
A

NATIONAL BUREAU OF STANDARDS REPORT
1951

SYSTEM SPECIFICATIONS FOR THE DYSEAC

By

Alan L. Leiner

Electronic Computers Laboratory

September 1952

<NBS>
U. S. DEPARTMENT OF COMMERCE

NATIONAL BUREAU OF STANDARDS

U. S. DEPARTMENT OF COMMERCE
Charles Sawyer, Secretary

NATIONAL BUREAU OF STANDARDS
A. V. Astin, Director

THE NATIONAL BUREAU OF STANDARDS
The scope of activities of the National Bureau of Standards is suggested in the following listing of
the divisions and sections engaged in technical work. In general, each section is engaged in special-

ized research, development, and engineering in the field indicated by its title. A brief description

of the activities, and of the resultant reports and publications, appears on the inside of the back
cover of this report.

Electricity. Resistance Measurements. Inductance and Capacitance. Electrical Instruments.
Magnetic Measurements. Applied Electricity. Electrochemistry.

Optics and Metrology. Photometry and Colorimetry. Optical Instruments. Photographic
Technology. Length. Gage.^

Heat and Power. Temperature Measurements. Thermodynamics. Cryogenics. Engines and
Lubrication. Engine Fuels. Cryogenic Engineering.

Atomic and Radiation Physics. Spectroscopy. Radiometry. Mass Spectrometry. Solid State
Physics. Electron Physics. Atomic Physics. Neutron Measurements. Infrared Spectroscopy.
Nuclear Physics. Radioactivity. X-Rays. Betatron. Nucleonic Instrumentation. Radio-
logical Equipment. Atomic Energy Commission Instruments Branch.

Chemistry. Organic Coatings. Sin-face Chemistry. Organic Chemistry. Analytical Chemistry.
Inorganic Chemistry. Electrodeposition. Gas Chemistry. Physical Chemistry. Thermo-
chemistry. Spectrochemistry. Pure Substances.

Mechanics. Sound. Mechanical Instruments. Aerodynamics. Engineering Mechanics. Hy-
draulics. Mass. Capacity, Density, and Fluid Meters.

Organic and Fibrous Materials. Rubber. Textiles. Paper. Leather. Testing and Specifi-

cations. Polymer Structure. Organic Plastics. Dental Research.

Metallurgy. Thermal Metallurgy. Chemical Metallurgy. Mechanical Metallurgy. Corrosion.

Mineral Products. Porcelain and Pottery. Glass. Refractories. Enameled Metals. Con-
creting Materials. Constitution and Microstructure. Chemistry of Mineral Products.

Building Technology. Structural Engineering. Fire Protection. Heating and Air Condition-
ing. Floor, Roof, and Wall Coverings. Codes and Specifications.

Applied Mathematics. Numerical Analysis. Computation. Statistical Engineering. Machine
Development.

Electronics. Engineering Electronics. Electron Tubes. Electronic Computers. Electronic
Instrumentation.

Radio Propagation. Upper Atmosphere Research. Ionospheric Research. Regular Propaga-
tion Services. Frequency Utilization Research. Tropospheric Propagation Research. High
Frequency Standards. Microwave Standards.

Ordnance Development. These three divisions are engaged in a broad program of research

Electromechanical Ordnance, and development in advanced ordnance. Activities include

Electronic Ordnance. basic and applied research, engineering, pilot production, field

testing, and evaluation of a wide variety of ordnance materiel. Special skills and facilities of other
NBS divisions also contribute to this program. The activity is sponsored by the Department of

Defense.

Missile Development. Missile research and development: engineering, dynamics, intelligence,

instrumentation, evaluation. Combustion in jet engines. These activities are sponsored by the
Department of Defense.

® Office of Basic Instrumentation • Office of Weights and Measures.

NATIONAL BUREAU OF STANDARDS REPORT
NBS PROJECT NBS REPORT

1203-34-5705

September 1952

1951

SYSTEM SPECIFICATIONS FOR THE DYSEAC

By

Alan L„ Leiner

Electronics Division

Electronic Computers Laboratory

The publication, reprlntli

unless permission is obtat

25, D, C. Such permissli

cal ly prepared If that aj

Approved for public release by the

Director of the National Institute of

Standards and Technology (NIST)

on October 9, 2015

rt, Is prohibited

ds, Washington

tas been speclfi-

for Its own use.

FOREWORD

Under the sponsorship of a tri-service steering committee
of the Defense Department

, a new digital data-processor is now be-
ing developed by the Electronic Computers Laboratory. This machine
is intended to serve as a central control unit in a data-handling
network, and also as a testing device for determining the opera- .

tional properties of the networks

It is a full-scale, general-purpose, serial machine, operat
ing at a megacycle repetition rate. Like the SEAC, it contains a
serial acoustic delay-line memory with a minimum capacity of 500
words which can be expanded to 4000. However, it differs from the
SEAC in the following particulars: (l) it contains an expanded
repertoire of arithmetic operations; (2) it contains provision for
annexing a greater variety of external storage and input-output
devices; and (3) it is capable of carrying out automatically, in an
integrated fashion, concurrent operations involving high-speed
input-output and processing of data* For example, it wiil' be ‘

capable of receiving non-synchronous data from telemetering sources
(or of displaying and dispatching results) even while it is carry-
ing out a complex program of data-processing.. This last feature
will make the new machine considerably more flexible and far more
powerful than the SEAC, for complex data-handling operations.

Furthermore, the machine’s high-speed memory will be almost
immediately accessible to other units of the data-handling network-.

In fact, the machine can be used as a storage reservoir which can be
shared among the other units of the network and which can be inter-
rogated (or recorded in) by them independently, without disrupting
the course of the internal data-processing program. Conversely,
the machine can check up periodically on other units of the network,
and re-direct them as the need arises in the same flexible manner.

The physical realization of the machine -system outlined in
this report is being accomplished by assemblies of two main types
of "packages" developed by this Laboratory. This packaged construc-
tion is aimed at simplifying both maintenance and supply procedures.

S. N. Alexander, Chief
Electronic Computers Laboratory

A, V. Astin
Director

CONTENTS
Page

I. Introduction 1

1, Summary of operating specifications 1

2. Comparison with the SEAC . 2

2.1 Operations . 2

2.2 Pulse-codes for representing information 3

3- Checking features 5

II. Arithmetic and Processing Operations . 6

1. Addition-type operations 6

1.1 Addition (normal) 6

1.2 Subtraction . 6

1.3 Accumulate-and-and-overflow check ... 6

1.4 Accumulate-and-store 7

1 . 5 Summation 9

2. Multiplication-division type operations 9

2.1 Major multiplication (rounded) 9

2.2 Minor multiplication 10

2.3 Division 10

2.4 Shift . 10

3. Processing operations 11

3.1 Justify 11

3*2 Logical transfer 12

III. Program Control Operations 12

1. Program sequencing 12

1.1 Sequence of instructions 12
1.2 Dual counter-registers 12

2. Choice instruction operations 13

2.1 Comparison (algebraic) 13

2.2 Comparison (absolute) 13

2.3 Overflow check . 13

(1)

CONTENTS
Page

III. Program Control Operations (Continued)

3* Relative addresses f , 13

3.1 Definitions 13

3-2 Applications of relative address . 15

3.21 Use of a fixed base 15

3-22 Use of a floating base 15

3 .3 Method of adopting counter-registers for relative
addresses . . 1

6

4. Counter- setting and filing operations . . 1

6

4.1 File (unconditional) 1

6

4.2 Breakpoint File 20

IV. Input-Output Transfer Operations 20

1 . Instruction types 20

1.1 Load and Print instructions 20
1.2 Stages of the operations 21

2. Concurrent regulation 23

2.1 Address conflict interlocks 23
2.2 Priority conflict interlocks 23

3 . Program jumping feature 23

V. Manual-Monitor Operations 25

1. Definitions 25

2. Types of operations performed 25

3 • Modes of initiating monitor operations . . 27

4. Applications of manual-monitor system 28

VT . Summary 29

List of Tables iii

(ii)

