67700878
 NATIONAL BUREAU OF STANDARDS REPORT

Fire Research Information Services
National Burears of Siandards Bldg. 225, Rm. A46
Washington, D.C. 20234
1673
ILE COPX

> THE SCATTERING OF LIGHT BY A CONICAL SURFACE

U. S. DEPARTMENT OF COMMERCE
 NATIONAL BUREAU OF STANDARDS

U. S. DEPARTMENT OF COMMERCE

Charles Sawyer, Secretary
national bureau of standards
A. V. Astin, Acting Director

THE NATIONAL BUREAU OF STANDARDS

The scope of ectivities of the National Bureau of Standarda in stegested in the following listing of the divisions and sections engaged in technical work. In gsaral, cach section is engaged in specialised sesearch, developmant, and engimeorime in the field indicaced by ite ticle. A brief description of the activicies, and of the reaultant ropores and gublicuricns, appears on the inside of che back cover of this report.

1. ELECTRICITY. Resistance Memarenents. Inducence end Capacitance. Electgical Instrueents. Megnetic 月emsurements. Electrochenistry.
2. OPTICS AMD METROLOGY. Photometry and Coloriestry. Opticel Instranemis. Photographic Technology. Length. Gaga.
3. HEAT AMD POWER. Temperature Measuremants. Thernodymenics. Cryoganics. Engines and Lubrication. Engime Fuels.
4. ATOAIC AMD RADIATION PHYRICS. Spectroscopy. Radiowetry. Riass Specerometry. Fhyso ical Electronics. Electron Physics. Atomic Physica. Nentron Measuramenee. Pmelear Phyaics. Radionctivity. X-Rays. Betntron. Nucleonic Instrumentation. Padiological Equipweat. Atomic Energy Comaission Instrumenta Branch.
5. CHEMISTRY. Organic Coatiags. Surface Chemiatry. Oeganic Chemistry. Analytical Chenistry. Inorganic Chemistry. Electrodeposition. Gas Chewincry. Physical Chemistry. Thermochemistry. Spectrochemistry. Pure Substances.
6. MECHANGCS. Sound. Mechenical Irstruments. Aerodyamaca. Engineeritg Mechanics. Hydraulics. Mass. "Capacicy, Density, and Fluid Meters.
7. ORGANIC AMD FIBROUS MATERIALS. Pubber. Textilon. Paper. Leather. Testing and Siecifications. Organic Plastics. Dentsl Research.
8. METALLURGY. Thermal Metallurgy. Chemical Metallurgy. Mechanical Metallurgy. Corrosion.
9. MINERAL PRODUCTS. Porcelain and Poctery. Giaas. Refractories. Enameled Metals. Muilding Stone. Concreting Materials. Constitution and hicroandmeture. Chemistry' of Mineral Products.
10. BUILDIAG TECHNOLOGY. Structural Engineering. Fire Protection. Hentisg and Air Conditioning. Exterior and Interior Coverings. Codes and Specificacioas.

1/. APPLIED MATHEMATICS. Nmerical Amalysis. Computation. Stacisticni Engineering. Machine Development.
12. ELFETRONHGR. Fnginecring Electronics. Elecron Tubes. Electroaic Computers. Electramie Thatroveentwian.
13. ORDNANCE DEVELOPMEMT. Mechanical Resenrch and Development. Electromechanical Fures. Techuicel Servicras. Misaile Fusing Reaearch. Missile Fuzing Development. Projectila Pazes. Ondnance Components. Ordance Tenta. Ordmance Research.
14. RADIO PROPAGATION. Upper Atmoaphere Reaearch. Ionompheric Research. Reguler Propagation Sefwices. Freqseacy Utilization Resesrch. Tropospheric Propagacion Research. High Frequency Stendards. Ricrowave Standerds.
15. MISSILE DEVELOPNENT. Missile Engineering. Miasile Dyamics. Misaile Intelligence. Kisaile Instromentation. Techaical Services. Combuation.

