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EDITOR »S INTRODUCTION

The first time he meets matrices,, the student of numerical analysis is

not usually reader for a systematic development of elementary divisor theory

and still less for a treatment over a general field, But he does need to

learn the main facts about the algebra of finite matrices over the real or

complex field, and tie should know something about the proofs „ These matters

are supplied very well by Faddeeva in the chapter translated here, and the

editor therefore believes that the chapter will be very popular 0

Analogous statements could be made about the analytical aspects of

finite matrix theory s norms, limit, etc.

In the two later chapters of her book, the author describes various

known numerical processes for inverting matrices and for obtaining their

latent roots and vectors, and gives mary numerical examples e These chapters

probably also merit translation, and we hope later to be able to provide one.

The first chapter was translated specifically to provide an introduc-

tory text for the editor 8 s 19,^2 summer course on numerical matrix methods

at the University of California, Los Angeles , With this in view, the

translator has done more than create an interesting and faithful transla-

tions he has improved the presentation in several respects. He has cor-

rected misprints, and has helped the student by occasionally inserting

phrases and by adding two paragraphs of recapitulation (pp c UU and y5) 0

He has changed a few notations to suit American taste. Finally, he has

replaced the Russian bibliography by an English and American one, and has

considerably supplemented the author ®s three or four references to the

bibliography e

Only the more significant of the translator * s additions have been

credited to him in the text.
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AUTHOR’S PREFACE

The numerical solution of the problems of mathematical physics is

most frequently connected with the numerical solution of basic problems of

linear algebra — that of solving a system of linear equations
,
and that of

the computation of the latent roots of a matrix. The present book is an

endeavor at systematising the most important numerical methods of linear

algebra — the classical ones and those elaborated quite recently as well®

The author does not pretend to an exhaustive completeness, having in-

cluded an exposition of those methods only that have already been tested

in practice. In the exposition the author has not strived for an irreproach-

able rigor, and has not analysed all conceivable cases and sub-cases arising

in the application of this or that method, having limited herself to the

most typical and practically important cases.

The book consists of three chapters. In the first chapter is given the

material from linear algebra that is indispensable to what follows . The

second chapter is devoted to the numerical solution of systems of linear

equations and parallel questions. Lastly, the third chapter contains a

description of numerical methods of computing the latent roots and latent

vectors of a matrix.

For the interest manifested in the manuscript, and for a number of

valuable suggestions, I express my sincere thanks to A, I, Brudno and

Go P, Akilov,





April I, 19f?2

CHAPTER 1

BASIC MATERIAL FROM LINEAR ALGEBRA”

This chapter will be of an introductory nature <, Without detailed

proofs
,
it will impart material from linear algebra that will be indispen-

sable to an understanding of the following chapters «

§1. MATRICES

Xc An aggregate of numbers—which are, generally speaking, complex-

arranged in the form of a rectangular table, is called a rectangular matrix .

This array will have m rows and n columns, and may be set forth in the forms

(1 ) A

the first subscript, then, designating the row, the second designating the

column, in which the element in point is located.

This may be abbreviated to the form;

A - (a
± j) (i s 1, 2, •««

9 m • j
a 1, 2, ,

n) e

T’his translation was carried out under the auspices of the Depart-

ment of Mathematics, University of California, Los Angeles. It was edited

by George E. Forsythe, National Bureau of Standards, Los Angeles.
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Two matrices are equal if their corresponding elements are equal

„

Matrices composed of a single row are called simply rows (or, as we

shall approach them later, row vectors ) » Matrices composed, of a single

column are called columns (or column vectors )

„

If the number of rows of a matrix equals the number, n, of columns, it is

called square
,
and of the n-th order ,

Among square matrices, an important role is plsyed by diagonal matrices,

i«e s , matrices of which only the elements along the principal, (leading )

diagonal are different from zero:

If all the numbers ©<„ of such a matrix, are eoual to each other, the
i * 3

matrix is said to be scalar:

1
and, if oc ® 1, the matrix is said to be the unit matrix:

Editor 5 s notes Faddeeva and other continental mathematicians use the

symbol E for a unit matrix
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Lastly, a matrix all of whose elements are equal to zero is called a

null matrix, or zero matrix. We shall designate it by the symbol 0.

The determinant whose elements are the elements of a square matrix

(without disarrangement), is said to be the determinant of that matrix ,
and

we write the determinant of the matrix A as |A|, or often as d(A)

.

2. Multiplication of a matrix by a number . The addition of matrices .

A matrix whose elements are obtained by multiplying all the elements of the

matrix A by a number ^ is called the pr oduct of the number and the

matrix A:

A matrix G whose elements are the sums of the corresponding elements

of A and B, matrices having like numbers of rows and columns, is called

the sum of A and Bs





(:. ) A + -O ~

- h -

/aH + b
l1

+ ha
©*o ^ 4> h

in. n \
1

i
+ b-,=

i
c.L cL

cL^ 0(CC
+ b

22

1

cn t,n
i

# ©

a + b . a ~ + b « • ® •

ml ml m2 m2
a + b
mn mn

1 e • perations introduced above have the following properties, as will

be readily seen:

1 . A + (B + C) - (A + B) + C

»

2 o A + B ® B + A .

3. A + 0 - A.

Iu + /3)A s o< a + A

.

5. «<(A + B) s A + °<B.

B:: - A, B, and C are matrices! and (3 are numbers—generally speaking,

complex*

• The milltiplication of matrices „ Multiplic at. ion of the matrices A

and B is defined only on the assumption that the number of columns of

*1

matrix A equals the number of rows of matrix” B» On this assumption, the

elements of the product
,
C - AB, are defined in the following manner; the

element in the i-th row and the j-th column of the matrix C is equal to the

^Translator’s notes Indicating by superior letters the dimensions of

the matrix A, i 8 e e ,
the number, m, of rows, and the number, n, of columns,

mxn
thus % A the product condition may be given a more lucid expression

mom pxr
notat ic aally * Thus A ° B is possible only if p « n* A and B are then

conformal .le

.
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sum of the products of the elements of the i-th row of the matrix A by the

corresponding elements of the i-th column of matrix^ Thus;

:

ia *12
• • *

*i^ / b, , b, * • • • b
in> / 12

(7) AB - \
I u

*21 a
22

'* a
2n 1

!

b
21 °22 b

2

o o o

ip\

2p

\
a
ml

a
m2

3
tm \

b
nl

0
n2 ~npf

/
£°11 C

X2 clp

“21 c
22

** 8 C
2p

ft « • •

c « ••• c
ml m2 mp

where

(8)

n
e. ,

52 a., b. . + s> b,~ , + *••+• a. b . = 2 a., b, .

2-0 il Id i2 in rg
k=1

lk kj

(i ‘j j
• *

* ,
ni *

y
'2

,
• «

• ,

It is to be noted that the product of two rectangular matrices is again

a rectangular matrix
,

the number of rows of which is equal to the number of

rows (if the first matrix, and the number of columns of which is equal to the

mem nxp rroq?
number of columns of the second matrix? A • B s C . So, for instance,

the product of a square matrix and a matrix composed of one column is a matrix

of one column

o

The commutative law for multiplication does not, generally speaking,

hold. We shall make a few observations on this subject, however. The

1
Translator* s note; The bare definition of matrix multiplication given

in the text provides a basis for the logically succeeding development. It

may, however, appear arbitrary to the student who has not previously recon-

noitred the ground. For a brief account of the source of this definition of

matrix multiplication see, e.g., [1], §1-6 „ Abundant numerical illustra-

tions will be found in [2], §l eIu
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matrices AB and BA make sense simultaneously only if the number of rows of

the first matrix is equal to the number of columns of the second, and the

number of columns of the first is equal to the number of rows of the second.

Given the fulfillment of these conditions, the matrices AB and BA will both

be square, but of different orders, unless A and B be square. Thus even to

put the question of the equality of the matrices AB and BA makes sense only

for square matrices. But even in this case, generally speaking, AB ^ BA.

In particular cases multiplication may be commutative, and in such

cases the matrices are said to commute . liras, for example, scalar matrices

commute with any square matrix of the same order, for

Hence follows the special role of the unit matrix in the multiplica-

tion of matrices, to wits amongst all square matrices of the same order,

the unit matrix plays the same role as the number one does among numbers.

( 9 )

33





Indeed,

AI “ XA - A .

It can be shown that the multiplication of matrices is associative ,

viz e? if AB and (AB)C make sense, so also do BC and Ache), and

1. A(BC) - (AB)C e

The matrix product has also these properties:

2 e «K(AB) - (*A)B - AfaB) 3

3. (A + B)C " AC + BC 3

h

*

C(A + B) « CA + CB
,

where A, B, C are matrices, ©t a number

,

Let us interchange rows and columns in the matrix

1
we obtain the transposed matrix or transpose

'The word conjugate appears in the older literature





**11 ®21

(10) A
1 - A* - (s L. .)'

^2 a
22

Vfin
a
2n

ml

m2

a /mn/

(a..)

The following rule (the reversal rule) for a transposed product should

be noted?

(10a) (AB) ' » B»A'

In proof of this, note that the i-th row and j-th column of the

matrix (AB) ! is equal to the element of the j-th row and i=th column- of the

matrix AB, for this is merely the interchange of row with column, I B e»,

transposition! and that is equal to

(11 ) a
jl
b
li

a © - b .

i ra

The last expression is obviously equal to the sum of the products of the

elements of the i-th row of the matrix B f and the corresponding elements

of the j-th row of the matrix A f

,
i . e « ,

is equal to the general (the i,

j-th) element of the matrix B ! A' 0

In conclusion we shall remark that the determinant of a product of

(square) matrices is equal to the product of the determinants of the multi-

plied matrices % |AB
j
® Ja

|
jBj, which result is taken from determinant

theory*





he The partitioning of matrices . Hie handling of matrices of high

orders requires
,

as a ruLe
s a large number of operations. It is therefore

often expeditious to reduce a computation involving matrices of high orders

to computations upon matrices of lower orders. Such a reduction can be ef-

fected by partitioning the given matrices i each matrix may be conceived as

composed of several matrices of lower orders, and this subdivision may be

carried through in many ways, for examples

^11 a
X2

al3 ®iu\ /
a
ll :

a
12 ®13 ^i li.

0-la)

a
21

a
22 ^23 ^21

a
31

a
32

a
33

a
3li /

/
®21;

a
22 ®23 a

2li

V31 * a
32

a
33

a3b

/®11
a
12

a
21

a
22

a
13 ^

h

\

a a.r
23 2U

31
a
32 •

a
33

a
"3hj

The matrices into which the given matrix is partitioned are called its

submatrices
9 or cells . In such a partition the horizontal and vertical

subdividing lines are of course supposed to be carried across the whole

matrix.

We shall not concern ourselves with the general case of the partition-

3
ing of a matrix

s
but shall here consider only a partition of square

matrices in which the diagonal submatrices are square.

The basic operations on partitioned matrices whose diagonal matrices

are of identical orders is connected in a quite natural way with opera-

tions upon the submatrices themselves. It) wit
5
if we have





- 10 -

(lib)

and

(11c)

where

( 12 )

and

(13 )

A,, and B. . are square matrices of the same order, then
li ii 3

A + B

« * •

$
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where

(13a) C
lj

" A
il
B
lj

+ A
i2

B
2 i

+ ‘ ’ • + A . . B, .

ik kj
ij> a = i,

> k

We shall not stop for a proof of the last formula, but will note here only

that the matrices A
..

^

and B.^ can indeed be multiplied, since the number of

columns of matrix equals the number of rows of the matrix B-^.

Formulas (12) and (13) show that operations with matrices partitioned

in the manner indicated are to be conducted just as if in place of each

submatrix there was a number.

An important special case of a partitioned matrix is the bordered

matrix. Having a square matrix A^_.
f

of order n - Is

(13b)
n~l

all a
l2

‘“° h.n-l

*21 a
22

a
2,n-l

e © • 6 0 0 • a • .

a
n-l,l

a
n-l,2

o • • a tn-l,n-

we form a square matrix of the n-th order, A ,
by appending to the matrix

A a rows v , s (a ,•

n-1 n-1 hi

( ain 5

(1U)

a ^), a columns u _
^ 5 5 n.n-l 5 n-1

a , ) and a number a =

n-l,n 5 nn

^Ln

n-1

a =sn-l,n

At U ,\
n-X n-1

7
n-l

a
nn

a a - 8 6 ® a , a
v nl n,n-l nr:





We shall say that the matrix A has been obtained by bordering the

matrix A „ Tne. matrix A is naturally partitionab'le.