LIST OF TABLES
Page

Table 1. Word-Format (internal) b

Table 2. Summary of Rules Governing Use of Accumulator „ 8

Table 3* Relative-Address Information and Program-Sequencing
Information l4

Table 4. File-Record: the information written into the memory as

a result of a File instruction (F or E). . 17

Table 5* Word-Format of File Instructions 18

Table 6. Typical Uses of the File Instruction , 19

Table 7 • Word-Format of a Typical Input-Output Instruction ... 22

Table 8. Summary of Program-Jump Rules . 2b

Table 9« Storage locations directly accessible by means of
manual-monitor operations . . 26

(iii)

’V • t j j

SYSTEM SPECIFICATIONS FOR THE DYSEAC

By

Alan L. Leiner

I. INTRODUCTION

1. Summary of operating specifications

The DYSEAC is a full-scale general-purpose data-processor
which operates at a basic repetition rate of one megacycle and
uses the serial mode of data representation. Its internal high-
speed memory is composed of mercury acoustic delay-line tanks
containing eight words each, with a maximum access time of 384
microseconds. The memory capacity is, at the minimum, 512 words
(stored in a 64-tank cabinet) and it can be expanded to 4096 words
(stored in eight such cabinets). A list of the types of operations
performed by the machine and their approximate average rates of
execution is given below:

Operation

Time (milliseconds),
Code- including access time
Symbol to the memory

Addition 2

Subtraction 1

Accumulate -and-overflow-check 4

Accumulate-and-store 5

Summation 3

Multiplication, major (rounded) A
Multiplication, minor B
Division C

Shift 8

Justify 9
Logical Transfer D
Comparison, algebraic 6

Comparison, absolute 7

File, unconditional F
Breakpoint File E

Input-Output 0

0.9
0.9
0-7
0.9
0 . 8*

3.0
3.0
3.0
1 . 1**

2 . 0**

0.9
0.7
0.7
0.4
0.4
0 . 3***

Notes: *Plus 0.05 msec per word.

**For half word-length shifts.
***Internal program time only.

2. Comparison with the SEAC

2.1 Operations :

Of the 16 types of operations performed by the DYSEAC,

five types are the same as those in the SEAC, five types represent
variations or expansions of their SEAC counterparts, and six are

either entirely new or completely revised . In the latter class are
the two Accumulation instructions and the Summation, Justify, and
high-speed Shift operations which have been provided to facilitate
coding and to speed up the performance of various arithmetic and
data-handling processes. In the expanded class of operations, the
facility for providing both major and minor products (or both quo-
tient and remainder) in little more than a single multiplication
(or division) time should be noted. Improved base-point and rela-
tive-address arrangements have also been provided.

The DYSEAC's input-output type of operation represents
a completely new departure from the SEAC system in several respects

.

First, it can be carried out at the same time as, and independent of,

computing operations. Second, this concurrent loading or printing-
out of the memory can be made to apply to any word or group of words
in the memory without any restriction as to location or quantity.
Third, the course of a processing program can be tied to (and

sequenced by) these input-output operations whenever desirable.
Whenever the program is primarily concerned with data which is being
transferred into or out of the system, it can be coupled to the
input-output instructions, by means of certain automatic interlocks
and program- jumping features, in such a way as to be automatically
sequenced by the progress of the external input-output operations.
This enables optimum use to be made of the machine's concurrent
operating ability; at the same time, it relieves the programmer of

the responsibility for working out, exactly, the timing interrela-
tionship between the non- synchronous internal and external portions
of the processing procedure.

Another important respect in which the DYSEAC differs
from the SEAC is in the greatly extended repertoire of manual and
monitoring operations. These facilities provide the operator (or,

alternatively, an automatic external device) with the power of
setting up and ordering a wide variety of special interpolated
operations into the program being carried out . These include
printing-out or loading various memory locations or storage
registers in the computer, substitution of new instructions or
new words instead of those indicated in the program, and so forth.
In combination with the input-output features mentioned above,
these facilities make it possible for the machine to communicate
in an extremely flexible manner with the person operating it
and even to share its high-speed memory (and consequently any
other part of its internal processing or external storage facili-
ties) freely among a battery of remotely located external data-
handling devices.

- 3 -

2.2 Pulse-codes for representing information :

Like the SEAC, the DYSEAC operates on a minor cycle of 48
microseconds and employs a pure binary word representation consisting
of 45 binary numerical digits plus one sign digit. Numbers are ex-
pressed in the form; absolute value plus algebraic sign. The sign (+)
is represented by 0, and the sign (-) is represented by 1. For details
on the word-format, see Table 1.

DYSEAC also employs a three-address instruction system, --

that is, each instruction word contains three address numbers denoted
as alpha, beta, and gamma, which in most cases have the following
significance: alpha denotes the location (in the acoustic memory) of
the first operand, beta denotes the location of the second operand, and
gamma denotes the location to which the result is to be sent. Each
address -number referring to these locations is represented, within the
instruction word, by a 12-digit binary number- sequence composed of
three parts;

(1) The smallest three digits indicate the position of the
word in the tank, i.e., the timing number (0 to 7)*

(2) The next six digits are the binary representation of the
tank number within the cabinet of 64 tanks _.(0 to 63).

(3) The largest three digits designate which one of the eight
possible cabinets is referred to (0 to 7)»

These three combined parts form the binary representation of the address-
number (0 to 4095)

,

successive numbers generally indicating adjacent
locations in the same tank. Successive instructions are generally located
in consecutively-numbered memory locations

.

The total information content of an instruction word is

distributed as follows:

12 digits contain the address alpha,
12 digits contain the address beta ,

12 digits contain the address gamma
,

4 digits contain relative-address and program-
sequencing information (described in Table 3)>

4 digits contain the code-symbol specifying the type
of operation to be performed,

1 digit contains a monitor signal (whose utilization is

described in Section V, paragraph 3)> and
1 digit is a check digit (whose utilization is described

in paragraph 3 immediately below)

.

- 4 -

Table 1. Word-Format (internal)

Each Instruction-Word Contains:

Binary Digits Digit Position
in Word*

Content

1 bit
12 bits
12 bits
12 bits
4 bits

4 bits
1 bit

P-46
P-45 through P-34
P-33 through P-22
P-21 through P-10
P-9 through P-6

P-5 through P-2
P-1

Check digit
Address alpha
Address beta
Address gamma
Relative-address and program-

sequencing information
Operation code- symbol
Monitor signal

46 bits total

Each Number-Word Contains:

1 bit
44 bits
1 bit

P-46
P-45 through P-2

P-1

Check digit
Numerical digits
Algebraic sign digit

46 bits total

*The successive binary digit positions in a word are denoted
by P-1; P-2; .00 P~46^ counting from right to left (least
significant to most significant) »

- 5 -

3. Checking features

Unlike SEAC, the new machine contains provision for auto-
matically checking the performance of the high-speed memory. The
design of this checking feature is based on observed experience of
the operating reliability of the SEAC's acoustic delay-line memory.
Its inclusion is based on the premise, supported by SEAC experience,
that the faults most commonly encountered with this type of memory
are those which result in an occasional picking-up or dropping of a
single binary digit in some part of the memory. The checking feature in
DYSEAC is designed to guard against the possibility that such errors
may pass by undetected.

The system operates on the principle of inserting a single
odd-even check digit at the end of each word, as it is being written
into the memory. This check digit, which is chosen so as to make an
odd number of the total sum of the one-digits appearing in each word,
occupies the P-46 digit position of the word and is not susceptible
to manipulation by the arithmetical (or other program) instructions.
The consistency of each word stored in the memory is checked by a

special detecting device which causes a halt (with appropriate warn-
ing signal) whenever a word is observed which fails to pass the odd-
number checking test

.

