NATIONAL BUREAU OF STANDARDS REPORT

164

CONPUTATIORAL METHODS
OF

LINEAR AJGGBRA

Chapter 1
Basic Materiai from Linegr Algebra

Vo N. Faddeerta
Translated from the Russian by Curtis D. Benster.
Editor: G.E. Porsythe

U. S. DEPARTMENT OF COMMERCE NATIONAL BUREAU OF STANDARDS

U. S. DEPARTMENT OF COMMERCE
 Charles Sawyer, Secretary
 NATIONAL BUREAU OF STANDARDS
 A. V. Astin, Director

THE NATIONAL BUREAU OF STANDARDS

The scope of activities of the National Bureau of Standards is suggested in the following listing of the divisions and sections engaged in technical work. In general, each section is engaged in specialized research, development, and engineering in the field indicated by its title. A brief description of the activities, and of the resultant reports and publications, appears on the inside of the back cover of this report.

1. Electricity. Resistance Measurements. Inductance and Capacitance. Electrical Instruments. Magnetic Measurements. Electrochemistry.
2. Optics and Metrology. Photometry and Colorimetry. Optical Instruments. Photographic Technology. Length. Gage.
3. Heat and Power. Temperature Measurements. Thermodynamics. Cryogenics. Engines and Lubrication. Engine Fuels.
4. Atomic and Radiation Physics. Spectroscopy. Radiometry. Mass Spectrometry. Physical Electronics. Electron Physics. Atomic Physics. Neutron Measurements. Nuclear Physics. Radioactivity. X-Rays. Betatron. Nucleonic Instrumentation. Radiological Equipment. Atomic Energy Commission Instruments Branch.
5. Chemistry. Organic Coatings. Surface Chemistry. Organic Chemistry. Analytical Chemistry. Inorganic Chemistry. Electrodeposition. Gas Chemistry. Physical Chemistry. Thermochemistry. Spectrochemistry. Pure Substances.
6. Mechanics. Sound. Mechanical Instruments. Aerodynamics. Engineering Mechanics. Hydraulics. Mass. Capacity, Density, and Fluid Meters.
7. Organic and Fibrous Materials. Rubber. Textiles. Paper. Leather. Testing and Specifications. Organic Plastics. Dental Research.
8. Metallurgy. Thermal Metallurgy. Chemical Metallurgy. Mechanical Metallurgy. Corrosion.
9. Mineral Products. Porcelain and Pottery. Glass. Refractories. Enameled Metals. Building Stone. Concreting Materials. Constitution and Microstructure. Chemistry of Mineral Products.
10. Building Technology. Structural Engineering. Fire Protection. Heating and Air Conditioning. Exterior and Interior Coverings. Codes and Specifications.
11. Applied Mathematics. Numerical Analysis. Computation. Statistical Engineering. Machine Development.
12. Electronics. Engineering Electronics. Electron Tubes. Electronic Computers. Electronic Instrumentation.
13. Ordnance Development. Mechanical Research and Development. Electromechanical Fuzes. Technical Services. Missile Fuzing Research. Missile Fuzing Development. Projectile Fuzes. Ordnance Components. Ordnance Tests. Ordnance Research.
14. Radio Propagation. Upper Atmosphere Research. Ionospheric Research. Regular Propagation Services. Frequency Utilization Research. Tropospheric Propagation Research. High Frequency Standards. Microwave Standards.
15. Missile Development. Missile Engineering. Missile Dynamics. Missile Intelligence. Missile Instrumentation. Technical Services. Combustion.

Chapter 1
Basic Material from Linear Aigebra
V.N。Fadideeta

Translated from the Rissian by Curtis D. Benster* Editore G. E. Forsythe

Approved for public release by the Director of the National Institute of Standards and Technology (NIST) on October 9, 2015
reprinting, or reproduction saion in writing is obtained ingtan 25, D. C.

CORTENTS OF MRIRE BCOR
(only Chapter I is translated here)

Page
mitor's IntroductionAUTHOR'S PRTEACE
chapter z. basic matgeial from itivar alamba
31. MATRTCES 1
S2. nodicnislonil vector sfaie 32
G3. linear tramsformations 48
S4. THE JORDAN COMOHTCAI FCRM 7
 80
BIBLIOGRAPHY OF CIMTU WORKS (CHAPRER I) 93
CHAPTER II. SYSTEMS OF IINEAR EVUATIONS
56. GAUSS'S METMOD
§\%. MHE mALUATION OF DETERMINAYTS
©8. COMPACR ARRAMGENENTS FOR THE SOLUTION OF
NONHOLOGEBEOUS LINEAP SYSTIMS
69. THE CONECTION OR GAUSES HRTHOD WITH THE
DSOMFOSTION OF A WATMIX INTO FACRORS
SIO. THE SQUARE-EOOT ITEIMOD
gil. THE INVERSIOH OF A MA TRIX
Gl2. THE PROBIMM OF ELDITNATION
E13. THE CORRDCTION OF THE ELENENTS OF THE
INELRSE YATREX

```
§24．THE INVERSION OF A MATRIX BY MEANS OF PARTITIONS INTO CELLS
S\％THE METHOD OF BORDERTMG
E26．THE ESCALATOR METHOD
SI7．THE INETHOD OF ITERATION
S18．PREPARATION OF A SYSTEM OF IINEAR EQUATIONS TO A CONVENIENT FORM FOR THE ITETHOD OF ITHRATION
619．SEIDELSS METHOD
§20．COMPARISON OF THE NWTHODS CHAPTER III．LATENT ROOTS OF A MATRIX
S21．THE NETHOD OF A．N．KRYLOV
§ご2。THE DETGRIINATION OF LATENT VECTORS BI THE METHOD OF A．N．KRYL．OV
§23．SAIMELSONsS METHOD
§Z4．THE METHOD OF A．M．DANILEVSKIÍ
S25．LEVERRIER＇S METMOD AND THE MODIFICATION OF D。K。FADDEETV
626．THE ESCALAFOR METHOD
§27．THE METHOD OF INTERPOLATION
§28．COMPARISON OF THE METHODS
§29．DETERMTNATION OF THE FTRST IATENT RCOT OF A MATRTX． FIRST CASE
§30．IIPROVING THE CONVERGENCE OF THE ITYRATIVE PROCESS
```

931. FINDING THE FOLLOWTHG LATENT ROOTS
§32. DETERMINATION OF THE FOLLOWING LATENT ROOTS AND THE
IATENT VECTORS BETONGING TO THEM
G33. DETERMINATION OF THE FIRST LATENT ROOT. SECOND CASE
§34. THE CASE OF A MATRIX WITH NONLINEAR MLEMENTARY DIVISORS
932. IMPROVING THE CONVERGENCE OF THE ITERATIVE PROCESS FOR SOLVING SISTEMS OF LINEAR EQUATIONS

The first time he meets matrices, the strdent of muerical analysis is not usually ready for a systematic development of elementary divisor theory and still less for a treatment over a gerieral field. But he does need to Learn the main facts about the algebra of finite matrices over the real or complex field, and he should know sometining about the proof's. These matters are supplied very well by Faddeeva in the chapter translated here, and the editor therefore believes that the chapter will be very popuiar.

Analogous statements could be made about the analytical aspects of finite matrix theory: norms, limit, etc.

Ir the two later bhapters of her book, the author describes various known numerical processes for inverting matrices and for obtaining their latent roots and vectors, and gives mary numerical examples. These chapters probably also merit translation, and we hope later to ba able to provide one.

The first chapter was translated specifically to provide an introdue tory text for the editor's 1952 sumer course on numerical matrix methods at the University of Caifornia, Los Angeles. With this in view, the froanslator has done more than create an interesting and faithful translam tion: he has improved the presentation in several respects. He has corm rected misprints, and has helped the student by occasionally inserting phrases and by adding two paragraphs of recapitulation (pp. 44 and 75). He has changed a few notations to suit American taste. Finally, he has replaced the Russian bibliography by an English and American one, and has considerably supplemented the author's three or four references to the bibliographys.

Only the more signifieant of the translatoris additions have been credited to him in the tert.

The numerical solution of the problems of mathematical physics is most frequently conected with the numerical solution of basic problems of linear algebra - that of solving a system of linear equations, and that of the computation of the latent roots of a matrix. The present book is an endeavor at systematizing the most important numerical methods of inear algebra -- the classical ones and those elaborated quite recently as well.

The author does not pretend to an exhaustive completeness, having included an exposition of those methods only that have already been tested in practice. In the exposition the author has not strived for an irreproachable rigor, and has not analysed all conceivable cases and sub-cases arising in the application of this or that method, having limited herself to the most typical and practically important cases.

The book consists of three chapters. In the first chapter is given the material from linear algebra that is indispensable to what follows. The second chapter is devoted to the numerical sclution of systems of Iinear squations and parallel questions. Lastly, the third chapter contains a description of numerical methods of computing the latent roots and latent vectors of a matrix.

For the interest manifested in the manuscript, and for a number of valuable suggestions, I expross my sincere thanks to A. I. Brudno and G. P. Akilov.

CHAPTER I

 BASIC MATERTAL FROM IINEAR ALGEBRAThis chapter will be of an introductory nature. Without detailed proofs, it will impart material from Iinear algebra that will be indispensable to an understanding of the following chapters.
§1. MATRICES

1. An aggregate of numberswwich are, generally speaking, complexarranged in the form of a rectangular table, is called a rectangular matrix. This arrag will have mrows and n columns, and may be set forth in the form:
(1)

$$
A=\left(\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\cdot & \cdot & \cdot & \cdot \\
a_{m 1} & a_{n i 2} & \cdots & a_{\operatorname{mn}}
\end{array}\right),
$$

the first subscript, then, designating the row, the second designating the column, in which the element in point is located.

This may be abbreviated to the form:

$$
A=\left(a_{i j}\right) \quad\left(i=1,2, \cdots, \frac{3}{}, \quad j=1,2, \cdots, n_{1}\right) \quad .
$$

IThis translation was carried out under the auspices of the Departument of Mathematics, University of Califormia, Los Angeles. It was edited by George E. Forsythe, National Bureau of Standards, Los Angeles.

Tho matrices are aqual if thein corresponding elements are equal.
Matrices composed of a single row are called aimply rows (ox, as we shall approach them later, row vectors). Matrices composed of a single column are called columns (or column Vectors).

If the number of rows of a matrix equalis the number, n_{3} of eolums, it is called square, and of the $n=t h$ order.

Among square matrices, an important role is played by diagonal matrices, i。e., matrices of which only the elements along the principal (leading) diagonal are different from zero:

If all the numbers α_{i} of such a matrix are equal to each other, the matrix is said to be sealar:

$$
\left(\begin{array}{llll}
\alpha & 0 & \cdots & 0 \tag{3}\\
0 & \alpha & \cdots & 0 \\
0 & 0 & \cdots & \infty
\end{array}\right)=[\alpha]
$$

and, if $\alpha=1$, the matrix is said to be the unit matrix: ${ }^{\text {I }}$
${ }^{\text {Editoris note: Faddeeva and other continental mathematicians use the }}$ symbol E for a unit matroix.
(4)

$$
\left(\begin{array}{llll}
1 & 0 & \cdots & 0 \\
0 & 1 & \cdots & 0 \\
\cdots & \cdots & \cdots & \cdots \\
0 & 0 & \cdots & 1
\end{array}\right)=I
$$

Lastly, a matrix all of whose elements are equal to zero is called a null matrix, or zero matrix. We shall designate it by the symbol 0 .

The determinant whose elements are the elements of a square matrix (without disarrangement), is said to be the determinant of that matrix, and we write the determinant of the matrix A as $|A|$, or often as $d(A)$.
2. Multiplication of a matrix by a number. The addition of matrices. A matrix whose elements are obrained by multiplying all the elements of the matrix A by a number of is called the product of the number oo and the matrix A:

A matrix C whe elements are the smis of the corresponding elements of A and B, matrices having like numbers of rows and columns, is called the sum of A and $B:$

$$
\left(\begin{array}{cccc}
a_{11}+b_{11} & a_{22}+b_{12} & \cdots & a_{1 n}+b_{1 n} \\
a_{21}+b_{21} & a_{22}+b_{22} & \cdots & a_{1 n}+b_{2 n} \\
\cdot \cdot \cdot \cdot & \cdot & \cdot & \cdot \\
a_{m 1}+b_{m 1} & a_{m 2}+b_{m 2} & \cdots & \cdot \\
a_{m n}+b_{m n}
\end{array}\right)
$$

In e perations introduced above have the following properties，as will De readily seen：

$$
\begin{aligned}
& \text { 1. } A+(B+C)=(A+B)+C \text {. } \\
& \text { 2. } A+B \quad B+A \text { 。 } \\
& \text { 3. } A+0=A \text {. } \\
& \text { 4. }(\alpha+\beta)_{A}=\alpha A+\beta A \text {. } \\
& 5 . a(A+B)=A+B .
\end{aligned}
$$

Herf A, B ，and C are matrices；α and β are numbers－generally speaking， ecmplex．

3．The multiplication of matrices．Muitiplication of the matrices A and B is defined only on the assumption that the number of columns of matrix A equals the rumber of rows of matrix ${ }^{2}$ ．On this assumption，the elements of the product， $0=A B$ ，are defined in the following mannex：the element in the iof row and the j－th colum of the matrix．C is equal to the
${ }^{T}$ Tresslator＂：note：Indicating by superion letters the dimensions of the matris．A ，$i_{0} e_{0}$ ，the nurber，m ，of rows，and the number，n ，of columns， nixn
thas：A ，the product condition may be given a more lucid expression notationclay．Trus $\frac{m a n}{A}$ 。 $\frac{p y}{B}$ is possible only if $p \propto n$ 。 A and B are the gonesmatis．
sum of the products of the elenents of the i-th row of the matrix A by the corresponding elements of the joth column of matrix ${ }^{\text {G. }}$. Thus:
(7) $A B=\left(\begin{array}{cccc}a_{11} & a_{12} & \cdots & a_{1 n} \\ a_{21} & a_{22} & \cdots & a_{2 n} \\ 0 & 0 & 0 & 0 \\ a_{m 1} & a_{m 2} & \cdots & i_{m n} \\ b_{n 1} & b_{n 2} & \cdots & b_{n p}\end{array}\right)\left(\begin{array}{cccc}b_{11} & b_{12} & \cdots & b_{1 p} \\ b_{21} & b_{22} & \cdots & b_{2 p} \\ 0 & 0 & 0 & 0 \\ b_{n 1} \\ c_{m 1} & c_{m 2} & \cdots & c_{m p}\end{array}\right)=\left(\begin{array}{cccc}c_{11} & c_{12} & \cdots & c_{1 p} \\ c_{21} & c_{22} & \cdots & c_{2 p} \\ 0 & 0 & 0 & 0 \\ c_{10}\end{array}\right)=c$, where

$$
c_{i j}=a_{i 1} b_{1 j}+a_{i 2} b_{2 j}+\ldots+a_{i n} b_{r_{1 j}}=\sum_{k=1}^{n} a_{j k} b_{k j}
$$

(8)

$$
(i=1,2, \cdots, m ; j=1,2, \cdots, p) .
$$

It is to be noted that the product of two rectangular inatrices is again a rectangular matrix, the number of rows of which is equal to the number 0° rowe fie the first matrix, and the number of columns of which is equal to the number of colums of the second matrix: $\frac{\operatorname{nim}}{\hbar} \cdot \frac{\operatorname{nop}}{B}=\frac{\operatorname{mop}}{C}$. So, for instance, the product of a square matrix and a matrix cormosed of one column is a matrix of one column.

The commatative law for multipication does not, generally speaking, hold. We shall make a few observations on this subject, however. The

ITranslator's note: The bare defimition of matrix multiplication given in the text provides a basis for the logically succeeding development. It may, however, appear arbitrary to the student who has not previously reconnoitred the ground. For a brief account of the sowee of this definition of matrix multiplication see, $e_{0} g$. [1], §lob。 Abundant numerical illustretions will be found in [2], \$1。4.
matrices $A B$ and $B A$ make sense simultaneously only if the number of rows of the first matrix is equal to the number of columns of the second, and the number of column of the first is equal to the nunber of rows of the second. Given the fulfillment of these conditions, the matrices $A B$ and $B A$ will both be square, but of different orders, unless A and B be square. Thus even to put the question of the equality of the matrices $A B$ and $B A$ makes sense only for square matrices. But even in this case, generally speaking, $\mathrm{AB} \neq \mathrm{BA}$.

In particular cases multiplication may be commutative, and in such cases the matrices are said to comnte. Thus, for example, scalar matrices comute with any square matrox of the same order, for

(9)

Hence follows the special role of the unit matrix in the multiplication of matrices, to wit: amongst all square matrices of the same order, the unit matrix plays the same role as the number one does among rumbers.