[^0]
THE SCATTERING OF LIGHT BY A CONICAL SURFACE
 by
 C. H. Page

Approved for public release by the This report is issue Director of the National Institute of in any form, either from the Office of t Standards and Technology (NIST)

Chester H. Page

Abstract

The multiple scattering of light from the boundary surface of a conical region is studied, under the assumption that the scattering follows Lambert's Lew. For uniform primary illumination, the increased. illumination at the tip is found analytically, and the illumination at other points computed by numerical methods.

Let us consider a conical surface illuminated on its inner face by light or other radiant energy. Let the surface be such that the fraction ϵ of the incident radiation is absorbed, and the remainder scattered according to Lambert's Lew; i.e., the scattered anergy per unit solid angle is proportional to $\cos \theta$, with θ the angle between the direction of scattering and the normal to the surface.

Now radiation of intensity R per unit area, arriving at the angle θ_{1} from the normal, gives the surface fulmination $I=R \cos \theta_{1}$. The total scattered radiation is $(2=\epsilon) R \cos \theta_{1}$ and the scattered intensity in the direction θ_{2} ia

$$
\frac{(1-\varepsilon) R \cos \theta_{1} \cos \theta_{2}}{x} \text { per unit solid angle }
$$

or

$$
\frac{(1-\epsilon) R \cos \theta_{1} \cos \theta_{2}}{\pi r^{2}}=\frac{(1-\epsilon) I \cos \theta_{2}}{\pi r^{2}} \text { per unit area at }
$$

distance r 。

Suppose that the surface emits radiation at the rate $\beta \in$ per unit area, with β a function of temperature only. Assume this radiation to also follow the cosine distribution law. Then the total power appearing to be emitted from a unit area la

$$
\begin{equation*}
E=\beta E+(1-\epsilon) I_{0} \tag{1}
\end{equation*}
$$

The power incident per unit ares at a point (1) is the summation of the radiated and scattered power fra mil parts of the surface "visible" from the point in question:

$$
I(1)=\int E(2) \mathbb{N}(1,2), d \sigma_{2}
$$

Where "d 1 is the element of ares at point (2), and

$$
\mathbb{K}(1,2)=\frac{\cos \theta_{1} \cos \theta_{2}}{\pi r_{12}^{2}} \quad \text { (see Figure 1) }
$$

In addition, we mat allow for direct illumination from an external source, making the complete equation

$$
I(1)=D(1)+\int E(2) \mathbb{E}(1,2) \mathbb{E} b_{2} .
$$

We are interested in two special cases:
I. No external source of illmmation and the conical surface at a uniform temperature.

Then

$$
\begin{gathered}
I(1)=\int E(2) \mathbb{K}(1,2) \Delta b_{2} \\
E(1)=\beta \varepsilon+(1-\varepsilon) \int \mathbb{E}(2) \mathbb{E}(1,2) d b_{2}
\end{gathered}
$$

by using equation (1).
Define the "apparent" blackness of the surface as "E $\overline{=} \frac{E}{\beta}$, giving

$$
\hat{\varepsilon}(1)=\epsilon+(1-c) \int \hat{E}(2) \mathbb{K}(1,2) d \epsilon_{2}
$$

and define the gain of apparent blackness by virtue of the scattering as $G \equiv \hat{\epsilon} / \epsilon$, giving

$$
\begin{equation*}
G(1)=1+(1-e) \int G(2) K(1,2) d \mathbb{S}_{2} \tag{3}
\end{equation*}
$$

.
II. Let the emission be zero and the primary iliumination uniform

$$
\begin{aligned}
& I(1)=D+(1 \sim \epsilon) \int I(2) K(1,2) \text { dó } \\
& \text { by substituting (1) into (2). }
\end{aligned}
$$

The gair in illumination by virtue of scattering is $G^{8} \overline{\bar{a}} I / D$ and is determined by the equation

$$
\begin{aligned}
& G^{8}(1)=\frac{I}{D}=1+(1-\epsilon) \int \frac{I(2)}{D} K(1,2) d \delta_{2} \\
& G^{8}(1)=I+(1-\epsilon) \int G^{8}(2) K(1,2) d \delta_{2}
\end{aligned}
$$

Note that this is identical with equation (3), hence G ' and G are identical.
The specific problem at hand is to solve this integral equation for a conical surface.

