NATIONAL BUREAU OF STANDARDS REPORT

1834

HOW MANY GUARDS\%
By
W。R。Kinight

U. S. DEPARTMENT OF COMMERCE

NATIONAL BUREAU OF STANDARDS

U. S. DEPARTMENT OF COMMERCE

Charles Sawyer, Secretary
NATIONAL BUREAU OF STANDARDS
A. V. Astin 조눌 Director

THE NATIONAL BUREAU OF STANDARDS

The scope of activities of the National Bureau of Standards is suggested in the following listing of the divisions and sections engaged in technical work. In general, each section is engaged in specialized research, development, and enginecring in the field indicated by its title. A brief description of the activities, and of the resultant reports and publications, appears on the inside of the back cover of this report.

1. Electricity. Resistance Measurements. Inductance and Capacitance. Electrical Instruments. Magnetic Measurements. Electrochemistry.
2. Optics and Metrology. Photometry and Colorimetry. Optical Instrunents. Photographic Technology. Length. Gage.
3. Heat and Power. Temperature Measurements. Thermodynamics. Cryogenics. Engines and Iubrication. Engine Fuels.
4. Atomic and Radiation Physics. Spectroscopy. Radiometry. Mass Spectrometry. Physical Electronics. Electron Physics. Atomic Physics. Neutron Measurements. Nuclear Physics. Radioactivity. X-Rays. Betatron. Nucleonic Instrumentation. Radiological Equipment. Atomic Energy Commission Instruments Branch.
5. Chemistry. Organic Coatings. Surface Chemistry. Organic Chemistry. Analytical Chemistry. Inorganic Chemistry. Electrodeposition. Gas Chemistry. Physical Chemistry. Thermochemistry. Spectrochemistry. Pure Substances.
6. Mechanics. Sound. Mechanical Instruments. Aerodynamics. Engineering Mechanics. Hydraulics. Mass. Capacity, Density, and Fluid Meters.
7. Organic and Fibrous Materials. Rubber. Textiles. Paper. Leather. Testing and Specifications. Organic Plastics. Dental Research.
8. Metallurgy. Thermal Metallurgy. Chemical Metallurgy. Mechanical Metallurgy. Corrosion.
9. Mineral Products. Porcelain and Pottery. Glass. Refractories. Enameled Metals. Building Stone. Concreting Materials. Constitution and Microstructure. Chemistry of Mineral Products.
10. Building Technology. Structural Engineering. Fire Protection. Heating and Air Conditioning. Exterior and Interior Coverings. Codes and Specifications.
11. Applied Mathematics. Numerical Analysis. Computation. Statistical Engineering. Machine Development.
12. Electronics. Engineering Electronics. Electron Tubes. Electronic Computers. Electronic Instrumentation.
13. Ordnance Development. Mechanical Research and Development. Electromechanical Fuzes. Technical Services. Missile Fuzing Research. Missile Fuzing Development. Projectile Fuzes. Ordnance Components. Ordnance Tests. Ordnance Research.
14. Radio Propagation. Upper Atmosphere Research. Ionospheric Research. Regular Propagation Services. Frequency Utilization Research. Tropospheric Propagation Research. High Frequency Standards. Microwave Standards.
15. Missile Development. Missile Engineering. Missile Dynamics. Missile Intelligence. Missile Instrumentation. Technical Services. Combustion.

NATIONAL BUREAU OF STANDARDS REPORT NBS PROJECT
 3737-60-0002
 1 August 1952
 NBS REPORT
 1834

HOW MANY GUARDS?

By
W: R. Knight
I. Rlchard Savage Statistical Engineering Laboratory

To
Administrative Services
Division 42
National Bureau of Standards

The publication, re
unless permission it
25. D. C. Such p prepared $I f$ that

Approved for public release by the Director of the National Institute of Standards and Technology (NIST) on October 9, 2015

In part, is prohlbited tandards, Washington has been speclically lort for lis own use,

FOREWORD

This report was prepared in the Statistical Engineering Laboratory of the fetional Bureau of Standerds for use by MBS Division 42 , Aminigerative Services. The Statistical Hagineering Laboratory is Section 11.3 of the National Applied Mathematics Laboratorios Division 11, National Bureau of Stancards and is concomed with the development and application Ol modern statistroal methods in the physical sciences and engineering.
J. H. Curtiss

HOW MANY GUARDS?