Indeed,

$$
A I=I A=A
$$

It can be shown that the multiplication of matrices is associative, vizo. if $A B$ and ($A B$) make sense, so also do $B C$ and $A(B C)$, and

$$
\text { 1. } A(B C)=(A B) C
$$

The matrix product has also these properties:

$$
\begin{aligned}
& \text { 2. } \operatorname{ex}(A B)=(\alpha A) B=A(\alpha B) \\
& \text { 3. } \quad(A+B) C=A C+B C ; \\
& \text { 4. } C(A+B)=C A+C B
\end{aligned}
$$

where A, B, C are matrices, a number.
Let us interchange rows and columns in the matrix

$$
A=\left|\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\cdots & \cdots & \cdots \cdots & \cdots \\
a_{121} & a_{m 2} & \cdots & a_{m n}
\end{array}\right|=\left(a_{i j}\right) ;
$$

We obtain the transposed matrix or transpose

IThe word conjugate appears in the older Iitexature.
(10) $\quad A^{T}=A^{3}=\left(2_{1 j}\right)^{\prime}=$

$$
\left(\begin{array}{cccc}
a_{11} & a_{21} & \cdots & a_{m 1} \\
a_{12} & a_{22} & \cdots & a_{m 2} \\
\cdots & \cdots & \cdots & \cdots \\
a_{1 n} & a_{2 n} & \cdots & a_{m n}
\end{array}\right)=\left(a_{j 1}\right)
$$

The following rule (the reversal rule) for a transposed product should be noted:

$$
\begin{equation*}
(A B)^{\prime}=B^{\prime} A^{\prime} \tag{10a}
\end{equation*}
$$

In proof of this, note that the iwth row and j-th column of the matrix ($A B$)' is equal to the element of the j-th row and i-th column of the matrix $A B$, for this is merely the interchange of row with column, i.e., transposition; and that is equal to

$$
\begin{equation*}
a_{j 1} b_{1 i}+a_{j n^{2}} b_{21}+\cdots+a_{j n} b_{n i} \tag{II}
\end{equation*}
$$

The last expression is obviously equal to the sum of the products of the elements of the i-th row of the matrix B^{\prime} and the corresponding elements of the joith row of the matioix A^{\prime}, i.e., is equal to the general (the i, joth) element of the matrox $B^{\prime} A^{\prime}$.

In conclusion we shall remark that the determinant of a product of (square) matrices is equal to the product of the determinants of the multiplied matrices: $|A B|=|A||B|$, which result is taken from determinant theory.
4. The partitioning of matrices. The handing of matrices of high orders requires, as a rule, a large number of operations. It is therefore often expeditious to reduce a computation involving matrices of high orders to computations upon matrices of lower orders. Such a reduction can be efffected by partitioning the given matrices each matrix may be conceived as composed of several matrices of lower orders, and this subdivision may be carried through in mary ways, for example:
(ia) $\left(\begin{array}{llll}a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34}\end{array}\right)=\left(\begin{array}{cccc}a_{11} & a_{12} & a_{13} & a_{14} \\ \ldots & \ldots & \ldots & \ldots \\ \vdots & a_{22} & a_{23} & a_{24} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & \vdots & a_{32} & a_{33} \\ a_{34}\end{array}\right)=\left(\begin{array}{cccc}a_{11} & a_{12} & \vdots & a_{13} \\ a_{14} \\ \ldots & \ldots & \ldots & \ldots \\ a_{21} & a_{22} & \vdots & a_{23} \\ a_{24} \\ a_{31} & a_{32} & \vdots & a_{33}\end{array} a_{34}\right)$

The matrices into which the given matrix is partitioned are called its submatrices, or cells. In such a partition the horizontal and vertical subdividing lines are of course supposed to be carried across the whole matrix.

We shall not concern ourselves with the general case of the partitioning of a matrix, but shall here consider only a partition of square matrices in which the diagonal submatrices are square.

The basic operations on partitioned matrices whose diagonal matrices are of identical order is connected in a quite natural way with opera tions upon the submatrices themselves. To wit, if i we have

$$
I_{\text {see }, \text { e. go, }}[1], \$ 11 .
$$

(116)

$$
A=\left(\begin{array}{cccc}
A_{11} & A_{12} & \cdots & A_{2 k} \\
A_{21} & A_{22} & \cdots & A_{2 k} \\
0 & 0 & 0 & \cdot \\
A_{k 1} & A_{k 2} & \cdots & A_{k K}
\end{array}\right)
$$

and
(110)

$$
B=\left(\begin{array}{cccc}
B_{11} & B_{12} & \cdots & B_{1 k} \\
B_{21} & B_{22} & \cdots & B_{2 k} \\
0 & 0 & 0 & \cdot \\
B_{k]} & B_{k 2} & \cdots & B_{k k}
\end{array}\right)
$$

where $A_{i 1}$ and $B_{i i}$ are square matrices of the same order, then

$$
A+B=\left(\begin{array}{llll}
A_{11}+B_{21} & A_{12}+B_{12} & \cdots & A_{1 k}+B_{1 k} \tag{12}\\
A_{21}+B_{2 I} & A_{22}+B_{22} & \cdots & A_{2 k}+B_{2 k} \\
\cdot \cdot \cdot \cdot & \cdot & \cdot & \cdot \\
A_{k I}+B_{k I} & A_{k 2}+B_{k 2} & \cdots & A_{k k}+B_{k k}
\end{array}\right)
$$

and
(13)

$$
A B=\left(\begin{array}{cccc}
c_{11} & c_{12} & \cdots & c_{1 k} \\
c_{21} & c_{22} & \cdots & c_{2 k} \\
\cdot & \cdot & \cdots & c_{2} \\
c_{21} & c_{k 2} & \cdots & c_{2 k}
\end{array}\right)
$$

where
(13a) $C_{i j}=A_{i 1} B_{1 j}+A_{i 2} B_{2 j}+\cdots+A_{i k} B_{k j} \quad i, j=1, \cdots, k \quad$.

We shall not stop for a proof of the last formula, but will note here only that the matrices $A_{i l}$ and $B_{1 j}$ can indeed be multiplied, since the number of columns of matrix $A_{i l}$ equals the number of rows of the matrix $B_{1 j}$.

Formulas (12) and (13) show that operations with matrices partitioned in the manner indicated are to be conducted just as if in place of each submatrix there was a number.

An important special case of a partitioned matrix is the bordered matrix. Having a square matrix A_{n-1} of order $n-1$:
(13b) $A_{n-1}=\left(\begin{array}{cccc}a_{11} & a_{12} & \cdots & a_{1, n-1} \\ a_{21} & a_{22} & \cdots & a_{2, n-1} \\ 0 & 0 & 0 & 0 \\ a_{n-1,1} & a_{n \cdots 1,2} & \cdots & \cdots \\ a_{n-1, n-1}\end{array}\right) \cdot$
we form a. square matrix of the n-th order, A_{n}, by appending to the matrix A_{n-1} a row: $v_{n-1}=\left(a_{n, 2}\right.$ oo.,$\left.a_{n, n-1}\right)$, a column: $u_{n-1}=$ $\left(a_{\ln ^{\prime}} \cdots a_{n-1, n}\right)$, and a number $a_{n n}$:
(14) $\quad A_{n}=\left(\begin{array}{cc}a_{1 n} \\ A_{n-1} & \\ a_{2 n} \\ \cdots & \vdots \\ a_{n 1} & \cdots \\ a_{n-1, n}\end{array}\right)=\left(\begin{array}{cc}A_{n-1} & u_{n-1} \\ a_{n-1}\end{array}\right) \cdot\left(\begin{array}{cc}a_{n-1} & a_{n n}\end{array}\right) \cdot$

We shall san that the rartix A ras been obtainal by bordering the matrix A_{r-1}. The matrixx A_{n} is naturaily partitionable.

Operation upon a ourdeped natrin awe conducted in accordance with the general rules for upurations uph partitỉnned matrices. tetting
(14a)

$$
A=\left(\begin{array}{ll}
M & u \\
\sigma & a
\end{array}\right) \quad B=\left(\begin{array}{ll}
P & y \\
X & b
\end{array}\right)
$$

be two borderea maxices firder n, the meaning of m, v, u, a, and P, x, y, b, being those of bevinition, the following statements are valid:

$$
\begin{aligned}
& \operatorname{ex} A=\left\{\left.\begin{array}{ll}
a M & \alpha u \\
&
\end{array} \right\rvert\, \quad,\right. \\
& A+B=\left(\begin{array}{cc}
M+p & u+y \\
\ddots+x & z+b
\end{array}\right) \quad, \\
& A B=\left(\begin{array}{cc}
M P+u x & M y+u b \\
v P+a x & v y+a b
\end{array}\right) \quad .
\end{aligned}
$$

Here MD and ux are matrices of the ($n-1$) wth orderg My, ub are columns composed of $n-1$ elementsy of and ax are analogous rows; and, lastly, vy + ab is a number.
5. Quasi-diagonal matrices. Let us consider still another particular case of partitioned matrices, namely the matrices called quasi-diagonal. These are square matrices along whose leading diagonals are arrayed square submatrices, the remainder of the elements being zero. An example would be the seventh -order quasi-diagonal matrix:

The cells of this matrix are obviously

$$
A=\left(\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right) \quad \vdots
$$

(15b) $\quad B=\left(\begin{array}{lll}b_{11} & b_{12} & b_{13} \\ b_{21} & b_{22} & b_{23} \\ b_{32} & b_{32} & b_{33}\end{array}\right) ; \quad 0=\left(\begin{array}{ll}c_{11} & c_{12} \\ c_{21} & c_{22}\end{array}\right)$
and the six nul. submatrices.
If two quasi-diagonal matrices are of like structure, the product of such matrices will also be a quasi-diagorial matrix of the same structure, the diagonal cells of which equal the products of the corresponding cells of the factor submatrices.

The determinant of a quasi-diagonal matrix is equal to the product of the determinants of the diagonal cells, on the strength of a notable theorem by Laplace.
6. The inverse and the adjoint matrices. A square matrix $A=\left(a_{i j}\right)$ is said to be non-singular if its deteminant is not equal to zero; in the contracy case it is of course singular.

The important concept of an inverse matrix is now introduced. A matrix B is called the inverse (or reciprocal) of the matrix A if

$$
\begin{equation*}
A B=I \tag{1.6}
\end{equation*}
$$

We shall show that the necessary and sufficient condition for the existence of the inverse matrix is the nonosingularity of the matrix A.

The necessity follows at once from the theorem concerning the determinant of a matrix product, for if $A B=I,|A||B|=I$ and consequently $|A| \neq 0$ 。

Assume now that $|A| F 0$. In order to construet the inverse matrix we must give preliminary consideration to the adjoint (or adjugate) matrix, i.e., the matrix

$$
\text { Isee, e.ge }[1], \$ 33 .
$$

(17)

$$
0=\left(\begin{array}{cccc}
A_{11} & A_{21} & \cdots & A_{n 1} \\
A_{12} & A_{22} & \cdots & A_{n 2} \\
0 & \cdot & \cdot & \cdot \\
A_{1 n} & A_{2 n} & \cdots & A_{m n}
\end{array}\right)
$$

Here $A_{i j}$ is the algebraic complement (cofactor) of the element $a_{i j}$ in the determinant of the matrix A, i.e., is the signed minor determinant of the element $\alpha_{i j}$ 。

We shall show that the adjoint matrix has the following property:

$$
\begin{equation*}
A C=|A| I . \tag{18}
\end{equation*}
$$

In demonstration, reckoning the general element of the matrix 10 by the rules for matrix multiplication, we find it to equal

$$
\begin{equation*}
a_{i 1} A_{j 1}+a_{i 2} A_{j 2}+\cdots+a_{i n} A_{j n}, \tag{18a}
\end{equation*}
$$

i.e., zero for $i \neq j$, and $|A|$ for $i=j$, on the strength of a familiar theorem on the expansion of determinants ${ }^{1}$.

The equality

$$
\begin{equation*}
C A=|A| I \tag{181}
\end{equation*}
$$

is established in like manner.
The adjoint matrix has meaning for any square matrix A. From the equality $A C=|A| I$ it follows that the matrix
$I_{\text {Translator's }}$ note: An expansion in terms of "alien cofactors" vanishes identically. See, e.g., [1], \$19, 21.

$$
\begin{equation*}
B=\frac{I}{|A|} C \tag{19}
\end{equation*}
$$

is, for non singular A, the sought inverse, for

$$
\begin{equation*}
A B=A \frac{I}{|A|} C=\frac{I}{|A|} A C=I \quad \tag{19a}
\end{equation*}
$$

The constructed matrix has also the property

$$
\begin{equation*}
B A=I, \tag{20}
\end{equation*}
$$

which follows from equation (18).
We prove, lastly, the uniqueness of the inverse matrix. Assume that a matrix X exists such that $A X=I$. Multiplying this equation by B on the left, we have $X \equiv B$. If it be assumed that $I A=I$, a multiplication on the right by B yields $Y=B$.

The matrix inverse to A is denoted by A^{-1}. It is obvious that $\left|A^{-1}\right|=|A|^{-1}$.

We note that the inverse of the product of two matrices also displays the reversal role:

$$
\begin{equation*}
\left(A_{1} A_{2}\right)^{-1}=A_{2}^{-I} A_{1}^{-I} \tag{21.}
\end{equation*}
$$

since

$$
\begin{equation*}
A_{1} A_{2} A_{2}^{-I} A_{1}-1=A_{1} A_{1}^{-1}=I \tag{21a}
\end{equation*}
$$

The deternination of the inverse matrix is one of the fouamental. problems of linear algebra. Equation (19) offers the possibility of computing the inverse matrix, however, the computation of the adjoint matrix is so labor-consuming that the cited equation is of importance only in theoretical relationships. Chapter II will be specially devoted to this problem of determining the inverse matrix.
7. Polynomials in a matrix. We now define the positive integral power of a square matrix, putting

In view of the associative law, how the parentheses in this product are placed makes no difference, and we therefore omit them. It is evident from the definition that

$$
\left\{\begin{array}{l}
A^{n} A^{M}=A^{n+m} \tag{23}\\
\left(A^{n}\right)^{m}=A^{m}
\end{array}\right.
$$

Hence it follows that powers of the same matrix are commutative.
We further put, by definition,
(23a)

$$
A^{\circ}=I
$$

An expression of the form

$$
\begin{equation*}
\propto_{0}^{A^{n}+\alpha_{2} A^{M-1}+\cdots+\infty n^{I}, ~} \tag{23b}
\end{equation*}
$$

where dos $\alpha_{1} \cdots, \alpha_{n}$ are complex numbers, is called a polynomial in a matrix, or matrix polynomial. This matrix polynomial may be regarded as the result of replacing the vamable A in an algebraic polynomial

$$
\begin{equation*}
\varphi(x)=\alpha_{0} x^{n}+\alpha_{2} x^{r-1}+\cdots+\alpha_{n} \tag{24}
\end{equation*}
$$

by the matrix A.
It is important to note that the rules for operation upon matrix poly nomials do not differ from the rules for operation upon algebraic polynomials, viz.:

$$
\left\{\begin{align*}
\text { given } & \mu(\lambda)=\Psi(A) \pm X(A) \tag{25}\\
& \omega(\lambda)=\Psi(A) X(\lambda) \\
\text { then } & \\
& \varphi(A)=\Psi(A) \pm X(A) \\
& \omega(A)=\psi(A) X(A)
\end{align*}\right.
$$

This follows from the commutativity of the powers of a matrix.
8. The characteristic polynomial. The Cayley-Hamilton theorem. The minimum polynomial. The equation

$$
\left|\begin{array}{cccc}
a_{11}-\lambda & a_{12} & \cdots & a_{1 n} \tag{26}\\
a_{21} & a_{22}-\lambda & \cdots & a_{2 n} \\
0 & 0 & 0 & 0
\end{array} 0_{1} \cdot 0_{1} \quad{ }^{2}\right|=0
$$

is called the characteristic equation of the matron $A=\left(a_{2,9}\right)$. The left member of this equation, which may be written in the abbreviated form $|A-\lambda I|$, bears the name characteristic polynomial for characteristic function) of the matrix. Characteristic equations are frequently encountered in applied mathematics.

The direct computation of the characteristic function presents considarable technical difficulties. If

$$
\begin{equation*}
\varphi(\lambda)=|A-\lambda I|=(-1)^{n}\left[\lambda^{n}-p_{1} \lambda^{n-1}-p_{2}^{h^{n-2}}-\cdots-p_{n}\right], \tag{27}
\end{equation*}
$$

then

$$
p_{1}=a_{11}+a_{22}+\cdots+a_{n 1}
$$

$$
\begin{equation*}
p_{n}=(-1)^{n-1}|A| \tag{28}
\end{equation*}
$$

wad the remaining coefficients p_{k} are the sums, taken with the sign $(-1)^{k-1}$, of all the principal minors of the determinant of matrix A of order k, i.e., of the minors involving the principal diagonal ${ }^{2}$. The number of such minors equals the number of combinations of n things taken k at a time.

The roots of the characteristic equation are called the latent roots (characteristic numbers, proper values, eigenvalues) of the matrix A. From the well-know theorem of Diet giving the comection between the roots of an equation and its coefficients, we have

$$
\begin{aligned}
& 1_{\text {See, }} \text { egg., [2], } \$ 3.6 \\
& \mathbb{2}_{\text {See, }} \text { ego, }[11,537 .
\end{aligned}
$$

The quantity $f_{1}=a_{21} h_{22} \cdots+a_{m}$ is calici the trace (or spur) of the matrix A , ond is deroted by tr A.