Let the cone have the semimaper angle a. Locate a point on the cone by its distance s from the apex, and the azimuth angle \oint from a convenient generator. The cartesian coordinates of a point on the cone are

$$
\begin{aligned}
& x=s \sin \alpha \cos \phi \\
& y=s \sin \alpha \sin \phi \\
& z=s \cos \alpha .
\end{aligned}
$$

The normal at \mathbb{F} has the direction cosines

$$
\begin{aligned}
& \ell=-\cos \alpha \cos \phi \\
& m=-\cos \alpha \sin \phi \\
& n=\sin \alpha .
\end{aligned}
$$

The slemert of area is $\quad \mathcal{C}=\sin \alpha d \mathbb{d s}$. Hithout loss of generality let F_{1} have the azinuth $\mathcal{P}_{1}=0_{\text {, so thet }}$

$$
\begin{aligned}
& \cos \theta_{1}=-\frac{x_{2}-x_{1}}{x_{12}} \cos \alpha+\frac{z_{2}{ }^{2} 1}{x_{22}} \sin \alpha \\
& =\frac{3_{2} \sin \alpha \cos \alpha\left(1-\cos \phi_{2}\right)}{r_{22}} \\
& \cos \theta_{2}=\frac{s_{1} \sin \alpha \cos \alpha\left(1-\cos \phi_{2}\right)}{x_{12}} \\
& K(1,2)=\frac{\cos \theta_{1} \cos \theta_{2}}{\pi r_{12}^{2}}=\frac{\sin ^{2} \alpha \cos ^{2} \alpha\left(1-\cos \phi_{2}\right)^{2} s_{1} s_{2}}{\operatorname{sr}_{12}^{4}} \\
& \text { and } \\
& r_{12}^{2}=s_{1}^{2}+g_{2}^{2}-2 s_{1} s_{2}\left[\cos ^{2} \alpha+\sin ^{2} \alpha \cos \phi_{2}\right]
\end{aligned}
$$

The basic equation (3) becomes
(4) $G(s)=1+\frac{2-\epsilon}{\pi} \sin ^{3} \alpha \cos ^{2} \alpha \int_{0}^{T} \int_{0}^{2 \pi} \frac{G(t) a t^{2}(1-\cos \phi)^{2} d \phi d t}{\left.\left[s^{2}+t^{2}-2 \operatorname{stcos} \phi+\cos \phi \sin ^{2} \alpha\right)\right]^{2}}$
where T is the gent length of the cone.
The denominator ($r_{2 e^{4}}$) can be written

$$
\left[(s-t)^{2}+2 \operatorname{sit} \sin ^{2} \alpha(1-\cos \phi)\right]^{2}
$$

Changing the variable from ϕ to $\phi / 2$, using $2-\cos \phi=2 \sin ^{2} \phi / 2$, puts the angle integration into the form:

$$
\int_{0}^{\pi} \frac{\sin ^{4} \theta d \theta}{\left(a^{2}+b \operatorname{sin^{2}} \theta\right)^{2}}=\int_{-\pi / 2}^{\pi / 2} \frac{\sin ^{2} \theta d \theta}{\left(2^{2}+b \sin \theta\right)^{2}}
$$

A second change of variable to $x=3150$ yields
(5)

$$
\int_{-1}^{1} \frac{x^{4} d x}{\left(x^{2}+b x^{2}\right)^{2} \sqrt{1-x^{2}}}
$$

which can be evaluated in the complex plane by the following procedure.

