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I,fl SUMMARY

Various gradient (steepest descent) methods for solving systems

of linear equations have been discussed by Cauchy [ 2]
,,
Temple [12] 5

Kantorovich [Sl s and others 0 The. method usually discussed,, the

optimum gradient method (erxplained in section II) 5 ordinarily

converges too slowly for practical use„ Under the general leader-

ship of Professor Magnus Hestenes at the Institute for Numerical

Analysis several methods have been studied for speeding up the

gradient method®

A class of modified gradient methods^, in which one overshoots

or undershoots the optimum pointy is presented in [7]® In [11] Stein

presents numerical experiments with the matrix used below,, show-

ing that consistently undershooting (“"almost optimum”’ gradient-

method) provides a self-accelerating procedure® Motzkin and one

\aa»ruaaMt^apacai

‘'The preparation of this paper was sponsored (in part) by the

Office of Naval Research®
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of us propose [5] an acceleration step to be inserted, occasionally

into the optimum gradient method. (In section II we give He-stenes s

interpretation of this device as a minimization in two dimens ions 0 )

The purpose of the I. B. M c experiments now reported was to test

the latter acceleration procedure. Incidental to this* we obtained

additional data on the optimum, almost optimum, and other gradient

methods .

A survey of the formulas used is given in section II
?

and the

numerical experiments are summarised in section III. In section IV

we study these data in some detail* Section V contains the references

referred to in the text by numbers in square brackets.

In brief, it is our conclusion that for two test matrices of

order six, the acceleration speeds the optimum gradient method up

by a factor of from 7 to 18, and makes the optimum method possibly

useful. The almost optimum gradient method is something like half

as fast as our accelerated procedure (on the basis ^ two test

matrices) but ~ and this is very important for machine work = the

almost optimum gradient method is simpler to code. The more

recently developed methods of Hestenes and Stiefel [8] now appear

to offer much faster convergence at a modest, increase in complexity.

II. SUMMARY OF THE THEORY

For simplicity we deal with the field of real numbers. Let

A be an n-by-n matrix, not singular, and let x, b denote n-rowed

column vectors. We are interested in finding the solution A '% of

the system
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(1) Ax ® b «

Let T denote transposition of a matrix,, The positive definite

T T
matrix B - i A and the vector c s A b will frequently be used* The

2 T
length jyj of a column vector y will be defined by |y!~ “ y y# We

use © to denote the zero vector*

Let f(x) s jAx - measure the deviation of any vector x

from the solution A \> 0

One can verify that

(2) f(x) s x^Bx - 2x^0 + jbj" «

Suppose x is a given approximation to A ^b^, and let d be a

given direction# As an improvement of x we may select the vector

y(ot) ~ x “t>£d for which f[y(®0] assumes its minimum as a function

of the real variable ©i „ The corresponding value of °( will be called^
-

#

To obtain a formula for^f 9 we first find from (2) that

(3) f [y(=< )] - f(x) + ^ 2
d
T
Bd - 2<dT (Bx - c) *

Introducing the abbreviation

(U) S s Bx “ o
j

we find from (3) that

(5) y ^ d
M

jf/d^Bd *

In the optimum gradient method for solving (1) 9
suggested by
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Cauchy [2] and analyzed by Temple [ 12 ] ^ Kantorovich [ 9 ] 5 Hestenes

and Karush [6] (for the eigenvalue problem

)

5 and others^, one selects

any and then obtains each x^.
+1

from as follows s For each

one picks d^ to be •§• grad f(x^) s - c ® If, 0 and takes;

y
k K> h - b3

wherea by (5) 5

y. - KT

k k k k k

Kantorovich showed on. pp ffl Ibh*, 15U of [ 9 ] that in the optimum

gradient method

( 8 )

f(x,. a.