Practically ranveri at methots for determinirg tis cosficiczents and roots of the characteristio equation will be elaboratad in Chapter IM, which will be specially devoted to that group of questions. For the moment we leave them aside.

For acy square matnix the following remarkable relation, known as the Cayley-Hamilton Theorem, obtains if $\varphi(\lambda)$ is the characteristic polynomial of the matrix A, then $(A)=0$, that is, speaking somewhat conditionally, the matrix is a root of its cwn characteristio equation.

For proof, let us consider the matrix B, the adjoint of the matrix A - λ. Since each cofactor in the determinant $\mid A$ - A $I \mid$ is a polynomial in λ of degree not exceeding $n-1$, the adjoint metrix may be represented as an algebraic polynomial with matrix coefficients ${ }^{l}$, i.e., in the form

$$
\begin{equation*}
B=E_{r-1}+B_{r-2} \lambda+\cdots+B_{0} \lambda^{r-1}, \tag{29a.}
\end{equation*}
$$

where E_{n-1}, \cdots, B_{0} are certain matrices not dependent on λ. On the strength of the fundamental property of the adjoint matrix, we have
(29b)

$$
\left(B_{n-1}+B_{r-2}+\cdots+B_{0}^{1}{ }^{[I-1}\right)(A-\lambda I)=|A \cdots I| I=
$$

$$
=(-1)^{n}\left(\lambda^{n}-p_{1} 1^{n-2} \cdots-p_{n}\right) I
$$

${ }^{1}$ Guard against confusion with a polymomial in a matrix. See, e.g., [3], Chap. III, 多 4 g. 21 ff .

This equation is equivalent to the system of equations
($6.0,0)$

 the $x=0 h t$,
(30)

$$
(-1)^{n_{[}}-A_{-}-I_{r-2} A^{2}-\cdots A^{I_{y}}=y(A)
$$

The Carley-Hamilton selation shows tilat fore given square matrix a polynomial exists for which it is a root. Evidentity suck a polynomial is not unique, for if yf (ג) has such a property, so has any polynomial divisible by $\psi(\lambda)$. The polynonial of lovest degree having this property that the matrix A is a not of it, is called the minimum polynomial of the matrixa A

We shall prove that the characteristic poiynomial is divisibie by the mininum polynomial.

Let $q(2)$ and $r(A)$ be the quotiett and remainder obtained upon divid-

(30a)

$$
\varphi(\lambda)=\psi(\lambda) q(\lambda)+r(\lambda),
$$

the degree of $r(\lambda)$ being of course less than the degree of $\psi(A)$.
Substituting A for λ in this equation, we have

$$
r(A)=\psi(A)-\psi(A) q(A)=0 .
$$

Thus the matrix A proves to be a "root" of the polynomial $r(\lambda)$; it thence follows that $r(\lambda) \equiv 0$, since otherwise $\Psi(\lambda)$ would not be the minimum function. Consequently $\psi(\lambda)$ divides $\varphi(\lambda)$.
9. Similar matrices. The matrix B is said to be similar to the matrix A if a non-singular matrix C exists such that $B=C^{-1} A C$. Matrix B is said to be obtained from matrix A by a similarity (or collineatory) transformation.

The similarity transformation has the following properties:
(30b) I. $C^{-1} A_{1} C+C^{-1} A_{2} C+\cdots+C^{-1} A_{n} C=C^{-1}\left(A_{1}+A_{2}+\cdots+A_{n 1}\right) C$.
(31)
2. $C^{-1} A_{1} C \cdot C^{-1} A_{2} C \cdots C^{-I_{A_{n}} C}=C^{-1}\left(A_{1} A_{2} \cdots A_{n}\right) C$.

In particular, $\left(C^{-1} A C\right)^{n}=C^{-1} A^{n} C$.
Hence:
3. $f\left(C^{-1} A C\right)=C^{-1} f(A) C$ for any polynomial $f(\lambda)$.

From the last property it follows directiy that similar matrices have the same minimum function.

We shall show that similar matrices have also the same characteristic

function.

We have

$$
\left|B-X_{I}\right|=\left|C^{-1} A C-X\right|=\left|C^{-1} A C-\lambda C^{-1} I C\right|=
$$

(31.a)

$$
=|C|^{-1}|A-I||C|=|A-|I|
$$

10. झiementary transformations. It is frequently necessary to effect the following operations upon matrices:
a) Multiplication of the elements of some row by a number;
b:) Adding to the elements of some row numbers proportional to the elements of some preceding row.
b") Adang to the elements of some row numbers proportional to the Elements of some following row.

Sometimes such transformations must be made upon the columns. Transformations of the type indicated are called elementary transformations of the matrix.

Any elementary transformation of the rows is equivalent to a premultiplication of the matrix by a non-singular matrix of a special form, as will readily be verified. Operation a) is equivalent to a premultiplication of the matrix by the matrix

- 24 -

operation b^{\prime}) is equivalent to a premultiplication by the matrix (33)
 ;
operation $b^{\prime \prime}$) is equivalent to a premultiplication by the matrix

Operations a), b?) and bil) are performed on co "mans by using just such elementary matrices in postrnultiplications of the matrix undergoing transformation, (33) now effecting bi') upors columns, and (34) effecting bi)。

Examples of row operations:
(34a) $\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 1\end{array}\right)\left(\begin{array}{lll}a & b & c \\ x & y & z \\ u & v & w\end{array}\right)=\left(\begin{array}{ccc}a & b & c \\ a x & d y & d z \\ u & v & w\end{array}\right)$
(3Lib) $\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & a & I\end{array}\right)\left(\begin{array}{lll}x & b & c \\ x & y & z \\ u & v & w\end{array}\right)=\left(\begin{array}{ccc}a & b & c \\ x & y & z \\ u+a x & v+\alpha y & w+\alpha z\end{array}\right) ;$
(21~) $\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & a \\ 0 & 0 & 1\end{array}\right)\left(\begin{array}{lll}a & b & c \\ x & y & z \\ u & v & w\end{array}\right)=\left(\begin{array}{ccc}a & b & c \\ x+a u & y+a v & z+\alpha w \\ u & v & w\end{array}\right)$.
$I_{\text {Translator's note: Note that the elenentary ratrices may well be }}$ regarded as having been derived from the unit matrix by just such transw formations, a), b?) and b^{n}), as it is proposed to make upon the rows/colums of A. Thus, for example, the elementary matrix of (34b) effects, by premultiplication, the following transformation of A : row $3+\alpha$ row 2 , and is itself the result of such an operation upon the unit matrix. By postmultiplication it effects: column $2+\operatorname{coolum} 3$, and is this transformation of I.

In future work we will often have to conduct transfomations of types a) and b') upon matrices. The resuit of several row-transformations of this type is equivalent to the premultiplication of the matrix by some triangular matrix, i.e., one of the form

$$
\left(\begin{array}{cccc}
\gamma_{11} & 0 & \cdots & 0 \tag{35}\\
\gamma_{21} & \gamma_{22} & \cdots & 0 \\
0 & 0 & 0 & 0 \\
\gamma_{n 1} & \zeta_{n 2} & \cdots & \gamma_{n n}
\end{array}\right) \text {, }
$$

with non-zero diagonal elements Kii. Indeed, each separate transformation of form a) or b^{\prime}) is equivalent to a premultiplication by a triangular matrix of the type indicated, and the product of two or more triangular matrices of like structure (i.e., both, say, Iower triangular, as these) is again a like triangular matrix.

It should be further noted that the result of several column-transformations of the form b^{\prime}) and $\mathrm{b}^{\prime \prime}$), such that to each, joth, column is added a multiple, $m_{i j}$, of the elements of the i-th column (which itself remains unchanged), is equivalent to postmultiplication of the given matrix by a matrix of the form:

11. Decomposition of matri as into the product of two triangular matrices. Triangular matrices, that is, matrices of the form

$$
\begin{aligned}
& (37)\left(\begin{array}{cccc}
11 & 0 & \cdots & 0 \\
c_{21} & c_{22} & \cdots & 0 \\
\cdots & \cdots & \cdots & \cdots \\
c_{n 1} & c_{n 2} & \cdots & c_{n n}
\end{array}\right)
\end{aligned}
$$

have a number of convenjent properties. For instance, the determinant of a triangular matrix equals the product of the elements of the principal diagonal; the product of two triangular matrices of like structure is again a triangular matrix of the same structure; a non-singular triangular matrix is easily inverted and its inverse is of like structure, etc.

The following theorems are therefore of interest.
THEOREM. On condition that the leading submatrices of the matrix
(37a)

$$
A=\left(\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\cdot & \cdot & \cdot & \cdot \\
a_{n 1} & \cdot \\
a_{n 2} & \cdots & a_{n n}
\end{array}\right)
$$

are non-singular, i.e., that
(370) $a_{11} \neq 0,\left|\begin{array}{ll}a_{11} & a_{12} \\ a_{22} & a_{22}\end{array}\right| \neq 0,00,|A| * 0$,

A mav be represerited as the product of a lower triangular matrix and an upper triangular matrix.

The proof will be carried through by the method of mathematical induction.

For $n=1$, the statement is obvious: $\left(a_{11}\right)=\left(b_{11}\right)\left(c_{11}\right)$, and one of the factors may be taken arbitrarily. Let the theorem be true for a matrix of the $(n-1)-t h$ order. We shall show it to be true for a matrix of the n-th order.

Partition the matrix A into a bordered matrix:

we shall seek a decomposition $A=C B$ of the matrix A into the product of two matrices B and C of the required forms, first having partitioned these matrices into bordered form like that of A :
$(37 d) \quad C=\left(\begin{array}{cc}C_{n-1} & 0 \\ x & c_{n n}\end{array}\right), \quad B=\left(\begin{array}{cc}B_{n-1} & y \\ 0 & b_{n n}\end{array}\right)$.

By the rule for multiplication of partitioned matrices:
(37e)

$$
C B=\left(\begin{array}{cc}
v_{n-1} & 0 \\
x & 0_{n n}
\end{array}\right)\left(\begin{array}{cc}
B_{n-1} & y \\
0 & b_{m n}
\end{array}\right)=
$$

$$
=\left(\begin{array}{ll}
U_{n-1} B_{n-1} & c_{n-1} I^{y} \\
x B_{n-1} & x y+c_{n n} b_{n n}
\end{array}\right)=A
$$

whence we have
(37f)

$$
C_{n-1} B_{n-1}=A_{n-1}
$$

Now such triangular matrices, C_{n-1} and $B_{r_{-}-1}$, exist, by the induction rypothesis. Furthemore, from the assumption that $\left|A_{n-1}\right|$; 0 , it follows that $\left|c_{n-1}\right| \neq 0$ and $\left|B_{n-1}\right| \neq 0$.

Now x and y are found by the formulas

$$
\begin{equation*}
y=C_{n-1}^{-1} u \quad, \quad x=V B_{n-1}^{-1}, \tag{378}
\end{equation*}
$$

Wherewith they are determined uniquely in terms of u and v.
Thus it oniy remains for us to determine the diagonal elements $c_{n n}$ and $0_{n n}$ from the equation

$$
\begin{equation*}
a_{n n n n}=a_{n n}-x y \tag{37~h}
\end{equation*}
$$

The last equation shows that one of the diagonal elements may be taken arbitrarily.

Thus the atomedstive a ratrix Entc the prove of two triangular matrices, Tower ance urve: will be unique only if we prescribe values for tro tiagoral slements cf cre of the triangular matrioss.

It is crnverifent te consider, fur example, that $b_{i 土}=1, i=1, \cdots, n$. Theri
(372)

$$
p_{p z}=a_{n r_{1}}-x y
$$

and acordingly matrix C will be uniquely determined.
2. Matrix atation fop a systen of Lirear emations. Let us consider the syster of a ingear equations in n unknomias

Utijizing the atefnifion mabrix. matipliation, the system may be written as a single equation in matrix notation:
or sirply as
(3811)

$$
A x=b
$$

A signifying the matrix of the coefficients of the systen, b the column of free members, and x the column whose elements are the unknowns.

If the matrix of the system, A, is nonwsingular, we obtain at once the solurion of zysten (28) by prentraltiplying (38") by A^{-1} :

$$
\begin{equation*}
x=A^{-I} b=\frac{I}{|A|} B B \tag{39}
\end{equation*}
$$

B being the adjoint matrix of A.
fe shall show that the last formula is the matrix notation for the fanilicu Cramer's Rule:

$$
\begin{equation*}
x_{i}=\frac{\left|A_{i}\right|}{|A|} \tag{4,0}
\end{equation*}
$$

where A_{i} is the matrix that is obtained from A by replacing the elements $a_{k i}$ of the i-th column by the components b_{i} of b.

Indeed, the matrix equation (39) is equivalent to the n equations

Since the $A_{k=}$ are the cofactors of the element $\varepsilon_{k i}$ in the determinant of the matrix A, we doviousiy have

$$
\begin{equation*}
A_{11} b_{1}+A_{21} b_{2}+\cdots+A_{M_{2}} b_{n}=\left|A_{j}\right| \tag{4,0b}
\end{equation*}
$$

which proves our statement.

2. GIIMENSIOMI UEOCOR SPACE

In whet 4. to follo wh moxtant role vili be pleyed by the soocalled n-timenstona? yector spage R_{n} A point X of sum a space is an aggregate of n numbers. as - "ie complex, arrareu in a defunite order:
(3)
$x_{n}=\left(x_{2}, x_{2}, \cdots, x_{n}\right) \quad$.
X is also called an n-dimersionel yecter , ne numbers $x_{1}, x_{2}, \cdots, x_{n}$ are called the cormoronts of the vecter. Mre numer in is called the dimension of the space.

Two vectors awe baid be equal only if their corresponding components are equal. Fundamenta? perations on vectors are defined as follows: if $X=\left(x_{1}, x_{2}, \cdots, x_{n}\right) \operatorname{del}=\left(y_{1}, y_{2}, \cdots, y_{n}\right)$ 日r two nodimensional vectors and ${ }^{a}$ is an arbitrory complex number, we then put, by definition,
(2)

$$
\begin{gathered}
X+Y=\left(x_{1}+y_{1}, x_{2}+y_{2}, \cdots, x_{Y}+y_{n}\right) \\
3 X=\left(a x_{1}, a x_{2}, \cdots, a x_{n}\right) \quad
\end{gathered}
$$

The addition of vectors satisfies the comntative and associative lars:

Iranslatoris note: These are extensions, by a natural generalization, of the familiar vectors and omponents of vector analysis, where, relative to the basic vectors $i_{9} j_{9} k_{9}$ a vector $X=a_{1} i+a_{2} j+a_{3} k$ has the components a_{1}, a_{2}, a_{3}. (See, e.80, [4], 55.) Here, abstracted from the relation with basic vectors and with more than three "components", and thus in a "space" of nore than three "dimensions", the "pector" terminology is preserced as approprist: to the foms, operations, eto.

$$
X+\tilde{X}=Y+X
$$

(aa)

$$
(X+Y)+Z=X+(Y+Z)
$$

The addition of vectors is connected on th multiplication by numbers by the distributive Yaws

$$
y(\overline{i z}+Y)=a \bar{Z}+X Y
$$

(3)

$$
(a+b) X=a X+b Y \text {. }
$$

The validity of al: tHese laws follows directly from the definition of the operations

For vectors of an n-amensional space a scalar product is introduced in accordance with the formula
(4)

$$
(X, Y)=\sum_{k=1}^{n} X_{k} \tilde{Y}_{k},
$$

where \ddot{y}_{x} designates the complex conjugate or y^{2}
It is readily verified that the scalar product has the following proparties:
${ }^{1}$ Cf. the scalar (D_{ot}) product of ordinary vectors, for which there is a convenient matrix notations see [1], \$8.9.

$$
{ }^{2} \text { See }[5], \text { p. 162, note. }
$$

```
1) \((X, X)>0\) if \(X \neq 0 ;(X, X)=0\) if \(X=0\).
2) \((X, Y)=(Y, X)\).
3) \(\left(X_{1}+X_{2}, Y\right)=\left(X_{1}, Y\right)+\left(X_{2}, \Psi\right)\).
14) \((a X, Y)=a(X, Y)\)
5) \(\left(X, Y_{2}+Y_{2}\right)=\left(X, F_{2}\right)+\left(X, Y_{2}\right)\).
6) \((X, a Y)=\bar{a}(X, Y)\).
```

In addition, $\sqrt{(X, X)}$ is called the length of the vector. In what folIowd we shall designate it by ||X||.

Besides the n-dimersional complex space introduced above, it is useful to consider also an nndimensional real space, i.e., the aggregate of vectors with real components.

In real space the scalar product is equal to the sum of the products of corresponding components of the vectors? the length of a wector equals the square root of the sum of the squares of its components.

We shall most of ten have to deal with real n-dimensional space, turning to compiex space only as oceasion requires.

1. Iinear dependence. A vector $Z=c_{1} X_{1}+c_{2} X_{C}+\infty 0+c_{m} X_{m}$ is said to be a Iinear combination of the vectors $X_{1}, X_{2}, \cdots X_{m}$.