$$
\text { Consider } \int_{-\infty}^{\infty} \frac{z^{4} d z}{\left(a^{2}+b z^{2}\right)^{2} \sqrt{1-z^{2}}} \text { along the contour of Figure } 2 .
$$

For $-1<x<1$, the integrand is even, but on the remainder of the real axis the integrand is odd because of the branch points. The contribution of the semicircles around +1 fa zero, making the infinite integral equal to the desired (5). Deforming the contour into an infinite semicircle plus a circle around the pole at $z=i a / \sqrt{b}$ allows straightforward integration, and yields $\pi / b^{2}+2 \pi i$ Res at $i a / \sqrt{b}$ 。 Evaluating the residue and substituting for a, b, yields

$$
\text { (6) } G(s)=1+\frac{1-\varepsilon}{2} \frac{\cos ^{2} \alpha}{\sin \alpha} \int_{0}^{T} G(t) \frac{1}{s}\left\{1-1 s-t \left\lvert\, \frac{(s-t)^{2}+6 \sin \sin ^{2} \alpha}{\left[(s-t)^{2}+4 s t \sin ^{2} \alpha\right]^{3 / 2}}\right.\right\} d t \text {. }
$$

The expression in braces is function of the ratio t / s only, and is not affected by interchanging s and t.

From physical intuition, we would expect that the illumination (hence G). as we approach the apex would be independent of the length of the cone; i.e., the cone appears infinite. This is indeed the case. The cone of infinite length has the solution $G=$ constant $=G_{0}{ }^{\circ}$

$$
\begin{equation*}
G_{0}=1+\frac{1-\epsilon}{2} \frac{\cos ^{2} a}{\sin \alpha} G_{0} \int_{0}^{\infty} f(x) d x \tag{7}
\end{equation*}
$$

Where $x \neq t / s$.
This integral can be evaluated by brute force, yielding

$$
G_{0}=1+\frac{1-E_{0}}{2} G_{0} 2\left(1-\sin ^{3} \alpha\right)
$$

or
(8)

$$
G_{0}=\frac{1}{1-(1-\epsilon)\left(1-\sin ^{3} \alpha\right)}=\frac{1}{\epsilon+(1-\epsilon) \sin ^{3} \alpha}
$$

and

$$
\hat{\epsilon}_{0}=\varepsilon G_{0}=\frac{\varepsilon}{\epsilon+(1-\epsilon) \cdot \sin ^{3} \alpha} \leqslant 1
$$

-

For the finite cone, conveniently scaled to unit slant length
(9)

$$
G(s)=1+\frac{1-\varepsilon}{2} \frac{\cos ^{2} \alpha}{\sin \alpha} \int_{0}^{1} G(t) K(s, t) d t
$$

Note that $\int_{0}^{\infty} K(s, t) d t=2 \frac{\sin \alpha}{\cos ^{2} \alpha}\left(1-\sin ^{3} \alpha\right)$ independert of s.
Now $G>0, K \geq 0$, so

$$
\begin{aligned}
\int_{0}^{1} G \mathbb{H} d t & \leq G_{\max } \int_{0}^{1} K d t \leq G_{\max } \int_{0}^{\infty} K d t \\
& \leq G_{\max } \frac{2 \sin \alpha}{\cos ^{2} \alpha}\left(1-\sin ^{3} \alpha\right)
\end{aligned}
$$

$$
\begin{aligned}
& \text { or } G(s) \leq 1+(1-\epsilon)\left(1-\sin ^{3} \alpha\right) G_{\max } \\
& \text { and } \\
& G_{\max } \leq 1+(1-\epsilon)\left(1-\sin ^{3} \alpha\right) G_{\max } \\
& \text { or } \quad G_{\text {max }} \leq \frac{1}{\varepsilon+(1-c) \sin ^{3} \alpha}=a_{0} \\
& G(s) \leq G(0), \operatorname{cG}(s) \leq \varepsilon G(0)<1 .
\end{aligned}
$$

Therefore the absorption is nownere greater than it would be for a perfectly black surface ($\epsilon=1$), although the fintensity of illumination ($I=G 9$) may become high as we approach the tip. (As $G \Rightarrow 0, G \geqslant 1 / \sin ^{3} \alpha$).