This error-detecting device can detect an error under any of

the following circumstances;

(1) Whenever a defective word is read out of the memory or
is found to occupy a memory location which is about to
be written into.

(2) Whenever a defective word is observed in a memory tank
during the period prior to the minor cycle in which the
particular address sought for becomes available.

(3) Approximately once every second or so, at which time the
program is temporarily halted for about 25 milliseconds
and the entire memory is scanned from beginning to end in

search of a defective word.

In all cases, the halt and error-signal indication occurs in

time to prevent the execution of any further instructions. For
example, when a memory location containing a defective word is

written into, the halt occurs immediately after the writing has taken
place, and before a new instruction has been selected.

Manual controls are provided which aid in locating the address
which contains the defective word (See Section V, paragraph 2). When-
ever a defective word is printed out on the supervisory printer, a

characteristic error-indication character replaces the customary sign-

indication character at the right-most end of the word.

- 6 -

Although Intended primarily for application in connection with
the mercury acoustic delay-line memory, the checking equipment is in

no way restricted or limited to this type of memory and may be utilized
equally well in connection with any other type suited for annexation to
this machine.

II . Arithmetic and Processing Operations

1. Addition-type operations

Five addition-type operations are provided, namely: Addition
(normal), Subtraction, Accumulate-and-overflow check, Accumulate-and

-

store, Summation. These operations are described in detail in the
following paragraphs

.

1.1 Addition, normal (code symbol, 2)

This is the usual algebraic addition operation, like the
one used in SEAC. The instruction reads "Form the sum of the word in

alpha plus the word in beta, and write the result in address gamma."

1.2 Subtraction (code symbol, l)

The instruction reads "Form the difference of the word in

alpha minus the word in beta, and write the difference in address gamma."
No provision is made in either this operation or the preceding one for
checking against the occurrence of overflow,

1.3 Accumulate-and-overflow-check (code symbol, 4)

This operation and the following operation are intended for
use in situations where the accumulation of the sum of a long list of
numbers is desired, or in situations where it is particularly difficult
to predict the occurrence of overflow. It combines the characteristics
of both an arithmetic operation and a choice operation. Both instructions
involve the use of an arithmetic register for the purpose of accumulating
a partial sum. This register is referred to as the arithmetic accumulator
register , or simply the accumulator . The instruction reads: "Form the
sun.’ of the word in alpha plus the word in beta plus the contents of the
accumulator, and, if the sum does not overflow, store the results in the
accumulator, and proceed to the normal next instruction. If the indicated
sum does produce an overflow, however, leave the previous contents of the
accumulator unchanged, and take the next instruction from address gamma in
the memory." For rules governing the clearing of the accumulator, see
paragraph 1.4 below. Note that this operation does not involve the writing
of any information into the memory.

Using the Accumulate-and-overflow-check instruction, lists of
numbers may be summed at least twice as fast as is possible by means of the
normal addition operation, because a single instruction allows two items
rather than only one to be added to the accumulated partial sum.

- 7 -

1.4 Accumulate -and- store (code symbol, 5)

This instruction permits writing of the contents of the
accumulator register into the memory. It is used for terminating a

series of Accumulation-and-overflow-check operations. It does not in
itself provide any check against overflow.

The instruction reads "Form the difference of the word
in alpha minus the word in beta, add to it the contents of the accumu-
lator, and write the sum into memory address gamma . Then clear the
accumulator ,

"

This instruction is also used for clearing the accumulator
prior to starting an accumulation sequence. Another use occurs during
double-precision operations or when division remainders are desired.
These are described in the paragraphs below dealing with Multiplication
and Division.

The rules governing the modification of the accumulator
contents, and the effect of the accumulator contents on the various
operations, are summarized in Table 2. Notice that the accumulator
contents affect (or are affected by) only five out of the total of 1

6

instruction types. This fact contributes considerably to the power
and flexibility with which these accumulation features can be used,
because it allows the coder to interleave those accumulation instruc-
tions that actually add the successive items to the partial sum with
other instructions, such as normal additions, comparisons, logical
transfers, etc., which can be used for modifying addresses in some

of the instruction words, keeping independent tallies, and so forth.

Notice also that this operation involves the difference
(alpha minus beta) rather than the sum (alpha plus beta), as in the
preceding operation. This feature is intended to facilitate the
process of writing the contents of the accumulator, unmodified, into
the memory. To accomplish this, the coder need only write the same
arbitrary number for both of the addresses alpha and beta in the
instruction word. This may be desirable for the final step in the
accumulation process, if the coder fears the possibility that the
addition of the last two items may cause an overflow.

Table 2. Summary of Rules Governing Use of Accumulator

Instructions Not Affecting
(and not affected by)

Contents of Accumulator

Instructions Affecting
Contents of Accumulator

Modified
Contents

Addition Accumulate -and-overflow-check* Partial sum

Subtraction Accumulate -and store* Zero

Summation Multiplication, major
(rounded)

Major product
(rounded)

Shift Multiplication, minor Major product
(unrounded)

Justify Division Remainder

Logical Transfer

Comparison (algebraic)

Comparison (absolute)

File (unconditional)

Breakpoint File

Input-Output

*Except for these two accumulation
operations, the previous contents
of the accumulator do not affect
the results of the operation.

- 9 -

1.5 Summation (code symbol, 3)

This operation permits the extremely rapid summation of
large blocks of words located in consecutively-numbered address positions
in the memory. The instruction reads "Form the sum of the words located
in consecutive address locations running from beta through alpha inclu-
sive, and write the sum into address gamma in the memory." For this
operation, address beta is ordinarily numerically less than address alpha
If this condition is not observed, however, the sum of the words in add-
resses beta and beta-plus -one is produced.

No provision is made in this operation for checking against
overflow. In carrying out certain programs of checking procedures, how-
ever, which involve forming the sums of large groups of words, the
occurrence of overflow is generally not material. It must be remembered
that when overflow does occur, the sum obtained may be in one of two
ambiguous forms depending upon the order and the grouping in which the
words were summed. The equivalence of these two forms may be established
however, by checking the fact that their difference, as computed by a
Subtraction operation, is numerically equal to zero.

Summation operations and input -output operations do not
proceed concurrently. If a Summation instruction is given while an
input-output operation is in progress, the program is temporarily
halted until the input-output operation has been completed.

2. Multiplication-division type operations

2.1 Major multiplication, rounded (code symbol, A)

This operation produces a rounded-off major product. The
binary point in both of the operands and in the result is located two
binary positions from the left-hand end of the word (i.e., between P44
and P43) . In other words, the largest magnitude that these numbers can
reach is slightly less than four. The instruction reads "Form the
product of the word in alpha and the word in beta and write it, rounded
off, into address gamma in the memory, and into the accumulator.

Rounding-off is accomplished by adding a unit in the first
rejected position on the right-hand end of the product and allowing the
resultant carrys, if any, to propagate. Means for securing the major
product unrounded are described immediately below.

10

2.2 Minor multiplication (code symbol, B)

This instruction produces the minor product. The instruc-

tion reads "Form the minor product of the word in alpha and the word in

beta and write the result in address gamma in the memory." The location
of the binary point in this operation is the same for the words in alpha
and beta as in the preceding operation. The result, however, is positioned
so that the least significant digit in the product is located in the right-

most numerical position in the word, namely the P-2 position. An alterna-
tive interpretation of the binary point positions would be that the binary
point for both of the factors and for the product is located at the extreme
right-hand end of the words (that is, all of the words are integers).

Whenever a minor Multiplication instruction is performed, the
major product, unrounded (with proper sign), is written into the arithmetic
accumulator register. If such an operation is followed by an Accumulate-
and-store instruction, the major product may be written into the memory in
considerably less than the usual multiplication time. It should be noted
that the right-most two binary digits of the major product and the left-
most two binary digits of the minor product are identical.