max
f(x

k-X )

n

n
n X 1

where A and A are,, respectively^, the largest and least of the

(necessarily positive) eigenvalues of B® It follows that

(9) jibe. - bj ^ |AXq - b||i
k -4 0? as k —# 00 5

so that the method converges® Our experience suggests that the

inequality in (9) is usually nearly an equality j see section T¥«

Since ji is commonly near‘d 1,s the optimum gradient method is

"^If all the elements of A have the same normal distribution, it

results from p. 59 of [1] that the probable 88 value of ji is

=2
81about 88 1 ~ Ijm (The precise meaning of this is not stated in

[1].)
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usually too slowly convergent for practical use Q In section III

we give examples of the optimum gradient methods

Mary proposals have been made to speed up the process 0 In

[7] Hestenes and Stein describe a family of modified gradient

methods in which one changes formula (6) to read

(10 ) P 1 f
k » t Bx ~ c
k s ^ k

:X
k

where ^ Is a fixed factor in the range 0 < (3 < 2 x. and. prove the

convergence® For near 0*9 (called the *®almost optimum” gradient

method) the evidence in Stein [1,1] suggests that the convergence

is much faster than for the optimum gradient method ( P ^ 1)* In

section III we summarize these data5 and give more of our own®

Other proposed accelerations of the gradient method involve

getting ky minimizing f(x) in the p-dimensional linear subspace

x ^ x f. f,K”p 1 k~p 2 k“p
* B^"

1
T. (1 < p ^ n| ^ .

p krp * i

real and arbitrary )» (This is equivalent to minimizing f(x) in the.

linear p=space containing ° 00
? an^ ^ ©) Kantorovich

[9] suggests use of p s 2® Karush [10] considers the analogous

process -with a general p in solving the eigenvalue problem® In.

[8] Hestenes and Stiefel give an iterative method which effectively

can give p any value up to n e (When p - n the method is an exact

solution of (l) e) Motzkin and one of us propose [5] an acceleration

step which Professor Hestenes has shown to be equivalent to taking

p ” 2® We now describe this®

It is a conjecture (stated in [£]| proved for n ® 3 in [17]

f

seemingly confirmed in the present experiments) that
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f in the optimum gradient method the error vector

A ^“b is asymptotically a linear combination

(11) { of the eigenvectors Up u of B belonging to the

.largest Q ) and least (
'}, eigenvalues of B e

(If there are eigenvectors of B orthogonal to ~ A one dis-
v.

regards the corresponding eigenvalues in determining/^ an^^
n
°^

When this asymptotic relationship holds for a given x^ the sequence

behaves asymptotically as though it were in the 2-plane

Tf containing and. u <> But

/ if one cairies out the optimum gradient process in

I
2-plane ti

4
9 the vectors - A "'b alternate

(12)
\

between two directions in tip
1

«. and<, for each k
9
the

line joining x, „ and x, passes through A “Sd»

It is therefore the proposal of [5] that the optimum gradient method

occasionally be interrupted by determining the x^. + (1 “°^)x
k„2

which minimizes f[x(®^ )]* II
s

the acceleration procedure occurs

after m steps9
the computing procedure is to set x - x^ and

d=x « - x in (10 and (£)« and the acceleration formulas ares
m-2 m 9

V_

d ® x - x
m m*=2 ®.

m
Bx - cm

A,
" dJVd-

T
» d~*m m m

'

Vi S xm
- t d

m an

(13)





7

It is Professor Hestenes * observation that

r the of any acceleration step is the vector in

(1)
| )

the two-dimensional subspace x(<=< ^ °(^) ® x^^

”
'

i .... ?
” B

^'k~2
minimizes f [x(°^ ^ ^ 2)]

^
^ith respect to °<

1
and << «

Since, in using the optimum gradient method numerically., one is

already set up to carry out the types of operations involved^,

the procedure (13) may be preferable to a more direct method for

carrying out the above two-dimensional minimization „ (The exten-

sion of this idea to the use of n successive one-dimensional steps

to minimize f(x) in n dimensions is at the basis of the algorithm

in [8].) In section III will be found reports of numerical experi-

ments with the acceleration step® Various numbers of optimum

gradient steps have been tried between accelerations

©

We also report insertion of the acceleration step (13) into

the modified gradient method (10) for $ - Id® In this case

Professor Hestenes ! interpretation does not hold*

Of the various statements made above5 the only ones which

require proof are (12) and (lli)*

To prove (12) we may assume without loss of generality that

b - ©o It then suffices to show that is parallel to x^® The

loci f(x) ~ constant are similar ellipses in if 9 Let t be the

tangent at x^ to the ellipse through :x^ e Then the gradient at

Xq is orthogonal to t^* Since f ^
is also the tangent at x^

to the ellipse through Xp is also orthogonal to the gradient

at x^. Being both orthogonal to the lines f ^
and are parallel,
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Since f ^
is a tangent at x,

?
to the ellipse through x^ is parallel

to Xq5 as was to be proved,.