Operations upon a bordered matrix: are conducted in accordance with the

general rules for operations upon partitioned matrices. Letting

be two bordered matrices f rdei n, the meaning of m, v, u. a, and P., x,

y, b. being the- £3 lition, the following statements are valid:

r

«<A

V,'U V

"l

(11) A + B -

L

AB -

/M + P

1

U + y \

\ TT 4* X
1

a + b /2

/ MP + ux My + ub

\vP + ax vy + ab

2

Here M? and ux are matrices of the (n - l)-th order J My. u'b are columns

composed of n - 1 elements! vF and ax are analogous rowsj and, lastly,

vy ^ ab is a number.
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3s Quasi-diagonal matrices 0 Let us consider still another particular

case of partitioned matrices, namely the matrices called quasi-diagonal

»

These are square matrices along whose leading diagonals are arrayed square

submatrices, the remainder of the elements being zero. An example would be

the seventh-order quasi-diagonal matrix?

(15a)

The cells of this matrix are obviously

(iSb)
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and the six null submatrices.

If two quasi-diagonal matrices are of like structure, the product of

such matrices will also be a quasi“diagonal matrix of the same structure,

the diagonal cells of which equal the products of the corresponding cells

of the factor submatrices.

The determinant of a quasi-diagonal matrix is equal to the product of

the determinants of the diagonal cells, on the strength of a notable theorem

1
by Laplace .

6. The inverse and the adjoint matrices. A square matrix A - (a.. .)

is said to be non-singular if its determinant is not equal to zero| in the

contrary ease it is of course singular .

The important concept of an inverse matrix is now introduced. A matrix

B is called the inverse (or reciprocal ) of the matrix A if

(1.6) AB “ I e

We shall show that the necessary and sufficient condition for the exis-

tence of the inverse matrix is the non-singularity of the matrix A.

The necessity follows at once from the theorem concerning the determi-

nant of a matrix product, for if AB - I, jA
j

jB
j

a 1 and consequently

|a| t o.

Assume now that | A f f 0 o In order to construct the inverse matrix we

must give preliminary consideration to the adjoint (or adjugate ) matrix,

i.e., the matrix

"See, e.g. [1], |33.





( 17 )

Here A. , is the algebraic complement (cofactor) of the element a. . in the

determinant of the matrix A, i 9e. s
is the signed minor determinant of the

element a. •

.

We shall show that the adjoint matrix has the following property;

(18) AC - |A|I .

In demons tration, reckoning the general element of the matrix AC by the

rules for matrix multiplication, we find it to equal

(180 a
il
A
jl

+ *12^2 + + a, A . ,in jn J

i.e a , 2 era for i f j, and |A
j

for i - j, on the strength of a familiar

1
theorem on the expansion of determinants „

The equality

(18 *) CA - |A|I

is established in like manner

„

The adjoint matrix has meaning for any square matrix A. From the

equality AC = jA jl it follows that the matrix

x
Translatcr ? s notes An expansion in terms of "alien cofactors" van-

« O00
^ 0 ^ishes identically [1], §19, 21





for non-singular A, the sought inverse
9
for

The constructed matrix has a.lso the property

( 20 ) BA - 1

which follows from equation (18 ? ).

¥e prove, lastly, the uniqueness of the inverse matrix. Assume that a

matrix X exists such that AX s I . Multiplying this equation by B on the

left, we have X * B. If it be assumed that Yk ® I, a multiplication on the

right by B yields Y = B.

-1
The matrix Inverse to A is denoted by A . It is obvious that

We note that the inverse of the product of two matrices also displays

the reversal ruler

( 21 ) •'A a = A
”

i'

’• rV r
2

a
i

since

(21a)
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The determination of the inverse matrix is one of the fundamental

problems of linear algebra 0 Equation (19) offers the possibility of com-

puting the inverse matrixj however
,

the computation of the adjoint matrix

is so labor-consuming that the cited equation is of importance only in

theoretical relationships. Chapter II will be specially devoted to this

problem of determining the inverse matrix,

7° Polynomials in a matrix , We now define the positive integral

power of a square matrix, putting

In view of the associative law, how the parentheses in this product are

placed makes no difference, and we therefore omit them. It is evident from

the definition that

n times

A -A

f . n. m , n+m

(23)

Hence it follows that powers of the same matrix are commutative «,

We further put, by definition.

(23 a)

An expression of the form

(23b) A + «,A'
n Ur-l

o
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where
5

«=<
n

are complex numbers, is called a polynomial in a

matrix
,
or matrix polynomial a This matrix polynomial may be regarded as

the result of replacing the variable X in an algebraic polynomial

(2b) Cp (A) “ e\ X
n + es<_ A.

rr““ + «

7 o 1 n

by the matrix A.

It is important to note that the rules for operation upon matrix poly™

nomials do not differ from the rules for operation upon algebraic polynomials,

viz .s

(2S)

r

.

given

f(A) - Y(A) ± yfr)

«(A) - V(A)X(A) ,

.

1
i then

f(A) - \|/(a) i x(A)

This follows from the commutativity of the powers of a matrix.

3„ ^he characteristic polynomial. „ The Cayley-Hamilton theorem .

minimum pol3momial „ The equation

Tie

(26)

I

a
21 £LC

- X

o o © o © ©

a
nu

a

O © © a.
In

e . o a-.2n

nn

0
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is called the characteris tic equation of the matrix A - (a. .^) » The left

member of this equation, 'which may be written in the abbreviated form

jA - A. I
j 3

bears the name oharacteri stic polynomial (or characteristic

function ) of the matrix , Characteristic equations are frequently encountered

in applied mathematics^.

The direct computation of the characteristic function presents consid-

erable technical difficulties. If

( 27 ) (f
(X) - |A - Al| - (-l)

n
[X
n -

pf-""
1

- pi1"-2 - ••• - pn] ,

then

(?-8 )

p_ 3 sl + aco + 6 • • * a
1 11 nn

pn
38 (-I)

n*”1
|a

| |

and the remaining coefficients are the sums, taken with the sign (-1)^ \
of all the principal minors of the determinant of matrix A of order k, i e e # ,

2
of the minors involving the principal, diagonal , The number of such minors

equals the number of combinations of n things taken k at a time ,

The roots of the characteristic equation are called the latent roots

( characteristic numbers
,
proper values

,
eigenvalues ) of the matrix A, From

the well-known theorem of Vieta giving the connection between the roots of

an equation and its coefficients, we have

^ See, e,g 05 [2], 13,6,

ISee, e„g, s [X], §37«
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A-

(29)

.

n .il i2

• (-l)^1 pn

The quantity p- - a-,-, - a.-,,
- • + a is called the trace (or spur )

of the matrix A, and is denoted by tr A.

Practically convent r.t methods for determining tl : coefficien d

roots of the characteristic equation will be elaborated in Chapter III, X'jhich

will be specially devoted to that group of questions. For the moment we

leave them aside

„

For ary square matrix the following remarkable relation, known as the

Cayley-Kavnilton Theorem
,
ob tains ; if

Cf? (A) is the c h.ara c teri s tic polynomial

of the matrix A, then A) - 0, that is. speaking somewhat conditionally,

matrix is a root of it s own char Jxr:r.

For proof, let us consider the matrix B, the adjoint of the matrix

A - AI. Since each cofactor in the determinant jA - Al| is a polynomial

in A of degree not exceeding n - 1, the adjoint matrix may be represented

as an algebraic polynomial with matrix coefficients'
1

', i.e., in the form

(29a) B =* B + B 0A + » * • 4- B
n—X Tl-Z o

Xr.-l

where B B are certain matrices not dependent on . On the
n-1’ ? o

strength of the fundamental property of the adjoint matrix, we have

(29b)

(B . + B •KD
n*l n-2

B A
1*" 1

) (A - Xl) - |A - All I
o 1 1

- (-l)
ri
(A
n - Pj W P )I

.t ry

uuard against confusion with a polynomial in a matrix. See, e.g.,

[3], Chap. Ill, § U, p. 21 ff.





This equation is equivalent to the system of equations

oooooee«0t»

J ‘i^cwa * y~'

Multiplying these equatic *

.

t. a", • res

pectively, and adding, we obtain a null matrix, on the left side, and on

the right.

30 ) + A
B-

(A)

Tins <$(k) ~ 0, which is what was required to be proved.

The Cayley-Hamilton relation shows that for a given square matrix a

polynomial exists for which it is a root. Evidently such a polynomial is

not unique , for if \jf (X) has such a property
,

so has any polynomial divi-

sible by . The polynomial of lowest degree having this property

that the matrix A is a root of it, is called the lidnimnm polynomial of the

matrix A

.

We shall prove that, the characteristic polynomial is divisible by

the minimum polynomial.

Let q( A) and r(A) be the quotient and remainder obtained upon divid-

ing the characteristic polynomial by trie jfdjdmm polynomial "Vjf (X) z
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( 30a) fC&) -\j/ (A)q(A) + r(A)
,

the degree of r( ') being of course less than the degree of "\|f (A) .

Substituting A for A in this equation, we have

r(A) - IfU) - (A)q(A) 55 0 .

Thus the matrix A proves to be a "root” of the polynomial r(A)| it thence

follows that r(A) s 0, since othenri.se ijf (A) would not be the minimum func-

tion. Consequently lj/ (A) divides (f ( A) .

9, Similar matrices . The matrix B is said to be similar to the matrix

A if a non-singular matrix C exists such that B = C ^AC . Matrix B is said

to be obtained from matrix A by a similarity (or collineatory ) transforma-

tion .

The similarity transformation has the following properties?

(30b) 1. C~\c + C“
X
A0C + ••• + C’h.C - C~’

1
(A1 + A0 + ••• + A )C .

X c. n j. c, n

(31) 2. C“
1
A1C

8 C“
i
A
?
C ••• C^A^C - C^CA^Ao ••• A

n)C .

In particular, (C ^AC)
n

- C ^

A

n
C

.

Hence

s

3. f (c“
x
AC) - C~'~f(A)C for ary polynomial f(A)

From the last property it follows directly that similar matrices have the

same minimum function.
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We shall show that -similar matrices have also the same characteristic

function .

We have

(31a)

|b - \l| - |c
_1
ac -Xl| - jC^AC - Ac“

1
ic| «

- |C

I“X
|A - Xl| |c

I
- |A- XI

I
.

10. Elementary transformations . It is frequently necessary to effect

the following operations upon matrices %

a) Multiplication of the elements of some row by a number^

b ?

) Adding to the elements of some row numbers proportional to the

elements of some preceding row.

b ?’) Adding to the elements of some row numbers proportional, to the

elements of some following row.

Sometimes such transformations must be made upon the columns. Trans-

form.' ations of the type indicated are called elementary transforma tions of

the matrix.

Any elementary transformation of the rows is equivalent to a premulti-

plication of the matrix by a non-singular matrix of a special form, as will

readily be verified. Operation a) is equivalent to a premultiplication of

the matrix by the matrix
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(32)

1

operation b T
) is equivalent to a premultiplication by the matrix

operation b !!

) is equivalent to a premultiplication by the matrix

(3U)

<7%

« •

1

1
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Operations a) , b !
) and b :s

) are performed on cc" •mins by using just such

elementary matrices
'1

' in pos tmultiplic ations of tine matrix undergoing trans-

formation. (33) now effecting b !

) upon columns, and (3U) effecting b ! ).

Examp1 es of row operations:

(3 Us)

0

cA

0

f\ 0 0 \ fs b

( 3 Ub)
j

0 1 0
j

1

0 '4 1 J \u v w

c

x y z

f3Uc)

a b c

\0 0 1 / \

/

V

a b c

x y z

u + v + °<y w + z

Translator’s note: Note that the elementary matrices may well be

regarded as having been derived from the unit matrix by just such trans-

formations, a), b ?

) and h l
) ,

as it is proposed to make upon the rows/col-

umns of A. Thus, for example, the elementary matrix of (3Ub) effects, by

premultiplieation, the following transformation of Ai row 3 + ^ row 2,

and is itself the result of such an operation upon the unit matrix. By

postmultiplication it effects: column 2 + column 3, and is this trans-

formation of I.
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In future work we will often have to conduct transformations of types a) and

b !

) upon matrices „ The result of several row-transformations of this type

is equivalent to the premultiplication of the matrix by some triangular

matrix, i„e., one of the form

( 35)

o o © e © ©

l

\ /

\lnl v n2 Tnn/

with non-zero diagonal elements
n

jf±±°
^n<ieed, each separate transformation

of form a) or b') is equivalent to a premultiplication by a triangular ma-

trix of the type indicated, and the product of two or more triangular

matrices of like structure (i<,eM both, say, lower triangular
,

as these) is

again a like triangular matrix*

It should be further noted that the result of several column-transfor-

mations of the form b ?
) and b" ), such that to each, j-th, column is added a

multiple, m. of the elements of the i-th column (which itself remains un-

changed), is equivalent to postmultiplication of the given matrix by a

matrix of the forms





11 o Decomposition of matrl as into the product of two triangular

matrices » Triangular matrices, that is, matrices of the form

\ nl
c
n2

' ’ ° c
nr> J

(no c . . - 0 ,

no b. . - 0)
12

have a number of convenient properties. For instance, the determinant of a

triangular matrix equals the product of the elements of the principal diagon-

al; the product of two triangular matrices of like structure is again a

triangular matrix of the same structure; a non-singular triangular matrix is

easily inverted and its inverse is of like structure, etc.