2.3 Division (code symbol, C)

By means of the Division operation, both the quotient and
the remainder may be obtained rapidly. The instruction reads "Form the
quotient, word in beta divided by word in alpha, and write it into add-
ress gamma in the memory." The positions of the binary point in this
operation are the same as for the major Multiplication operation described
above. The quotient is not rounded off, and the process is carried out in
such a way that the quotient may be in error by being numerically too small
as a result of the lack of rounding off. Whenever a Division operation is

performed, the remainder is written into the arithmetic accumulator register
with proper sign, namely, the sign of the dividend. The remainder is never
numerically greater than the divisor times two to the minus 42 power. The
remainder may be rapidly written into the memory by means of an Accumulate-
and-store instruction, as described above.

2.4 Shift (code symbol, 8)

By means of this operation, words may be shifted an arbitrary
number of places either to the left or to the right in considerably less
than a Multiplication or Division time. The instruction reads "Shift the
word in alpha according to the code indicated in the word located in address
beta in the memory, and write the result into address gamma in the memory."
The six right—most numerical digits, P2 through P7, of the word in memory
location beta indicate the number of binary places the word is to be shifted;
the P-1, or sign digit, indicates the direction of the shift, -- i.e., for
left-shift positive and for right-shift negative. In other words, the digits
P-1 through P-7 indicate the power of two by which the word in alpha is to be
multiplied without round-off. The sign of the shifted word is transferred
unchanged

.

11

The time required for a shift operation is a function of
the number of places shifted, and ranges from 1 minor cycle to 12 minor
cycles (average 6.5 minor cycles) longer than an addition operation.

5. Processing operations

3°1 Justify (code symbol, 9)

The Justify operation provides the coder with a convenient
means for carrying out floating binary point operations, or other opera-
tions requiring frequent readjustment of scaling factors. The instruction
reads "Determine the number, N, satisfying the following inequalities:

(/3) « W) SK ^ 2 (fi)

-63 ^ N < 63

and write this number with proper sign into the digits P-1 through P-7 of

the word in address gamma without in any way altering its other digits."

(/3

)

means "absolute value of word in memory address j2 etc. By choos-
ing (/3) equal to a power of 2

,
this operation can be used to determine

the number of places that the word in alpha must be shifted in order to
make its most significant binary digit coincide with the most significant
binary digit of the word in beta. Note that the result of a Justify
operation is written into the memory in such a way as to make it possible
to use it immediately as the beta operand in a subsequent Shift operation
which will cause the shifted word to be lined up with some designated
comparand in the manner described by the first inequality above.

When either or both of the operands in a Justify instruc-
tion are equal to zero, the result produced is N - 63 ,

as indicated in
hexadecimal notation in the following table:

Alpha Beta Gamma

Zero Not Zero 3F+
Not Zero Zero 3F-

Zero Zero 3F-

The time required for a Justify operation is a function
of the value of N produced, and averages N + 2„5 minor cycles longer
than an addition operation.

- 12

3.2 Logical Transfer (code symbol, D)

The logical transfer instruction is similar to its

counterpart in SEAC. The instruction reads "Write into address gamma
in the memory those digits of the word in alpha which correspond to

one-digits in the word in beta. Leave the word in gamma unchanged in

those digit positions which correspond to zero-digits in the word in

beta." This operation permits segments of one word to be transplanted
into another word. Also, it contains as special cases the processes
of logical multiplication and logical addition.

III. Program Control Operations

1. Program sequencing

1.1 Sequence of instructions

Under the three-address system employed in this machine,
consecutive instructions are normally located in consecutively-numbered
address positions in the memory. Means for interrupting this consecu-
tive sequencing of instructions and for initiating a new sequence are
provided by a variety of choice instructions and counter-setting instruc-
tions which are described in paragraphs 2 and 3 below. In addition to
this ability to initiate new instruction sequences at any time, the
programmer also has the facility of choosing between two possible alterna-
tive sequences of instructions at any time. That is, he may (if he wishes)
interleave two distinct sequences, periodically jumping from one to the
other in an arbitrary manner. This facility is made possible by the
dual counter register scheme described below.

1.2 Dual counter-registers

As in the three-address control system in SEAC, two
distinct counter-registers are provided for program sequencing. These
counter-registers are designated as counter No. 0 and counter No. 1,

respectively. Each counter holds a twelve-binary-digit address. The
coder may select the address in either counter as the address of the
next instruction to be performed. The counter from which the address
of the next instruction is to be taken is indicated by the P-6 or "d"
digit in the instruction being currently executed. (See Table 1 for
the format of an instruction word.) In other words, this d-digit in

every instruction indicates the source of the address of the instruc-
tion Immediately to follow. Execution of this process may be temporarily'
suspended, however, by means of a program- jumping feature available in
connection with input-output operations, which is described in Section IV,

paragraph 3> below.

- 13 -

2. Choice instruction operations

2.1 Comparison, algebraic (code symbol, 6)

By means of this instruction, either of the counter
registers may be re-set and a new program sequence initiated, start-
ing at the new address setting. The instruction reads "If the
word in alpha is algebraically greater than or equal to the word in
beta, take the next instruction from the normal consecutive address
position. If, however, the word in alpha is less than the word in

beta, take the next instruction from address gamma - " At the same
time the counter specified by the P-6 (d-digit) is reset to gamma.
Note that the indicated inequalities pertain to the algebraic
magnitudes of the numbers

.

2.2 Comparison, absolute (code symbol, 7)

This instruction is similar to the Comparison (alge-

braic) described above, differing from it only in that the indicated
inequalities pertain to the absolute values of the numbers indicated.

2.3 Overflow check (code symbol, 4)

The Accumulation-and-overflow check operation described
in Section II, paragraph 1.3, above, may be used as a choice-type
operation as well as an arithmetic -type operation. Paraphrasing the
previous description of this operation, it becomes: "If the addition
of the word in alpha and the word in beta to the contents of the
accumulator causes an overflow, take the next instruction from
address gamma in the memory. Otherwise, take the normal next instruc-
tion."

3 . Relative addresses

3.1 Definitions

The numbers written in the address segments of an

instruction word may be interpreted in either of two ways, namely,
as absolute addresses or as relative addresses. The intended inter-
pretation is indicated by a set of code digits in each instruction
word. (See Table 3») A code digit 0 indicates an absolute address,
and a code digit 1 indicates a relative address.

- Ik -

An absolute address is interpreted merely as a

number identifying a specific fixed memory location , A relative
address, however, identifies a position in the memory by specify-
ing its displacement relative to a certain address number that is

stored in one of the special counter-registers „ That is, if the
counter-register in question contains the number C, then whenever
an address number A is written in an instruction word along with a

relative designation ,
the memory location A plus C is referred to.

The value of C may range from 0 to 2^-1, and the effect of negative
displacements can be secured by using the complement, modulo 2-*-^, of

the displacement desired .

Either of the two available counter-registers (No, 0

or No. l) can be used in this fashion. The File instructions, which
are described in paragraph 4 below, govern the adoption of either
counter for relative address purposes and the insertion of the desired
base number, C. After either counter is adopted for this purpose, it

remains adopted until a countermanding File instruction is given.
The following terminology is used in the subsequent discussion:

Relative counter
,

or adopted counter refers to the
counter-register holding the number to which alpha, beta, or gamma
are relative. (Chosen by means of File instructions.)

Instruction counter refers to the counter-register
holding the address from which the next instruction is scheduled to
be taken. (Chosen by means of d-digit in each instruction word.)