It is easily seen that if vectors Ψ_{1}, \cdots, Y_{k} are linear combinations of the vectors $X_{I}, \cdots, X_{i n}$, any linear combination $\gamma_{1} Y_{1}+\cdots+\gamma_{k} Y_{k}$ will also be a linear combination of the vectors X_{1}, \cdots, X_{m}.

Vectors $X_{1}, X_{2}, \cdots, X_{m}$ are called Iinearly dependent if constants $c_{1}, c_{2}, \cdots, c_{m}$ exist, not all zero, such that the equation

$$
\begin{equation*}
c_{1} X_{1}+c_{2} X_{2}+\cdots+c_{m} X_{m}=0 \tag{5}
\end{equation*}
$$

huids. If, howerer, this equation holds only when all the constants c_{i} are equal to zero, the vectors $X_{1}, X_{2}, \cdots, X_{0}$ are said to be Iinearly independent.

If the 年ectors X_{1}, \cdots, X_{m} are Inearly dependent, then at least one of then will be a linear combination of the rest. Fox if, for example, $e_{\mathrm{m}}{ }^{\prime} 0$, we find from (5):

$$
\begin{equation*}
X_{m}=-\frac{c_{1}}{c_{m}} X_{1} \cdots \cdots-\frac{c_{m-1}}{c_{m}} X_{m-1} \tag{6}
\end{equation*}
$$

THEOREN 1. If the rectors I_{1}, \cdots, Y_{k} are Iinear combinations of the vectors X_{y}, \cdots, X_{m}, and $k \geqslant m$, the former E ist is inearly dependent.

The proof will be carried through by the method of mathematical induction. For m=1, the theorem is obvious. Let the theorem be true on the assumption that the number of combined vectors be $m-I$. Under the condition of the theorem, then,

$$
\begin{equation*}
Y_{1}=o_{11} Y_{1}+\cdots+c_{I_{n}} X_{m} \tag{6a}
\end{equation*}
$$

$$
I_{k}=c_{k I} X_{I}+\cdots+c_{k m} X_{n i}
$$

Two cases are conceivable.

1. AII the coerficients $0_{11}, \cdots, c_{k I}$ are equal to zero. Then Y_{1}, \cdots, Y_{i} are in fact linear combinations of the $m-1$ vectors
Y_{2}, \cdots, Y_{m}, O_{n} the strength of the induction fopctiesis, Y_{I}, \cdots, Y_{k} will be linearly dependent.
2. It least one coefficient of X_{1} will be different from zero. Without violating the generality we may consider that $c_{11} \neq 0$.

Let us now consider the system of vectors

$$
Y_{2}=Y_{2}-\frac{C_{21}}{Q_{11}} Y_{3}
$$

(Sb)

$$
T_{k}=I_{k}-\frac{s_{k 1}}{\delta_{11}} \Sigma_{1} .
$$

The vectors thus constructed are obviously linear combinations of the vectors $X_{2,}, \cdots, X_{m}$, and the number of them is $k-1>m-1$. on the strength of the induction hypothesis they are Iireariy dependent, i.e., cons, ants $6, \cdots, 5$ that axe not simultaneously zero can be found such tret

$$
\begin{equation*}
2_{2}^{Y}+\cdots+\gamma_{K_{K}^{3}}^{Y_{K}^{3}}=0 \tag{60}
\end{equation*}
$$

Replacing Y_{2}, \cdots, Y_{k} by their expressions in terms of Y_{I}, \cdots, Y_{k}, we obtain

$$
\begin{equation*}
{ }_{1} Y_{1}+{ }_{2}^{P}+\cdots+V_{k}^{Y}=0, \tag{6i}
\end{equation*}
$$

Where $f_{1}=-\frac{c_{21}}{c_{11}} \gamma_{2}-\infty-\frac{c_{21}}{\delta_{11}} \gamma_{k}$ The number: $\gamma_{1}, \cdots, \gamma_{k}$ are not simultaneously equal to zero and accordingly Y_{1}, \cdots, Y_{k} are Inearily dependent, This proves Theorem I.

A system of Iinearly independent vectors is said to constitute a basis for a space in any vector of the space is a linear combination of the vectors of the system.

An example of a basis is the set of vectors
(7)

$$
\left\{\begin{array}{l}
e_{1}=(1,0, \cdots, 0) \\
e_{2}=(0,1, \cdots, 0) \\
\cdots \cdots \cdots \\
e_{n}=(0,0, \cdots, 1),
\end{array}\right.
$$

for it is obvious that for any pector $X=\left(x_{1}, x_{2}, \cdots, x_{n}\right)$ we have

$$
\begin{equation*}
x=x_{2} e_{1}+x_{2} e_{2}+\cdots+x_{n} e_{n} \tag{7a}
\end{equation*}
$$

This we shall call the initial basis of the space. Such a basis is not the only one possible -w quite the contrary: in the choice of a basis one may be arbitrary within wide Iimits. Despite this, the number of vectors forming a basis does not depend on its selection. In proof of this, let Y_{I}, \cdots, Y_{k} and $Z_{I}, \cdots Z_{m}$ be tro bases, and assume further that $k>m$ 。 The vectors I_{I}, \cdots, Y_{k} are linear combinations of the vectors Z_{1}, \cdots, Z_{m}. In the Iight of Theorem I, I_{1}, \cdots, Y_{k} are Iinearly dependent, which contradicts the definition of basis. Sok $m \mathrm{~m}$. Furthermore, since the initial basis is constituted by in vectors, any other basis will also consist of n vectors. The number of vectors forming a basis thus coincides with the dimension of the space.

Iet U_{I}, \cdots, U_{r} form the basis of a space. Arry rector X will then be a. Iinear combination of $U_{\eta}, \cdots U_{n}$:

$$
\begin{equation*}
X=1_{1} U_{1}+{ }_{2} U_{2}+\cdots+\xi_{n} U_{n} \tag{8}
\end{equation*}
$$

The coefficients of tris resolution uniquely define the vector X, for if
(8a)

$$
X=\xi_{1} U_{1}+\cdots+\sum_{n} U_{n}={ }_{1} U_{1}+\cdots+\xi_{n} U_{n},
$$

then $\left(E_{I}-\xi_{1}\right) U_{q}+\cdots+\left(\xi_{n}-\xi_{n}\right) U_{n}=0$, and accordingly $\xi_{1}-\sum_{1}=0, \cdots, r_{n}=0$, in view of the linear independence of the vectors U_{1}, \cdots, U_{n}.

The coefficients $\xi_{1}, \cdots, \delta_{n}$ are called the coordinates of the vector X with respect to the basis U_{1}, \cdots, U ${ }_{n}$. Note that the components of a vector x_{1}, \cdots, x_{r} are the coordinates of the vector X with respect to the initial basis.
2. Orthogonal systems of vectors. Two nonmero vectors of a space are said to be or thogonal if their scalar product equals zero. A system of vectors is said to be onthogonal if any two vectors of the system are orthogon-al to one another. In speaking of an orthogonal system, we shall henceforth assume that all the vectors of this system are different from zero.

THEOREM 2. The Vectors forming an or thogonal system are linearly independent.

Proof. Let X_{1}, \cdots, X_{k} be an orthogonal system, and let

$$
\begin{equation*}
c_{1} X_{1}+a_{2} X_{2}+\cdots+c_{k} X_{k}=0 \tag{8ib}
\end{equation*}
$$

In view of the properties of the sealar product we havea
(8 c)

$$
0=\left(c_{1} X_{1}+\ldots+a_{R} X_{K^{3}} X_{i}\right)=c_{I}\left(X_{1}, X_{i}\right)+
$$

$$
\begin{equation*}
+\cdots+c_{i}\left(x_{i}, x_{i}\right)+\cdots+c_{k}\left(x_{k}, x_{i}\right)=c_{i}\left\|x_{i}\right\|^{2}, \tag{位}
\end{equation*}
$$

and, since $\left\|X_{i}\right\|^{2}>0, c_{i}=0$ for any $i=1,2, \ldots, r_{1}$. Thus the sole possible values for $c_{1}, c_{2}, \cdots, c_{n}$ in the equation $c_{1} X_{1}+c_{2} X_{2}+\ldots+c_{n} X_{n}=0$ are $c_{1} \equiv c_{2}=\cdots=c_{n}=0, \dot{1}, e_{0}$, the rectors $X_{1}, X_{2}, \cdots, X_{n}$ are linearly independent. It thence follows, first, that the number of vectors forming an orthogonal system does not exceed n, and, second, that ary orthogonal system of n vectors forms a basis of the space. Such a basis is called orthogonal. If we have, in addition, $\left\|X_{i}\right\|=1$, the basis is said to be orthonormal. An example of an orthonormal basis is the initial basis.

From ary system of lineariy independent vectors X_{D}, \cdots, X_{K}, it is poesible to go over to an orthogonal system of vectors X_{1}^{\prime}, $\cdots X_{k}^{8}$ by means of the process spoken of as orthogonalization. The following theorem describes this process.

THEOREM 3. Let X_{1}, \cdots, X_{n} be Iineariy independent. An orthogonal. system of vectors $X_{1}^{1}, \cdots, X_{n}^{\prime}$ may be constructed that is connected with the original set by the relations:
(9)

The proof will be carried through by induction.
Int, $X_{n}{ }^{3}, 00, X_{m-1}^{3}$ be already constmated and different from zero. We Bani z" in the frame
!":

$$
X_{m}^{\prime}=X_{m}+\gamma_{I} X_{I}^{8}+\cdots+\gamma_{m-1} X_{m-1}^{\prime}
$$

Moose the conficients $\gamma_{I}, \cdots, \gamma_{m-1}$ so that $\left(X_{m}^{8}, X_{j}^{i}\right)=0$ for $j=1, M^{\circ}, x_{i 1}-1$. his is easily done, for

$$
\begin{equation*}
\left(X_{M,}^{8}, X_{j}^{!}\right)=\left(X_{m^{9}} X_{j}^{8}\right)+\gamma_{j}\left(X_{j}^{1}, X_{j}^{1}\right) \tag{9:a}
\end{equation*}
$$

Nov $\left(X_{i}^{8}, \mathbb{Z}_{j}^{2}\right) \neq \hat{y}$, sire X_{j}^{8}, O by the induction hypothesis, and it is accordingly sutrinient to take

$$
\gamma_{j}=-\frac{\left(X_{m} x_{j}^{1}\right)}{\left(x_{j}^{8}, x_{j}^{8}\right)}
$$

 $\{: 80$

$$
X_{m 1}^{3}=X_{m}+\alpha_{m 1} X_{1}+\cdots+\alpha_{\sin m 1} X_{m=1}
$$

It pertains to be proved that $X_{m}^{i} \neq 0$. But this is obvious, for other wis the vector X_{m} would be a linear combination of the vectors $X_{2}, \cdots, X_{\text {rm }}$, which contradicts the condition of the theorem. The basis of the induction exists, since for $m=1$ the theorem is trivial.

One may pass from any orthogonal system to the corresponding ortho normal system by dividing each vector by its length.
 orthonomen thai.. ff e may pass from any basis to an orthonormal one by methogomi winston normalization.

The neal of two vectors is very simply expressible in terms of the creatine vectors with respect to any orthonormal basis, for, if IJ_{3}, \cdots, an orthonormal basis, and
(98d) $X=\xi_{j} \cdots \cdots+\xi_{n} U_{n} ; \quad Y=\eta_{1} U_{1}+\cdots+\eta_{n} U_{n}$,
then

$$
\left.\left(\sigma_{0}\right)=\eta_{2} \quad \cdots+\xi_{n} U_{n}, \quad \eta_{1} U_{2}+\cdots+\eta_{n} U_{n}\right)=
$$ $\left(9^{\circ} 0\right)$

$$
\left.\sum_{i=1}=\sum_{i}, \eta_{j} U_{j}\right)=\sum_{i=1}^{n} \sum_{j=1}^{n} \xi_{i} \bar{\eta}_{j}\left(U_{i}, U_{j}\right)=\sum_{i=1}^{n} \xi_{i} \bar{\eta}_{i} .
$$

The then of the scalar product in terms of the coordinates of the rectors with roque to any orthonormal basis coincides with its expression in terns whemponts of the vectors, ide., in terms of the coordinates with map ert to the initial basis.
3. Teansforgetion of coordinates. Let us elucidate the change in the coordinates of a pastor that accompanies a change of basis.

Let $e_{1}, e_{2}, \cdots e_{n}$ and $e_{1}^{\prime}, e_{2}^{\prime}, \cdots e_{n}^{\prime}$ be two bases, and let

$$
\left\{\begin{array}{l}
a_{1}=a_{11} e_{1}+a_{21} e_{2}+\cdots+a_{n 1} e_{n} \tag{10}\\
a_{2}=a_{12} e_{1}+a_{22} e_{2}+\cdots+a_{n 2} e_{n} \\
\cdot \cdot \cdot \cdot \cdot \\
a_{1 n} e_{2}+a_{2 n} e_{2}+\cdots+a_{n n} e_{n}
\end{array}\right.
$$

We comet with the transformation of coordinates a matrix A, the colum as of which consist of the coordinates of the vectors $e_{1}^{8}, e_{2}^{p}, \cdots, e_{n}^{\prime}$ with respect to the basis $e_{I}, e_{2,}, \ldots, e_{n}, i . e$. , the matrix
(11)

$$
A=\left(\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
0 & 0 & 0 & 0 \\
a_{n 1} & a_{n 2} & \cdots & a_{n n}
\end{array}\right)
$$

The matrix A is run-singular, for it has an inverse, by means of which the vectors e_{1}, e_{2}, \cdots, en are expressible in terms of the vectors $e_{2}^{1}, e_{2}^{1} \cdots, e_{n}^{1}$ 。

Now designate ky $x_{1}, \cdots \cdot$, $x_{n i}$ the coordinates of a vector X with respect to the basis $e_{2}, e_{2}, \cdots, e_{n}$, and by $x_{1}^{\prime}, x_{2}^{\prime}, \cdots, x_{n}^{\prime}$ its coordinates with respect to the basis e_{1}^{2}, $e_{2}^{3}, \cdots, e_{n}^{\prime}$. Let us determine the relation of dependdene between the old and the new coordinates. We have:
(11a)

$$
\begin{aligned}
& X=x_{1} e_{1}+x_{2} e_{2}+\cdots+x_{r_{1}} e_{n}=x_{1}^{\prime} e_{1}^{9}+x_{2}^{\prime} e_{2}^{1}+\cdots+x_{n}^{\prime} e_{n}^{1}= \\
& =x_{1}^{p}\left(a_{11} e_{1}+a_{21} e_{2}+\cdots+a_{n i} e_{n}\right)+ \\
& +x_{2}^{B}\left(a_{I_{2}} e_{1}+a_{2 n} e_{2}+\cdots+a_{n 2} e_{n}\right)+ \\
& +x_{n}^{8}\left(a_{2 n} e_{2}+a_{2 n} e_{2}+\cdots+a_{n n} e_{n}\right)= \\
& =\left(a_{11} x_{1}^{8}+a_{12} 2_{2}^{8}+0+a_{1 n} X_{n}^{1}\right) e_{1}+ \\
& +\left(a_{21} x_{1}^{\prime}+a_{2} x_{2} x_{2}+\cdots+a_{2 n} x_{n}^{8}\right) e_{2}+ \\
& +\left(a_{n} I_{1}^{2}+a_{n} 2_{2}^{8}+\cdots+a_{2} n_{n}{ }_{2}^{8}\right) e_{n} \text {, }
\end{aligned}
$$

$$
X Y=X
$$

$$
\begin{align*}
& U_{X} U_{Q}+0.0+Z_{x} Z_{0}+T_{0} T_{E}=Z_{X} \tag{टI}
\end{align*}
$$

$$
\tilde{Z}_{\theta} 6 \ldots{ }^{6} \bar{U}_{\theta} 6 I_{\theta}
$$

$$
\left.\left|\begin{array}{c|c}
u_{x} \\
u_{x} \\
0 \\
0 \\
0 \\
\bar{z}_{x} \\
\tau_{x}
\end{array}\right|=\begin{array}{cc}
u_{x} \\
x & \text { pue } \\
\cdot & \\
\cdot & =x \\
z_{x} \\
\tau_{x}
\end{array} \right\rvert\,=
$$

$$
\begin{aligned}
& \text { - sptor (EL) }{ }^{6 \cdot 0 .} \text {. } \quad \text {, XV }=x
\end{aligned}
$$

> UxTB UXT
> If $\left(L_{L}{ }^{x}\right)=X$
> TIXXX WEXT WXT

$$
\begin{align*}
& u_{1} u_{1} x+\cdots+\sum_{1} z_{1} z_{x}+T_{1} I_{1}=u_{\partial} u_{x} \ldots+z_{\partial} \tau_{x}+T_{\partial} T_{x}=x \\
& \text { 可 } \text { 山 }^{W}=\text { 机 } \tag{ST}\\
& \text { uxiz uxui uxu }
\end{align*}
$$

- sțseq ano

$$
{ }^{\circ}\left(x<u \text { w }{ }^{6}\right. \text { xtuqueu }
$$

Frorn this theoxem it follows directly that the dimension of the subspace spanned by the vectors U_{1}, \ldots, U_{M} equals the rank of the matrix composed of the elements of these vector's.