The following theorems are therefore of interest.

THEOREM. On condition that the leading submatrices of the matrix

(37a)

are non-singular
,
i.e 0 ,

that
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A may be represented as the product of a lower triangular matrix and an

upper triangular matrix »

The proof will be carried through by the method of mathematical induc-

tion.

For n - 1, the statement is obvious: ( a-^-j ) ® (b^1 )(c^) 5
and one of

the factors may be taken arbitrarily e Let the theorem be true for a matrix

of the (n - l)-th order. We shall show it to be true foi a matrix of the

n-th order.

Partition the matrix A into a bordered matrix:

(37c) a =

/all
••• a

lr.\

*21 *2n

\Va
"

*rmj

A
n-1

v
\

n-l,n

,A
n-l

u

V
nr

‘
a
nl

a
n2

i
n

5
n~'l

ctnr/
we shall seek a. decomposition A - CB of the matrix A into the product of

two matrices B and C of the required forms, first having partitioned these

matrices into bordered form like that of As

(37d)

#n-l

x c.

B

nn

By the rule for multiplication of partitioned matrices:
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(37e)

whence we have

(3?f)
Cn-i

B
n-l

“ A
n~l

Now such triangular1 matrices, C. , and B
_ ,

exist, by the induction hy-

pothesis e Furthermore, from the assumption that |A
n^ j

/ 0, it follows that

!
C
n~lJ i 0 and ^ Oo

Now x and y are found by the formulas

(37g) y s C
n-l

u
>

x ~ vB
1
n-1 >

wherewith they are determined uniquely in terms of u and v.

Thus it only remains for us to determine the diagonal elements c and
^ nn

from the equation
nn 1

(37h) j b - a — xy
nn nn nn J

The last equation shows that one of the diagonal elements mqy be taken

arbitrarily

.
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as the deeompo sit ion of a matrix into the pry- duct of two triangular

td.ll be unique only if we prescribe values for

the diagonal element s of one of the tria.ngu.la- m atrices «,

;

.

' -
. Or : ; :

'

•

,
that b_. . ~ 1, i = 1

3
•••

,
n,

Then

c
nn

” ann W

and accordingly matrix C will be uniquely determined

«

1 e Lotrlx notation f or a system of lane a.r eriuations „

the system of n linear equations in n unknowns’

Let us consider

Q -V 4- *->

^^ a»} -X~ + «

-in n 1

«f. £ d
m-* -fl

_

w V} f*

(38 )

'
t- » • • + 2

! til 1 fie. 2 rat ;

Utilizing the titic . matrix multd.plication
?

the tem may be written

as a single equation in matrix notations
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or simply as

(38") Ax - b ,

A signifying the matrix of the coefficients of the system, b the column of

free members, and x the column whose elements are the unknowns «,

If the matrix of the system. A, is non-singular, we obtain at once the

solution of system (38) by premultiplying (38") by A s

(39) x « A
-1

b - — • Bb
,

|A|

B being the adjoint matrix of A.

We shall show that the last formula is the matrix notation for the

familiar Cramer’s Rule-,

(UO) x.

a

where A. is the matrix that is obtained from A by replacing the elements

of the i-th column by the components of b.

Indeed, the matrix equation (39) is equivalent to the n equations

(UOa) x.

Ali
b
l
+A2i

b
2
+ ' • -*Amb

n

jA
|

i SE 1 0.0 p- J J

Since the A,^ are the cofactors of the element in the determinant of

the matrix A, we obviously have

(UOb) Auh * A
2i
b
2

A

:rrL n I
A
1 I

which proves our statement

o
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2 o n-EIMENSIONAL VECTOR SPACE

In what Is to follow an import ant role will be played by the so-called

^dimensional vec t or space R . .A point I of such a space is an aggregate of

n numbers
3

as a rule complex, inite order ;

(1 ) = (*~
s

^'-
-y j

X is also called an n-dimensional vector. The numbers x, , x0 , , x

are called the components of the vector. The number n is called the dimen-
"t

sion of the space.

Two vectors are said to be equal only if their corresponding components

are equal. Fundamental Derations on vectors are defined as follows; if

X - (xp x.->, «•
• , x ) and. T * (y1 , y~, * * *

,

j

rJ) are two n-dimensional vectors

and a is an arbitrary complex number, we then put, by definition,

( 2 )

X + Y - (X
1 + y13 X

2 + y2; , x^ + y

aX ( ax., 9 ax.A
,

° * a
,
ax

The addition of vectors satisfies the commutative and associative laws;

^Translator ! s note; These are extensions, by a natural generalization,

of the familiar vectors and components of vector analysis, where, relative

to the basic vectors i, j, k, a vector X = + agj 41 a^k has the compo-

nents aj , a„, a-5 « (See, e,g 0 , [Uj, §'£,) Here, abstracted from the rela-

tion with basic vectors and with more than three ” components" ,
and thus in

a " space" of more than three '’dimensions”, the « vector" terminology is pre-

served as appropriate to the forms, operations, etc.
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(2 a)

2 + T - Y + X

(X + Y) + Z * X + (Y + Z)

The addition of vectors is connected with multiplication by numbers by the

distributive laws

(3)

I) ax +

(a + b)X = aX + bY .

The validity of all \nese laws follows directly from the definition of

the ope ra tions

»

For vectors of an n-dimensional space a scalar product is introduced

in accordance with the formula

(W (X, Y) - 2 x^
k ,

k-1

2
where y, designates the complex conjugate of y,,

.

•ii XA

It is readily verified that the scalar product has the following pro-

perties 2

1
Cf , the scalar (dot product of ordinary vec tors

,
for which there is

a convenient matrix notation? see [lj, 18.9.

c
See [ 5] 5 p. 162, note.
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1) (X,X) > 0 if X f 0 I (X,x) - o if X - 0 .

2) (X,Y) = (fTx) .

3) (X, - x
2 ,

y) - (X
1
,X) + (x

p
T) .

U) CaX,Y) « a(X,Y) .

3'5 (X
?
7
1

+ Y
2) - (XjYO + (X,Y

2 ) c

6} (X,aY) - a(X,Y) *

In addition
s \/(x,X) is called the length of the vector. In what fol-

lows we shall designate it by
j
jX

J j
.

Besides the n-dimerisional complex space introduced above, it is useful,

to consider also an n-dimensional real space, i.e., the aggregate of vectors

with real components

„

In real space the scalar product is equal to the sum of ‘the products

of corresponding components of the vectors f
the length of a vector 1 equals

the square root of the sum of the squares of its components*

We shall most often have to deal with real n-dimensional space, turn-

ing to complex space only as occasion requires

.

1, Linear dependence. A vector T - c-,X. + c*X. + 999 + c X is said

to be a linear combination of the vectors X^, Xg, 9 6

9

It is easily seen that if
0

vectors * 9
* , Y^ are linear combinations

of the vectors X- ,
999

, X
tT(

, any linear combination y^Y^ + 698 +

will also be a linear combination of the vectors X-1 3
Xm

Vectors X XO 5
*

,
X^ are called linearly dependent if constants

c
l*

c2? c exist, not all zero, such that the equation
m
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( 5) cl
x
l

+ c«X
2 2

+ e Xm m

holds. If
3
however, this equation holds only when all the constants are

ecrual to zero, the vectors X-,
, Xp , , X are said to he linearly indepen-

dent .

If the vectors X-, ,
* °

' , are linearly dependent, then at least one

of them will be a linear combination of the rest. For if, for example,

c f 0 , we find from (5);

(6) Vi ©

THEOREM 1 . If the vectors 7., ,
* •

• ,
are linear combinations of the

vectors X-^, * ° ’
, Xm ,

and k > m, the former set is linearly dependent 0

The proof will be carried through by the method of mathematical induc-

tion. For m = 1, the theorem is obvious. Let the theorem be true on the

assumption that the number of combined vectors be m - 1. Under the condi-

tion of the theorem, then.

(6a)

Y s,-. v + iA
o ® « © © © ®

Y
k

" GklXl
+ c

km
X

:'m

Two cases are conceivable.

1.

H J

Ail the coefficients •••
,

are equal to zero. Then

T, are in fact linear combinations of the m - 1 vectors
r9
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X
? ,

008
, X

ffi

o On the strength of the induction hypethesis, ••
• , Y^

will be linearly dependent,

2 o it least one coefficient of will be different from zero, With-

out violating the generality we may consider that c^j f 0,

Let us now consider the system of vectors

(6b)

The vectors thus constructed are obviously linear combinations of the

vectors X«, 0,0
, X , and the number of them is k - 1> m - 1„ On the

strength of the induction hypothesis they are linearly dependent, i.e„,

constants , ,
* *

•
,

that are not simultaneously zero can be found such

(6c) Y ? + *

Replacing YI s

we obtain

Y-
(

", by their expressions in terms of Y^,

(6d) iTi + hi + + }',j.

where _21

Ti
To

'kl

~fy The numbers 7^, ? Tjc ^e

not simultaneously equal to zero and accordingly Y~
9

linearly dependent. This proves Theorem 1,

,
Y
k

are© © ©





A system of linearly independent vectors is said to constitute a basis

for a space if' any vector of the space is a linear combination of the vector

of the system*

An example of a basis is the set of vectors

E e, «* (1, 6S 3 0)
3

-*•

.

(?) ^
e
2

35 (°» ***
>

6 e • e e » e

l «n
” <°.- °» -•

> « »

for it is obvious that for any vector X - (x^
,
Xg, , x

n ) we have

(7a) 1 ’¥l + x
2
e
2

+ "* + xnen *

This we shall call the initial basis of the space. Such a basis is

not the only one possible — quite the contrary; in the choice of a basis

one may be arbitrary within wide limits * Despite this
,
the number of

vectors forming a basis does not depend on its selection. In proof of this,

let Y, ,
•••

, Y, and Z- ,
» * ° Z be two bases, and assume further that

1 3 3 K 1 3 m 3

k > m . The vectors Y~ ,
° * •

, Y, are linear combinations of the vectors
l 3 3 k

Z^, « *
° 9 Z^» In the light of Theorem 1, T,

s
•••

,
are linearly depen-

dent, which contradicts the definition of basis. So k “ m. Furthermore,

since the initial basis is constituted by n vectors, any other basis -will

also consist of n vectors. The number of vectors forming a basis thus

coincides with the dimension of the space.
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Let 11, ,
-

a linear- combination of U,
,

,
U form the basis of a space. Any rector X will then ben

u
n

( 8 ) x =
• 1
U
1

+
' 9U0 + +
2 2 n n

The coefficients of this resolution uniquely define the rector X, for if

(8a)

then (

!

L
n n

rr +11 + tj
11 n n ?

1

1
f

1

'

) U 4° ® * •11 4- (

n
i *

S
n
)U
n - 0, and accordingly

0U
) 3 " n

= 0, in view of the linear independence of

the vectors IL, e . • TJ
3 3

U— *
n
£

The coefficients
n ,1' J v n

vector X with respect to the basis U^, •

are called the coordinates of the

Note that the components

of a vector x^, •••
9 are the coordinates of the vector X with respect to

the initial basis

.

2. Orthogonal systems of vectors . Two non-zero vectors of a space are

said to be or thogonal if their- scalar product equals zero. A system of

vectors is said to be orthogonal if ary two vectors of the qystem are orthogon-

al to one another. In speaking of an orthogonal system, we shall henceforth

assume that all the vectors of this system are different from zero.

THEOREM 2 e The vectors forming an orthogonal system are linearly

independent .

Proof. Let X^, * »
« 9 X^ be an orthogonal system, and let

e,Xn + &X, +11 & d
"V* “ Pjekxk

(8b) O o *
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in view of the properties of the scalar product we haves

(8c)

0 ’ (oA 'iAA 5 *

+ — wv^ + ••• + c
k (vx

i) = oinxiii
:

2
and, since

j
|X., |j

> 0, c
;

- 0 for any i - 1, 2, •••
,

n. Thus the sole pos-

sible values for c-, , c«, , c in the equation cn X-j + c0X0 + «•>• + c X - 0

are “ c 0
52 ••• * cn - 0, i e e„

,

the vectors X^, Xg 5
•••

5 X^ are linearly

independent,. It thence follows, first, that the number of vectors forming

an orthogonal system does not exceed n, and, second, that any orthogonal

system of n vectors forms a basis of the space. Such a basis is called

orthogonal » If we have, in addition,
|
Jx,

J j

53 1, the basis is said to be

orthonormal «, An example of an orthonormal basis is the initial basis. .

From any system of linearly independent vectors X„ ,
9 ° 9

,

* *

possible to go over to an orthogonal system cf vectors X^, e 9 * X^. by means

of the process spoken of as orthogonali-zatlon . The following theorem

describes this process.

