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ON absolute convergence of linear
ITERATION PROCESSES I

By a. M. QstrowskI

1. In solving the linear system A £ * rf by iteration (where

i = (a ) is a quadratic matrix of order n as are all matrices

considered later, save, of course, vectors) we establish a sequence of

vectors d ,
approximating vectors to the solution vector .. ;

H

the corresponding residual vectors p are given by

A £ ‘ •

k "7
1c

elements a
A*/*

We assume in what follows that the diagonal

are = 1.

In the single step iteration at each step only one component

O<)
of L is changed; if the components of are X

K K V
to each k corresponds a leading index N^ such that

then

(1) x (k+1)
If

.00 (V+ N. ) , x
(k+1)
N.

- x
(k)
N.

$
k

Usually J is so chosen that the corresponding components

(k)
of 0 becomes 0; if the components of 0^ are r.

‘

. we have

then 8
lr =-h

k)
,

V

L

In the case the so-called incomplete relaxation is allowed

we take

(2) S \ r
N
(k>

(0 < qk < 2) ;

for < 1 we have under relaxation and for qk > 1 we have over

relaxation.
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2, A generalization of the single step iteration is the

group iteration ; here at each step the indices 1, n are

decomposed into two groups, active indices ( 4 or Y ) a.nd

pass ive indices ( ) and in passing from
4^

4 the

components with passive indices are not changed, while for

the change of the components with active Indices the following

rule is used. Define for the active indices the constants

£ CK)
0 from the set of equations

(3)
%

a «r ~ <
k)

where and Y run over all active indices, and take

.(*> , q <*>
&°° (k)(4) x

(k+1)= x(k) x (k+1 > - x (k
[ 1 X

B :<

X
B >

X
(Kp -p * "a ~a ~a ,(0<q a < 2) *

An essentially different type of linear iteration is the

Jacobian iteration described by the formulae ( ?!
s

j Yn )

)

,
(k+1) _ v £ k

(4a) x' = ~ll~ & a . x,.
• Y=1 fAl/ V

(See Argelander [1] ancl^Jacobi [4]).

3* While in the iteration (4) no freedom is left save

the choice of the starting vector
,

in using the single

step of the group iteration the choice of the leading index

or more generally of the active indices at each step -

we call this the steering of the process - becomes the essential

problem. If this choice depends on the values of the components

P we call it the relaxation processes (introduced by Gauss [2],
K

see also references to Gauss in Gerllng [3] and later discussed



-3-

by Seidel C 17 3 and rediscovered by Southwell [lSfy^If the

sequence of the leading indices or more generally of the groups

of active indices is periodic* then, if no index is missing

(while some of them may occur several times in a period) we

speak of the periodic steering ; if in particular, in a

complete period each index occurs exactly once we speak of

the cyclic steering,, The cyclic steering appears to have

been considered for the first time by Nekrassoff [8] although

2

)

it was mentioned by Seidel [17] who did not recommend it.

The cyclic group iteration was first considered by Pizzetti

[15] while the group relaxation was recommended by Gauss

(see the r eference in Gerling C 3 U ) - Finally we speak of

the free steering if the sequence of the leading indices

and active indices is chosen in an arbitrary way provided

q \

each index occurs an infinite number of times. The

incomplete relaxation is used in the practical computing

but it has not been as yet theoretically discussed.

These iteration schemes arose from the method of

the least squares. For a symmetric definite matrix the

convergence of the single step iteration in the case of the

steering by relaxation was first proved by Seidel [17]

•

Pizzetti [ 15 ] proved the convergence of the cyclic single

step and group iteration, while Reich [16] showed that
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for a symmetric matrix the cyclic single step iteration

always diverges if the corresponding form is not a definite

one.

1

5. In the case of non-symmetric matrices the first sufficient

conditions for the convergence of the cyclic one "step iteration"

were given in 1892;

(5) £ |aA^ |< 1 (Mehmke) [ 5 ] ,
(Nekrassof f ) [6]

,

Other sufficient conditions were given by Nekrassoff [9] and

later other writers (see the references in [20]). These conditions

contain usually not the elements a ^ themselves but only their

moduli and it was then in any case noticed that the same conditions

are" also sufficient for the convergence of the Jacobian Iteration

(4a). In what follows we will say that an iteration process as

described above for a fixed choice of the active Indices is

absolutely* convergent if it is convergent for any choice of the

starting vector ^ and if it remains so when the elements

of the matrix are multiplied by arbitrary numbers of modulus

one. The conditions (-5 ) and analogous conditions are then

obviously sufficient conditions for the absolute convergence

of the cyclic one step Iteration.

