\sigma>0$ we have always $\lambda_{G}>\lambda_{\mathbb{N}}$. We see that for $n=2, \lambda_{G}$ can be as well $>\lambda_{N}$ as $\left\langle\lambda_{N} .^{3}\right)$
27. To prove the corresponding result for $n>2$ consider the matrix A corresponding to the quadratic form

$$
\begin{equation*}
K(\xi)=a_{1} x_{1}^{2}+2 \sigma x_{1} x_{2}+a_{2} x_{2}^{2}+\sum_{\mu=3}^{n} x_{\mu}^{2} \tag{47}
\end{equation*}
$$

In the corresponding determinant (42) for $G(\lambda)$ the elements in the first column are

$$
a_{\mu} 0+a_{\mu} 1+\ldots+a_{\mu \mu}=-\left(a_{\mu \mu+1}+\ldots+a_{\mu n}\right)
$$

and vanish therefore for $\mu \geqq 2$. The same is true for the elements
to the left of the main diagonal $\lambda a_{\mu \nu}$ with $\mu>2$ and $\nu<\mu$ dat t elements $a_{n \nu}(\nu<n)$, while the elements on the diagonal $\lambda a_{\mu \mu}(\mu>2)$ end Inn become respectively λ and I. We obtain therefore

$$
G(\lambda)=\lambda^{n-2} G_{2}(\lambda)
$$

so that λ_{G} is in this case given also oJ (43).
28. In the same way it follows Prom (26) that N in our case is equal to $\lambda^{n-1} N_{2}(\lambda)$ and therefore λ_{N} is given by (44). We can have therefore in this case according to the chosen values of σ as well $\lambda_{G}>\lambda_{\mathbb{N}}$ as well $\lambda_{G}<\lambda_{\mathbb{N}}$.

It may be finally remarked that the value of λ_{G} is not changed if the $(n+1)$ equation in (10) and the corresponding nev variable z_{0} are not put at the beginning but interpolated between two indices $\mu, \mu+1$ or even put at the end. Indeed this mounts to the old process applied to a transformation of $\widehat{\jmath}$ o Dy a finite sequence of single step iterations, but then \mathcal{S}_{0} is carried over in the general reduced vector and the invariency of $\lambda_{G}{ }_{G}$ follows then from the characterization of λ_{G} contained in the development of numbers 21 and 22.

Footnotes

1. This special rule goes back to F.R. Helmert (1872) [5]. The relaxation rule indicated previously by Gauss [2] and Gerling [4] is different as well as that proposed by Southwell [10], but the rule (8) is apparently the most advantageous one.
2. The same result was proved, 1949, by E. Reich[7] independently and with a completely different method. $\sqrt{40 \text { The }}$ proof of it is quite similar as in what follows the proof of the corresponding results for the modified single step iterations, (see (35)).

If $\lambda_{\mathbb{N}}=0$, then already ξ_{n} vanishes identically and the solution is obtained at the most in_{n} steps.
5. If $\lambda_{G}=0$, then already ζ_{n+1} vanishes identically。 $\sqrt{3}$.This agrees with the results mentioned in the paper [IA] of Forsythe and Motzkin, footnote 24.

Bibliography

[I] Dedekind, R., Festschrift zur Feier des 150 jeehrigen Bestehens der Koenigl. Gesellsch. d. Wiss. zu Goettingen (1901), 45-59: Werke,2. Bd., p.293-306, namentlich p. 300-301.
[IA] Forsythe, G.E. and Motzkin, T.S. An extension of Gauss' Transformation for Improving the condition of Systems of Linear Equations. Math. Tables and Other Aids to Computation, v. VI, (1952), p. 9-17, footnote 24.
[2] Gauss, C.F., Werke, Bd. IX, p. 278-281.
[3] Gautschi Werner, On the Asymptotic Behavior of the Powers of Matrices, Duke Math. J.
[4] Gerling, C. İ。Die Ausgleichsrechnung usw., Hamburg-Gotha (1843).
[5] Helmert, F. R., Die Ausgleichuncrechnung Nach Der Methode Der Kleinsten Quadrate Mit Anwendungen Auf Die Geodäsie Und Die Theorie Der Messinstrumente, Leipzig (1872), p. 136.
[6] Ostrowski, A. M., Explicit Formulae for the Distribution Function of the Sums of n Uniformly Distributed Variables, INBS Report 1601 (April, 1952).
[7] Reich, E., On the Convergence of the Classical Iterative Method of Solving Linear Simultaneous Equations, Ann. Math. Stat. 20(1949), p. 448-451.
[8] Schmeidler, W., Vorträge ueber Determinanten und Matrizen mit anvendungen in Physik und Technik, Berlin (1949).
[9] Seidel, I., Über ein Verfahren usw., Münch Abhandi. Math. phys. KI. 11(1874), p. 81-108.
[10] Southwell, R.V., Proc.R.S.I. A151 (1935), p. 56-95.

THE NATIONAL BUREAU OF STANDARDS

Functions and Activities

The functions of the National Bureau of Standards are set forth in the Act of Congress, March 3, 1901, as amended by Congress in Public Law 619, 1950. These include the development and maintenance of the national standards of measurement and the provision of means and methods for making measurements consistent with these standards; the determination of physical constants and properties of materials; the development of methods and instruments for testing materials, devices, and structures; advisory services to Government Agencies on scientific and technical problems; invention and development of devices to serve special needs of the Government; and the development of standard practices, codes, and specifications. The work includes basic and applied research, development, engineering, instrumentation, testing, evaluation, calibration services, and various consultation and information services. A major portion of the Bureau's work is performed for other Government Agencies, particularly the Department of Defense and the Atomic Energy Commission. The scope of activities is suggested by the listing of divisions and sections on the inside of the front cover.

Reports and Publications

The results of the Bureau's work take the form of either actual equipment and devices or published papers and reports. Reports are issued to the sponsoring agency of a particular project or program. Published papers appear either in the Bureau's own series of publications or in the journals of professional and scientific societies. The Bureau itself publishes three monthly peri* odicals, available from the Government Printing Office: The Journal of Research, which presents complete papers reporting technical investigations; the Technical News Bulletin, which presents summary and preliminary reports on work in progress; and Basic Radio Propagation Predictions, which provides data for determining the best frequencies to use for radio communications throughout the world. There are also five series of nonperiodical publications: The Applied Mathematics Series, Circulars, Handbooks, Building Materials and Structures Reports, and Miscellaneous Publications.

Information on the Bureau's publications can be found in NBS Circular 460, Publications of the National Bureau of Standards (\$1.00). Information on calibration services and fees can be found in NBS Circular 483, Testing by the National Bureau of Standards (25 cents). Both are available from the Government Printing Office. Inquiries regarding the Bureau's reports and publications should be addressed to the Office of Scientific Publications, National Bureau of Standards, Washington 25, D. C.

[^1]: *This wonk was performed under a contract of the NBS with the Am. Un. gratefully acknowledge discussions with T. S. Motzkin and O. Taussky-Too