THEOREM 3. Let X, ,
- °

• , X be linearly independent . An orthogonal

i !

system of vectors X.,
,

® •
•

, X may be constructed that is connected wit .a

the original set by the relations :

X^, it is

( 9 )

xj - X,

J X
2

3 X
2

+ ^21X
ioa»®©600o©«oa

X, - X
k 1

-,'L
-1 k-

j
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The proof mil be carried through by indue tion

„

Let X.J
, 9 X,!.

j
be already constructed and different from zero* We

- t

X'
m m™ ‘’ll v ifr^l m-1

'noose the coefficients jft) • ••
,

so that (X^, X^) 3 0 for

1,
9i0

, xa - 1. ibis is easily done, for

(9 % a) K> XP
* (v ZP

+ rjdj. V •

Now (X!

j

l!) f ", since x! f 0 by the induction hypothesis, and. it is ac-
<j 3 3

cordinglT sufficient' to take

(?’b) 7

j. 1 ••’lag I „ • , X.V- in equation (9*) by their expressions in

i- .’ms rf 3L
j

0oe
, X^ ,

we obtain finally

- 5 I
?

m

It remains to be Droved that X‘ f 0 e But this is obvious, for other”
m 5

vd,s.v the vector X would be a linear combination of the vectors
m

X
1 ,

” co
9
T

lf which contradicts the condition of the theorem. The basis

of the induction exists, since for m - 1 the theorem is trivial,,

One may pass from any orthogonal system to the corresponding ortho-

normal system by dividing each vector by its length.
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The le 1 a permits of great latitude in the choice of an

orfchonorma.1 ha f • may pass from ary basis to an orthonormal one

by • rthogc; • i h
. normalization,

r

ilie eealee pv--;.ti of two vectors is very simply expressible in terms

of l.
: e - "hi "V se vectors with respect to any orthonormal basis,

for, if h
; ?

sbo
„ e an orthonormal basis, and

y - Vl + •- + T(A -•
(9'd) I » tlL ••• + J 0 ;1 d n n 5

then

TJ
n n

(9 8 e) n n
2 2

isX
kha

n

isl T a

Thir th : :a
j e

1

of the scalar product in terms of the coordinates

of the vectors mil r vr set to any orthonormal basis coincides with its ex-

pression in terms of i/h. components of the vectors, i.e., in terms of the

coordinates with rosp f to the initial basis.

3, Transfomc f lea of coordinates . Let us elucidate the change in

the coordinates of a vector that accompanies a change of basis.

Let e, , e.
; ,

a •*

* , and e~, , e.,, • ° * be two bases, and let

do:

^Ll
6
!

a
21

e
2

+

<
:

12
e
l

+ a
22

e
2

4 8,0 + a
n2

e
n

a © ©

m e« + a« © + • • • + a e
In 1 <dn 2 ns n

« ® •
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We connect 'with the transformation of coordinates a. matrix A, the

columns of which consist of the coordinates of the vectors ,
e,

s

,,
°««>

with respect to the basis e., ,
«•<>

, e s
i . e o ,

the matrix

n

(11 ) A

a
il

a
12

,

a
ril

a
n2

® * S.m

a
21

a
22

o o o o

mi

The matrix A is non-singular, for it lias an inverse, by means of which

the vectors e
.

, ,

* *

“ ,
are expressible in terns of the vectors

p Ct « o «
J

1

h

Now designate by :x., 9 • , x the coordinates of a vector X with respect

to the basis e
1 ,

e-,, *»•
,

e.
n ,

and by x
1 ,

Xp, x
v

its coordinates with

respedt- to the basis el , el. ej , Let ns determine the relation of depen-

dence between the old and the new coordinates* We haves

(11a.)

n6
!

2Cj@9 +
c c

+ x en
t i ,+ Xn&Sj f »

*l
e
l

% i

+ x
n n

( all
e
l

+ a
21

e
2

+

!

“2 VC112"1
’ “22c2

+ a , e ) +
ill n

+ xc (su«e, + su«e0 + ••• + a -e) +
nr n

4*

x
i
(a
ln

e
l

+ a
2n

e
2

+ * Ve
n> '

Kiri + *iA *’*vX +

(a
2l^ 4. ajgx^ 4 ... + a

2n
x;)e

2 +

© e & oaoeoa©©
+ (a x1

+ a ,-.xA + 000 + a x')e
nl 1 n2 T2 nn n n

4s





easqa

xv = x (CD

mzoj eqq ax u©qq.xa.M. ©q Asm (gp.) uoxq.Briba

s saqBuxpaooo sqx jo raimxoo ©qq qqm JoqoaA ©qq ifjxquapT xpeqs ©a 6 (sxsBq

XexqxnT ©qq oq qoadsaj qqm seqBUxpaooo sqx jo suusq ax u©at3 st aoqo©A

q usqa c ©ouBqsux .zoj) psxxj sx sxsBq ©qq aasqa squauinbae ux usqjQ “ aurri.ro

o

12 sb «ioqo©A. b jo sajBuxpaooo ©qq a^Bq 6 (uoxqBxndxqs pexoads Aq qdsoxa)

cjeaaqq ^rpeqs ©a aanqnj aj e aca b Aq qoa eurnnxoo b Aq Ajuo xxaqBm s«ren.bs

b iqdxqxnxiqsod treo at*.
fuoxqBoxxdxqx0-111 xpiqm jo uoTqxuxjap ©qq jo aaxA uj

•aoa b sb j.o auiaqoo b sb aaqqx© paaapxsaoo ©q ubo sejBaxpaooo s , joqo©A b

i qas ©qq asan.oo iq * uj.cj xXaiqBra ax uaqqxjm. ©q aBoi suoxjBTib© qsep ©qj.

saoqosA ©qq jo ©oaapuedapux j.b©uxx aqq jo qqSuaaqs ©qq uo c ©ou©qa



4i



(° sxseq eqq saxjxi

-uapT Xpaxara qnq ffuoTqxs odsuej.q aqbotout a,i©B[ qou saop u aiirxj;d a expr,
)

* xxiqBra

pauoxqxqxBd b xobj ui si:
3 a pue xoq.oaA-.aoj; b st squauiaqa asaqq jo qoxa axaq

a

suoxqBqui xxiqBitt q outcons axctu aqq ux paqoTnqxdBoaj; aq item uoxqoas sxq£

•q T II T
•iqaAxqoa dsax ^a fc »•« ‘

j-© pub a ‘ f a

sasBq aqq ox qoadsax tq. to. x -icq.aaA aqq jo sxnoatoo aqBuxpxooo aqq axe

(ID





suoqoaA jo dhoa:§ b jj * % soBds aqq jo soe'dsqus (uBaircx) b aq oq pres st

f qas eiuBS aqq jo uoqoaA b jrssqT st qas sqqq jo suoqoaA aqq jo uoTqBupq

-moo uBatrcx &xe qaqq qons
U
y -qjj X suoqoaA jo qas v 'isaoBdsqas *1]

•sp-roq (£x)
ff *0*T f .^Y » x

sapiu aqq -£q,
s ptre s

Y.. x a x
iL Jj 4 Jj

• 0 f |a|
4 # s’T fquap

*]•

-nadapux iCxqB9UTI aj:B ‘® sqq aouts * sqspca qOTqw. ‘

a *£q. ^TdTqxruuqsoj

’Vi**
•

ut (£x) §UT.sn ‘pue 4

aT
x = a rx os

4 Jj 4 SJJ

s
a (.Mi *

UXu IDT[

a X

IDTX

(91)

’a* t

u

a

©

M
9>

•

|

a

zs

[

T

^x ••• ^x ”|x] = M
U u
«
9

.
x + + + hJ*

r u
[
x

U u
© X »

.

’X ^x]

. + ^a^x + ~®*a"*-x

Y
1

uxu uxu

X

UXU

(51)

:sb uaqqT.m aq item (ox) uoanauaqjq





"ssoisdsqns papAxup sb uiaqp puaSau ppaqs ajq ‘uoxpxuxjap

uno jo asuas aqp up saoadsqns aq qoaa ppxu £ a°eds auxpua aqp jo pasoduioo

pas aqp ospa sa ‘uopoaA ppnu aqp jo Xpapos pasoduioo pas aqp paqp apoq

“aoadsqns aqp jo uoxsuaurrp aqp pa ppa o sp uaqiunu paqp ° p uiauoaqp

jo pq3pp aqp up 5 uoxpoapas spp jo uauuaui aqp uo puadap pou ppm spsaq

a Suxuiuoj suopoaA jo uaqmru aqp naAauQq; ‘spseq a jo aopoqo aqp up apnp

-xpap qonui sapaoxpup qpuoj pas Supuoseau aqp paqp pajpreuiau aq ppxu pp

* spseq uno

paponupsuoo aAaq ppaqs an f *a®p ‘aoadsqns uno psnaqxa suoppaupquioo uaauxp

upaqp paqp qons ^x
6

<>«>»
‘
4[ suopoaA jo uiapsXs appupj a paponupsuoo aAaq

snqp ppaqs af& “suopoaA puapuadapixp iCpuaauxp u uaqp auoui aq pouiieo auaqp

aoads aqp up uoj ‘jCqqauxuiuapux uo o3 pouuao ssaooud aqp 8 qpuoj os pua

‘uiaqp jo puapuadapup iCpuaauxq punoj aq ppm uopoaA a ‘aoadsqns aqp psnaqxa

p t T
pou op Xaqp jp s^X P

TJB X J° suoppaupquioo uaaupp jo pas aqp uapqsuoQ “ L
x

jo puapuadapup Xpuaeupx ‘'punoj aq pqpw. °x uopoaA a ‘anup sp Zreupuoo aqp

jp
8 spsaq spp suiuoj uaqp "*-x

e aoadsqns auxpua aqp psnaqxa asaqp jp “"^x0

muoj aqp jo suopoaA ppa t8 a# i Suoppaupquioo uaaupp spp ppa uapxsuoo pua

‘ouaz uiouj puauajjxp ‘"^x uopoaA Xueuppque ua psuxj ajfap “uauuaui Sumoppoj

aqp up spsaq aqp ponupsuoo sn pap “aoadsqns auxpua aqp psnaqxa Asm auo

qopqM. jo suoppaupquioo uaaupp i£q ‘suopoaA puapuadapup Xpuaaupp jo pas a sp

auaqp paqp ‘®a“p ‘aoadsqns ^uaAa up spspxa spsaq a paqp uoqs ppaqs ajp

8
Q ‘ .o.

‘ l
q suopoaA jo uiaps.^3 aqp Aq pauuads aoadsqns aqp aq op ppas

sp uauuaui spqp up apqpponupsuoo aoadsqns v “aoadsqns a apnpxpsuoo iqsnoxA

-ci0 TIP* waqp jo suoppaupquoo uaeupp apqpssod ppa jo pas aqp uaqp ‘uaAx§

aq—puapuadap jCpuaaupp ueAS uo—puapuadapup uCpuaauxp aua paqp ‘ ...
f

- 9H -

’ll





°JJ T 0M
e

£”ZS °dd '[I]
5 *3* a c

09S
t

° XTjqera aqq ic qirej aqq
1

qqpi sapTOUTOO e sraimxoo quepuadipuT ipj'6911!! jo jlTqiinH mmpciw aqq qsjb sb

‘xpiqBw b jo sx-io j quapaedapiiT Z^OBaurp jo lisqprui umurpreiu aqj o

H3H0aHI

gpTjBA st msjoaqq qtreqjodiuT Sumopjoj aqj

e (J < HI ‘XTJJBUl

X m jBxnSuBqoaa b jo c 9QUBqsuT joj f asBo aqq up sb) axqesoduioo qou ajB

ao oaaz oq X8^9 9**b «iaq3Tq puB p + j aapao jo sjcutui XT8 qraq «*9p*io jo

jouTiii cjaz-uou b s-qspca eoaqq xtjjbtjj aqq jo s-jouttii aqq 3uoure q-euq qons j jaq

-umn b st XTjqeni b jo qtrea aqq ^spaow, jaqqo u.r *y xpiqBut aqq jo quBJ aqq

paXXs0 ST j:9P^o qsaSjBx jo st jouthi SurqsTtiBA-iToii jcaAaqBqm jo japan aqj

• quamaSuBJJB TBJnq'eu itaqq irt * y xrjqBUi

aqq jo sinmpoo q x&ib puB smoj q £jjb jo suqxqoasj:aqut aqq jb paqBnqxs squaw

-aqa aqq jo pasodwoo japjo qq-q aqq jo quBuxwjaqap b st y xruqBw aqq jo q

aapo;o jo joutui b cXx+oexa ajopj 0 xTuqBW sxqq jo jqutw b papist st xtjjbui b

jo STtiunxoo pnB shoj. am „q t

j

sl
sraunpoo puB shot asaqM. quBuxwuaqap duy

« V

S
Y xtjjbui JT'xr^uBjoaj

£wa oq aq.BTjdo.tddB s qtrea: jo qdaouoo quBqjodwx aqq aonpojquj Qpi “xpHriu b

jo qiiBJ aqq pm? aoBdsqns e jc uoTS-uawxp aqq u©55qal^ uorqoauuob aqj

-in -





From this theorem it follows directly that the dimension of the sub-

space spanned by the vectors Up
,

U, equals the rank of the matrix

composed of the elements of these vectors.