Table 3* Relative-Address Information and Program-
Sequencing Information

Binary Digits Digit Position
in Word

Content

a-digit P-9 indicates whether alpha is an
absolute or relative address*.

b-digit P-8 indicates whether beta is an
absolute or relative address.

c-digit P-7 indicates whether gamma is an
absolute or relative address.

d-digit P-6 indicates which counter register
contains the address of the next

Total: k- bits instruction

.

*Except for the operations Input-Output (see Table 7)> File and
Breakpoint (see Table 5)

•

- 15 -

5.2 Applications of relative address

5-21 Use of a fixed base

As a result of the dual counter-register system,
two different general methods of applying the relative address
facility are available. The first method makes use of a fixed
base number, or base point, from which the address in the instruction
word is used to indicate the relative displacement of the memory
location referred to. In this type of application, the counter
adopted for relative (i.e., Adopted Counter) and the counter used
for program sequencing (i.e., Instruction Counter) are different.
For example, suppose counter No. 0 is chosen as the Instruction
Counter and counter No. 1 is the Adopted Counter. Since counter
No. 0 is the Instruction Counter (i.e., all the instructions are
written with the d-digit equal to zero) ,

the counter reading is

generally increased by unity after each instruction is executed.
The contents of counter No. 1, however, since it is not being used
for program sequencing, can be left unchanged. Thus all operands
in the instruction being executed can remain relative to a fixed
point

.

From time to time, the contents of the adopted
counter (No. l) may be modified as the occasion arises. (Means
for modifying counter-readings with File instructions are described
in paragraph b below.) After each such modification, which requires
only a single instruction word, all of the operands referred to in
the set of instructions being executed are automatically selected
from a new block of memory locations. This type of procedure is

particularly valuable when large numbers of identical operations
need to be performed on successive words, or groups of words,
systematically arranged in the memory. Examples of this sort arise
in matrix operations, a typical example being the multiplication of
two matrices.

5° 22 Use of a floating base

The second type of application of the relative
address feature involves the use of a floating base point, rather
than a fixed one. This floating base point is the address of the
instruction word itself. Under this scheme, the adopted relative
counter and the instruction counter are the same. With this
procedure, the memory locations of the operands referred to may be
indicated relative to the instruction word even when the address
in which the instruction word is located is not known to the coder at
the time the program is being written. This feature is particularly
valuable in permitting the preparation of standardized sub-routines
in an invariant form that is independent of the actual memory loca-

tions into which the sub-routines will ultimately be inserted.

- 16 -

3.3 Method of adopting counter-registers for relative
addresses

A counter-register is adopted as a .relative counter
by means of one of the counter-setting and filing operations, namely.

File (unconditional), or Breakpoint File which are described below.

4. Counter-setting and filing operations

4.1 File, unconditional (code symbol, F)

These counter- setting and filing operations permit the
programmer to (l) adopt either given counter as the relative counter,

(2) reset this counter to a new reading, and (3) record the old
setting of the counter in the memory along with various other useful
information. The File (f) instruction reads: "Write the file record
(indicated in Table 4 below) into the memory location specified by
address beta in this File instruction-word. (Format of the File
instruction-word is indicated in Table 5). Then reset the counter
specified by the P-9 digit of the File instruction word to the setting
indicated in the gamma segment of the File instruction word, and adopt
the reset counter for future relative references."

After a counter-register is set by means of a File
instruction, its contents remain fixed until either (l) reset by
another File instruction or (2) referred to as the source of the
address of a next -instruction. As a general rule, whenever a given
counter-register is referred to as the source of a next-instruction
address, the counter reading does not receive its unit advance until
after the specified instruction has been executed and its result has
been written in the memory. Exception is made to this rule only in
the case of the P-45 through P-34 digits of the file-record, in order
to record the address of the scheduled next-instruction. If a counter
has not been used as the source of a next-instruction address since it

was last adopted, this fact is indicated in the P-4 digit of the file-
record.

o

o

- 17

Table 4. File-Record; the information written into the memory as
a result «of a File instruction (F or E)

Information Contained in Digit Position

Address of scheduled next instruction. P-45 through P-34

New counter reading, after resetting. P-33 through P-22

Prior counter-reading, plus the number
in the alpha segment of the File
instruction word.

P-21 through P-10

File instruction word's a-digit

.

P-9

File instruction word's b-digit<, P-8

File instruction word's c-digit. P-7

File instruction word's d-digit. P-6

Which counter was previously adopted,
(No. 0 or No. l)

P-5

About counter No. 0;

(if this counter has not been used as

a next-instruction address source
since it was last adopted or reset,
the P-4 digit is 1; if it has been so

used, the P-4 digit is 0)„

P-4

About counter No. 1;

(if this counter has not been used as

a next-instruction address source
since it was last adopted or reset,
the P-3 digit is 1; if it has been so

used, the P-3 digit is 0).

P-3

About the previous instruction:
(whether the d-digit of the previous
instruction was a 0 or a l).

P-2

About the counter not being adopted-
(if this counter is at present being
reserved for an Input-Output program
jump*, the P-1 digit is 1; if not,

the P-1 digit is 0).

P-1

*Note: For a discussion of Input-Output program jumps, see

Section IV, paragraph 3-

- 18 -

The File instruction-word, which is not to be confused
with the resulting file-record, has 'the same general format as the
other types of instruction-words (cf. Tables 1 and 5) but the signi-
ficance of some of the digit positions is different.

Table 5 • Word-Format of File Instructions

Digits Word Segment Contents

P-^5 through P-3^ Alpha Contains the displacement constant
to be added to prior counter
reading in order to produce P-10
through P-21 of file-record.

P-33 through P-22 Beta Contains the memory address,
absolute or relative, into which
the file-record is to be written.

P-21 through P-10 Gamma Contains the new setting for counter,
either absolute or relative.

P-9 a-digit Indicates which counter to file and
reset (No, 0 or No. l).

P-8 b-digit Indicates whether beta is absolute

(0) or relative (l).

P-7 c-digit Indicates whether gamma is absolute
(0) or relative (l)»

P-6 d-digit Indicates which counter is the source
of the next-instruction (No. 0 or
No. 1).

P-5 through P-2 Operation
symbol

Contains the File-operation code
symbol

.

P-1 Monitor signal Either 0 or 1.

19

Some examples of several typical uses of the File
instruction and the resultant file-record written into the memory
are contained in Table 6.

Table 6. Typical Uses of the File Instruction

Purpose of Instruction P-Digits
Content of File

Instruction
Content of Pile-Record

Example Pile both counter readings in 45--34 0 Counter No. 0, advanced

1 address X; the No. 0 counter to 33-^22 X Counter No. 1

be retained as the instruction 21--10 0 Counter No. 1

counter; the No. 1 counter to 9 1 1

be retained as the adopted 8 0 0

counter. 7 1 1

6 0 0

Example File both counter readings in 45--34 0 Counter No. 1. advanced

2 address X; the No. 1 counter to 33--22 X Counter No. 0

be retained as the instruction 21--10 0 Counter No. 0

counter; the No. 0 counter to 9 0 0

be retained as the adopted 8 0 0

counter. 7 1 1

6 1 1

Example Pile in memory address X the 45- -34 2
12 - Y Counter No. 1

3 address for the present instruc- 33--22 X Counter No. 0

tion (counter No. 0) reduced by 21--10 0 Counter No. 0 minus Y

Y (to be interpreted later as 9 0 0

the location of the instruction 8 0 0

initiating another iteration of 7 1 1

program); the No. 0 counter to 6 1 1

be retained unchanged as the

adopted counter; the next-

instruction address to be taken

from counter No. 1

Example Reset counter No. 1 to equal X; 45--34 0 X

4 *. and take the next instruction , 33--22 Unused address X

from X. 21--10 X Previous setting of No. 1

9 1 1

8 0 0

„ 7 0 0

6 1 1

Example Advance counter No. 1 by X 45--34 0 Counter No. 0

5 units and adopt it for relative 33--22 Unused address Counter No. 1, advanced X.