In proof, if the rank of a matrix whose columns are the components of the vectors U_{2}, \cdots, UM equals 2 , then of these m vectors r will be linearly independent, and these will correspond to the linearly independent columns of the matrix; all the rest of the columns will be Iinear combinations of them. Ary vector subspace is a Iinear combination of the vectors U_{1}, \cdots, U_{m}, which are themselves linear combinations of but relected lineariy independent vectors. Consequently amy vector is a linear combination of r vectors, and therefore the rank r of the matrix in question coincides with the dimension of the subspace.

3. SINEAR TRANSFORMATIONE

1. Let us associate with each vector X of a space a certain vector Y of the same space. Such an association we shail cail a transformation of the space. We shall designate the result of the application of transformation A to the vector X by $A X$.

> We shall call the transformation A linear if

$$
\begin{aligned}
& \text { 1. } A(\mathbb{A})=\infty A X, \text { for any complex number od; } \\
& \text { 2. } A\left(X_{1}+X_{2}\right)=A X_{1}+A X_{2} .
\end{aligned}
$$

We shall define, furthermore, operations upon Iinear transformations. The product of the linear transformations A and $B, A B=C$, will be a transform mation constituted by the transformations B and A in turn, B being com pleted first, and then A.

The product of inear transformations is a linear transformation, as is readily seen, since
(1)

$$
\begin{aligned}
C\left(X_{1}+X_{2}\right) & =A\left(B\left(X_{1}+X_{2}\right)\right)=A\left(B X_{1}+B X_{2}\right)= \\
& =A B X_{1}+A B X_{2}=C X_{1}+C X_{2}, \\
C \& X & =A B \operatorname{ABX}=A A_{0} B X=C A B X=\operatorname{CX}=
\end{aligned}
$$

The sum of the linear transformations A and B will be a transformation $\underset{\sim}{C}$ which associates the vector X with the vector $A X+B X$. This sum of linear transformations is obviously itself a linear transformation.
2. Representation of a Iinear transformation by a matrix. Let us choose, in the space R_{n}, sonue basis $e_{1}, e_{2}, \cdots, e_{n}$. A linear transform mation relates to the vectors of the basis the vectors $A e_{1}, A e_{2}, \cdots, A e_{n}$.

Let $A e_{1}, \cdots, A e_{n}$ be given in terms of their coordinates with respect to the basis $e_{1}, e_{2}, \cdots e_{n}$, i.e.e, let
(2)

$$
\left\{\begin{array}{l}
A e_{1}=a_{11} e_{1}+a_{21} e_{2}+\cdots+a_{n I} e_{n} \\
A e_{2}=a_{12} e_{1}+a_{22} e_{2}+\cdots+a_{n 2} e_{n} \\
0 \cdot 0 \cdot \cdot \cdots \cdots \\
A e_{n}=a_{1 n} e_{1}+a_{2 n} e_{2}+\cdots+a_{n n} e_{n}
\end{array}\right.
$$

Consider the matrix. A, its columns composed of the coordinates of the vectors $A e_{1}, A e_{2}, \cdots, \frac{A e_{n}}{}$:
(3)

$$
A=\left(\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\cdots & \cdot & \cdot & \cdot \\
a_{n 1} & a_{n 2} & \cdots & a_{n n}
\end{array}\right)
$$

We shall show that the matrix A uniquely defines the linear transformtron ${ }^{1}$ 。

Indeed, if the matrix A is known for the linear transformation, io., if $A e_{2},{ }_{-}^{A e_{2}}, \cdots A_{n}$ are determined, this is sufficient to find the transfornation of any vector, for if
(Ba)

$$
X=x_{1} e_{I}+\ldots+x_{n} e_{r_{2}},
$$

then

$$
\begin{equation*}
A X=x_{1} A e_{1}+\cdots+x_{n} A e_{n} . \tag{3b}
\end{equation*}
$$

Hence the coordinates of the transformed vector are easily found, for we have

$$
\begin{equation*}
I=A X=\sum_{k=1}^{n} J_{k} e_{k}=\sum_{i=1}^{n} X_{i=1} A e_{i}=\sum_{i=1}^{n} \sum_{k=1}^{n} a_{k i} X_{i} e_{k}, \tag{3c}
\end{equation*}
$$

whence

$$
\begin{equation*}
z_{K}=\sum_{i=1}^{n} a_{K i} x_{i}, \tag{3d}
\end{equation*}
$$

IArthorps remark:
Note, however, that the matrix of the coefficients in the relations
(2) forms a matrix winch is the transpose of that that we connect with the linear transformation.
or, in matrix notation,
(4)

$$
J=A X
$$

Where y and X are columns of the coordinates of vectors Y and X.
Conversely, an arbitrary matrix A may be connected with a certain linear transformation. Indeed, the transformation given by the formula (La)

$$
y=A x
$$

where y and x are, as above, the columns of coordinates of the vectors Y and X, is linear for any matrix A.

The established onemtowone correspondence between transformations and matrices is preserved when operations are performed upon transformations, for the matrix of the sum of transformations equals the sum of the matrices of the summand transformations, and the matrix of a product of transformations equals the product of the matrices corresponding to the factor transformations.
3. The connection between the matrices of a linear transformation with respect to different bases. We will now elucidate how the matrix of a linear transformation charges with a charge of the basis of the space.

Assume that from the basis e_{1}, \cdots, e_{1} we have passed to the basis $e_{1}^{8}, \cdots, e_{n}^{8}$, and let
(46)

$$
\begin{aligned}
& e_{1}^{8}=c_{11} e_{1}+c_{21} e_{2}+\ldots+c_{n 1} e_{n} \\
& \epsilon_{2}^{8}=\epsilon_{12} \omega_{1}+e_{22} e_{2}+\cdots+c_{n 2} \epsilon_{n} \\
& \text { - ○ - ○ ○ ○ ○ ○ ○ } \\
& e_{n}^{1}=c_{1 n} \epsilon_{2}+e_{2 n} e_{2}+\cdots+c_{n n} e_{n},
\end{aligned}
$$

that is,

$$
E^{\prime}=C^{T} E
$$

The coordinates of any vector of the space will have changed accordingly by the formula
(4c)

$$
x=C x^{\prime} \text {, }
$$

where
$(L d) \quad c=\left(\begin{array}{cccc}c_{11} & a_{12} & \cdots & c_{1 n} \\ c_{21} & c_{22} & \cdots & a_{2 n} \\ \cdot & 0 & \cdots & \cdots \\ c_{n 1} & c_{n 2} & \cdots & c_{m n}\end{array}\right), x=\left(\begin{array}{c}x_{1} \\ x_{2} \\ \cdot \\ x_{n}\end{array}\right), x^{\prime}=\left(\begin{array}{c}x_{1}^{\prime} \\ x_{2}^{\prime} \\ 0 \\ x_{n}^{\prime}\end{array}\right)$

The matrix of the transition, 0 , is evidently non-singular. It will coincide with the matrix of the linear transformation sending the basis $e_{1}, e_{2}, \cdots, e_{n}$ into the basis $e_{1}^{8}, e_{2}, \cdots, e_{n}$.

Let us now consider a Iinear transformation A, and let the matrix A correspond to it with respect to the basis $e_{1}, e_{2}, \cdots, e_{n}$, and the matrix 3 with respect to the basis $e_{1}^{i}, \varepsilon_{2}^{i}, \cdots, e_{n}^{i}$

If x is the colum of the coordinates of the rector X with respect to the basis e_{1}, \cdots, e_{n}, and $x^{8}-w i t h$ respect to the basis $e_{1}, \cdots, e_{n}^{\ell}$, y and $y^{\text {? }}$ being the analogous colums for vector Y, we have

$$
\begin{equation*}
y=A x \tag{4e}
\end{equation*}
$$

$$
y^{3}=B x^{8}
$$

But $x=6 x^{3}{ }_{3} y=C y^{3}$, and therefore
(Li)

$$
C y^{8}=A C x^{8}
$$

or
(Lg)

$$
y^{8}=B X^{s}=C^{-1} A C x^{8} .
$$

Thus similar matrices correspond to the same linear transformation with respect to different bases. Furthermore, the matrix by means of which the similarity transformation is effected coincides with the matrix of transformation of coordinates.
4. The transfer rule for a matrix in a scalar product. Let X and Y be two vectors given by their components with respect to the initial basis: $X=\left(x_{1}, \cdots, X_{n}\right), Y=\left(y_{1}, \cdots, \nabla_{n}\right)$, and let A be a linear transformer cion with matrix $A=\left(a_{i K}\right)$. Designate by A^{*} the linear transformation with matrix A^{*}, the elements of which are the complex-conjugates of their counterparts in A, and which are placed in transposed position: $A^{*}=\left(a_{i k}\right)^{*}=$

$$
\begin{equation*}
(A X, Y)=\left(X, A^{*} \bar{Y}\right) \quad . \tag{5}
\end{equation*}
$$

In demonstration, we have
(Fa)

$$
(A X, Y)=\sum_{i=1}^{n} \sum_{K=1}^{n} a_{i} k^{X} \bar{X}_{i}=\sum_{k=1}^{n} X_{k} \sum_{i=1}^{n} \bar{a}_{i k} X_{i}{ }_{i}=\left(X, A^{*} Y\right) \quad
$$

5. The rank of a Zinear transformation. Let a be a certain Iinear transformation. The set of vectors AX will obviously constitute a subspace, which we shail denote by $\operatorname{AR}_{\mathrm{n}}$.

The dimension of this subspace is said to be the rank of the transform Ination A

We shall show the rark of a transfomation to be equal to the rank of the matrix corresponding to this transformation on any basis whatever, $e_{1}, e_{2}, \cdots, e_{n}$. Obviously the subspace A_{n} is spanned by the vectors $A e_{1}, A e_{2}, \cdots, A e_{n}$. The dimension of $A R_{n}$ is accordingly equal to the rank of a matrix whose column are composed of the coordinates of the vectors $A F_{1}, A e_{2}, \cdots, A e_{n} i_{0} e_{0}$, to the rank of a matrix corresponding to the transformation.

Since the dimension of a subspace does not depend upon the selection of the basis, it follows from the foregoing that the ranks of similar matrices are equal.
b. The latent vectors of a Iinear transformation. By a latent vector (characteristic vector, proper vector or eigenvector) of a linear transfor mation A is meant any non-zero vector X such that

$$
\begin{equation*}
\underset{\sim}{A X}=\lambda X, \tag{6}
\end{equation*}
$$

where λ is ary complex number.
The number λ is called the Iatent root (characteristic value, proper value, or eigenvalue) of the transformation. The spectrum of the transformation is the aggregate of its latent roots.

The Latent roots and Latent rectors of the transformation may be determined in the following manner. Let the transformation A be connected with the matrix $A=\left(a_{i k}\right)$ with respect to some basis; Let the coordinates of the latent vector X, with respect to this basis, be x_{1}, \ldots, x_{n}.

The coordinates of the rector AX will then be:

$$
\left(\begin{array}{c}
\sum_{k=1}^{2} \tag{ba}\\
k_{1 k} k
\end{array}, \cdots, \sum_{k=1}^{\pi} a_{n k} a_{k}^{x}\right),
$$

and thus for the determination of $x_{1}, x_{2}, \cdots, x_{n}$ and the latent root λ we will have the system of equations:

$$
\left\{\begin{array}{l}
a_{n 1} x_{1}+a_{12} x_{2}+\cdots+a_{1 n} x_{n}=\lambda_{1} x_{1} \tag{7}\\
a_{21} x_{1}+a_{22} x_{2}+\cdots+a_{2 n} x_{n}=\lambda_{x_{2}} \\
0 \cdot 0 \cdot 0 \\
a_{n 1} x_{1}+a_{n 2} x_{2}+\cdots+a_{n n} x_{n}=\lambda_{x_{n}}
\end{array}\right.
$$

or

$$
\left\{\begin{array}{l}
\left(a_{11}-\lambda\right) x_{1}+a_{12} x_{2}+\cdots+a_{1 n} x_{n 1}=0 \tag{3}\\
a_{21} x_{1}+\left(a_{22}-\lambda\right) x_{2}+\cdots+a_{2 n} x_{n}=0 \\
0 \cdot 0 \cdot 0 \\
a_{n 1} x_{1}+a_{n 2} z_{2}+\cdots+\left(a_{n 1}-\lambda\right) x_{n}=0
\end{array}\right.
$$

This system of homogeneous equations in $x_{1}, \ldots, \mathbb{X}_{n}$ will have a nonzero solution only in case
 the following is valid:

THEOREM. The lajent soots of a transformation coincide with the roots of the characteristie pol nomial of the matrix that is comected with this transformation with respect to an arbitrary basis.

From the theorem often called the fundanental theorem of nigher algebra, we know that every polynomial has at least one roo:。 A linear transfomation alil ionsequently have at least one Latent root, which may be complex even though the matrix of the transformation be real. In view of the theory of innear homogeneous systems of equations, triere will be a non-zero solution of system (\%) for earh latent, root, i.e.s with each latent root at Ieast, one latent vector is associated

Obviously if X is a latent vector of the transformation A, then, for all c F_{O}, dX will also be a latent vector of transformation A corresponding to the same Latent root. Furthermore if several Ietent vectors correspond to some one latent Leot, then axy linear comionation of then will be a Zatent vectur of the transformation associated with the same root. The set of latent vectox's corresponding to a single latent root forms a linear
sinspace. We shail establish that its dimension, fy, does not exceed the multiplicity of the latent roet. Indeed, let X_{1}, \ldots, X_{χ} be linearly independent latent vectors corresponding to the single Iatent root λ_{I}. Construct a basis of the gace $X_{1}, \cdots 0, X_{n s}$, baving taken as the first \mathbb{Z} vectors the vectors $X_{q}, \cdots, X_{y^{\prime}}$. With respect to this basis the Iinear transformation under consideration is connected with a matrix whose first \neq colums have the form

(7.b)

0
for $A X_{1}=A_{1} X_{1}, \cdots, A X_{1}=A_{1} X_{X} \cdot \operatorname{Now}\left(A-\lambda_{1}\right)^{Z}$ is a factor of the characteristio polynomial of this matrix, and accordingly λ_{1} is of multiplicity k not less than $F_{\text {, }}$ i。e., X K。 It would naturally be supposed that $\mathcal{A}=k_{,} i_{0} e_{0}$, that to a k-multiple root of the characteristic polynomial there correspond k linearly independent latent vectors. But this is in fact not true. In reality, the number of lineariy independent vectors may be less thar the multiplicity of the latent root.

Let us confim the preceding statement with an example. Ccnsider the Innear transformation with the matrix
(76)

$$
A=\left(\begin{array}{ll}
3 & 1 \\
0 & 3
\end{array}\right)
$$

Then $|A-X|=(X-3)^{2}$, and thus $X=3$ is a double root of the characteristis rulynomial.

The systen of equarions for determining the coordinates of the latent vertor of the transformation A will be:

$$
\begin{aligned}
3 x_{1}+x_{2} & =3 x_{1} \\
3 x_{2} & =3 x_{2}
\end{aligned}
$$

whence $x_{2}=0$, and thus aill the latent roots of the transformation in question will $b \in\left(x_{1}, 0\right)=x_{1}(1,0)$. So in this instance only one linearly independent vectior is associated with a double rout.

Gencrally speaking, the coordinates of a latent vector on the chosen basis are to be determined from the system (7) of Iinear equations, in which for λ the latent root λ_{i} is substitated. But as is known from the theory of systems of linear equations, the number of linearly independent solutions of a homogeneous systern equals $n \sim r$, where r is the rank of the matrix composed of the coefficients of the system. Therefore if x denote the rank of the matrix $A \sim \lambda_{I}, Y_{n}=n-r$. Thus $n-r \leqslant k$, and the equality does not always hold.

In case the basis does not change in the course of the argument, we shall often identify the Iinear transformation with the matrix of the

Iinear transtomation ath respect to this basis, and any vector space with the columins of its coordinates.

On this agreement. it makes sense to spea"x fa latent vector of a matrix, understanding by this a column x satistying the condition
$(7: \epsilon) \quad$ AST $=\lambda \mathbb{X}$ 。

We lemark that if a latert root of a real matrix is complex, the cow ordinates ol an associated latent vector will be complex. A vector whose coordinates are the complar-conjugates of those of a given latent vector of a real matrix is also a latent vector of that matrix, and is associated With the complex-con 2ugate atent root. To convince oneself of this, it is enough to change all mumbers in the equation $A x=$ A x into their complex conjugates.
\%. Properties of the latent roots and vevtors of a matrix. We shall estabins several properties of the Latent roots and vectors of a real matrix。

First of all we note that a matrix and its transpose have identical characteristic polytiomials and consequentioy identical spectra. This is evident since $\left|A^{T}-|I|=|A-X I|\right.$, on the strength of the fact that a deteminant is not altered when its rows and colums are interchangea. Now let "A and do denute distinct latent roots of the real matrix A, and λ_{s} the complex conjuğate of λ_{g}. As we saw above, λ_{g} is also a latent root of natrox As and thus also of the transposed matrix A^{\prime}. Let
 ard X_{S} the Latent vectors of the matrix A belung.ng to the latent rout λ. We shall show that X_{2} and X_{g} "are artheg.rai.。
 and reckon it by two methods.