In proof, if the rank of a matrix whose columns are the components of

the vectors IL, ,
000

5
U_ equals r, then of these m vectors r will be linearly

independent, and these mil correspond to the linearly independent columns of

the matrix,? all the rest of the columns will be linear combinations of them.

Any vector subspace is a linear combination of the vectors Up •••
, U

,

which are themselves linear combinations of but r selected linearly indepen-

dent vectors. Consequently any vector is a linear combination of r vectors,

and therefore the rank r of the matrix in question coincides with the dimen-

sion of the subspace s

13. LINEAR TRANSFORMHONS

l„Let us associate with each vector X of a space a certain vector Y of

the same space. Such an association we shall call a transformation of the

space. We shall designate the result of the application of transformation

A to the vector X by AX.

We shall call the transformation A linear if

1* A{©$X) - ^ AX, for any complex number <©<j

2 . aCx^ + X
2
) - AX

t_

+ AX
2

.

We shall define, furthermore, operations upon linear transformations. The

product of the linear transformations A and B, AB = C, will be a transfor-

mation constituted by the transformations B and A in turn, B being com-

pleted first, and then A.





The product of linear transformations is a linear transformation, as

is readily seen, since

X, + X
2
)) s aCB^ + BXg)

(1 ) + ABX
2

» CX
3

* cx, ,

C«<X - AB^X • A«*BX - ^ABX « ^ CX

The siM of the linear transformations A and B will be a transformation

C which associates the vector X with the vector AX + BX» This sum of

linear transformations is obviously itself a linear transformation.

2 e Representation of a linear transforation by a matrix . Let us

choose, in the space R ,
some basis e^, e-1}

ee
*

,
©
r

. A linear transfor-

mation relates to the vectors of the basis the vectors Ae„ , Ae~, *»»
, Ae 8

Let Ae ...

(
,

° • e
, Ae be given in terms of their coordinates with respect

to the basis e^, e0 ,
e^, i,e 6 , let

j
Ae

1
e
l

+ a
21

e
2

* + a
nl

e
n

( 2 )

Ae0 • a
i2

e
l

+ a
22

e
2

+ s °° + a-^e

e © & © e o o

n2 n

o o e

Ae
n ^n6

!
+ *2**2

+ * ann
e
n

Consider the matrix A, its columns composed of the coordinates of

the vectors Ae, , Ae0 ,
® •

• , Ae %
== ± = d 7 — n
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( 3 )

TLL
a
n2

We shall show that the matrix A uniquely defines the linear transforma-

tion

1

„

Indeed, if the matrix A Is known for the linear transformation, I.e e ,

if Ae„ , Ae«, c ° 6 ° Ae are determined, this is sufficient to find the transfor-” l 9 — 2' — n 9

mation of any vector, for if

(3a) X “ x
1
e
1

+ + x e
r ,

then

(3b) AX x, Ae1
+ x. Ae

n- n

Hent the coordinates of the transformed vector are easily found, for

we have

(3c) AX
n

k-1

n

k k
x.Ae.
i— i

n n
2 2 a. oX.e,

. . ,
_ ki i k

i"l k“l

whence

(3d)
5'k

' A VX
i »

1-1

1
Author ? s remarks

Mote, however, that the matrix of the coefficients in the relations

(2) forms a matrix which is the transpose of that that we connect with the

linear transformation





$1

or, in matrix notation.

(U) y “ Ax

where y and x are columns of the coordinates of vectors Y and I.

Conversely, an arbitrary matrix A may be connected with a certain

linear transformation „ Indeed, the transformation given by the formula

where y and x are, as above, the columns of coordinates of the vectors Y and

X, is linear for any matrix A.

The established one-to-one correspondence between transformations and

matrices is preserved when operations are performed upon transformations,

for the matrix of the sum of transfomat-ions equals the sum of the matrices

of the summand transfo rtnati ons , and the matrix of a product of transforma-

tions equals the product of the matrices corresponding to the factor trans-

formations ,

3 « jhe connection between the matrices of a linear transformation with

respect to different bases 9 We will now elucidate how the matrix of a

linear transformation changes with a change of the basis of the space.

Assume that from the basis e_
,

* «

° ,
e we have passed to the basis

e* ,
* • • „ e

?

,
and let

(Ua) y s Ax
,

1 ’ll
6
!

+ c
2X

e
2

(lib)

© 9 © O
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that is*

E - C E

The coordinates of any vector of the space will have changed accord-

ingly by the formula

(lie) x ** Cx" *

where

The matrix of the transition* C, is evidently non-singular. It -trill

coincide with the matrix of the linear transformation sending the basis

e_
, e„, •••

, e into the basis e* el, , el
l ? 2 5 J n l } 2’ 9 n

Let us low consider a linear transformation A. and let the matrix A

correspond to it with respect to the basis e,* e0 *
•••

*
e *

and the matrix

ft f

3 with respect to the basis e. , e„, , e „
i ’ d 3 3 n

If x is the column of the coordinates of the vector X with respect to

the basis e,^
,

•••
* ,

and x
?—-with respect to the basis en ,

•»*
*

e^,

y and y ! being the analogous columns for vector Y

,

we have

(he)
Y m Ax

y ? - Bx !
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But x s Cx 5

, y - Cy 8

,
and therefore

(Ilf) Cy ! ~ ACx*

or

(Ug) y* - Bx s » C “ACx"

Thus similar matrices correspond to the same linear transformation with,

respect to different bases. Furthermore, the matrix by means of which the

similarity transformation is effected coincides with the matrix of trans-

formation of coordinates,

iu The transfer rule for a matrix in a scalar product . Let X and Y

be two vectors given by their components with respect to the initial basis:

X = (Xp 0 8 0
?
xv-,)s Y s

(y, , 5 Yn) 3
and let A be a linear transforma-

tion with matrix A 3 (a,^) . Designate by A‘ the linear transformation with

matrix A
"

9
the elements of which are the complex-conjugates of their counter—

parts in A, and which are placed in transposed position: A' -

* OOVE3UBT t
y

-x=n=ssx=> .

)
s

(, . ) , We shall prove the following formulas

(50 (AX, Y) 3 (X, A*Y)

In demonstration, we have

(5a) (AX
3
Y)

n n
2 2

i-1 k“l
kV:1 .

Z
. \ * Vi * (X ’

K3± 1”1





5„ The rank of a linear transformation e Let A be a certain linear

transformations The set of vectors AX trill obviously constitute a subspace

,

which we shall denote by AH *— n

The dimension of this subspace is said to be the rank of the transfor-

mation A,

We shall show the rank of a transformation to be equal to the rank of

the matrix corresponding to this transformation on any basis whatever,

e^
s

e,
; ,

•••
,

e
n „ Obviously the subspace AR^ is spanned by the vectors

A'e^, Ae,.
, t

Ae
r „ The dimension of ARv .

is accordingly equal to the rank

of a matrix whose columns are composed of the coordinates of the vectors

jUi, AeOJ •»«
3

Ae,
f
,_» i.e CJ to the rank of a matrix corresponding to the trans-

formation .

Since the dimension of a subspace does not depend upon the selection of

the basis, it follows from the foregoing that the ranks of similar matrices

are equal,,

6„ The latent vectors of a linear transformation ., By a latent vector

( characteristic vector
,
proper vector or eigenvector ) of a linear transfor-

mation A is meant any non-zero vector X such that

(6) ax Ax ,

where X is any complex number

«

The number is called the latent root ( charac teristic value
3
proper

value
,
or eigenvalue ) of the transformation. The spectrum of the trans-

formation is the aggregate of its latent roots

•



.



The latent roots and latent vectors of the transformation may be

determined in the following maimer,. Let the transformation A be connected

•with the matrix A - (a^) with respect to some basisj let the coordinates

xof the latent vector X
3
with respect to this basis

}
be e »°

,
_

The coordinates of the vector AX will then bes

(6a)

Tl

auA
,k<L
\

n
* 9 « - 2 a , x,

\
* k=l

h* ^ 1

and thus for the determination of x,, , x and the latent root
l.

5 d 5 n

we will have the system of equations;

X

*11*1 + “12*2 + 800 + Vn s Ax
l

( 7 )

a^Xj + + 080 + a
ZrT

~ Ax,

t) e o © ©

E 2C-,
x

3. A +
ruL j» Hit d>

o e o o

c + a x
nn n

Ax
n

(a
'll

x, + a, + 000 + ajn
x " 0

( 7
s

)

211 ^ 2£
) x, + ••• + a0„ xv * 0

^ dxi n

© e o o e o e o o © o

a _ X-, a eytLtr*
^ 6

nl jl n2 d m x * 0
n

This system of homogeneous equations in x^ s s
x^ will have a non-zero

solution only in case





i.e., if a is a root of the characteristic polynomial of the matrix. Thus

the following is valid %

THEOREM* 'The latent roots of a transformaid on coincide with the roots

of fhe characteristic polynomial of the matrix th at is connected -with this

transforma tl ,.n with respect to an arbitrary basis .

From the theorem often called the fundame il theorem of higher algebra,

we know that every polynomial has at least one root* A linear transforma-

tion will c: .‘.sequently have at least one latent root, which may be complex

even though the matrix of the transformation be real* In view of the theory

of linear homogeneous systems of equations, there will be a non-zero solu-

tion of system ( 7 ) for each latent root, i.e., with each latent root at

least one latent vector is associated,

Obviously if X is a latent vector of the transformation A, then, for

all c / 0, cX will also be a latent vector of transformation A correspond-

ing to the same latent root. Furthermore if several latent vectors corres-

pond to seme one latent root, then any linear combination of them will be a

latent vector of the transformation associated with the same root* The set

of latent vectors corresponding to a single latent root forms a linear
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slibspace „ We shall establish that its dimension, %, dees not exceed the

multiplicity of the latent root* Indeed,, let X,
,

” oe
, 1j be linearly

independent latent vectors corresponding to the single latent root A

«

Construct a basis of the space 000
, X , having taken as the first %

vectors the vectors X, ,
• °

° , Xy* With respect to this basis the linear
J- ' JL

transformation under consideration is connected with a matrix whose first

columns have the form

i =, 0 o » !> 0
"X

(7'b)

'1

© o o o © o

0 0 e © ^„

e> 9 ©

0

5
AXy - X

x
X. Now (X - iis a factor of thefor AX, - °

characteristic polynomial of this matrix, and accordingly A., is of multi-

pliediy k not less than % 9 i 0e« ? % ^ k« It would naturally be supposed

that % a k, i„e<,
3
that to a k-multiple root of the characteristic polynomial

there correspond k linearly independent latent vectors „ But this is in

fact not true* In reality ,
the number of linearly independent vectors may

be less than the multiplicity of the latent root®

Let us confirm the preceding statement with an. example e Consider

the linear transformation with the matrix
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(7«e)

/

3
. /
/

Then ]A - A l| - (/' - 3 )"

,

and thus A. 3 3 is a double root of the charac'

teristio polynomial

.

The system of equations for determining the coordinates of the latent

vector of the transformation A will be?

3x- + x, “ 3x.
i jl

(7’d)

3x
2

s 3x9

whence x~, - 0, and thus all the latent roots of the transformation in ques-

t-ion will, be (x^, 0) = 3C^ (1, 0) „ So in this instance only one linearly inde-

pendent- vector is associated with a double root.

Generally speaking, the coordinates of a latent vector on the chosen

basis are to be determined from the system (7) of linear equations, in

which for X the latent root A is substituted* But as is known from the

theory- of systems of linear equations, the number of linearly independent

solutions of a homogeneous system equals n - r, where r is the rank of the

matrix composed of the coefficients of the system. Therefore if r denote

the rani-; of the matrix A - A I, % - n - r e Thus n - r - k, and the

equality does not always hold.

In case the basis does not change in the course of the argument, we

shall often identify the linear transformation with the matrix of the
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linear transformation with respect to tills basis, and any vector space

•with the columns of its coordinates.

On this agreement, it makes sense to speak f a latent -rector of a

matrix
9
understanding by this a column x satisfying the condition

(

7

? e ) Ax ® A x „

We remark that if a latent root of a real matrix is complex, the co-

ordinates of an associated latent vector will be complex,, A vector whose

coordinates are the complex-conjugates of those cf a given latent vector

of a real matrix, is also a latent vector of that matrix, and is associated

with the complex-conjugate latent root. To convince oneself of this, il-

ls enough 'to change all numbers in the equation Ax " Ax into their complex

conjugates

,

7 » Properties of the latent roots and vectors of a matrix , We shall

establish several, properties of the latent roots and vectors of a real

matrix.