In this note we will characterize completely all matrices

A for which the cyclic one step iteration is absolutely

convergent.
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6. To a general matrix A = ) corresponds in a unique

way the matrix ,

(6) Ap (ta^^ jo y^+V '

the adjoint matrix to A [11]. The matrix A is called of H type

or an H matrix if |A^| >0 while all coaxial minors of Ap of

all orders are not negative.

Then we obtain as the necessary and sufficient condition

for the absolute convergence of the single step cyclic

Iteration, that the matrix A is an H matrix . More precisely

we have the two more general theorems:

I. If the cyclic one step Iteration converges for the

matrix for any choice of starting value 4
/

>
A is an H

matrix.

II. If A is an H matrix then the cyclic one step

iteration and even the one step iteration and the group

iteration with free steering are convergent for the matrix A

for any choice of the starting vector. Further, the incomplete

relaxation is allowed to the following extent: let t^ and

t2
be positive numbers where t^ < 1 and t

2
is sufficiently

smallj, then the one step iteration remains convergent if the

vectors satisfy the condition

(7) sc qk $ 1 + t
2

k = (1,2, ) .
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cr)
In the case of the group Iteration the factors q must

satisfy the condition

,

(r)

(8) |q
k - 1| $ t

2

A corresponding result holds also for the Jacobian iteration

(4a),

III, A necessary and sufficient condition for the absolute

convergence of the Jacobian iteration for any choice of the starting

value ^ is that the matrix A is an H matrix.
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ON ABSOLUTE CONVERGENCE OF LINEAR
ITERATION PROCESSES II

By A. M. Ostrowski

7* There are many sufficient conditions for the H type matrices

which, without being necessary, are often very easy to apply.

We use the following notations:
n n

(9)

no)

i£l l
a
/(V I '

n
= C

V=l
|a

'
u '*/

SM
=

p-jVp

(11) m . = Max Ja 1, m = Max 1
^

^ n>v
M = Max ,

>M<V a/U/U

Then each of the following conditions (12) - (16) is sufficient

for the matrix A being of the H type:

(12) Z <
I

a
| (A » 1, n);

yv
1 tL

'

(13

)

<| |
(yU«l, ..., n)

for a convenient <% , 0 4 OC ^ 1 [12];

n
(i^)

Â=1 l+A aAA
< 1, A + i - 1; [13]

P q

n
(15) £

/<=1
IV< 1

+ V
, v .. m M

(16) m < M, -—
”n <7 "n <

( 1+m) ( 1+M

cp]

ci4]

In interchanging the rows with the columns we obtain a further

4)
set of sufficient conditions. '
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8® A single step or group Iteration scheme with a periodic

steering is equivalent to a matrix iteration of the type
c ' ' /

* At £ + A0 7} * if the result of all steps contained
1 % 2 7

in a period is interpreted as the passage from a vector L
K

to a vector / . In the case of the cyclic single step
K+!

iteration such a representation can be obtained in writing the

matrix A as the sum L + D + R of the matrix L containing zeros

on the diagonal and to the right of it, the matrix D containing

zeros off the diagonal and the matrix R containing zeros on

the diagonal and to the left of it. Then the matrix

interpretation of the cyclic single step Iterations

corresponds to the formula

L = - (L+D)"
1
R i' + (L+D)

-1
•»'

;

and from that the necessary and sufficient condition for the

convergence of this iteration can be obtained in the form that

the maximum modulus of the roots of the equation

|A,L + XrD +R|~0 remains < 1 [8,9] • We will denote this

maximum modulus as the Nekrassoff number of A.

9. On the other hand a corresponding condition has been

derived for the convergence of the Jabobian iteration; in this

case it is necessary and sufficient for the convergence that

the maximum modulus of the roots of the equation |
A D + L + R| = 0

is < 1 [7].
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¥e will consider in particular the maximum modulus of

the roots of this equation formed for the adjoint matrix

of A; this number will be denoted by <r ^ and called the

Jacobian constant of the matrix A. Then we can write the

necessary and sufficient condition for the absolute convergence

of the Jacobian iteration of the matrix A in the form

CT , < 1. This is equivalent to the theorem that

or a < 1 is necessary and sufficient for the matrix A to be

of the H type.