By one method the reckoning is

$$
\begin{equation*}
\left(A X_{2}, X_{S}^{1}\right)=\left(A X_{X}, X_{S}^{1}\right)=\lambda_{2}\left(X_{X}, X_{S}^{0}\right) \tag{79}
\end{equation*}
$$

On the other hand, since matrix A is real. We have $A^{*}=A^{\circ}$, and therefore

$$
\left(A X_{p}, X_{s}^{8}\right)=\left(X_{r}, A^{\prime} X_{s}^{y}\right)=\left(X_{r^{3}} \lambda_{B} X_{s}^{1}\right)=\lambda_{s}\left(X_{r}, X_{s}^{1}\right)
$$

Thus $\lambda_{1},\left(X_{r}, X_{5}^{2}\right)=A_{S}\left(X_{n}, X_{S}\right)$. But ire condition was that $\lambda_{n} \neq \lambda_{s}$, and

In case all latent roots are divining, the demonstrated property gives z - areletions of orthogonality between the latent vectors of matrices A and A^{r}. We shall later retum to these properties in more detail.

For a real symmetric matrix, the properties of orthogonality are considerably simplified thanks to the fact that all its latent roots are real. In proof, Letting A and Z Be respectively latent root and vector, we have $(A X, X)=\lambda(X, X) ;(A X, X)=\left(X, A^{T} X\right)=(X, A X)=(X, \lambda X)=\bar{X}(X, X)$. Thus $(\lambda-\lambda)(X, X)=0$, and as $(X, X) \geqslant 0, \lambda=\bar{\lambda}, i . e, \lambda$ is real.

From the reality of the latent roots of a real symmetric matrix it fol lows that vectors with real components ray be taken as the latent rectors
belonging to those roots; the components will indeed be found by solving the Iinear homogeneous system with real coefficients.

The orthogonality property of the latent vectors of a real symmetric matrix is very simply formulated in view of the coincidence of the matrix with its transpose and the reality of the latent roots, viz: Iatent vectors belonging to distinct latent roots are orthogonal.
8. The latent roots of a positive definite quadratic form. A homom geneous polynomial of the second degree in several variables x_{1}, \ldots, x_{n} is called a quadratic form. We shall consider only those with real coefficients. Ary quadratic form may be written as
(7'h) $\quad \Phi\left(x_{1}, x_{2}, \cdots, x_{n}\right)=\sum_{i, k=1}^{n} a_{i k} x_{i} x_{k}$, where ${ }^{I} a_{i k}$ es $a_{k i}$ 。

A quadratic form is said to be positive definite if its values are positive for any real values of x_{1}, \cdots, x_{n} not all zero。

It is evident that the diagonal coefficients of a positive definite form are positive, for
($7^{\circ} \mathrm{i}$)

$$
a_{11}=\Phi(1,0, \cdots, 0), \quad a_{22}=\Phi(0,1, \cdots, 0), \cdots
$$

$$
a_{n n}=\Phi(0,0, \cdots, I) .
$$

Denoting by X the vector with components (x_{1}, \cdots, x_{n}), we may write a quadratic form as $(B X, X)$, A being the matrix composed of the coefficients

$$
I_{\text {See, }} \text { e.g., }[1], \$ 10.5 \mathrm{fr} \text {. }
$$

of the form. This matrix is symmetric, on the strength of the definition. The latent roots of the matrix are called the latent roots of the quadratic form. In view of the previous resvits, all latent roots of a quadratic form are real.

We shall show that if a quadratic form is positive definite, its latent roots are positive.

In demonstration, let X be a real latent vector, belonging to λ, a latent root of the matrix of the form. Then, since the form is positive definite, $(A X, X)>0$. On the other hand, $(A X, X)=\lambda(X, X)$. Thus

$$
\begin{equation*}
\lambda=\frac{(A X, X)}{(X, X)} \tag{79}
\end{equation*}
$$

But both numerator and denominator of this fraction are positive, and consequently $\lambda>0$, which is what was required to be proved.

Let there now be given ary real, non-singular matrix A. Obviously $B=A^{\prime} A$ is a symmetric matrix, since $B^{\prime}=\left(A^{3} A\right)^{B}=A^{3} A^{\prime \prime}=A^{\prime} A=B$ 。

We shall show that a quadratic form with matrix B is positive definite. We have, indeed,
$\left(77^{8} 9\right)$ $(B X, X)=\left(A^{\prime} A X, X\right)=(A X, A X)>0$
for any real vector X 。
We shall establish, lastly, that if A is the matrix of a positive definite quadratic form, $(A X, X)>0$ even for a complex vector X.

In proof, let $X=I+i Z$, where Y and Z are vectors with real components. Thes

$$
(A X, X)=(A Y+i A Z, Y+i Z)=
$$

$$
\begin{gather*}
=(A Y, Y)+i(A Z, Y)-i(A Y, Z)+(A Z, Z)= \tag{711}\\
=(A Y, Y)+(A Z, Z)>0
\end{gather*}
$$

because $(\AA Z, Y)=(Z, A Y)-(A Y, Z)$.
In complex space, instead of the quadratic form one deals with an Hermitian form, an expression of the type
(78 m)

$$
\sum_{i, k=1}^{r_{3}} a_{i k} x_{i} \bar{x}_{k},
$$

under the condition that $a_{k i}=\tilde{a}_{i k}$.
The matrix of an Hermitian form is called Hermitian (or Hermitian symnetrice); a linear transformation with an Hermitian matrix relative to an orthnormal base is called selfoconjugate. It is obvious that

$$
\Sigma a_{i k} x_{i} 氵_{K}=(A X, X) .
$$

To show that all the values of and Hermitian form are real, we have only to note that

$$
\begin{equation*}
(A X, X)=\left(X, A^{*} X\right)=(\overline{A X}, \bar{X}) \tag{710}
\end{equation*}
$$

If all the values of an Hermitian form are positive, it is called positive definite.

It can be show that the latent roots of an Hermitian matrix are real. The latent roots of a positive definite Hermitian form are positive.
${ }^{1}$ See, e.f., $[1], \$ 30.9$
9. The reduction of a matrix to diagonal form. Let us consider the matrix A $2 l l$ of whose latent roots, $\lambda_{2}, \cdots, \lambda_{12}$, are distinct, and the transformation A connected with it within respect to the initial basis. It Will have n distinct latent vectors $X_{1}, \cdots, \mathbb{X}_{n}$ 。 We shall show that the Vectors X_{1}, \cdots, X_{n} are e Linearly independent.

Assume the contrary: let the vectors X_{1}, \cdots, X_{n} be linearly deer, dent. Without detriment to the generality we may assume that the vectors x_{L}, \cdots, x_{k}, where $h<n$, are linearly independent, and thus that the vectors X_{k+1}, \cdots, X_{n} are linear combinations of them. In particular, Let

$$
X_{n}=\sum_{i=1}^{k} c_{i} X_{i} ;
$$

then
(32)

$$
A X_{n}=A \sum_{i=1}^{k} c_{i} X_{i}=\sum_{i=1}^{K} \lambda_{i} C_{i} X_{i} .
$$

On the other hand,

$$
\begin{equation*}
A_{n}=\lambda_{n} X_{n}=\sum_{i=1}^{x} \lambda_{n} e_{i} X_{i}, \tag{Bb}
\end{equation*}
$$

where e

$$
\begin{equation*}
\sum_{i=1}^{k}\left(\lambda_{2}-\lambda_{1}\right) c_{i} X_{1}=0 . \tag{9}
\end{equation*}
$$

But $\lambda_{n} f \lambda_{2}$, on assumption. Thus, since the rectors X_{ρ} are linearity in dependent, all the coefficients c_{i} equal zero, and therefore $X_{n}=0$,
which contradicts the definition of a latent vector. So the vectors $X_{1}, X_{2}, \cdots, X_{n}$ are linearly independent。 Let us adopt them as a new basis of the space. With respect to the new basis the linear transformation A will be connected with a matrix whose columns are composed of the coordinates of the vectors $A X_{1}, A X_{2}, \cdots, A X_{n}$ with respect to the basis $X_{1}, X_{2}, \cdots, X_{n}$.

But

$$
\begin{equation*}
A X_{K}=\lambda_{K} X_{K}, \tag{9a}
\end{equation*}
$$

and the matrox of the transformation of the new basis will consequently be diagonal: $\left[\bar{\lambda}_{2}, \lambda_{2}, \cdots, \lambda_{n \mid}\right.$.

So the Iinear transformation A has, with respect to the initial basis, the matrix A, and with respect to the basis of the latent vectors, the diagonal matrix $\left[\lambda_{1}, \lambda_{2}, \cdots \lambda_{n} \mid\right.$. Accordingly, on the strength of what has been noted above,

$$
\begin{equation*}
V^{-1} A V=\left[\lambda_{1}, \lambda_{2}, \cdots, \lambda_{n}\right], \tag{10}
\end{equation*}
$$

where V is the matrix whose columns are the coordinates (with respect to the initial basis) of the latent vectors.

Observation. If the latent roots of a matrix are of multiplicity greater than one, but to each latent root there correspond as many latent vectors as it has multiplicity, the matrix may also be reduced to diagonal form. This will be the case, for example, with symmetric matrices: it can be proved that to each latent root of a symmetric matrix there
correspond as many linearly independent Iatent veotors as the multiplicity of the latent root. Moreover, the Inearly independent latent vectors be longing to a single latent root may be subjected to the orthogonalizing process. We have seen, too, that the latent vectors of a symnetric matrix that belong to distinct latent roots are mutually orthogonal. Thus for a symmetric matrix it is possible to construct an orthogonal system of latent. vectors forming a basis for the whole space.

The question of the transformation of a symmetric matrix to diagonal form is closely connected with the theory of quadratic forms.
10. The Iatent roots and latent vectors of similar matrices. It has been established that similar matrices have identical characteristic polynomials, and consequentiy identical spectra of latent roots.

We have explained the geometrical cause of this circunstance, vito: simianar matrices may be regarded as matrices of one and the same transformation, referred to different bases. Therefore the latent vectors of similar matrices are colums of the coordinates of the latent vectors of the transformation under consideration, with respect to different bases, and are thus connected by the relation $x^{2}=C^{-I_{x}}$. C being the matrix of transform mation of coordinates. Tris circumstance may be verified formally: if $A X=A_{X},\left(C^{-I_{A C}}\right)\left(C^{-1} X\right)=A\left(C^{-1_{X}}\right)$.
11. The latent roots of a polynomial in a natrix. Let A be a matrix with latent roots $\lambda_{2}, \cdots 0, \lambda_{n}$, and $\operatorname{let} P(x)=2_{0}+a_{1} x+\ldots+a_{m} x^{m}$ be the given polynomaia. Then the latent roots of the matrix will be $f\left(\lambda_{2}\right), \varphi\left(\lambda_{2}\right), \cdots, \varphi\left(\lambda_{2}\right)$.

This is readily established for a matrix all of whose latent rots are distinct. Indeed, such a matrix can be reduced to diagonal form by a similaxity transformation:
(10.a)

$$
A=0^{-1} \Gamma_{1}, \lambda_{2}, \cdots, \lambda_{n} J^{0} .
$$

sccordingity,
(10.3)

$$
q(A)=0^{-1} p \lambda_{I}, \lambda_{2}, \cdots, \lambda_{n J} c
$$

But
(10.e) $\left.\varphi\left(\Gamma_{1}, \cdots, \lambda_{n}\right)=\Gamma \varphi\left(\lambda_{1}\right), \varphi\left(\lambda_{2}\right), \cdots, \varphi\left(\lambda_{n}\right)\right]$,

Which follows from the fact that
(10. 2)

$$
\left.\Gamma \lambda_{1}, \cdots, \lambda_{n}\right]^{k}=\Gamma \frac{k}{1}, \cdots, \lambda_{n j}^{k} .
$$

Consequently
(10.e)

$$
q\left(\Gamma_{\lambda_{1}}, \cdots, \lambda_{n}\right)=\sum_{k=0}^{m} a_{k} \Gamma_{\lambda}^{k}, \cdots, \lambda_{n j}^{k}=
$$

$$
=\sum_{k=0}^{m} z_{k} \lambda_{1}^{k}, \cdots, \sum_{k=0}^{m} \partial_{k} \lambda_{n}^{k}=\Gamma_{n}\left(\lambda_{1}\right), \varphi\left(\lambda_{2}\right), \cdots, \varphi\left(\lambda_{n}\right)
$$

Thus the matrix $\varphi(A)$ is similar to the matrix $\left.\Gamma q\left(\lambda_{1}\right), \cdots, \varphi\left(\lambda_{n}\right)\right]$ and accordingly its latent roots are $\varphi\left(\lambda_{1}\right), \varphi\left(\lambda_{2}\right), \cdots, \varphi\left(\lambda_{n}\right)$, Q.E.D..

This result remains true for any matrix, of which one may readily convince oneself s for example, by considerations of continuity.

We particularly note that the latent roots of the matrix A^{k} are X^{k}.
12. The normalization of the latent vectors of a matrix. The second group of orthogonality relations. Let A be a real matrix whose latent roots, $\lambda_{1}, \lambda_{2}, \cdots, \lambda_{n}$, are distinct, and let $X_{1}, X_{2}, \cdots, X_{n}$ be the latent vectors corresponding to them. As we saw, the transposed matrix, A^{r}, has the same latent roots. Let $X_{1}^{9}, X_{2}^{2}, \cdots, X_{13}^{8}$ be the latent vectors of the inatrix A ', and their enumeration be so chosen that X_{i} and X_{i}^{i} belong to complex conjugate roots. We established above that the following orthogonailty relation holds: $\left(X_{i}^{q}, X_{j}\right)=0$ for $i \neq j$. We shall show now that, having chosen $X_{1}^{8}, X_{2}^{9}, \cdots, X_{n}^{9}$ in any manner (they are determined but for a numerical multiplier), we may nom the vectors X_{1}, \cdots, X_{n} so that. $\left(X_{i}^{\ell}, X_{i}\right)=1 。$

In demonstration of this, the vectors $X_{1}, X_{2}, \cdots, X_{n}$ are known to be linearly independent, and they accordingly form a basis of the space. Resolve $X_{i}^{\text {i }}$ in terms of this basis:
(20.5)

$$
X_{X_{1}}^{?}=\gamma_{1} X_{1}+\gamma_{2}^{X_{2}}+\cdots+\gamma_{n} X_{n} .
$$

Forming the scalar product $\left(X_{1}^{\prime}, X_{i}^{3}\right)$, we obtain

$$
\left(X_{i}^{\prime}, X_{i}^{p}\right)=
$$

(70.g)

$$
\gamma_{1}\left(X_{i}^{8}, X_{1}\right)+\cdots+\gamma_{i}\left(X_{i}^{8}, X_{i}\right)+\cdots+\gamma_{n}\left(X_{i}^{q}, X_{n}\right)-\gamma_{i}\left(X_{i}^{8}, X_{i}\right)
$$

whence we conclude that, $\left(X_{i}^{\prime}, X_{i}\right)=\alpha_{i} \neq 0$, for $\left(X_{i}^{\prime}, X_{i}^{\prime}\right)>0$.
Adopting instead of the vectors X_{1}, \cdots, X_{n} the vectors $\frac{I}{\alpha_{1}} X_{1}, \cdots, \frac{1}{\alpha_{n}} X_{n}$, we arrive at the required normalization, since (10 .in)

$$
\left(x_{i}^{\prime}, \frac{1}{\alpha_{i}} x_{i}\right)=\frac{1}{x_{i}}\left(x_{i}^{\prime}, x_{i}\right)=1 .
$$

From the relations of orthogonality and normality set forth above, we may extract another group of relations between the components of the latent vectors of the matrix A and its transpose.

Form the matrices
(10.i)

$$
X^{3}=\left(\begin{array}{cccc}
x_{11}^{\prime} & x_{21}^{\prime} & \cdots & x_{n 1}^{\prime} \\
x_{12}^{\prime} & x_{22}^{\prime} & \cdots & x_{n 2}^{\prime} \\
0 & 0 & 0 & 0 \\
x_{11}^{\prime} & x_{2 n}^{\prime} & \cdots & x_{n n}^{\prime}
\end{array}\right) \text { and } X=\left(\begin{array}{cccc}
x_{11} & x_{12} & \cdots & x_{1 n} \\
x_{21} & x_{22} & \cdots & x_{2 n} \\
0 & 0 & 0 & \cdots \\
x_{n 1} & x_{n 2} & \cdots & x_{n n}
\end{array}\right)
$$

The columns of the matrix X are composed of the components of the vectors X_{1}, \cdots, X_{n}. The rows of the matrix X ' are composed of the numbers complexconjugate with the components of the vectors $X_{I}^{1}, \cdots, X_{n}^{1}$. (We observe that the numbers that are the compl ex conjugates of the components of the vectors $X_{I}^{1}, \cdots, X_{n}^{1}$ are the components of the vectors $\overline{X_{1}^{p}}, \cdots, \overline{X_{M}^{p}}$, and will also be the latent vectors of the matrix A^{3} that belong to the latent roots $\lambda_{1}, \cdots, \lambda_{n}$. Thus the $1-$ th row of the matrix X^{\prime} and the $i=t h$ column of the matrix X are composed of the components of the latent vectors
of the matrix A^{\prime} and A belonging to the same latent root λ_{i}, and not to latent rocts that are complex conjugates of each other.)