First of all we note that a matrix and its transpose have identical

characteristic polynomials and consequently identical spectra. This is

evident since \k" - Alj ~ jA - AI
j 5

on the strength of the fact that a

determinant is not altered when its rows and columns are interchanged,,

Now let and A denote distinct latent roots of the real matrix

A, and A „ the complex conjugate of A , As we saw above, A„ is also a
i S 3

latent root of matrix A, and thus also of the transposed matrix V „ Let
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A be a veeio'i - the nix A belonging to the latent root A^,

and X* the latent vector of the matrix A- belonging to the latent root A
s s

¥e shall show that I and X are orthogonal

.

I* g;

? .

With this object in view, let ns form the sea', ar produce (AX , X )
3. S

and reckon it by two methods.

By one method the reckoning is

(7>f) (AX , x’) - 0. pxr , ip - >r(xr,
x’)

*
On the other hand, since matrix A is real, we have A 35 A ?

,
and therefore

,7’g) (ax , xl) - (X, A *X *

)

- (x , A xl) " Ajx . Xl)

'Thus A (X , X '} ~ (X . X
" } . But the condition was that A A A „ and

r r 3 s s r 3 s v s ?

therefore (X„,, X’,) * 0, which is what was required to be proved*
T' s

In case all latent roots are distinct, the demonstrated property gives

2
i - n relations of orthogonality between the latent (rectors of matrices A

and A 5
* We shall later return to these properties in more detail,*

Foi a real symmetric matrix, the properties of orthogonality are con-

siderably simplified thanks to the fact that all its latent roots are real.

In proof, letting A and X be respectively latent root and vector, we have

(AX, X) - A(X, X)j (AX, X) - (X, A
T
X) - (X, AX) - (X, Ax) - X (X, X),

Thus (A - A)(X, X) * 0, and as (X, X) > C
9 X ~ X ,

i.e., A is real.

From the reality of the latent roots of a real symmetric matrix it fol-

lows that vectors with real components may be taken as the latent vectors
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belonging to those roots; the components mil indeed be found by solving the

linear homogeneous system with real coefficients

.

The orthogonality property of the latent vectors of a real symmetric

matrix is very simply formulated in view of the coincidence of the matrix

with its transpose and the reality of the latent roots, viz .

2

latent vec-

tors belonging to dis tinct latent roots are orthogonal .

8. The latent roots of a positive definite quadratic form . A homo-

geneous polynomial of the second degree in several variables i,, •••
,
x is

called a quadratic form . We shall consider only those with real coefficients.

Ary quadratic form may be written as

(7 ? h)

n.

£ W> x2> "•
>
x
n ) '

. -h a
ik
x
i
x
k •

i.k=l

where a,. «

A quadratic form is said to be positive definite if its values are

positive for any real values of x,,
9

no^ all zero.

It is evident that the diagonal coefficients of a positive definite

form are positive, for

(7*i)

^11 IKI3 ***
9 ^3 a

22
” 1

a
nn

22

(0 , 0

. ... (

1

)

9 •‘-9 3 •' 5

3 ^3 1
3 *

Denoting by X the vector with components (x^,
,
x
n ) 3

we "write

a quadratic form as ( AX, X)
,

A. being the matrix composed of the coefficients

"See, e.g,, [1], §10.5 ff
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of the form. This matrix is symmetric
, on the strength of the definition,,

The latent roots of the matrix are called the latent roots of the quadra-

tic form* In view of the previous results, all latent roots of a quadra-

tic form are real e

We shall show that if a quadratic form is positive definite , its latent

roots are positive »

In demonstration, let X be a real latent vector, belonging to X, a

latent root of the matrix of the form* Then, since the form is positive

definite, (AX, X) > 0 o On the other hand, (AX, X) - X(X, X)

.

Thus

(?
?

j) X - c

(x.x)

But both numerator and denominator of this fraction are positive, and con-

sequently A > 0, which is what was required to be proved*

Let there now be given any real, non-singular matrix A* Obviously

B * A 5A is a symmetric matrix, since B ! - (A ?A) ? * A ?A" - A’A - B»

We shall show that a quadratic form with matrix B is positive definite.

We have, ind.eed,

(? s k) (BX, X) - (A 5AX, X) - (AX, AX) > 0

for any real vector X„

We shall establish, lastly, that if A is the matrix of a positive

definite quadratic form, (AX, X) > 0 even for a complex vector X.

In proof, let X = X + iZ, where Y and Z are vectors with real compo-

nents 6 Then
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(AX, X) = (iff + iAZ- , T + iZ) »

(7*1) * (AY, Y) + ±(AZ, Y) - i(AY, Z) + (AZ, Z) =

- (AY, Y) + (AZ
,

Z) > 0

because (AZ, Y) - (Z, AY) - (AY, Z)

.

In complex space, instead of the quadratic form one deals with

an Hermitian form, an expression of the type

(?»m) a,., x.x.
rk a, k

i/t-CL

under the condition that a, .

Kl Ik 1

The matrix of an Hermitian form is called Hermitian (or Hermitian symme-

tric); a linear transformation with an Hermitian matrix relative to an ortho-

normal base is called self-conjugate . It is obvious that

<7 in) 2 “ (AX, X)

To show that all the values of an Hermitian form are real, we have

only to note that

(7 f o) (AX, X) - (X, A*X) - (AX, X) .

If all the values of an Hermitian form are positive, it is called

positive definite B

It can be shown that the latent roots of an Hermitian matrix are

real , Ihe latent roots of a positive definite Hermitian form are positive ,

^See, e„g e , [1], §30,9





9 6 The redaction of a matrix to diagonal form . Let us consider the

matrix A all of whose latent roots, A-, ,
•••

s
are distinct, and the

transformation A connected with it with respect to the initial basis . It

will, have n distinct latent vectors X. ,
*»*

, X . w
T
e shall show that the

i 5 5 n —

—

vectors X- ,
•

•

a
,
X are linearly independent .

Assume the contrary: let the vectors X-, , , X^ be linearly depen-

dent. Without detriment to the generality we may assume that the vectors

X- ,
•••

, X,
,

'where k < n, are linearly Independent, and thus that the

vectors X, are linear combinations of them.. In particular,

let

( 8 )

K
X * 2 c.X. sn « - x a.

9

i-l

then

( 8a) AX
n

k
A

_

2 cA1-1

k
2 X .c.X.

. iii

On the other hand,

(8b) AX 4 X - 2 c.X.m n n n . „ nil
i-l

wnence

( 9 ) 2 (A - X.) c.X. » 0 .
. - ' n x x x
1

.

SJL

But r K i
on assimption. Bins, since the vectors X. are linearly in-

dependent, all the coefficients c. equal zero, and therefore X_ - 0,
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which. contradicts the definition of a latent vector. So the vectors

X,, X-j, »•*
, X. are linearly independent. Let us adopt them as a new

basis of the space. With respect to the new basis the linear transforma-

tion A will be connected with a matrix whose columns are composed of the

coordinates of the vectors AX.,, AXg , } AX
r
with respect to the basis

X
l>

X2'*

But

,
X .

’ n

(9a) «v * XA »

’
X
“I'

and the matrix of the transformation of the new basis will consequently be

diagonals f\> '

So the linear transformation A has, with respect to the initial basis,

the matrix A, and with respect to the basis of the latent vectors, the

diagonal matrix [Ap

been noted above.

Accordingly, on the strength of what has

(10 ) v
_1w - [A^ ,X

n ] ,

where V is the matrix whose columns are the coordinates (with respect to

the initial basis) of the latent vectors.

Observation . If the latent roots of a matrix are cf multiplicity

greater than one, but to each latent root there correspond as many latent

vectors as it has multiplicity ,
the matrix may also be reduced to diagonal

form. This will be the case, for example, with symmetric matrices? it

can be proved that to each latent root of a syrmne trie matrix there
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of the latent root a Moreover, the linearly independent latent vectors be-

longing to a single latent root may be subjected to the orthogonalizing

process,, We have seen, too, that the latent vectors of a symmetric matrix;

that belong to distinct latent roots are mutually orthogonal* Thus for a

symmetric matrix it is possible to construct an orthogonal, system of latent

vectors forming a basis for the whole space*

The question of the transformation of a symmetric matrix to diagonal

form is closely connected with the theory of quadratic forms*

10 e J-kg latent roots and latent vectors of similar matrices * It

has been established that similar matrices have identical characteristic

polynomials, and consequently identical spectra of latent roots.

We have explained the geometrical cause cf this circumstance, vis 0 s

similar- matrices maybe regarded as matrices of one and the same transforma-

tion, referred to different bases. Therefore the latent vectors of similar

matrices are columns of the coordinates of the latent vectors of the trans-

formation under consideration, with respect to different bases, and are

-1
thus connected by the relation x ? s C x, C being the matrix of transform

mation of coordinates* This circumstance may be verified formally! if

be the given polynomial 9 Then the latent roots of the matrix will be

Ax - Ax, (cf^AC) (Cf
1
*) « A(C X

x)

11* latent roots of a polynomial in a matrix * Let A be a matrix

with latent roots oee
,
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This is readily established for a matrix all of whose latent roots are

distinct. Indeed, such a matrix can be reduced to diagonal form by a simi-

larity transformation:

(10. a)

a ceordingiy

,

(10 .b)

Eut

(10 .e) Cj)( ' A
1 !

A
nJ

) ’

which follows from the fact that

(10 .d)

onsequently

,
•••

,
x ,) » 2

k"o
(10 .e)

k
n I

m
Z

m
1 k

a, A=, ,
* * •

, K l 5
.

kso kso

Tims the matrix
(f( A) is similar to the matrix 1

--f ( A , ) s , y ( A n)
j

and accordingly its latent roots are ^ ( X .

1; ) , (j?(A
?),

° -

° , ^f(X 9

Q «E ,D

.
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This result remains true for any matrix:, of which one may readily con-

vince oneself, for example, by considerations of continuity,

k k
We particularly note that the latent roots of the matrix A are A .

12. The normaliz ation of the latent vectors of a matrix . The second

group of orthogonality relations. Let A be a r-eal matrix whose latent

roots, A
,

A
ri ,

A
,

are distinct, and let X, , X~, ,
X be the

JL n X d, TL

latent vectors corresponding to than. As we saw, the transposed matrix,

A*, has the same latent roots. Let X^ ,
X*., • -

• , X
(

.
be the latent vectors

of the matrix A T

,
and their enumeration be so chosen that X. and X^ belong

to complex conjugate roots. We established above that the following or-

thogonality relation holds? (x! , X,) ® 0 for i ^ j. We shall show now

that, having chosen X, , X,» , X^ in any manner (they are determined but

for a numerical multiplier), we may norm the vectors X.

(xj! s x
±) - I.

In demonstration of this, the vectors X,, X9 ,

l 9 , Xn
so that

X are known to
n

be linearly independent, and they accordingly form a basis of the space.

Resolve X. in terns of this basis?
r

x: Txxi
+ Xo + + TI

0 nn n

j r

»

Forming the scalar product (X., X-
)

,

we obtain
,-L 2.

(x!. x!)

(10 .g)

h(x
i> V + — + Ti(xi + - + rj*±. xn V1
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whence we conclude that (x! , X.) - ©<. / 0 , for (l!
<,

X. ) > 0 BXX XX
Adopting instead of the vectors X, 9

••• 3 X
Vj

the vectors

X.,. 5
we arrive at the required normalization^ since

(10 Ja)

From the relations of orthogonality and normality set forth above, we

may extract another group of relations between the components of the latent

vectors of the matrix A and its transpose

»

Form the matrices

(10 .i)

X 5

All x
2i

*°* xni\
? ? 7 1

*12 22
X
n2

V
*1

t ? f

« • e x
n d.n nn

and X

Tl X
12

* * *

X~, 8 * * X,

\
2n

5 /
x x

nn
' \

Tne columns of the matrix X are composed of the components of the vectors

X=j
j

88e
, X,.. . The rows of the matrix X s are composed of the numbers complex-

conjugate with the components of the vectors X=j s 3 X^ . (We observe

that the numbers that are the complex conjugates of the components of the

vectors xl
3

688
3 X.'

;

are the components of the vectors xj ,
8 8 8

3
xj.

,
and

will also be the latent vectors of the matrix A ? that belong to the latent

roots A.. ,
88 •

,
A 6 Thus the i-th row of the matrix X s and the i-th

I s 3 n

column of the matrix X are composed of the components of the latent vectors
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of the matrix A 5 and A belonging to the same latent root A, and not to

latent roots that are complex conjugates of each other.)

It is readily seen that-

.) X'X - I

for we have the element of the i-th row and j-th column of the matrix X !X

n ^
equalling 2 jl .x, .

33 (X., xl) 33 v where is Kronecker 1 s delta;

k-1
“-^3 3

s
3 li 5

,
i / j A

ij -
.

I
.

Thus X ! and X are mutually inverse matrices
,
and ac-

cordingly XX 5 is likewise equal to I. This gives a second group of ortho-

gonality and normality relations between the latent vectors of the matrices

A and A

’

5
viz ,

;

(l
r
c

X
il
X
jl

+ X
12
X
j2

+

%o ,1.' + x.~x.
!