references purposes; take next- 21--10 X Counter No. 1, before advance

instruction address from 9 1 1

counter No. 0 8 0 0

7 1 1

6 0 0

20

k.2 Breakpoint File (code symbol, E)

The Breakpoint File instruction provides an operation
which is exactly similar to the unconditional File instruction (F)

except that it requires the setting of an external switch to
indicate that its activation is desired. If the external switch is

not so set. Breakpoint File instructions are passed over in the

program without causing the prescribed alteration in counter
readings, etc., or writing into the memory. The next instruction
is selected according to the usual rules

„

The Breakpoint File instruction is intended to
facilitate the carrying out of program monitoring operations such
as are required in the initial debugging of a new program. For
example, the programmer can insert Breakpoint File instructions
liberally throughout the program, arranging them in such a way as

to cause program jumps leading to interpolated automonitoring
routines. The automonitoring (or program analysis) routines can
be composed in the widest conceivable variety. The initial trial
running of a program may then be carried out with the Breakpoint
operations activated whenever the need for automonitoring appears
to arise. For the normal running of a program, the Breakpoint
File instructions can be rapidly passed over without causing any
significant loss of time. From a slightly different point of view,
the Breakpoint File may be used to cause a given program to be
carried out in either of two previously specified ways depending
upon the setting of the external selection switch „ This feature
may be used in applications analogous to those described in
Section V, paragraph 3> below.

The unconditional File and Breakpoint File operations
do not refer to addresses alpha or gamma in the memory, thereby
avoiding the access time which would be otherwise required for these
operations

.

IV. Input-Output Transfer Operations

1,.- Instruction types

1.1 Load and Print instructions (code symbol, 0)

In using this system, the programmer can arrange to
load or print out any consecutive series of memory locations ranging
in size from a single word to the entire memory, even while a program
of computation is proceeding. Automatic interlocks are provided in
the event that the programmer inadvertently attempts to use any
memory location in an inconsistent manner in this respect. For
example, if the programmer directs that a given section of the memory
be loaded from an external input unit and then some time afterwards
directs that the contents of a memory location in this section be used
as the source of an instruction, the program will automatically be
temporarily halted until the sought-for memory location has actually
received the word intended for it from the input unit. The details
of these interlocks are described in paragraph 2 below.

21 -

The types of input-output operations have been chosen
so as to be readily 'applicable for use with input-output units of
widely varying types and characteristics . Among the types contem-
plated for this machine are (l) a collection of magnetic wire or tape
drives, (2) one or more magnetic drum storage units, (3) mechanical
keyboard and printing devices such as Flexowriter, and (4) special
analog-type input or display devices.

1.2 Stages of the operations

A typical input-output operation proceeds in the
following stages: First the computer selects the particular unit
with which communication is to be made. The code-number signifying
this unit is specified in the instruction word. The term "unit" as

used in this context may mean a particular wire or tape drive, or a
designated channel on a magnetic drum, etc. In the second stage of
the process, the computer runs through a specified number of words
or blocks of words on the selected unit, the starting point being
either the word lying nearest the reading heads, in the case of a

magnetic wire or tape unit, or, in the case of a magnetic drum, a

fixed origin point on the periphery. For other types of applications,
this step may be used to introduce a variable delay. In the third
stage, which begins after the requisite number of words has been
counted out, the transfer of words between the external unit and the
internal high-speed memory takes place. The transfers commence with
the numerically smallest address in the block indicated and proceed
in consecutive order until the numerically highest address is reached,
thereby concluding the operation. The format of an input-output
instruction word is indicated in Table 7* The alpha segment of the
instruction word is used to specify (l) the type of operation, i.e.,
load or print, (2) the type of unit, such as tape unit or drum unit,

(3) the direction of motion of the unit, if relevant, (4) the running
distance or location of the initial word sought for on the external
unit, and (5) the code Identifying the particular unit or channel
desired. The gamma address segment in the instruction word specifies
the initial address in the high-speed memory, and the beta address
segment indicates the final address in the high-speed memory between
which the transfers are to be made. For transfers to take place, the
designated final address beta must be numerically greater than or
equal to the designated initial address gamma. If this condition is

not satisfied, no transfer of information takes place, and the
instruction becomes merely an order to move the designated unit a

specified distance in a given direction, and could be used for re-

reeling tape drives, and so forth.

22

Table 7« Word-Format of a Typical Input -Output Instruction

(For Tape or Wire Unit, and Drum Unit)

Digits Word Segment Contents

P-45

P-44

P-43 through P-34

P-33 through P-22

P-21 through P-10

P-9

P-8 through P-7

P-6

P-5 through P-2

P-1

Alpha

Beta

Gamma

a-digit

b, c-digit

d-digit

Operation

symbol

Monitor

Signal

Indicates type of operation:

Load (0), or Print (1).

Indicates type of unit:

Tape (0), or Drum (1).

Indicates location of information on unit.

On drum: The quadrant of drum is indicated by P-43

through P-42, and the drum channel is

indicated by P-41 through P-34.

On tape: The direction of motion of the tape unit,

forward (0) or reverse (1), is indicated

by P-43- The running distance in this

direction is indicated by P-42 through

P-38. The number of the tape unit is

indicated by P-37 through P-34.

Indicates the final address in the high-speed memory

to (or from) which information is to be transferred.

Indicates the initial address in the high-speed

memory to (or from) which information is to be

transferred.

Indicates program- j ump:

(If a program jump is desired after completion of

the input-output operation, P-9 is a 1; if no

such jump is desired, P-9 is a 0.

)

Indicates whether beta, and gamma are relative or

absolute.

Indicates counter containing address of next

instruction.

Contains code-symbol for input-output operation.

(0)

See Section V, paragraph L.

- 23 -

2. Concurrent regulation

2.1 Address conflict interlocks

As mentioned previously, automatic interlocks are
provided as safeguards against inadvertent attempts to use a given
memory location for two inconsistent purposes. For example, after
initiating a Load operation the machine is not allowed to read from
or write into any memory location affected by the Load instruction
until the pending memory-loading operation has taken place in that
particular location. Similarly, after a Print instruction has been
given, the machine is not permitted to write into any location
affected by the print-out order until the word in that location has
been printed out. Whenever necessary, these automatic interlocks
temporarily halt the computing program, but only for the minimum
time needed to insure that these conditions are fulfilled. For
example, if an instruction specifies that memory addresses 000
through 500 be loaded and that the next instruction be taken from
address 010, the program will proceed to the next instruction
immediately after address 010 has been loaded, even though the
remaining 490 words have not yet been entered into the other memory
locations. The interlock will be called into play again only in
the event that premature reference to any other of the first 501
words be attempted.

2.2 Priority conflict interlocks

Automatic interlocks are also provided against the
contingency that the program calls for an additional input-output
operation before a previously-ordered input-output operation has
been completed. In this event, the program halts temporarily, waits
until the preceding operation is completed, and then proceeds in the
usual fashion to carry out the second instruction.

3- Program jumping feature

For many applications which make use of concurrent loading
or printing-out of the high-speed memory while computations are
proceeding, the precise length of time required to complete the
input- output operation is either indeterminate or else quite
difficult to predict. A typical example of an instance of this
type occurs when it is necessary to hunt for a particular word or
group of words located in an unknown location on a long magnetic
tape reel- -where a word can be identified as one of the type
sought-for only after it has been read into the computer and sub-

jected to an analysis of its characteristics. Since efficiency
requires that information be read into the high-speed memory in

fairly large blocks, it is desirable (while the comparatively slow
procedure of reading-in the information is taking place) to make
use of the ability of the system to proceed on other independent
phases of the program. By means of the special input-output
program- jumping feature, the programmer is able to direct that
these other concurrent independent phases of the program be
allowed to proceed uninterrupted until the specified loading

- 24 -

operation shall have been completed, and that, as soon as the loading is

completed, the program shall jump to an alternative specified routine
which is designed to carry out the identification analysis upon the newly-
received information and to decide whether or not to retain it or to
continue hunting on the tape

.