By
W. R. Knight
I. Richard Savago

Summary: In proparing work programs for the guard force at the National Bureau of Standards one should take into Ioave account the fact that guards take sick/and some of their annual leave unoxpoctedly, which gives rise to the questions of whether and by what amount the number of guards should excesed the number of posts to be filled, and thus the theory of probability ie called into play. This roport gives an outine of \& method for preparing a worl progran for a guard force, the outiine taking into account the element of probabo silty that is prosent. It is further shown that sevoral dificent work programs can be dovised that cost ossentially the same amount, and consequently the director of these prom grams has some flexibility in choosing the method for running the Iorce.

It should be emphasized that this report only gives an outine of a method ror dopising an oconomic method for running the guard force since not all of the fiscal complexities have beon taken into account. In practice tho dotailed analysis and dosign of work programs can only be done with the intimate cooperation between the analyst and the accounting sectiona of the guare systom.

Introduction: Mr. Dalzoil, the chief of the Administrative Services Division, National Bureau of Standards, has noticed that probability comes into the planning of the guard force since guards take some of their leave (annual and sick) unexpectedly and consequently he cannot always plan on having as many guarcis tually coming to work as were a sked to come to work. Whenguards are unexpectedly absent it is of ten necessary to hire extra men at overtime rates in order to make sure that all the guards posts are filled. It is the purpose of this report to show how one can take the above into account in ordor to devise work programs that are economical.

The Problem: Mr. Dalzell must hire by the year enough guards to take care of all his posts. The lookkeeping yoar is 364 days of oxactly 52 woeks; this gives 260 weekdays and 104 Saturdays and Sundays, some of which are the 8 holldays. On weekdays 13 posts must be filled:s on Saturdays, Sundays, and holidays it is only necessary to fill 12. However, if a holiday ialls on Sunday, only 12 posts need be filled the following Mondry. \#

This is bocause the Bureau will be closed the following Monday as the other emplojees get that day off to make up for the holidsy.

If we assume that of the 8 holidays, one will fall on Saturciay, one on Sunday, and the rest on weokdays, then there are 253 devs upon which 13 posts must be filled, and 103 days PIn addition to the 8 holidays which are treated soparately fors ressons which will shortly become clear.) on which iz posis must be filled. The days upon which 13 ;posts must be filled will be hereafter referred to as wookdays, and the daye woon winch 12 posts must be filled other then holidays will. bo peferred to as having fallen on a wookend, oven though this may not be strictly the case.

The absence rate among the guards is not exactly know. but it is somewhere between four and six percent. In numerical illustrations it will, for puxposes of this paper, be taken give percont.

There are 364 days in the year. After deducting for welsends, hollcays, annul and sick leave, etc., there are 212 days on which man must work. of this. 15 days are sick 1eavo: wo suppose that the guards are sick unexpectedly, hence they will be sscod to work during these 15 days, but are sick and therefore do not come. Also there will be a few days on which a guard is asked to work, هut does not come because he has taken unoxpected annual leave. Thus while a guard works 212 days plus whatever sick losve he does not use, he is asked to work on more than 212 days by the amount of unused sick Leare on which he must work, plus the amount of used sick leave

On which he was asked to work but didn't, plus whatever une expected annual leave he has taken. In short: Each guard is asked to work 227 days plus unexpected annual leave. For purposes of numerical illustration 5 days of unexpected annual Leaver per man will be assumed although no figures are available on this.

The guards are paid at an annual rate on the basis of 260 days per year (all weekdays). In addition to this basic annual pay, they get time and a half for any overtime except on holidays. When they are called upon to work overtime on a holiday, they receive double the regular daily pay. When a Holiday happens to fall on a scheduled work day, guards receive their regular daily pay plus a bonus consisting of a full dayis pay. It will be seen that regular and overtime paik is thus the same on holidays, the only difference, being that on regular time, half of the holidays pay is included in the regular pay check, while on overtime all of it is separate.