The straightforward approximation of the integral equation (6 or 9) by a set of simultaneous equations would be achieved by representing the integral by a formula such as Simpson's rule:
(10)

$$
\begin{aligned}
\int_{0}^{1} G(t) K(s, t) d t= & \frac{h}{3}\{G(0) K(s, 0)+4 G(h) K(s, h)+2 G(2 h) K(s, 2 h) \\
& +\cdots+4 G(1-h) K(s, 1-h)+G(1) K(s, 1)\}
\end{aligned}
$$

expressing the integral in terms of the unknown values of $G(r h)$. Substitution in (9) yields an equation holding for all s; if we let $s=0, h$, $2 h \cdots 1$ successively, we obtain a set of $N=1+(1 / h)$ simultaneous equations for the N unknoms $G(n h) ; n=0 \ldots N \infty$ 。Unfortmately, this procedure will not lead to correct answers. The Simpson rule integration assumes the integrand to be fitted pieceriee by parabolas. The second equation in the set,
for $s=h$, assumes the product $G(t) K(h, t)$ to be approximated by a parabola from $t=0$ to $t=2 h$. The occurrence of $|s \infty t|$ in the kernel produces a cusp at $s=t$ (Figure 3), hence a parabolic fit for the points $t=0, h, 2 h$ cannot yield a reasonable approximetion. This phenomenon is independent of the mesh size h chosen, since the kernel is a function of t / s.

The difficulty can be avoided by using the trapezoidal rule for numerical integration, but the loss of accuracy seemstoo high a price to pay.

Using Simpson's rule, it appears that we need more divisions in t than in s; hence assuming values of " $G(t)$ at (say) 7 points yields (say) 4 equations for $G(s)$. This leaves us with more unknowns than equations, allowing subsidiary conditions. The obvious choice is to determine $G(t)$ at the extra 3 points by interpolation. That is, we set up 4 equations for $G(s)$ at 4 points, express the integral as a 7 point Simpson integration expressing the values of $G(t)$ at the additional intermediate points as linear combinations of the values of $G(t)$ at the additional intermediate points as linear combinations of the values of $G(t)$ at the first 4 points. This procedure can be expressed as the matric equation

$$
\begin{equation*}
G=1+\lambda K W G \tag{11}
\end{equation*}
$$

where G is the vector whose components are the values of $G(s)$ at the points $s=0,1 / 3,2 / 3,1 ; K$ is the nonmequare matrix of values of $K(s, t)$ at $s=n / 3(n=0 \ldots 3)$ and $t=m / 6(m=0 \ldots 6) ; w$ is a diagonal matrix of the Simpson weights; I is an interpolation matrix of seven rows and four columas; and

$$
\lambda=\frac{1-\epsilon}{2} \frac{\cos ^{2} \alpha}{\sin \alpha}
$$

Since the values of $G(s)$ at $s=n / 3$ determine a cubic from which the values at $s=m / 6$ can be found, we have
$I=\left(\begin{array}{cccc}1 & 0 & 0 & 0 \\ 5 / 16 & 15 / 16 & -5 / 16 & 1 / 16 \\ 0 & 1 & 0 & 0 \\ -1 / 15 & 9 / 16 & 9 / 16 & -1 / 16 \\ 0 & 0 & 1 & 0 \\ 1 / 16 & -5 / 16 & 15 / 16 & 5 / 16 \\ 0 & 0 & 0 & 1\end{array}\right)$

For a cone with semiapex angle 15°, equation (10) is best solved by the minimized iteration technique of Lanczos i/ and yields the results of Figures 4 and 5 for several values of ϵ 。
I/C.Lanczos, NBS Jour of Res. 45, p. 255 (1950)

For a cone with semioapex angle 45°, the contribution of multiple scattering falls off rapidly with the order of the scatter, so the simple Liouville-Neumann iteration converges fairly rapidly. This solving procedure yields results shown in Figures 6 and 7 .