An analogous need arises when it is desired to check the accuracy
of information printed out on the external medium by reading the printed-
out information back into the computer and comparing it with its original
source inside. A process of this sort would require a Print instruction
followed by a Load instruction. In order to avoid having to force the
program to stand by while the print-out operation is being completed, the
programmer could arrange for other internal operations to be carried out
concurrently which would be interrupted only when the print-out operation
was concluded, at which time the input instruction would be initiated.

Program jumps of this sort are directed by 'means of the P-6 and
P-9 digits in the instruction word. More explicitly, the P-6 digit (or

d-digit) of each instruction word specifies the counter register (No. 0

or No. 1) which contains the address of the instruction to be executed
immediately after completion of the current instruction. If the d-digit
is 0, the address of the next instruction is contained in counter No. 0,

and if the d-digit is 1, the source of the next instruction is contained
in counter No. 1. When the current instruction is an input-output order
(which generally specifies a lengthy external operation) and the
programmer desires, prior to its completion, to proceed with the next
instruction and other internal operations which can be carried out while
the lengthy external operation is being executed, then the P-9 digit
(or a-digit) of the current instruction word is written equal to 1. In
effect the programmer thus, at the time that he orders the input-output
unit to perform a specified task, includes in the order a request for the
production of a signal when the task is completed. This signal, received
from the input-output control, causes the program to jump; i.e., the
counter register then being used as the source of the next instruction is

temporarily abandoned, and the instruction word in the address location
stored in the other counter register is executed in its stead.

Table 8. Summary of Program-Jump Rules

Input-Output

Instruction

Source of Immediate

Next instruction

Source of Next Instruction After

Input-Output Operation is Completed

d-digit equals 0

and }

a-digit equals 1

Counter No. 0 Counter No. I

d-digit equals 1

and }

a-digit equals 1

Counter No. 1 Counter No. 0

(If the a-digit equals 0, no program jump occurs and, after completion of the

input-output operation, the next instruction is selected in the usual way by

the instruction word being executed at that time.)

- 25 -

After effecting a program jump, the new program that is

initiated by the substitute instruction may, if the programmer so
desires, be written with a constant d-digit in all of its instruc-
tions except the final one. As a result, as soon as the final in-

struction is executed, the program will return to the instruction
located in the memory address stored in the temporarily-abandoned
counter-register and resume the interrupted program where it left
off. It should be noted that the programmer need make no provision
for explicitly recording or determining the address at which the
interrupted program is to be resumed. This address will automatically
be held unchanged in the temporarily-abandoned counter register.

After the program has encountered an input-output instruction
with the a-digit equal to 1 (which, in effect, indicates that the pro-
grammer wishes to preserve the address in the control counter-register
for future reference), any premature attempt to alter the contents of
this register by means of a counter re-setting instruction (or any
instruction whose d-digit specifies the reserved counter) will result
in the program being halted temporarily until the input- output opera-
tion in question has been completed and the originally directed
program-jump is ready to be made. This automatic interlock relieves
the programmer of the burden of having to estimate precisely how long
a time will be required for the input-output operation to be completed
and insures that all the desired steps in the program will be carried
out in their proper sequence. The system is so designed that the
order which appears first in the program must be satisfied before any
subsequent conflicting order can be carried out.

V. Manual-Monitor Operations

1. Definitions

Under the general heading of manual-monitor operations are
included all those operations which are either initiated manually
by the machine operator, who for example presses a push-button, or

else are initiated by the program itself under conditions which are

specified by means of external switch settings . The first type is

called a manual operation; the second type a monitor operation. The

exact nature of the operations performed in both cases is specified
by means of external switch settings.

2. Types of operations performed

The types of manual-monitor operations which may be performed
fall into five main classes, namely (l) loading operations, which
load new information into specified portions of the machine such

as various memory locations and storage registers, (2) print-out
operations, which print-out the contents of these storage locations
inside the machine, (3) substitute-new- address directions that

- 26 -

interpolate new instructions between the members of the programmed
instruction sequence, (4) substitute-new-address directions that
initiate entirely new sequences of programmed instructions, and

(5) halt-program orders, with warning signal.

A list of the various storage locations inside the machine
to which some or all of the above-mentioned types of manual -monitor
operations may be made to pertain is indicated in Table 9, below.
Typical examples of possible manual-monitor operations which the
operator may select are given in paragraph 3 below.

Table 9- Storage locations directly accessible by means of Manual-
monitor operations

Memory locations 2

1. Address 000.

2. Addresses 000 through 007, inclusive.

3- Addresses 000 through OOF, inclusive.
4. Addresses 000 through 017, inclusive.

5. Addresses 000 through 01F, inclusive.
6

.

Addresses 000 through end*.

7. Address alpha indicated in the current instruction word

.

8. Address beta indicated in the current instruction word.

9- Address gamma indicated in the current instruction word.
10. Address scheduled for next reference by the current

instruction word.
11. Address stored in Counter-register No. 0.

12. Address stored in Counter-register No. 1.

13- Address stored in Address Storage Register (ASR)

.

Ik. Similar to items 7 through 13 above, except that all
thru eight addresses in the tank in which the indicated
20. word is located are included.
21. Addresses 000 through ASR**.
22. Addresses ASR through end, inclusive.

23. Addresses ASR through 007, inclusive.
24. Addresses ASR through OOF, inclusive.
25. Addresses ASR through 017, inclusive.
26 . Addresses ASR through 01F, inclusive.

Storage Registers:

27. Instruction Register.
28 . Arithmetic Accumulator Register.
29. Counter-Register No. 0.

30. Counter-Register No. 1.

31. Address Storage Register (ASR)

.

*"end" denotes largest available address number in memory.

**ASR denotes the address number stored in the Address Storage
Register

.

- 27 -

Three general methods are available to the operator for
indicating the type of manual-monitor operation desired. First:
for the most frequently used type, individual push-buttons are
provided whereby the specified operation can be initiated manually
at any time, with a minimum of effort. Second: for the less-
frequently used types, a group of rotary selection switches are
provided for indicating the combination of operations and addresses
desired. Finally, in a somewhat less accessible manner, means of
selecting any possible combination of specifications are provided
by a battezyof small switches which can be set up in various
specified patterns so as to produce those operations which are
less-frequently useful to the operator or which might be needed only
for certain special engineering test purposes

.

3- Modes of initiating monitor operations

By means of a set of external switches, the operator may
indicate the occasions or conditions under which the specified
type of manual-monitor operation is to be initiated by the course
of the internal program. For example, the operator may indicate
that the monitor process is to be initiated by any one or more of
the following conditions:

1) Every new instruction;

2) Every new reference to the memory;

3) An instruction to which a negative sign (P-1 equal to one) is

attached;

4) A comparison instruction which results in the selection of the
normal consecutive next instruction;

5) A comparison instruction which results in the selection of the
jump alternative next instruction stored in address gamma;

6) Any address reference which exactly matches the twelve binary
digit address number stored in the special Address Storage
Register (ASR) provided for this purpose;

7) The same as the above except that only the nine most significant
binary digits are matched;

8) An. address reference lying within some indicated one (or more)
of the eight possible memory cabinets;

9) A memory-error indication (See Section I, paragraph 3)j

10)

Various other special conditions.

It will be noted that item 8 above permits the three left-most
binary digits of each address to be used as special code keys that
signify the various classes of occasions on which a monitor operation
might be desired. This feature is still applicable even if the full

4096-word complement of memory locations is not actually provided.
For example, if only a single 512-word cabinet of memory is in opera-
tion, these code digits are capable of expressing seven classes of

automonitor- initiating conditions

.