There are two choices that must be made in this situation. First, how many men should be asked to work on a given day? Secondly, how many men should be hired to cover the posts for the Jear? There will be any number of programs that can be used, depending on the number of men asked to work each day of the year and the total number of men hired. The cost of any program will be the sum of the following items:
(a) The basic annual salaries of the men hired.
(b) Additional holiday pay.
(c) Overtime pay at the end of the year to fill vacant posts: in the event that not enough men were hired to fill all of the posts that had been planned upon.

This item comes into the bookkeoping since wo cannot hire fractions of men.
(d) The amount of overtime that mast be paid to have the posts filled whon the mon are absent. This will be equal to the amount of overtime that would be paid in one day (average) summed over all the daye of the Year. Thus in a simple case, it would be 253 times the amount of overtime that would, on the average, be paid on a day when T men were asked to come to work to 111213 posts; "plus 103 times the overtime that would be paid on day when T men were asked to come to $f 11112$ posts.

The formula determining this quantity is derived in Appendix i, and a table for a few selected $v a l u e s$ is included bi Appendix II. The average amount of overtime that will be paid during one day is given by the expression:

$$
\begin{aligned}
& T \infty 1 \quad T
\end{aligned}
$$

Where: P f the number of posts that must be filled $T=$ the number of men asked to come to work $Y=$ the number of men asked who don't come A I the average absence rate $c^{\prime}=$ one man's daily pay at overtime rates

$$
-6=
$$

Thus, given a prospective program, the sum of these four items will give the cost of such a program. The problem is to find the progran with the least possible cost. Unforte unately there is no direct method for doing this. However, common sense will eliminate all but a few of all the possible programs. For example, it is clear that at least as many men must be asked to come to work as there are poste to be filled, and that, given any reasonable absence rate, it should not bo necessary to ask very many more men to come to work than there are posts to be filled. Also if D_{T} equals the number of days per year on which T men are asked to c ome to work, and W equals the number of days per jear that one man can be asked to come to work, then the total number of men to hire to cover the years posts would be:

$$
2 X_{T} M=\text { number of men to hire. }
$$

Unfortunately this will not usually be an intoger, but it will be soen that the number of men to hire nast be an integer in the noighbor of this quantity. Thus in practice it will suffice to simply calculate the cost of a fow programs which common sense will point out. The one of these resulting programs

Trootnote continuing from page 5)
$B(A, T, Y)=\frac{T}{(T-Y)!Y_{0}^{0}} \Lambda^{Y}(I \propto A)^{T-Y}$
This function and its partial summations over Y are tobulated in the National Bureau of Standards Appliod Mathematics Series No. 6.
which proves cheapest is, of course, the one to select. The following programs will be figured in units of one man's pay per day. That is, the number "one" refers to an amount of money equal to the amount one man would recelve in one day, the number "one and one halr" refers to an amount of money equal to that which one man would receive in one day at overtime rates, etc. Thus one man's basic yoarly pay would be represented as 260 ."

Program I.
Let us examine the following progrem: 13 men will be asked to work on weokdays, 12 on wookends. It has been pointed out that the overtime rate for holidays is the same as the regular rate for holidays, therefore let us always have men worif holidays on an overtime basis; this will enable fewer men to be hired for the year. Since the holidays are now all overtime, they will not be considered in determining how many men we need to fill our regular posts this number being:

$$
\text { number of men }=\frac{253 \times 13+103 \times 12}{212+15+5}=19.5
$$

according to the formula given on page 6. As was remarked at the time, the resuit is not an integer. It will be necessary to examine both a program hiring 20 men, and one hiring 19: taking 20 first:

Since we "reaily noed 19.5 men, let us consider the hiring of 20 which will give us a few man days Ieftovor m at the ond of the year: however, we can alway absorb some of this surplus by asking some men to worik holiday on regular time instead of on overtime ais was planned. The exact amount of the surplus will be 115 manedays:

$$
\begin{aligned}
13 \times 253+12 \times 103= & 4525= \\
232 \times 20 & \text { total number of man days needed. } \\
=4640= & \text { total number of man days available } \\
& \text { if } 20 \text { men are hired. } \\
I I 5= & \text { difference between man days needed } \\
& \text { and man dags awailable = surplus } \\
& \text { (or shortage if too few men are } \\
& \text { hired) }
\end{aligned}
$$

it now only remains to determine the cost of program I:
(a)
(b)
(c)

5200 Basic annual pay for 260 men.
96 diditional holiday pay. By asking some of the surplus of 115 man days to work holldays, on regular time, heil of this has been brought under the regular basic annual pay: 11 we had had to hire all of thern at overtime, "it would havo beon $2 \times 12 \pi 8=292$.