On the other hand it can be proved that if cr^ 1, the

Nekrassoff number of A remains ^ or

10. These results can be generalized in the following

way. We call a matrix S a truncated part
^

^ of the matrix A if

the elements of S are obtained in multiplying the corresponding

elements of A by arbitrary factors from the interval <0, l? ,

Let now the matrix A be decomposed into the sum of two

truncated parts U, V: A - U + V, and suppose that all diagonal

elements of V vanish; let A_ = U
rj + V_ be the corresponding

P P P
decomposition of the adjoint matrix Ag. Assume now that

Up is not singular and write H = -U “ V ; then for
r f P
the convergence of the stationary linear iteration

£ / r*J t -i

4 = H 4 + (E - H ) A JV
KH H

'

for an arbitrary starting vector 4 it is necessary that A

is an H matrix
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On the other hand, if A is an H matrix and if we consider

for each k a particular decomposition of the above type

A = Uk + V*., the diagonal elements of being zero, we

obtain in putting =-Uy
1

a generally non- stationary

linear iteration process £ - ^
which is convergent in such a way that “4k ” ® ( ( <r^

+

for any positive c
, .s

11. The one step iteration as defined in the section 1

can be also considered as an iteration of the residual

vector. Thus we obtain from (1) and (2) easily

(17)
/

^k P
K

where

( 0 0 a 0
I i V

(18) A rV o -

0 -

t 0 -

- 0 a/-/y 0

-01
- 0 avWv

0

0

0 :

°
i

0 i

0 - - 0 a 0 - - 0
n, v

is the matrix obtained from A in keeping the V**1 column

and replacing all other elements by zeros. From our theorem

II it follows that for an H-matrix A and q satisfying
k *

the condition (7) the product ^(E - qk )
tends with

k
k o© to zero, if the sequence of the leading indices N.
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contains each index 1, . .., n an infinite number of times.

By this result we have in particular proven that the

Hardy Cross Balancing process for a continuous beam is

always convergent if each support is used in balancing

an infinite number of times. If in particular the supports

are treated in a certain order periodically, the convergence

Is linear, that is, of the type described at the end of

6 )

section 10.

Indeed, in the Hardy Cross process as described by

Oldenburger [10], the matrix A is defined by

V
= % '

&
1/-v

= 1 >
aVH V = T

-v

= 0 (/<>V+1, /U<1/-1)

where

= S
L-X

{1_t
i ) > 7

i
“ r i

t
i

o ^ t
1 ^ 1, 0 ^ r

i
< 1, 0^.s

i
<l.

Here we have certainly < (1-t ) + t =1 and our

matrix A is certainly then an H matrix.

11. The proofs for the necessity of our conditions make

use of properties of the H matrices given in an earlier

paper by the author[ 11 ]; howevei’ these properties have to

be developed further in different directions.

As to the proofs for the sufficiency of our criteria

they use in particular the following lemma:
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To any matrix A with the Jacobian constant <x and. to any
A

positive g, correspond two positive diagonal matrices

(i.e, matrices with zeros off the diagonal and positive

numbers in the diagonal) P, such that we have

p"i - E -

n
B - <Vv>

Vu= 0, £ <rA + £ , (// =l,...,n).

Instead of this lemma also the following one could be used

for the same purpose: I*et A be a matrix and n the maximum

modulus of the fundamental roots of A, then to any positive t

corresponds a non- singular matrix S such that we have

SAS"1 = B = (b^)

where
n

l>vl* p + e ( /« = 1, ... , n).

The details of our proofs will be developed in another

7 )
paper.
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Footnotes
1)

As a matter of fact, the rules given by Gauss, Seidel and

Southwell for the choice of N are different; but they

coincide if the diagonal elements of A are all 1.

2) Hovrever, already Nekrasoff [8]had already referred to this
iteration

/as to the "Seideliteration" and this is the name usually

if wrongly used.

3) To this type belongs a class of iterations considered

occasionally by H. Gelringer [3a].

k) Cf. [19] for another connection in which these conditions

play an important role.

5) This name was proposed to me by Dr. F. Alt.

6) The convergence of the Hardy Crosses Process was proved

by Oldenburger [10] in the special case that the balancing

process is applied alternatively to all supports with odd

numbers and to all supports with even numbers.

7) A. Ostrowski, Die Determinant en mit ueberwiegender Haupt-

diagonale und absolute Konvergenz linearer Iteratlonspro-

zesse. To appear in the Commentarii mathematlci helvetici.
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