It iss readily seen that:

$$
\begin{equation*}
\bar{X} \cdot X=I, \tag{11}
\end{equation*}
$$

for we have the element of the i-th row and joth column of the matrix $X: X$ equalling $\sum_{k=1}^{n} X_{k i}^{n} x_{k j}=\left(X_{j}, X_{j}^{q}\right)=\mathbb{S}_{i j,}$ where ${ }_{i j j}$ is Kronecker's delta: $\left(\begin{array}{lll}\delta_{i j}=\begin{array}{l}0, \\ 1, \\ 1, \\ i\end{array}=j\end{array}\right)$.

Thus X^{2} and X are mutualiy inverse matrices, and accordingly XX: is inkewise equal to I. This gives a second group of orthogonality and normality relations between the lateat vectors of the matrices A and A^{\prime}, viz.:
(12)

Thus for a matrix of the second order the ordinary conditions of orthogonality may be written in the form (we preserve only one index of the compom neats of the latent vectors, designating the first components by x, the second by y):
(12.2)

$$
\begin{aligned}
& x_{2} x_{2}^{\prime}+y_{1} y_{2}^{3}=0 \\
& x_{2} x_{1}^{\prime}+y_{2} y_{1}^{3}=0
\end{aligned}
$$

and the normaintoy conditions:
(12.b)

$$
\begin{aligned}
& x_{1}^{2} x_{1}+y_{2}^{2} y_{2}=1 \\
& x_{2}^{\prime} x_{2}-y_{2}^{\prime} y_{2}=1
\end{aligned}
$$

The new relations will be

$$
\begin{align*}
& x_{1} y_{1}^{p}+x_{2} y_{2}^{9}=0 x_{1} x_{1}^{0}+x_{2} x_{2}^{4}=1 \\
& y_{1} x_{1}^{p}+y_{2} x_{2}^{0}=0 y_{1} y_{1}^{\prime}+y_{2} y_{2}^{\prime}=1 \tag{12.c}
\end{align*}
$$

Observation. In case the latent roots of the matrix are multiple, and to each latent root there correspond as many Iinearly independent latent vectors as the multiplicity of the root, these indicated properties of the latent vectors hold as before.
§4. THE JORDAN CANONICAL FORM

We have proved above that if a matrix has in distinct latent roots, it may be brought into diagonal foxm by a similarity transformation Given the presence of multiple loots, howewer, such a transformation may not always be possible. Nonetheless the question whether the form may possibly be rendered more simple via a similarity transformation can well be put. The problern is equivalent to discovering a basis with respect to whick the linear transformation connected with the given matrix. would have a matrix of simplest form, and the latter proves to be the Jordan canonical form.

Proof af a fundamental theorem to the effect that any matrix may be brought into the dordan canomical form by a similarity frantormation is
rather complicated ard re will not dwell on it here. The gist of it is stated, for instance, in $\{2\}$, $\$ 3.16$; a scholarly presentation is availab?e in, engos [3], Chap。V-VI。Vs shall limit ourselves to a description of this canonical form.

A matrix-most commonly a subnatrix of the following form is called a canonical box:
(1)

$$
\left(\begin{array}{cccccc}
\lambda_{1} & 0 & 0 & \cdots & 0 & 0 \\
1 & \lambda_{i} & 0 & \cdots & 0 & 0 \\
0 & 1 & \lambda_{i} & \cdots & 0 & 0 \\
\cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\
0 & 0 & 0 & \cdots & 1 & \lambda_{i}
\end{array}\right) \cdot
$$

On j.ts principal diagonal the single number A_{i} is everywhere to be found; directily under the diagonal (in the subdiagonai) are disposed elements that are all units; all the rest of the elements are zero.

A canonical box cannot be simplified by utilizing a similarity transformation. It is obvious that a canonical bor has the sole multiple latent root $\lambda_{\text {i. }}$. It may be easily verified that a canonical box has only one Iatent vector. The mininum polynomial of a box coincides with its characw teristic polynomial, viz., it equals $\left(\lambda-\lambda_{i}\right)^{m_{i}}$ where m_{i} is the order of the box. The Jordan (classical) canonical form is a quasi-diagonal matrix composed of canonical bckes:
(2)

It is admissible that the same number λ_{i} appear in several canonical bozes. All the numbers λ_{i} appearing in the different, boxes are latent roots of the canonical matrix, and the multiplicity of the latent roots equals the sum of the orders of the boxes in which it figures as diagonal element. In proof of this, by the theorem concerning the determinant of a quasi-cizagona matrix, the characteristic polynomial of the canonical matrix equals the product of the characteristic polynomials of the separate boxes, each of them equal to $\left(\lambda-\lambda_{i}\right)^{m_{i}}$, where λ_{i} is the latent root and m_{i} is the order of the i-th box. Hence follows directily the statement under proof.

The determination of the Jordan boxes for a given matrix A presents certain difficulties. The characteristic polynomiai $T\left(\lambda-\lambda_{i}\right)^{m_{i}}$ coincides with the characteristic polynomial of the original matrix, and

it is consequently possible to find it without knowing the canonical matrix itself: Nonetheless, a knowledge of the characteristic polynomial still does not make possible the complete determination of the canonical form, for to a latent root λ_{i} of multiplicity k, there may correspond several Jordan boxes containing this number as a diagonal element, and regarding then only the sum of their orders will be know, not the order of each box in particum lar. If the canonical form is to be fully determined, a knowledge of the "elementary divisors" of the matrix must be drawn upon.

Designate by $D_{i}(\lambda)$ the greatest, common divisor of all the minors of the i-th order of the determinant $|A \sim \lambda I|$. In particular, $D_{n}(\lambda)$ com incides with the characteristic polynomial. It can be proved that all $D_{i}(\lambda)$, as $D_{n}(\lambda)$, are general for the class of similar matrices. It can be proved, moreover, that $D_{i-1}(\lambda)$ divides $I_{i}(\lambda) 0^{1}$

Put
(3)

$$
\frac{D_{i}(\lambda)}{D_{i-m}(\lambda)}=E_{i}(\lambda)
$$

obviously
(4)

$$
D_{n}(\lambda)=\prod_{i=1}^{n} E_{2}(\lambda)
$$

It turns out, moreover, that $E_{n}(\lambda) \equiv \frac{D_{n}(\lambda)}{D_{n-1}(\lambda)}$ is the minimum polynomial of the matrix.

Resolve $\mathrm{E}_{\mathrm{i}}(\lambda)$ into linear factors. Then

$$
I_{\text {See }}[3], p .23 \mathrm{fi}_{0}[5] 50 \mathrm{fI}
$$

$$
E_{i}(\lambda)=\prod_{j=1}^{j}\left(\lambda_{j}-\lambda\right)^{m_{i j}},
$$

Here s denotes the number of distinct latent roots, $\sum_{i=1}^{n} m_{i, j}=k_{j} j$ $\underset{j=1}{\sum} \sum_{i=1} m_{i j}=n_{0}$. It is obvious that among the exponents $m_{i j}$ only some will different from zero.

Translators Note. It may be helpful to the student to have in extenso a synopsis of the relations of these important entities:
$\frac{D_{n}(\lambda)}{D_{n-1}(\lambda)}=E_{n}(\lambda) ;\left\{\begin{array}{l}D_{i} \text { is the (isth) determinantal divisor of } D_{n} j \\ E_{i} \text { is the (i-th) invariant factor of } D_{n} \text { 。 }\end{array}\right.$
Thus

$$
D_{n}(\lambda)=I_{n-1}(\lambda) \cdot E_{n}(\lambda),
$$

and, in sequence,

$$
\begin{aligned}
& D_{n-1}(\lambda)=D_{r-2}(\lambda) \cdot E_{n-1}(\lambda), \\
& 0 \cdot \cdot \\
& D_{3}(\lambda)=D_{2}(\lambda) \cdot E_{3}(\lambda), \\
& D_{2}(\lambda)=D_{1}(\lambda) \cdot E_{2}(\lambda), \\
& D_{1}(\lambda)=E_{1}(\lambda) \quad
\end{aligned}
$$

Reversing our view of the development:

$$
\begin{aligned}
& D_{2}(\lambda)=E_{1}(\lambda), \\
& D_{2}(\lambda)=D_{1}(\lambda) \cdot \mathbb{B}_{2}(\lambda)=E_{1}(\lambda) \cdot E_{2}(\lambda), \\
& D_{3}(\lambda)=D_{2}(\lambda) \cdot E_{3}(\lambda)=E_{1}(\lambda) \cdot E_{2}(\lambda) \cdot E_{3}(\lambda)=\prod_{i=1}^{3} E_{i}(\lambda),
\end{aligned}
$$

(6) $D_{n}(\lambda)=D_{n-1}(\lambda) \cdot E_{n}(\lambda)=E_{1}(\lambda) \cdot \cdots \cdot E_{n}(\lambda)=\prod_{i=1}^{n} E_{i}(\lambda)$.

Consider now that each E_{i} is factorable into linear factors holding the s distinct latent roots λ_{j}. These factors may be multiple, or may not appear in the given E_{i} (multiplicity $=0$):

$$
E_{i}(\lambda)=\left(\lambda-\lambda_{1}\right)^{\frac{m_{i 1}}{i l}} \cdot\left(\lambda-\lambda_{2}\right)^{m_{i 2}} \cdot \cdots \cdot\left(\lambda-\lambda_{s}\right)^{m_{i s}}=
$$

$$
\begin{equation*}
=\prod_{j=1}^{s}\left(\lambda-\lambda_{j}\right)^{m_{i j}} \tag{7}
\end{equation*}
$$

Fere $m_{i j}$ is the power (perhaps zero) of the goth distinct linear factor of E_{i}; there are s of such powered prime factors, each of which later is called on elementary divisor of $D_{n i}(\lambda)$, since, using (7) in (6), we have

$$
D_{n}(\lambda)=\prod_{i=1}^{n} E_{i}(\lambda)=\prod_{i=1}^{n} \prod_{j=1}^{s}\left(\lambda-\lambda_{j}\right)^{m_{i j}} .
$$

Since there are n latent roots of $D_{n}(\lambda)$, some perhaps multiple, $\sum_{i=1}^{n} \sum_{j=1}^{S} m_{i j}=n$.

Since the linear factor for the j-th latent root, $\left(\lambda-\lambda_{j}\right)$, may appear in more than one $\mathbb{E}_{1}-a^{-a}$ total of k_{j} times, in fact, we have $\sum_{i=1}^{n} n_{i, j}=k_{j}$ o

It is usual, on behalf of greater generality, not to limit one's concern to $D_{n}(\lambda)=|A-\lambda I|$, but to conceive $D_{n}(\lambda)$ as a. matrix all of whose elements are polynonials-of whatsoever degreewith coefficients in some specified field, rather than, as here, a matrix whose diagonal elements only are polynomiais, and those of the first degree. The above treatment, othervise unaltered, then has as its subject such a generalized $D_{n}(\lambda)$, a "Iambda matrix", as it has come to be spoken of 。

The binomials $\left(\lambda-\lambda_{g}\right)^{m_{i j}}$ are known as the elementary divisors of $|A-\lambda I|$, and, by extension, as those of the matrix A. A knowledge of the eiementary divisors permits us to construct the canonical form, vizo: the Jordan boxes are constructed by starting from the number λ_{j}, and the orders of these boxes are equal to the exponents m. . The number of boxes contan ing λ_{j} equals the number of exponents $m_{j, j}$ not equal to zero.

In case the elementary divisors are Iinear, i.e., if all the non-zero exponents $m_{i j}$ are equal to one, the jordan boxes degenerafe into diagonal elements, and the canonical form turns out to be simply a diagonal form, wherein, of course, a single latent root will appear as of ten as a diagonal element as it has multiplicity as a root of the characteristic equation。

The converse is also obvious, for it is clear that if a matrix can be brought to diagonal form, its elementary divisors are linear. Therem fore matrices with distinct latent roots, as also symmetric matrices, have linear elementary divisoprs.

If all the elementary divisors $\left(\lambda-\lambda_{j}\right)^{m_{0 j}}$ are relatively prime (which occurs oniy in case $D_{n-1}(\lambda)=1$), each latent root appears in only one canonical box, and the order of the bcx equals the multiplicity of the corresponding latent root. Only in this case does the minimum polynomial. coincide with the characteristio polynomial.

Let us now consider the matrix transforming the given matrix into canonical form. With this object in view we introduce into the discussion a. Iinear transformation connected with the matrix A with respect to the initial basis. Then the coiums of the transforming matrix will be components of the vectors of that basis in which the linear transformation in question is described as a canonical matrix.

Let this canonical matrix have the form
(B)
where
(9)

$$
A_{r}=\left(\begin{array}{cccc}
\lambda_{r} & 0 & \cdots & 0 \\
1 & \lambda_{r} & \cdots & 0 \\
\cdot & \cdot & \cdot & \cdot \\
0 & 0 & & \lambda_{r}
\end{array}\right)
$$

(10)

$$
{ }_{-1}^{\eta}=\lambda_{3-1}^{0}+{ }_{3}^{0}(1)
$$

Let a serumbe of ruetem $\mathbb{X}^{(1)} \cdot \min ^{(2)}, \ldots, X^{(1)}, \ldots$ with componerus

 secuence, in inate Incon Gisto

 1. \rightarrow ?
 If a sevi=s a fretons Wht all the semes cmpesed of thein comesponding componen's, inao bombon'r bearirg the sans indices, converge; the suma of these zefes ane the 30 ponents of the sum of the serfos of vectors. The donemb of the ontangrwe of a sexies of metrioes is defyned araiogonsly. convergence ut a seruence 0 sories, but alsh to fudge the rapidity of

 most conar.

2) $|1| 120$ or if $\neq i$ m $1: 1 \mid=0$?

(I)

$$
|1--I|+||-1|-1|| |
$$

```
        Licieur,
```

(2)

$$
\||1|=\left|1-\cdots+w^{w}\right||\leq|1-\infty||+||\eta||
$$

mi boze ant
(3)

$$
\|-\cdots|\&| 1-1+1 \mid
$$

32
(4)

$$
||-\cdots-||=|H-A|||||-||| |
$$

Consequently

(5)

$$
\|X-Y| | \equiv| ||X||-\|Y\|| .
$$

We shall henceforth make use of the following three ways of assigning a norm: if $X=\left(x_{1}, x_{2}, \cdots x_{n}\right)$,
(6)

$$
\begin{cases}\text { Io } & ||x||_{I}=\frac{\max }{i}\left|x_{i}\right| \\ \text { IIo } & ||X||_{I I}=\left|x_{1}\right|+\left|x_{2}\right|+\cdots+\left|x_{n}\right| \\ \text { III: }||X||_{I I I}=\sqrt{\left|x_{1}\right|^{2}+\left|x_{2}\right|^{2}+\cdots+\left|x_{n}\right|^{2}}\end{cases}
$$

It is obrious that for all three norms all the requirements 1) - 3) are fulfilled.

The concept of the norm of a vector generalizes the concept of the length of a vector, since for length all the requirements 1) - 3) are fulfilled. The third norm introduced by us is indeed. none other than the length of the vector.

Furthermore, it is easily established that a necessary and sufficient condition that the sequence of vectors $X^{(k)}$ converge to the vector X is that $\left\|X^{(k)}-X\right\| \Rightarrow 0$ for each of the three norms indicated. For the first norm this is oovious. For the second and third norm this follows from the obvious inequalities
(7)

$$
\|x\|_{I} \leqslant\|x\|_{I I} \leqslant n\|x\|_{I}
$$

$$
\|x\|_{I} \leqslant\|x\|_{I I I} \leqslant \sqrt{n} \mid x \|_{I} \quad
$$

It is easily shown that for convergence of a sequence of vectors $X^{(k)}$ to a vector X it is necessary and sufficient that $\left\|X-X^{(k)}\right\| \rightarrow 0$, whatever norm satisfying conditions 1) - 3) we may choose. Here, if $X(k) \rightarrow X:\left\|X^{(k)}\right\| \rightarrow\|X\|$, for $\|\|X\|-\| X^{(k)}\|\leq\| X-X^{(k)} \| \rightarrow 0$.

In an analogous fashion, the norm of a square matrix A is a non-negative number A satisfying the conditions
(8)

$$
\{
$$

2) $\|\mathrm{A}\|>0$ if $\mathrm{A} \neq \mathrm{F} 0$ and $\|0\|=0$;
3) $\|\circ a\|=\|0\| \mid A \|$;
4) $\|A+B\| \leq\|A\|+\|B\|$;
5) $\|A B\| \leq\|A\|\|B\|$.