« +
il il i2 x2

+ X. X.
in 311

+ X. X.m in
1

Thus for a matrix of the second order the ordinary conditions of orthogon-

ality may be written in the form (we preserve only one index of the compo-

nents of the latent vectors, designating the first components by the

second by 7 )

;

(12 0a)

XyX^ + I - 0

+ y«y^’ - 0 ,d 1, C, JL
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and the normality conditions

(12 .b)
v0 nr* 4*

The new relations will be

(12 .c)

Observation . In case the latent roots of the matrix are multiple, and

to each latent root there correspond as many linearly independent latent-

vectors as the multiplicity of the root, these indicated properties of the

latent vectors hold as before*

We have proved above that if a matrix has n distinct latent roots,

it may be brought- into diagonal form by a similarity transformation* Given

the presence of multiple roots, however, such a transformation may not al-

ways be possible* Nonetheless the question whether the form may possibly

be rendered more simple via a similarity transformation can well be put e

The problem is equivalent to discovering a basis with respect to which the

linear transformation connected with the given matrix would have a matrix

of simplest form, and the latter proves to be the Jordan canonical form*

Proof of a fundamental theorem to the effect that any matrix may be

brought into the Jordan canonical form by a similarity transformation is

§U. THE JORDAN CANONICAL FORM
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rather complicated and we will not dwell on it here. The gist of. it is

stated, for instance, in [2], i3.l6| a scholarly presentation is available

in, e„g„, [3], Chap. ?-YX. We shall limit ourselves to a description of

this canonical form.

A matrix--most commonly a submatrix““Of the following form is called a

On its principal diagonal the single number A, is eveiywhere to be found

;

directly under the diagonal (in the subdiagonal ) are disposed elements that

are all units; all the rest of the elements are zero.

A canonical box cannot be simplified by utilizing a similarity trans-

formation. It is obvious that a canonical box has the sole multiple latent

root X. . It may be easily verified that a canonical box has only one

latent vector. The minimum polynomial of a box coincides with its charac-
m.

teristic polynomial ,
viz,, it equals (\ - A,.) " where is the order of

the box. The J ordan ( classical ) canonical form is a quasi-diagonal, matrix

composed of canonical boxes

s
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\ 0 0 ••• 0

i X
1

o • o

0 1 A, • » • 0

(2 )

X o o * • • o
s

i A o o
s

o i A ••• o
s

tt O 6 d • • o

o o o • • * X
s

It is admissible that the same number A^ appear in several canonical boxes.

All the numbers appearing in the different boxes are latent roots

of the canonical matrix
,
and the multiplicity of the latent roots equals

the sum of the orders of the boxes in which it figures as diagonal element.

In proof of -this, by the theorem concerning the determinant of a quasi-diagona

matrix, the characteristic polynomial of the canonical matrix equals the

product of the characteristic polynomials of the separate boxes, each of
m.

them equal to (A - A
. )

x
where A, is the latent root and m. is the

order of the i-th box. Hence follows directly the statement under proof.

The determination of the Jordan boxes for a given matrix A presents
m.

certain difficulties . The characteristic polynomial "f~[ (A - A )

L

coincides with the characteristic polynomial of the original matrix, and
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it is consequently possible to find it without knowing the canonical matrix

itself 5 Nonetheless, a knowledge of the characteristic polynomial still

does not make possible the complete determination of the canonical form, for

to a latent root A, of multiplicity k, there may correspond several. Jordan
i i

boxes containing this number as a diagonal element, and regarding them only

the sum of their orders will be known, not the order of each box in particu-

lar e If the canonical form is to be fully determined, a knowledge of the

’elementary divisors’’ of the matrix must be drawn upon.

Designate by D^( A

)

the greatest common divisor of all the minors of

the i-th order of the determinant |A - Al|. In particular, D ( X) co-

incides with the characteristic .polynomial o It can be proved that all

D
±
(A), as D ( A), are general for the class of similar matrices. It can

be proved, moreover, that D. . ( A ) divides D. ( A ) A

Put

(3)

D. ( A)

D. .(A

obviously

(1)

n

V*> TT *,(*>
i-1

It turns out, moreover, that E ( A )

D ( A )

n
Ti

is the minimum poly-
U_ i \ A /n=l

nomial of the matrix.

Resolve E . ( A ) into linear factors. Then

"See [3], p. 23 ff», [5] 50 ff
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m

.

(5) e.(A) - FT (X, - >) 13
1

3=1 J

n
Here s denotes the number of distinct latent roots, 2 m. . ® k.J
s n i"X J

2 2 m. . - n 0 It is obvious that among the exponents m. . only some will
j=l i=l

different from zero „

Translator’s Note . It may be helpful to the student to have in

extenso a synopsis of the relations of these important entities

s

D ( A )

07 ' E
n( A )sD .

n-1

Thus

|D» is the (i“th) determinantal divisor of D^j

|E,= is the (i-th) invariant factor of 0

D
n
(A) C

n-1
(A) E

n
(A)

and, in sequence.

D ) “ D „( X) 0 E .( \) ,n~l /
rt"2 n--l

N ‘ 5

*©©e©o«»®do
d
3
(a) - d

2
(70 . e

3
(A) s

d
2 ( A ) - D

1
(A) - e

2
(A) ,

d
x (A } - -

Reversing our view of the developments
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)

d
2
U)

d
3
(X)

,

Di( X)*E
2 ( A)

D
2 ( A)«e

3
(A)

76

= iij( A )*Eo( A)

A)*e2 ( X)-e^(A) - flE.(X)
i-1

n

(6) r>
n ( A )

s d - ( A ) *s
n ( A ) » Ej(A) e ( A ) = FT A ) *

i=l

Consider now that each E. is factorable into linear factors
1

holding the s distinct latent roots These factors may be mul-

tiple, or may not appear in the given E., (multiplicity = 0):

m., m. 0
e.(A) - (A - A

1 )
xl

- (A - A 2 )

I:
m.

( X - X )
15

s

(7) m.

(A - A .)
13

3=1 3

Hei e m. . is the power (perhaps zero) of the j-th distinct linear

factor of E^; there are s of such powered prime factors, each of

which latter is called an elementary divisor of D ( X ), since, using

( 7 ) in ( 6), we have

n ns m. .

d <X) - nyx) - n n ( x - K) 13

i«X
1

i-1 j-1 3

Since there are n latent roots of D (A) a
some perhaps multiple,

n s

2 2 m. . = n.
i-1 j*l

13

Since the linear factor for the j-th latent root, ( X - X.)
9

J

may appear in more than one E., —a total of k. times, in fact, we
n

have 2 m. . = k . e

i-1 13 0
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It is usual
,
on behalf of greater generality ,

not to limit

one’s concern to D (A) - JA - A I
i }

but to conceive D^( A ) as a

matrix all of whose elements are polynomials—-of whatsoever degree—

with coefficients in some specified field, rather than, as here, a

matrix whose diagonal elements only are polynomials, and those of

the first degree, 'Hie above treatment, otherwise unaltered, then

has as its subject such a generalized D,
a
(*), a.

’’lambda matrix”

,

as it has come to be spoken of.
m. .

The binomials ( A - ^ are known as the elementary divisors of

jA - A I), and, by extension, as those of the matrix A, A knowledge of the

elementary divisors permits us to construct the canonical form, viz.; the

Jordan boxes are constructed by starting from the number A ,, and the orders
3

of these boxes are equal to the exponents rm . The number of boxes contain”

irig A . equals the number of exponents m, .. not equal to zero

,

3 <d

In case the elementary divisors are linear, i.e,, if all the non-zero

exponents m. . are equal to one, the Jordan boxes degenerate into diagonal

elements, and the canonical form turns out to be simply a diagonal form,

wherein, of course, a single latent root will appear as of ten as a diagon-

al element as it has multiplicity as a root of the characteristic equa-

tion.

The converse is also obvious, for it is clear that if a matrix can

be brought to diagonal form, its elementary divisors are linear. There-

fore matrices with distinct latent roots
,

as also symmetric matrices
,

have linear elementary divisors.
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m. ,

If all the elementary divisors (X - 4^)
^ are relatively prime

(which occurs only in case _(A ) = l)
,
each latent root appears in only

one canonical box
?

and the order of the box equals the multiplicity of the

corresponding latent root. Only in this case does the minimum polynomial,

coincide with the characteristic polynomial.

Let us now consider the matrix transforming the given matrix into

canonical form. With this object in view we introduce into the discussion

a linear transformation connected with the matrix A with, respect to the

initial basis. Then the columns of the transforming matrix will be compo-

nents of the vectors of that basis in which the linear transformation in

question is described as a canonical matrix.

Let this canonical matrix have the form





nO
i -s

fj) ('
)

and the order j£ A ec-. 1: re. ; let 1C V..
"

' ,

t’:

' ' he tl-e
m

h\
* » * rr '

$ *v ;

j>

.vf.Tj

7 0 * .V-'
1 .. on t i - - j- onfirij. as tor the

Jr.
• •

' #
EE .A.

*
:

V,
'L

/ *
'-'•“T

‘ „
- •n

(10)

/ ...n

irO) . A «0) + i(0)

~jL

,(iO

o f (T

i-l

\ n(r)1:;"' * A lr.

¥e se bl tors c =1 - s r e 3 a i; ent

rectors matrix, perl , b< proved thal ra.th this

all 111 naep nc 3 of the matri are exhausted, and

consequently bh< number )i rl; iependent j it vectors of the givei

atrix e .
• _ . the numb . L > i Its canond cal fom. In

particular, th ixo 3
' - latent vectors belonging to

the givei late it roe tl uni ra boxes cc taining this

>ot. II i not of . V
'

n the latent root,, and is

e [aal bo ' ix . V i 3, a 3 in < ,
all - . contain-

ing the given 3.atent i rder 1, i 9.e., when .t e c r i spc nc ing

ele- lent, tiviro x are linear.
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§5>. THE CONCEPT OF LIMIT FOB VECTORS AND MATRICES

(
Ji)

Let a sequence of vectors X

Xl)s , (k)
« u ' r> o e <?

'll

(1) ,-(2) M
_u

with components

, :t.

v

;

‘ J

) 3
"»* be given. If a limitXk)

(k)
exists for each <y. moonents list xf ' « ;c, . the vector: X with components

« -h *

iC-400

-v-w y ' — 3
A .... Y

) •)
-x
\K)

and the £ ice i I s sai - bor X. This

written in t .e f-rn: Xv " —> X e, 1:L. X K ' - X.
<p

in ; s.n.i.:
' ashi-

,
gi e i a _ quence of square .matrices

Aj \ A K •••
, A ,

••• with I (ai'P), **”
, (a-^),

— <.

(v
s

he m • i ... .
-• i . . if - bhe ] of theh k—>oo ^

sequence, if all these l±r,tLh eislst.

In n fitb ? definition of a limit, an infinite series

« • * is said '. o b • convergent if
( i ) (?)

vrrsors X • + X'" + • • -

, h
) f 2)

lim (X'-' + X + J

k —v.n
give! series. s

::-r, and sufficient for the convergenc

of a seri rector th .1] s 2 composed of their corresponding

components, i „e * components bearing the same indices, converge, the sms

of the; . ies are the components of the sum of the series of vectors

.

The : . of the convergence of a series of matrices is defined

analogously

,

In appli I Lest . ... 11] i it ts it bo judge not only the

convergence of a sequence or series, but also to judge the rapidity of
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this convergence • With this object in vietr, th: in : .eduction of the norms

of vector ar aatiiees is quite . . „ A norm may be introduced in

diff arent navs „ and in difi

most con .

Goneral•iy, the norm of

! rr
11

1.
A

II
satim;'ying Lxi-3 fc-llo’c-r;

1) ! ] 7 i

.

i
a

( !

> 0 for X

2)
! i \ i

* P. f j h' j

!

•
1

i r i

3)
i
]x

i !

4
1

i j

From requirements 2)

(1 )

indeed, r<
'

i

... equality41
)

3) it is readily deduced that

i I-

. : i -s Si!
•> Sir

! ! ! lx!
*

M il

( 2 )
: j

\r f i

1 PM I

i HrX ”1, 45
1 1

- -
I imi

md '’herefore

(a) j
}

' _ Y !
: 2k ; ) 'r I j i |v

j j

I ! 1
"

I i1
i 1 ! I i i

(U)
i
!- -

I I

1 iy M „ ; l-r i l

i I i

1

I 1 I
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Consequently

(5) ||X - Y|
I
»

!
|x|

I
-

I
|Y|

I
|

„

We shall henceforth make use of the following three ways of assigning

a norms if X s

f
"

1
|x|ill"

(6) < IIo I|I| III
**

( III, IW 1 III
!

max i.
i

1

X H II " 1*1.1 + 1^2 1
+ +

l
x
n i

/ K

1

2
* M 2™

!
x
n i

It is obvious that for all three norms all the requirements 1) = 3)

are fulfilled

,

The concept of the norm of a vector generalizes the concept of the

length of a vector
5
since for length all the requirements 1) - 3) are ful-

filled,, The third norm introduced by us is indeed, none other than the

length of the vector

„

Furthermore
9

it is easily established that a necessary and sufficient

(k)
condition that the sequence of vectors X converge to the vector X is

that
|

|x^ ; — X
|

1
0 for each of the three norms indicated. For the

first norm this is obvious. For the second and third norm this follows

from the obvious inequalities

llxlij £ ||x||n i n ||X||

(7 )

IWIj £
I
|x|

|m « VS| 1x1
I x



.