APPENDIX

It is of some interest to compare the cone with a wedge of infinite transverse length. The equation corresponding to (4) is readily found
(12) $G(s)=1+\frac{1-\epsilon}{\pi} \sin ^{2} 2 \alpha \int_{0}^{T} \int_{-\infty}^{\infty} \frac{G(t) s t d y d t}{\left.s^{2}+t^{2}-2 s t \cos 2 \alpha+y^{2}\right\}^{2}}$
where α is the semi-apex angle of the wedge. Integration with respect to y is straightforward and yields

$$
\begin{equation*}
G(s)=1+\frac{1-\varepsilon}{2} \sin ^{2} 2 \alpha \int_{0}^{T} \frac{G(t) s t d t}{\left\{s^{2}+t^{2}-2 s t \cos 2 \alpha\right\}^{3 / 2}} \tag{13}
\end{equation*}
$$

The solution at the tip is again found by making $T=\infty$, and is

$$
\begin{equation*}
G_{0}=\frac{1}{\epsilon+(1-\varepsilon) \sin ^{2} \alpha} \tag{14}
\end{equation*}
$$

Comparison with (8) shows that Go for the wedge is always less than Gofor the corresponding cone.

FIG. I

FIG. 2

FIG. 3

FIG. 4

FIG. 5

FIG. 6

F1G. 7

THE NATIONAL BUREAU OF STANDARDS

Functions and Activities

The National Bureau of Standards is the principal agency of the Federal Government for fundamental and appliedresearch in physics, mathematics, chemistry, and engineering. Its activities range from the determination of physical constants and properties of materials, the development and maintenance of the national standards of measurement in the physical sciences, and the development of methods and instruments of measurement, to the development of special devices for the military and civilian agencies of the Government. The work includes basic and applied research, development, engineering, instrumentation, testing, evaluation, calibration services, and various scientific and technical advisory services. A major portion of the NBS work is performed for other government agencies, particularly the Department of Defense and the Atomic Energy Commission. The functions of the National Bureau of Standards are set forth in the Act of Congress, March 3, 1901, as amended by Congress in Public Law 619, 1950. The scope of activities is suggested in the listing of divisions and sections on the inside of the front cover.

Reports and Publications
The results of the Bureau's work take the form of either actual equipment and devices or published papers and reports. Reports are issued to the sponsoring agency of a particular project or program. Published papers appear either in the Bureau's own series of publications or in the journals of professional and scientific societies. The Bureau itself publishes three monthly periodicals, available from the Government Printing Office: the Journal of Research, which presents complete papers reporting technical investigations; the Technical News Bulletin, which presents summary and preliminary reports on work in progress; and Basic Radio Propagation Predictions, which provides data for determining the best frequencies to use for radio communications throughout the world. There are also five series of nonperiodical publications: the Applied Mathematics Series, Circulars, Handbooks, Building Materials and Structures Reports, and Miscellaneous Publications.

Information on the Bureau's publications can be found in NBS Circular 460, Publications of the National Bureau of Standards ($\$ 1.00$). Information on calibration services and fees can be found in NBS Circular 483, Testing by the National Bureau of Standards (25 cents). Both are available from the Government Printing Office Inquiries regarding the Bureau's reports and publications should be addressed to the Office of Scientific Publications, National Bureau of Standards, Washington 25, D. C.

[^0]: 1002-43-1030
 May 15, 1952