- 28 -

Applications of manual-monitor system

Under Section III, paragraph k.2, describing the Breakpoint
File operation, it was noted that the initiation of automonitoring
routines could he controlled by means of the external switch which
is provided for activating Breakpoint File instructions , --provided
such instructions had been inserted in the program in the proper
strategic places. In the event that these Breakpoint File instruc-
tions have not been inserted in the program, the third type of

monitor operation listed above, (substitute-next-instruction-inter-
polating-new-instruction) can be used for the same purpose. For
example, one of the possible operations of this type can inter-
polate the word in address 000 as the next instruction, in place of
the scheduled next instruction in the program, without in any way
altering any counter re-setting or other operations which the
preceding instruction had caused to be carried out. The word in
address 000 would be chosen so as to cause the contents of the
counter-registers to be filed in designated memory locations and
would then initiate a prepared program of automonitor analysis.
(This program might, for example, include printing-out the address
of the instruction previously executed, the instruction word itself,
various of the operands, or the result of the instruction, etc., etc.)
The initiation of this program could be made dependent upon conditions
involving the type of instruction, the characteristics of the addresses
involved, or the operands themselves. When the desired information has
been printed out, the program would cause the control to be re-set to
the condition that had existed before the automonitor routine was
started and would cause the next regularly scheduled instruction to be
selected

,

Among other simpler operations which can easily be performed,
the following may be noted

s

l) Various fixed addresses or groups of fixed addresses may be
continually printed out even while the computation is proceeding.
Since these operations are initiated by means of external switches
which control only d-c voltages, operations of this type might
well be intiated by mechanical devices remote from the computer
itself. In other words, these remote external devices can
direct that various sections of the computer’s memory be made
available to them. Similarly, they can direct that various
sections of the computer's memory be loaded. Thus the computer
can be said to share its high-speed memory (and consequently any
other part of its internal computing or external storage facili-
ties) with these remote devices, --at the option of either the
external devices or the computation program or both, jointly.

- 29 -

2) The contents of a specified address can be printed out
whenever and as soon as it may be referred to in the course
of the program, with the option of halting the program at that
time if desired.

5) Every word read-from or written-into the memory at each step of
the program can be printed out. Neither this operation nor
the preceding one require the preparation of any special routine.

4) Certain operations are available which pertain to more than
one special address. Of these, jfche following may be taken as
typical:

a) Load the entire memory, and take the word in address 000
as the next instruction.

b) Load the first tank (or first 2, J, or 4 tanks) in the
memory and take the word in address ASR as the next
instruction

.

c) Let the program proceed until the word in address ASR
is referred to, at which time print out the contents of

the Instruction Register, and halt.

d) Whenever address ASR is requested, substitute address 000
in its stead, and proceed with the program.

VI . Summary

As the foregoing outline of the DYSEAC system has shown, this
machine is capable of carrying out (l) a balanced set of internal
arithmetic and program-control operations, (2) a group of external
input-output operations which can proceed simultaneously with the
internal computing operations and, at the option of the programmer,
can be automatically interlocked with them in such a way to to inter-
mesh the sequencing of internal and external operations, and (3) an
extended repertoire of manual and monitoring operations by means of
which a wide variety of special input-output or program-branching
operations may be interpolated at any time Into the previously-
prepared program instructions. These latter two features, acting
in concert, make the internal storage facilities of the machine
available to the outside world without appreciably interfering with
the internal computations; also they permit unscheduled interchanges
of data and program-informat ion to take place between the machine and
the outside world at the instigation of either, independently, or of
both cooperatively. This communication betweeen the machine and the
outside can be readily maintained whether the outside communicant is

another automatic device or a human operator.

- 30 -

The human operator might he coupled to the machine system (l) through
the medium of a visual display device which exhibits, graphically,
numerical data stored inside the machine’s memory, and (2) by means of a

battery of manual control switches capable of inserting new numerical data
or certain new control commands into the machine . For example, in an
analytical- study application concerned with the control of air traffic at

an airport terminal, the numerical data displayed by the machine would
represent in real time the predicted traffic patterns in the neighborhood
of the airport, e.g., the predicted locations (based on latest scheduling
information) of all aircraft inside a certain area. The operator could,

by means of the manual input controls, (l) enter newer data into the
machine as the information became available, (2) interrogate the machine
for more detailed information concerning certain individual flights as the
need arose, and even (3) instruct the machine to exhibit the effect to be
expected from issuing revised flight control orders. In applications of

this sort which require a constant interchange of intelligence between the
machine and its operator (also perhaps between the machine and other
devices), the DYSEAC system could be fitted smoothly into the more com-
prehensive aircraft-communication system, and could serve as a critical
link in it

.

Because of its combination of flexible external facilities and power-
ful general-purpose internal facilities, the DYSEAC could also be used as

a simulator. It could simulate one (or more) missing elements, e.g.,
special storage reservoirs, decoders, converters, etc., in a tentatively
designed but only partially realized communication network. By acting
as an interim substitute for such special-purpose missing links in the
overall communication-system, the DYSEAC could test the operational
effectiveness of proposed design variations for each link. The effect of

variations In the operating properties of each link could easily be
explored over a wide range merely by writing into the DYSEAC program of
instructions a new set of numerical values for the parameters describing
the link’s operational specifications. Hence a series of comparative
tests could be run off in rapid succession, and the relative efficiency
of the proposed designs could be observed under realistic conditions

.

This procedure would be particularly effective for evaluating those links
which are intended to be realized, physically, by inflexible highly-
specialized equipment. It would also be particularly effective in
evaluating the human operator's reactions to new designs. This latter
factor is, of course, extremely difficult to assess by means of theoreti-
cal studies alone. Thus the DYSEAC could serve as a valuable analytical
tool for carrying out a comprehensive program of system- studies

„

A. L. Leiner
Chief, Machine Systems Branch
Electronic Computers Laboratory

THE NATIONAL BUREAU OF STANDARDS

Functions and Activities

The functions of the National Bureau of Standards are set forth in the Act of Congress, March

3, 1901, as amended by Congress in Public Law 619, 1950. These include the development and

maintenance of the national standards of measurement and the provision of means and methods

for making measurements consistent with these standards; the determination of physical constants

and properties of materials; the development of methods and instruments for testing materials,

devices, and structures; advisory services to Government Agencies on scientific and technical

problems; invention and development of devices to serve special needs of the Government; and the

development of standard practices, codes, and specifications. The work includes basic and applied

research, development, engineering, instrumentation, testing, evaluation, calibration services, and

various consultation and information services. A major portion of the Bureau’s work is performed

for other Government Agencies, particularly the Department of Defense and the Atomic Energy

Commission. The scope of activities is suggested by the listing of divisions and sections on the

inside of the front cover.

Reports and Publications

The results of the Bureau’s work take the form of either actual equipment and devices or

published papers and reports. Reports are issued to the sponsoring agency of a particular project

or program. Published papers appear either in the Bureau’s own series of publications or in the

journals of professional and scientific societies. The Bureau itself publishes three monthly peri-

odicals, available from the Government Printing Office: The Journal of Research, which presents

complete papers reporting technical investigations; the Technical News Bulletin, which presents

summary and preliminary reports on work in progress; and Basic Radio Propagation Predictions,

which provides data for determining the best frequencies to use for radio communications throughout

the world. There are also five series of nonperiodical publications: The Applied Mathematics

Series, Circulars, Handbooks, Building Materials and Structures Reports, and Miscellaneous

Publications.

Information on the Bureau’s publications can be found in NBS Circular 460, Publications of

the National Bureau of Standards ($1.00). Information on calibration services and fees can be

found in NBS Circular 483, Testing by the National Bureau of Standards (25 cents). Both are

available from the Government Printing Office. Inquiries regarding the Bureau’s reports and

publications should be addressed to the Office of Scientific Publications, National Bureau of Stand-

ards, Washington 25, D. C.