.

'

_

.

*

..
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It is easily shown that for convergence of a sequence of vectors

X^ to a vector X it is necessary and sufficient that
J

jX - X^^
| |

0,

whatever nom satisfying conditions l) - 3) we may choose. Here, if

X(k) X, ||l
(k)
M—>||I||, for j||X|| - ||X

l -:)

||j
4 ||x - X

(
'

:)

||
--=> 0.

In an analogous fashion, the norm ox a square matrix A is a non-nega-

tive number A satisfying -the conditions

( 8 )

1)
|
|A

| ]
> 0 if A ^ 0 and jjOjj = 0 ;

2) UcAjl = |e||]A|| 5

3) |
|A + B|| *

|
[A|| +

1

1

B
J |

W inn iibii •

Just as in the case of the norms of vectors, the condition
|
|A

"

k ~ A|| - * 0

/•» \

is necessary and sufficient in order that A
K

' — £ A, and. just as in the

case of the norms of vectors, it follows from A^
’ ,;

A that
|

|A^
k;

j |

—^ |

|A
j

The nom of a matrix may be introduced in an infinite variety of ways.

Because in the majority of problems connected with estimates both matrices

and vectors appear simultaneously in the reasoning, it is expeditious to

introduce the nom of a matrix in such a way that it will be rationally

connected with the vector norms employed in the argument in hand. We shall

say that the nom of a matrix is compatible with a given norm of vectors if

for any matrix A and any vector X the following inequality is satisfied

i

(9; !-« ! I

4
I Id I 11*11
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We will now indicate a device making it possible to construct the

matrix norm, so as to render it compatible with a given vector norm, to wits

we shall adopt for the norm, of the matrix A the maximum of the norms of the

vectors AX on the assumption that the vector X runs over the set of all

vectors whose norm equals unity:

(10 )
max

I IdK ! !•« 1

1

I -onsequence of the continuity of a norm, for each matrix A this maxi-

mum is attainable, I 0 e„, a vector X can be found such that
|
jX^

j J

- 1 and

IIAXJI - ||A||.

We shall prove that a norm constructed in such a manner satisfies re-*

quirements 1.) - U), set previously, and the compatibility condition

„

Let us begin with the verification of the first, requirement »

Let A f 0 e Then a vector X,
j
jX

| f

- 1, can be found such that AX f 0,

and accordingly jjAXjj / 0, Therefore jjAjj 55 max jjAXj) / 0„ If,

I |x| l-i

however, A - 0, jjAjj = max
|

jOX I

j

~ 0.

l|iIK
Second requirement . On the strength of the definition,

|
|cA

j j

-

max
j j
cAX

j

max
|
c

j

llxll-x

j
a Obviously

| j
cA.X

j ]
= jc

j

Max
j j

- |c|mx| |AX|
j
- jc

j
jAX

j j
and thus

i
|a

!
!

«

IKII -

Let us verify, furthermore, the compatibility condition.

Let T ^ 0 be ary vectdrj then X s

that
j
jx|| - I* Consequently |jAY|| »

—h— T will satisfy the condition
||l||

||A(||T||x)|! - ||T|| llAxjj «

4
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Third requirement ,, 7or Jie matrix A + B find a vector X such that

I
|A + B

1 1
-

1 1
(A * B)X

c 1 1
and Ijl.jj - 1. Then

)
|A + B H - ||(A + B)Xjj =

”!l*?0 * Br
e |) * Uax

0 |! ||m || *
1
J

a

1 1
||xjj *

|
|b

1 1
||x

0 ||
-

- INI +
1
|B

I i
.

Lastly, the fourth requinemeu » Fox +te matrix AB find a vector X

l|x
0 l|

” 1 eai ||ABX
o ||

»' ||AB||. Then
|| ,||

-

*
I
|a(bx

o) 1 1
*

I
|a

1 1 l|BX
o ||

i
1

1A 1 1
1|B|

| Hull - l|A|| ||b||.

We nave verified the isfaction of all four requirements and the

compatibility condition* . matrix norm c-e as true ted in this manner we shall

speak of as subordinate to the given norm of vectors * It is obvious that

for any matrix norm, subordinate .0 wnatsoever vector norm,
j
jl

j |

s 1 6

Let us now construct matrix noimr subordinate to the three norms of

vectors introduced above,

(n) I.
I
|X|| * -max |x

± |
8

The matrix norm subordinate to -ails vector norm :

rs

(13 )
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Consequently

n

(xu) max llAljS - max 2 la..

|X
| |

S1 1 k-1
^

n
He shall now prove th^t max jjAXjj is in fact equal, to max 2

j

I
|x| 1-1 i k-1

this we shall construct, a vector X such that
|
iX.

]

f

- 1 and
|
jAX

&

n n
- max 2 ja„.,.| e Letting 2 |a..

|

attain its greatest value for
i k-1 ^ k-1

iK
« a

( P 4- V* rpAi.+ rtw V f. %' ( o) „
'
a
jk *

then taking as the component xl of the vector X. s x.
a
3k

a.v f 0, and xK'} 1 if t ....

~ ’ we have
,
obviously,

j
jx

{ |

= 1
jk

more

,

OS)
n

kf1
*iK*k

(o)
n

* 2

k-1
a.
'ik

n
2 |a

k-1
jk

for i ^ j

and

(16)

n / s,

2 a x)w
k-1

3klC
n
2

k-1
a
jk

Consequently

(17
1 « (o)

j

max 2 a„.,r
"

n

k-1
iC

2 |a^J - max 2 j;

k-1 i k s
ik

1

Thus Max j]
- max 2

j
a.- L Q.E.D,

° i k-1

(18) IX, 1*11 II

n
2 lx.

i-1
’ 1

a
ik |

0 For

II
3

i s
j, and

if

Further-
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The matrix norm subordinate to this vector norm is

n

(19) | |
A

| j

- max 2
\
&
±k \

k i-1

In proof thereof
s
let jjljj - l

s
then

n n n n

liAXll - Z
i

i“l
2 a., x,

]

,
-s

ik k 1
•

&--JL

4 2 2 |a,
I

|xj *

i-1 k-1

n
1
n \ n \ n

(20) ^ 2 |x.
|

k-1 *
v

Z Kvl
iO /

n
max
k 1-

s hik !

n
Now let us take a vector X of the following form: let 2 |a«,

j0

(o)
its greatest value for the column numbered, j. Put x,;" 3 0 for k r j

(o)
xV" “ l e Obviously a vector constructed in this manner has its norm

unity „ Furthermore

(21) I
|AX ||

- 2
I

Z a.

1-1 k-1

(o)
n
2'

ial

n

3-3
-max 2 |a

ik |

k k<L

Thus

( 22 )

n
max

j

j.AJi
| j

- max 2
j

a,.

,

k i“X

nun

(23) in in
n

= 2 K (x.'x)

attain

and

equal to
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The matrix norm subordinate to this vector norm is

( 21|)

where X^ is the largest latent root of the matrix A'A.

In proof, we have

(250 max
1
1.«

1

1

I lx I l-i

but

(26) ]
|AX|| ..

.

- (AX AX) - (X, A»AX) .

The matrix A’ A is symmetric. Let be its latent roots

and Xp X^, •••
,

be the orthonormal system of latent vectors belonging

to these latent roots

.

Now take any vector X with its norm equal to unity and resolve it in

terms of the latent vectors?

X C1X1 c .X =*. c X
n

Then

(28)

Moreover,

(X, X)
2

+ +
i

o
+ f*

= “ 1

'"n
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j|AX|
I

4
* - (X. A*AX)

(29 ) X, + .<..4
11 n n , c., A .X, +

» J . X
+ a A X )

=
n n n

A /»"" 4- • * • + A. c."~ ^ * ! r " !»

ri r-S 1^1 * % A
i

•

For the vector X X« s

(30) ilA^H
” - (X

x , k'AXj) - (X.
: , ^ .

(31)

n TT ^
««*; •-I-J or 1

d

Bffii|[K ||
- /AT ,

|]i|l-i

We shall now prove several theorems connected with the concept cf

limit

.

THEOREM 1 0 In order that It. necessary and sufficient

11 the latent lulus less than unity.

Frccf . Assume for sirrplicity that the matrix A can be brought into

diagonal form; A C
-1

where a

X
7 5 2 5

A

A
i and

nj

m
n

are the latent roots .of matrix A. Then A~ “ C A, m -X

It is obvious that - -A"h
? A“, ,

'
1.\ . In order that A"

1, —* 0,

r*
a m

AX', e *
* ,

A !;

i « In order that A
n|

m

t is necessary and sufficient that A'
1 — 0, for the which it is in turn

havencecssary and sufficient that the latent roots X_

.

1' ^ 5*

n

modulus less than unity.
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In case the matrix A cannot be brought into diagonal, form, the theorem

is proved either with the aid of considerations of continuity or by passing

to the Jordan canonical form. We shall not dwell on the details of this

proof

.

The conditions given In Theorem 1 are inconvenient for checks , inasmuch

as they require foreknowledge of the latent roots of the matrix A. We shall

therefore establish some simpler sufficient conditions rendering

lira A
ra

- 0 a

m->oo

THEOREM 2. In order that A
3

' —-> 0, it is sufficient that ary one of

the norms of A be less than orlity .

Proof e On the strength of the fourth requirement of a norm, we have

(32)
i
jA
m

| |
^ ||A

m-1
||

||A||< \\tT
2

\\ i|A|l
2 4... 4

||
A |f .

Therefore
j

|A
j j

» 0 if
j
]A

j j

< 1, and thus
,
in view of the foregoing,

A “^ 0

,

Combining Theorems 1 and 2, we arrive at the following results

THEOREM 3 . The modulus of no latent root of a matrix exceeds any of

its norms .

Proof. Let
j
|A

j j

= a„ Consider a matrix B - A, where € is ary-

positive number. We have

(33) B
a+c “ ^

m
amd accordingly B “ > On the strength of Theorem 1 its

Bur it is obvious that thelatent roots have modulus less than arlty.



<

i
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latent roots of the matrix B equal \ 3
where A^ are the latent roots

of the matrix A. Thus < 1, i.e,,
j
A

j
< a * € e Since € may be

taken arbitrarily small 3 j
A 4 }

~ a „

THEOREM lie in order that the series

(3k) I + A + • • • + A'
“ + *’•

converge , it is necessary and, sufficient that A
n

' 0 a£ m co . In such

a case the sum of series (3k) equals (I - A)

Proof e The necessity of this condition is obvious . We shall show that

it is sufficient.

On the s trength of Theorem 1, all latent roots of the matrix A are

less than of unit modulus.

Accordingly

vi5) |I - A
I
/ 0

and therefore (I - A)
L

exists.

Consider the identity

(36) (I + A + A
' + ••• + A )(1 - A) - I - A

k+1
.

s “1
Postmultiplying it by (I - A)

,
we obtain

(37) I + A + k + + A
k - (I - A)~

] - A
k+J

"(l - A)"
1

whence it follows that, as k — ce



i

*

«i



I + a + . . . + A
k —

=» (l - A)
1

A
k+1 .

sxnce A 3

,

Thun

(39 ) + A + A + * (I - A)”"

which is what was required to be proved*

In the light of Theorem 1, the necessary and sufficient condition for

the convergence of the series '3 U) is the inequality
|

X
.

j
< 1 for all latent

roots of the matrix A * A sufficient, token of convergence, in view of

Theorem 2 , is the ineqi
| JaJ| < 1, whatever one of the norms be em-

ployed. Given that this condition is satisfied, it is easy to give the

following estimate of the rapidity of convergence of the series (3 Jjl) s

THEOREM 5. If
|
|A|

| < 1,

UjOJ 11(1“ A)
1 - (I + A + a

k
)

|A||
k+1

Proof. We haves

(U) (i - a)
-1

- (i + a + .k+1 . .k+2
+ A )

“ A + A + • *•

whence

(n2)

%~1
(I - A; " - (I + A + 0 • + A ) | j

^

* l!-Ul
k+1

+ llAll
k+2 + •

|A
i
k+1

i-l !a

and the theorem is proved

5/2/52
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in finding a proof for the general case.

We consider ourselves obligated to note in conclusion that in

the method here proposed we have utilized the ideas of a method of

successive approximations for the solution of systems of linear

equations expounded in an unpublished work of A„ M. Lopshits.

V

August 1U, 1952
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