0 If less man days aro available than are noodod, men must be hired at overtime rates at the end of the year to make up the shortage: however, in this case there is a surplus rather than a shortage.
(d) 253 times the overtime 339.4 overtime due to absence. that would be paid on one day if 13 men were asked to come to fill 13 posts, plus 103 times the overtime that would be paid

The overtime that would be, on the average, paid in one day if T men aro asked to come to fill P posts can be figured by the

```
in one day if 12 men were asked to come to fill 12 posts
```

Cormule givon on pago 5, or can be looked up in appondix II for these particular casos.

-5635.4	Total cost of program I
for one Jear in terms or	
one mans daily pay.	

Program I' ${ }^{\text {P }}$ 。
Now let us see what will bo the cost in 13 men aro asked 12 asked to work weokends. to work weolkdays, /and 19 men are hired instead of 20. This will give a shortage of men at the ond of the year, the exact number being:

$$
\begin{aligned}
13 \times 253+12 \times 103=4525= & \text { Total man days noedod } \\
19 \times 232=\frac{4408}{117}= & \text { Man days short; these will } \\
& \text { have to be made up at overo } \\
& \text { time rates. }
\end{aligned}
$$

The cost of the program:
(a) 19x260 4940 Basic nnual pay for 19 mon
(b) $2 \times 12 \times 8192$ Additional holiday pay (all at overtime rates.)
(c) $(3 / 2)=117$
(d)
330.9 Over time due to absence.
This is figured in the same
way is in the previous example.
Howerer, the last 117 man
days of the yoar will be
hired at overtime ratea, hence
absonce does not cost anything
extra on those days. This moans
that instead of 253 days
during which overtime must bo
paid for absence there aro
only 253 -(117/13) such days.
(Wo arrange to take up the
shortages on weokajas only
as this proves triflo
loss expensivo.)
5638.4
Total cost of program I'

Program II.
Let us now see what will happen if more mon are asked to come to work than there are posts to be filled. Lot 14 men be asked to come to work on weekdays, and 13 on weekends. (12 on holidays, of course.) This requires hiring:

$$
\frac{14 \times 253+13 \times 103}{212+15+5}=21.04 \mathrm{men}
$$

In this case we will simply round to 21 men. This will result in a small shortage.

$$
\begin{aligned}
14 \times 253+13 \times 103 & =4881 \text { Man days nooded } \\
21 \times 232 & =\frac{4872}{9} \text { Man days available } \\
& \text { Mays short. }
\end{aligned}
$$

The cost of program II:
(a) 21×260
(b) $2 \times 12 \times 8$
(c) $(3 / 2) \times 8$

Basic annual pay
192 Additional holiday pay
12 Overtime due to shortage of men. (reason that 8 rather than 9 is used is that on the last day 13 rather then 14 mon are asked to come to work.)
(d) $252 x$ (overtime on one 96.6 overtime due to absence. day if 14 men are asked to fill 13 posts) $+103 x$ (overtime if 13 mon are asked to f111 12) t

On the last day only 4 out of 13 men are on regular time: the rest get over. time anyway.
(4/13) times (overtime if
13 men are a sked to come to
fill 13 posts.)
5760.6 Total cost of program II

In this particular case it seems that it is better not to ask more men to come to work than there are posts to fill. It also appears that it doesn't make much difference whether 20 or 19 men are hired, thus giving some freedom of choice to the administrator of the guard force. It should ber emembered that these examples are merely a rough breatment to illustrate the general method; not only have fiscal details been omitted for the sake of simplicity, but also two possible programs [(1) asking 14 men to work weekdays and 12 on weekends, and (2) asking 13 men to work weekdays and 13 on weekends] have not been treated, because it seems probable that they would have proved to be more expensive than programs I and I'。

Appendix I.