To prove 1hs we note that (12) implies that the acceleration step

will locate the common center of the ellipses formed by the intersection

of the surfaces f(x) = constant with the plane through x^
ll)

and

x^„ It therefore suffices to prove that this plane is actually the

A
plan^

k“2 k™2 (°< . arbitrary) , But f ® ” c

=2
“

^k”2:i
^
k“2 ^k“2

B
^k“2

e Then y * x f\ Vl k=l k

-

xj^
2
“ ^ ^ k==2

+
^k-l) t k~2

” -2
B
^k™2°

Hence the normcollineai'3

points x^> ^ and x^ are all. in the plane of
^k ° ~ ^ B

^k“2 ,5>

and (ll|) is proved a

When the conjectured asymptotic behavior (11) occurs for a given x^
“1-

we saw above that x^ “ A b asymptotically approaches 0 while alternating

between two directions Ls L° in the plane Here L° are related by

the fact that their conjugate" directions with respect to the ellipses

f(x) s constant, in'W' are orthogonal,, When n m 3 the proof in [I|] of (11)

shows that,f when Xq has a projection on each eigenvector of B5 . not all

pairs liS L 8 are eligible to be asymptotic directions of - A \>«> Roughly

speaking,, the eligible directions Ls L 1 are those for which f(x^)/ f

(which has one. value for both L and L 8

) is sufficiently near its maximum

value see

* Two directions are conjugate with respect to an ellipse if they are

the directions of a radius (from the center) and a tangent at the same

point.
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For each direction L of x - A there is a ratio f ej°(L)

of f(x) to \x - A here jP(L) is commonly unequal to f (L 5 )®

We see that

(15 ) f (L) - - (x-^^x-A-1
!)

|x - Av |x - A no I"

Thus f (L) is the Rayleigh quotient of the error vector x - A ho*

We therefore have

(16) 'h
4 ^ (L) 4 X

n s

see p 0 26 of [3l s for example e From, the foregoing it follows that 5

whenever the conjectured asymptotic behavior (11) of x^. holds*,

jx^. - A b
j
goes to zero in such a manner that the ratio

|x^ ~ A \|/Sx^ ” A \>
\
will alternately approach the two limits

p f (L)ff (L °)
5 ja f (LO/f (L)o Only for the special case when

^P(L) ® f (L») (meaning that Ls L 8 have symmetric positions with

respect to the major axis of the ellipses) will these limits be

equal e

It is instructive to study the modified gradient process

(10) analytically in two dimensions „ Some of the characteristic

behavior of the runs reported in section 111 occurs ~ the instability

of f(x^)/f(x^,a^) for f? slightly less than ls and the approach of

f(\ )/f(:
\-i>

t0 f
2
for most :x.q when 1 < ^ ^ Q < 2 e This study

has been stalled by one of us with Motzkin [ unpublished ] s and

will not be reproduced here®
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IIIo EXPERIMENTS AND TABLES

The several methods described in section II were tried out

with two essentially different systems of order six on the IBM

Card-Programmed Calculator of the Institute for Numerical Analysis,

The order six is the largest for which an ordinary gradient step

could be handled with the internal storage of the machine usedf,

for these exploratory experiments it was thought better to spend

as little time as possible using external storage c (Even so,

our acceleration steps required external storage ,) The coefficients

of the first system, Ax ” b, were obtained from a table of random

digits simulating a population of equally distributed integers

99, -98, 0, ®e©, +99 • Me obtained

'
-lU .95 61 Uo 3 hi

‘

2? -3U 17 ”78 39

A ® 13 92 ”63 26 15 ”86
2>

“23 86 30 95 »80 ”76

12 52 17 61 -3U h2

_
-70 -6U kZ U7 23 28

b = [-93, -96, ”71, 26s -69, 71fo

In the methods reported here A and b do not explicitly enter the

calculations, but only B ® A ‘A and c ® A b. For the above matrix;

the latter are given a subscript 0$ for scaling purposes B^ was

then multiplied by 10- , and by 10 0





B
0

11

.06667 <,02631+ ™ .01+61+0 “.07368 -.02131 “.00 )431
°

.02631+ .26810. “ .0221+3 ol5952 -.05923 -.12797

- .01+61+0 ”.022l+3 .10932 .05150 “ .01+100 .08558

“.07368 .15952 .05150 .25152 -.0XH+X ".07169

-• .02131 ”.05923 - .01+100 -.0111+1 .11+1+03 .01105

- .001+31 “.12797 .08558 “.07169 .01105 .191+50

- .0086095 =.011+2795 -.00021+35 +.001+5765 4 .00801+35 -.001+895]