Just as in the case of the noms of vectors, the condition $\left\|A^{(k)}-A\right\| \rightarrow 0$ is necessary and sufficient in order that $A^{(k)} \rightarrow A$, and just as in the case of the norms of vectors, it follows irom $A^{(k)} \rightarrow A$ that $\left\|A^{(k)}\right\| \rightarrow\|A\|$. The nom of a matrix may be introduced in an infinite variety of ways. Because in the majority of probjens oomected with estimates both matroces and vectors appear simultaneously in the reasoning, it is expeditious to introduce the norm of a nataix in such a way that it will be rationally connected with the vector norms employed. in the argument in hand. We shall. say that the norm of a matrix. is compatible with a given norm of vectors if for any matrix A and ary vector X the following inequality is satisfied:

We will now indicate a device raking it possible to construct the matrix norm so as to render it compatible with a given vector norm, to wit: We shall adopt for the nom. of the matrix A the maximum of the norms of the vectors AX on the assumption that the vector X runs over o the set of all vectors whose nom equals unity:

$$
\begin{equation*}
\|A\|=\max _{\|x\|=1}^{\|A x\|} \tag{10}
\end{equation*}
$$

In consequence of the continuity of a norm, for each matrix A this maximan is attainable, $i_{0} e_{0}$, o vector X_{0} can be found such that $\left\|X_{0}\right\|=1$ and $\left\|A X_{0}\right\|=\|A\|$.

We shall prove that a norm constructed in such a manner satisfies requirements 1) - 4), set previously, and the compatioility condition.

Let us begin with the verification of the first requirement.
Let A f 0 . Then a vector $X,\|X\|=1$, can be found such that $A X \neq 0$, and accordingly $\|A X\| \neq 0$. Therefore $\|A\|=\frac{m g x}{\|X\|=1}\|A X\| \neq 0$. If, however, $A=0,\|A\|=\max _{\|X\|=2}^{| | 0 X \|=0 .}$

Second requirement. On the strength of the definition, $\|$ cA $\|=$ = max $\|C A X\|$ || Obviously $\|C A X\|=|O|\|A X\|$ and thus $\|C A\|=$ $=\max _{\|X\|=I}^{|c|\|A X\|=|c| \max \|A X| |=|c|\| A \| .}$

Let us verify, furthermore, the compatibility condition.
Let $\#$, be any vector; then $X=\frac{1}{\|Y\|}$ will satisfy the condition

Third requisemen, Tow wheratrix $A+B$ ifnd e vector X_{0} suen that $\|A+B\|=\left\|(A+B) x_{0}\right\|=\|\|=$,1 . Then $\|A+B\|=\left\|(A+B) X_{0}\right\|=$ $=\left\|A x_{0}+B X_{0}\right\|+\left\|E X_{0}\right\|+\left\|E X_{1}\right\|=\|A\|\left\|x_{0}\right\|+\|B\|\left\|x_{0}\right\|=$ $=\|A\|+\|B\|$.

We net゙e "eritided the …sis ion of all four sequirements and the compatibolity condition. . Matizx vom wnstrueted in this maner we shall speak of 3 saburainate to the fark nomm If vectors. It ís obvious that for any matrizx nom, subordingt: whetacter fector" norm, $\|I\|=1$.

Let us now construst matr ${ }^{2} x$ norms scibordinate to the troree noms of vectors introdueed abore.
(I2) $x_{0} \quad \quad\|x\|_{1}=\operatorname{mox} \quad\left|x_{9}\right|$.

The matrix nolm subordirate ti wis reotor inco is
(22)

$$
\|A\|_{j}=\max _{k=1}^{\sum_{j}}\left|a_{i E}\right|
$$

In $\mathrm{Frog0} \mathrm{\%}$, let $\|\mathrm{X}\|=$ I。 Then

$$
||A \mathcal{A}||=
$$

(13)

Consequently
(14)

$$
\max _{\|X\|=1}^{\max } \| \max _{i} \sum_{k=1}^{n}\left|\operatorname{sog}_{i n}\right| \text { 。 }
$$

We shall now prove that max $\|A x\|$ is in fact, equal to max $\sum_{i=1}^{n}\left|a_{i k}\right|$. For this we shall construct, a vector X_{0} such that $\left\|X_{0}\right\|=2$ and $\left\|A X_{0}\right\|=$ $=\max _{i} \sum_{k=1}^{n}\left|a_{i k}\right|$. Letting $\sum_{k=1}^{n}\left|a_{i k}\right|$ attain its greatest value for i $=j$, and then taking as the component $x_{k}^{(0)}$ of the vector $X_{0}^{i} x_{k}(0)=\frac{a_{j k} \mid}{a_{j k}}$, if
 more,
(25)

$$
\left|\begin{array}{c}
n \\
\sum_{k=1} a_{i k}(0)
\end{array}\right| \leq \sum_{k=1}^{n}\left|a_{i k}\right| \leq \sum_{k=1}^{n}\left|{ }_{j}{ }_{j k}\right| \quad \text { for } i \neq j
$$

and
(16)

$$
\left|\sum_{k=1}^{n} a_{j k} z_{k}(0)\right|=\sum_{i=1}^{n}\left|a_{j k i}\right|
$$

Consequently
$(27$

$$
\max _{i}\left|\sum_{k=1}^{n_{1}} \quad \therefore \quad \therefore \quad a_{0 k} \quad\right|=\sum_{k=1}^{n}\left|a_{j k}\right|=\max _{i} \sum_{k=1}^{n}\left|a_{i k}\right| .
$$

Thus $\left\|A X_{0}\right\|=\max _{i}^{\sum} \sum_{K=1}^{n}\left|a_{i n}\right|$ Q Q. ED.
(18) II.

$$
\|X\|_{I I}=\sum_{i=1}^{r_{3}}\left|x_{i}\right| .
$$

The matrix nom subordinate to this vector nom is
(19)

$$
\|\left. A\right|_{I K}=\left.\operatorname{riz}_{z} \sum_{i=\{ }^{n}\right|_{i k} \mid
$$

In proof thereof s let $\|X\|=I_{2}$ then
(20)

$$
\begin{aligned}
& ||A X||=\sum_{i=2}^{n}\left|\sum_{n=1}^{n} a_{i L^{2}}\right| \sum_{i=1}^{n} \sum_{n=1}^{n}\left|z_{i k}\right|\left|x_{i n}\right| \leqslant
\end{aligned}
$$

$$
\begin{aligned}
& \leq \max _{k} \sum_{i=1}^{n}\left|a_{i k}\right| \text {. }
\end{aligned}
$$

Now let us take a vector X_{0} of the following form: Let $\sum_{i=1}^{n}\left|a_{i k}\right|$ attain its greatest value for the column numbered. jo Put $x_{k}^{(0)}=0$ for k j and $x_{j}^{(0)}=1$. Obviously a vector constructed in this manner has its norm equal to unity. Furthermore
(2ม) $\quad\left\|\Lambda x_{0}\right\|=\sum_{i=1}^{n}\left|\sum_{k=1}^{n} a_{i k} \sum_{k}(0)\right|=\sum_{i=1}^{n}\left|a_{i j}\right|=\max _{k}^{n} \sum_{k=1}^{n}\left|a_{i k}\right|$.

Thus
(22)

$$
\max \left\|n x_{0}\right\|=\max _{2} \sum_{i=q}^{n}\left|a_{i k}\right|=
$$

Q.E.D.
(23) III, $\|X\|_{I I I}^{2}=\sum_{i S=1}^{n}\left|x_{0}\right|^{2}=(X, X) \quad$.

The matrix norm subordinate* e to this vector nom is
(24)

$$
\|A\|_{I I I}=\sqrt{A_{2}}
$$

where λ_{1} is the Largest latent root of the matrix $A^{\prime} A$.
In proof, we have

$$
\left.\|A\|=\frac{\max }{\|F\|=1} \right\rvert\,\|x\| ;
$$

but

$$
\begin{equation*}
\|A X\|_{I I I}^{2}=(A X, A X)=\left(X, A^{\prime} A X\right) \tag{26}
\end{equation*}
$$

The matrix $A^{\prime} A$ is symmetric. Let $\lambda_{I} \Rightarrow \lambda_{2}=\cdots \geq \lambda_{n}$ be its latent roots and $X_{1}, X_{2}, \cdots, X_{n}$ be the orthonormal. system of latent vectors belonging to these latent roots.

Now take any vector X with its nom equal to unity and resolve it in terms of the latent vectors:
(27)

$$
X=c_{1} X_{1}+c_{2} X_{2}+\cdots+c_{n} X_{n} .
$$

Then

$$
\begin{equation*}
(x, x)=a_{1}^{2}+c_{2}^{2}+\cdots+c_{n}^{2}=1 \tag{28}
\end{equation*}
$$

Moreover,

$$
\|A X\|^{2}=\left(X, A^{8} A X\right)=
$$

(29)

$$
\begin{aligned}
& =\left(c_{1} X_{1}+\cdots+c_{n}^{Z}{ }_{n}, c_{1} \lambda_{2} X_{2}+\cdots+c_{n} \lambda_{n} X_{n}\right)= \\
& =\lambda_{1} c_{1}^{2}+\cdots+\lambda_{n}^{c_{n}^{2}}+\lambda_{2}\left(c_{1}^{2}+\cdots+c_{n}^{2}\right)=\lambda_{1} .
\end{aligned}
$$

For the vector $X=X_{2}$:
(30)

$$
\left\|A X_{Q}\right\|^{2}=\left(X_{1}, A_{1} A X_{1}\right)=\left(X_{2}, Y_{1} X_{1}\right)=\lambda_{1} .
$$

Thus

$$
\begin{equation*}
\underset{||X||=1}{||X X||}=\sqrt{\lambda_{I}} \tag{31}
\end{equation*}
$$

?.ED.

We shall now prove several theorem connected with the concept of Limit.
 that ail the latent ron ts the patras A ave modulus less than unity.

Prot. Assume furs simplicity that the matrix A can be brought into diagonal forms $A=C A C^{-3}$, where $A=V_{1,} \lambda_{2}, \cdots, \lambda_{n} \mid$ and $\lambda_{I}, \lambda_{2}, \cdots, A_{G}$ are tics $1=t$ nt roots of matrix A. Then $A^{m}=C A^{m} C^{-1}$. It is obvicus that $A^{m i}=\sqrt{A} A_{2}, \ldots, \lambda^{m}$. In order that $A^{m} \Rightarrow 0$, it is necessary and sufficient that $\Lambda^{\text {m }} \rightarrow 0$, for the which it is in turn ncecssary and sufficient that the 1 stent roots $\lambda_{1} \lambda_{2} \cdots, \lambda_{n}$ havre modulus less than unity.

In case the matrix A cinnot be brought into diagonal form，the theorem is proved either with the aid of considerations of contimity or by passing to the Jordan canonical form．We sham not dweII on the details of this proof．

The conditions giver in Theorem I are inconvenient for checks，inasmuch as they require foreknowledge of the latent rocts of the matrix A ．We shall therefore establish some simpler sufficient conditions rendering $\lim A^{m}=0$ 。 $m \rightarrow \infty$

THEOREM 2．In order that $A^{m} \rightarrow 0$ ，it is sufficient that any one of the norms of A be less than unitu．

Proof．On the strength of the fourth requirement of a norm，we bave

$$
\begin{equation*}
\left\|A^{m}\right\| \&\left\|A^{m-1}\right\|\|A\| \leq\left\|A^{m-2}\right\|\|A\|^{2} \leq \ldots \leq\|A\|^{m} \tag{32}
\end{equation*}
$$

Therelore $\mid A^{n t} \| \rightarrow 0$ if $\|A\| \leqslant i$ and thus，in view of the foregoing， $a^{m} \rightarrow 0$ 。

Corbinine Theorems 1 and 2，we armive at the following result：
THEORII 3．The modulus of no latent root of a matrix exceeds any of its norms．

Proof．Let $\|A\|=$ a。Consider a matrix $B=\frac{I}{a+\epsilon} A$ ，where ϵ is any positive number．We have
（33）

$$
\|B\|=\frac{a}{a+\varepsilon}<9,
$$

amd accordingly $E^{\text {in }} \rightarrow 0$ as $m \rightarrow \infty$ ．On the strength of Theorem 1 its latent roots rave modulas less that anity．But it is obvious that the
latent roots of the matrix B a quad－
 taken arbitrarily small．$\left|\lambda_{i}\right| \leqslant \sum_{0}$

THEOREM 4．In order that the series
（34）

$$
I+A \div \cdots+A^{m}+\cdots
$$

converge，这 is necessary and sufficient that $A^{\text {mi }} \rightarrow 0$ as $m \rightarrow \infty$ ．In such a case the sum of series（Bk）equals $(I-A)^{-1}$ ．

Proof．The necessity if this condition is obvious．We shall show that it is sufficient．

On the strength of Theorem I，ali latent roots of the matrix A are less than of writ modulus．

Accordingly
（35）

$$
|I-A| \neq 0 .
$$

and therefore $(I-A)^{-1}$ exists．
Consider the identity

$$
\begin{equation*}
\left(I+A+A^{2}+\cdots+A^{k}\right)(I-A)=I \cdots A^{k+1} . \tag{36}
\end{equation*}
$$

Postmultiplying it by $(I-A)^{-1}$ ，we obtain

$$
\begin{equation*}
I+A+A^{2}+\cdots+A^{K}=(I-A)^{-1}-A^{k+I}(I-A)^{-1}, \tag{37}
\end{equation*}
$$

whence it follows that，as $k \rightarrow \infty$ ，

$$
\begin{equation*}
I+A+\cdots+A^{k}-(I-A)^{-3} \tag{38}
\end{equation*}
$$

since $A^{k+1} \rightarrow 0$.
Thus
(39)

$$
I+A+\cdots+A^{2}+\cdots=(I-A)^{-I},
$$

Which is what was required to re proved.
In the light of Theorem I, the necessary and sufficient condition for the convergence of the series (3L) is the inequality $\left|\lambda_{i}\right|<1$ for all Intent roots of the matrix A. A sufficient token of convergence, in view of Theorem 2, is the irequa? it $||A||<1$, whatever one of the norms be emplowed. Given that this condition is satisfied, it is easy to give the following estimate of the rapidity of convergence of the series (3h):

THEOREM 5. If $\|A\| \leqslant 1$,

$$
\|(I-A)^{-I}-\left(I+A+\cdots+A^{k}\| \|=\frac{\|A\|^{k+1}}{I-\|A\|} .\right.
$$

Proof. We have:

$$
\begin{equation*}
(I-A)^{-1}-\left(I+A+\cdots+A^{k}\right)=A^{k+1}+A^{k+2}+\cdots \tag{L}
\end{equation*}
$$

whence

$$
\begin{aligned}
& \| K-A)^{-1}-\left(I+A+\cdots+A^{K}\right) \| \& \\
& \&\|A\|^{k+1}+\|A\|^{k+2}+\cdots=\frac{\|A\|^{k+1}}{I-\|A\|}
\end{aligned}
$$

and the theorem is proved.
$5 / 2 / 52$
-60-
in finding a proof for the general case.
We consider ourselves obligated to note in conclusion that in the method here proposed we have utilized the ideas of a method of successive approximations for the solution of systems of linear equations expounded in an unpublished work of A. Mo Lopshits.

THE NATIONAL BUREAU OF STANDARDS

Functions and Activities

The functions of the National Bureau of Standards are set forth in the Act of Congress, March 3, 1901, as amended by Congress in Public Law 619, 1950. These include the development and maintenance of the national standards of measurement and the provision of means and methods for making measurements consistent with these standards; the determination of physical constants and properties of materials; the development of methods and instruments for testing materials, devices, and structures; advisory services to Government Agencies on scientific and technical problems; invention and development of devices to serve special needs of the Government; and the development of standard practices, codes, and specifications. The work includes basic and applied research, development, engineering, instrumentation, testing, evaluation, calibration services and various consultation and information services. A major portion of the Bureau's work is performed for other Government Agencies, particularly the Department of Defense and the Atomic Energy Commission. The scope of activities is suggested by the listing of divisions and sections on the inside of the front cover.

Reports and Publications

The results of the Bureau's work take the form of either actual equipment and devices or published papers and reports. Reports are issued to the sponsoring agency of a particular project or program. Published papers appear either in the Bureau's own series of publications or in the journals of professional and scientific societies. The Bureau itself publishes three monthly periodicals, available from the Government Printing Office: The Journal of Research, which presents complete papers reporting technical investigations; the Technical News Bulletin, which presents summary and preliminary reports on work in progress; and Basic Radio Propagation Predictions, which provides data for determining the best frequencies to use for radio communications throughout the world. There are also five series of nonperiodical publications: The Applied Mathematics Series, Circulars, Handbooks, Building Materials and Structures Reports, and Miscellaneous Publications.

Information on the Bureau's publications can be found in NBS Circular 460, Publications of the National Bureau of Standards (\$1.00). Information on calibration services and fees can be found in NBS Circular 483, Testing by the National Bureau of Standards (25 cents). Both are available from the Government Printing Office. Inquiries regarding the Bureau's reports and publications should be adỏressed to the Office of Scientific Publications, National Bureau of Standards, Washington 25, D. C.