Derivation of Overtime Pay Due to absence
The average overtime that will be paid on a day when T men are asked to come to work to fill P posts hereafter denoted $F(A, T, P)$ where A is the absence rate, will be:

Where: $X=$ The number of men who actually appear for work on that day when asked ($=T-Y$).
$F(X, P)=$ The amount of overtime that must be paid if X men appear to fill P posts.
$\left(\begin{array}{l}T \\ X\end{array} \mathbb{N}^{T \infty}{ }^{T}(I-A)^{X} \quad\right.$ is the probability that, given an absence rate of A, X men Will appear then T men were asked to come to work.

$$
F(A, T, P)=c^{8}{\underset{X}{X=0}}_{P}^{P}(P-X)\binom{X}{X} A^{T-X}(1-A)^{X}
$$

Meking the substitution $Y=T-X$.

$$
\begin{aligned}
& =c^{B=T \infty P} \underset{P}{T}\left[(P \propto T)\binom{T}{Y} A^{Y(I-A)^{T-Y}}\right. \\
& \left.+Y\binom{T}{Y} A^{Y}(1-a)^{T-Y}\right] \\
& =c^{\prime}(P-T)_{Y=T-} \sum_{T}^{T}\binom{T}{Y} A^{Y}(1-A)^{T-I} \\
& +c^{\prime} T A \underset{Y=(T-I)}{\underset{Y}{2}\binom{T-1}{Y} Y(I-A)}(T-1)-Y
\end{aligned}
$$

Now, for simplicity of notation, define:

$$
B(A, T, Y)=\binom{T}{Y} A^{Y}(I-A)^{T-Y}
$$

Thus giving:

$$
F=c \cdot\left\{\begin{array}{ll}
T \in \mathcal{I} & B(A, T \propto 1, Y)-(T \propto P) \\
Y=(T-1) \propto P & Y(\Lambda, T, Y) \\
Y=T \in P
\end{array}\right\}
$$

*appendix II

Average overtime that will be paid in one day to make up for absences. In terms of one man's daily pay; overtime at one and a half time.

THE NATIONAL BUREAU OF STANDARDS

Functions and Activities

The functions of the National Bureau of Standards are set forth in the Act of Congress, March 3, 1901, as amended by Congress in Public Law 619, 1950. These include the development and maintenance of the national standards of measurement and the provision of means and methods for making measurements consistent with these standards; the determination of physical constants and properties of materials; the development of methods and instruments for testing materials, devices, and structures; advisory services to Government Agencies on scientific and technical problems; invention and development of devices to serve special needs of the Government; and the development of standard practices, codes, and specifications. The work includes basic and applied research, development, engineering, instrumentation, testing, evaluation, calibration services and various consultation and information services. A major portion of the Bureau's work is performed for other Government Agencies, particularly the Department of Defense and the Atomic Energy Commission. The scope of activities is suggested by the listing of divisions and sections on the inside of the front cover.

Reports and Publications

The results of the Bureau's work take the form of either actual equipment and devices or published papers and reports. Reports are issued to the sponsoring agency of a particular project or program. Published papers appear either in the Bureau's own series of publications or in the journals of professional and scientific societies. The Bureau itself publishes three monthly periodicals, available from the Government Printing Office: The Journal of Research, which presents complete papers reporting technical investigations; the Technical News Bulletin, which presents summary and preliminary reports on work in progress; and Basic Radio Propagation Predictions, which provides data for determining the best frequencies to use for radio communications throughout the world. There are also five series of nonperiodical publications: The Applied Mathematics Series, Circulars, Handbooks, Building Materials and Structures Reports, and Miscellaneous Publications.

Information on the Bureau's publications can be found in NBS Circular 460, Publications of the National Bureau of Standards (\$1.00). Information on calibration services and fees can be found in NBS Circular 483, Testing by the National Bureau of Standards (25 cents). Both are available from the Government Printing Office. Inquiries regarding the Bureau's reports and publications should be addressed to the Office of Scientific Publications, National Bureau of Standards, Washington 25, D. C.