Our first experiments were carried out with B 9 c^9 in order to

study the machine procedure on a matrix without zeros® These B^

and c
Q
were also used by Stein [XI] 5 who calls them A and b c

The gradient methods are invariant under translations and

rotations of the space5 as long as the operations are carried out

exactly,, The machine operations are much faster with a diagonal

matrix, and the behavior of x^ is more easily studied in the

coordinate system of the eigenvectors of B
Q

. Accordingly the positive

T
definite matrix B^ was reduced to its diagonal, form B^ s S S 9

where S is an orthogonal matrix® At the same time was replaced

by - 0 <>
the zero^veetor* so that the solution became 0 O

(Probably in practice the round-off errors with Bp are less

than with but these errors are not studied here.)

We h,ave

*Mr«, H. M. Hayes determined and S on the Card-Programmed Calculator.





o0026870U 1'

e01581310

,082.3^830 (® A

o17590130

3‘

V
e 259U6632 (-.

5'

eU9823U36

c
i' t0*

o. 0,
,T

Q] o

The ratio P - ® 200 of the eigenvalues of EL and B_of 0 1

was noted in section II to be intimately related to the speed of

convergence of the optimum gradient method j indeed^ from (8).

p « (P - 1) (P + If1 4 1- 2P“
2

.

To get data from a system for which convergence was likely to be

faster^ we selected a diagonal matrix with P ® 36* The other

eigenvalues 1 ^
were selected at random from tables simulating

a, rectangular distribution of -log A
^

on the interval log A

£ log ^ log A^ 0 We obtained

Under the hypothesis of our footnotes page k above5 the ,sprobabl

value of P is ,%bout ,9! n~ a





13

For each matrix we used various modifications of the gradient

method^, and began with various initial vectors Xq<> A summary of

the experiments run is contained in Table 2o On the Card"Programmed

Calculator we used a ten-digit board with, fixed decimal pointy designed

by Dr-„ Everett C„ Yowell of the Institute for 'Numerical Analysis <,

Under the supervision of one. of us the experiments were run by

Messrs o Thomas Do Lakln^ William 0 o Paine
j,

Jr 0? and Albert H G Rosenthal®

The data were checked in two ways g (i) the jf(x^)| were

scanned for reasonableness! (ii) the experiments with matrices B^

and were run twice® Since check (ii) seldom indicated an error

which had not been suspected from check (i) 5 it was decided to get

extra data for matrix Bn by omitting check (ii)„ These data therefore

have a higher probability of error than those for matrices B^ and

B.p, but we hope that they are essentially correct «,

In Table 1 we show the detailed progress of one run® The

matrix and initial vector are the same (in a different coordinate

system) as those reported by Stein [11] p and the table may be

compared with his Table I 0 The run chosen consists of 8 optimum

gradient steps ( ^ ® 1 60) 5
alternated with one acceleration® Since

ft s i eo, it results from (li|) that this is equivalent to 6 minimizar

iions of f[x( °k)] 0n the line x s ^ ^ K s>
followed by one

minimization of f[x(^ ^ ^ ,,,)] in the 2-plane x “ x^. - ^ ®

and repeat o If we used a machine with sufficient internal storage^,

the amount of effort in each cycle would be reasonably equivalent to

9 of the optimum gradient steps®

"The run is identified by an arrow in Table 2®





TABLE 1

One of Our Accelerated Runs

k
lO^f^x j

J

i (k~l<,k) “ EAV/lvxk-r

0 .33360 3

1 11925 6 o35?5

2 8538 ' 1 .7159

3 6999 2 .8198

h 6230 k .8902

5 9779 8 .9277
6 5U90 5 «9U99

7 5263 8 .9587

8 5075 5 09 61x2

9 iil5o 5 .8178

10 3U3i k 08267

11 33iil o .9737

12 3258 1 a9752i

13 3179 6 ,9759

Hi 3103 7 .9761

3030 1 o97 63

16 2958 3 ,9163

17 2888 3 ,9163

18 178 10 0O617

19 62 250 .31x95

20 36 $W± •5871
21 2? ia.8 •7503
22 23 81x5 .8697

23 21 U57 .8999

2li 19 557 o911ix

25 17 950 .9178

26 16 551 .9221

27 7 lUoU .lx3lU

28 6 0682 .81x98

29 5 7512 .9878

30 5 5369 .9627

31 5 3678 .9695

32 5 2U65 .977U

33 5 1293 .9777

3k 5 011x8 .9777

35 lx 9030 .9777

36 5055 7 .0103

37 3085 3 .6103

38 2230 8 .7230

39 1736 2 •7783

Uo 11x1x5 8 .8327

lii 1267 0 .8763

1x2 mix 1 .8793

h3 980 01 .8796

ij* .00000 00 862 25 .8798





k -

10
2
f(Xk) =W

:b5 ,00000 00011 072 0O128

46 35833 00321+

1+7 30050 <,8386

1+8 2831)9 o9li3i+

1+9 26827 o9U63

5

0

25UU9 0 9U86

51 21+199 o9509

52 23060 o9529

53 22021 095U9

5k 11206 „5089

55 5767 7 o5U+7

56 538? k ,9332

57 510U 0 *9b83

58 1+880 1 09561

59 1+690 0 ,9610

6° 1+520 2 ,9638

6l 1+365 5 a965 8

62 1+222 2 ,9672

63 21+20 9 ,5731+

61+ 1956 0 08080

65 1779 9 .9100

66 1681+ h 0 91+63

6? 1601 h ,9507

68 152? 8 ,951+0

69 11+59 0 ,9550

70 139h 6 ,9559

71
|

133k 0 ,9565

72 31+3 23 ,2573

73 88 906 ,2590

?i+ 82 1+80 ,9277

75 80 370 ,971+1+

76 78 1+02 ,9755

77 76 509 ,9758

78 7h 670 o9?60

79 72 880 ,9760

80 L00000 00000 00071 138

1

.9761—





81 o00000 00000 00007 1757 0I009

82 3 1i982 ,5875

83 2 3839 ,6815

8it 1 9269 ,8083
85' 1 700li ,8825

86 1 5681 ,9222

87 1 U5 26 ,9263

88 1 35o6 ,9298

8? l 2597 ,9327

90 52U99 o5l6S

91 l|ii791 ,8532

92 51313 ,9225

93 39336 09521

9b 37650 ,9571

95 36157 ,9603

96 35726 ,9605

97 33355 ,9605

98 32038 ,9605

99 1068 l ,0333

100 36 6?5 ,0353

101 32 875 ,8965

102 32 156 o9?82

103 31 558 ,9783

lOli 30 775 ,9783

io5 30 108 ,9783

106 29 555 ,9783

107 28 81? o9783

108 35263 .on?
109 12630 .3686

no 9811 6 ,7768

in 7881 h ,8036

112 6355 9 ,8057

113 5in 7 .8056

nli 5118 6 .8057

ii5 3318 7 .8058

n6 2675 3 .8058

117 5 366o .0016

1 118 000000 00000 00000 00000 00002 8m .6539
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P
A

This type of run showed the fastest convergence of f(x^) to 0| de-

tailed comparisons with other runs will be found in Table 2 and section

IV below.

In Table 1 each heavy horizontal rule indicates an acceleration

step. The small discrepancies from the data in [ 11] result from

round-off errors in rotating., the coordinate system.

To save space and bring out the important features of the data,

the other runs are presented here only in summary form (Table 2).

The columns of that table are now described.

Column I s Here we give the matrix: B s J^'L9 and vector c = JlTdo,

&
A
Column 2.s Here we give the initial column vector

following abbreviations s

9 Me use the

e «
( o. 0, o. 0, 0, 0 )

x

(i)
x
0

s
( .1, ol. ol,£ ol. «i. )

T

x (2) s (-.1, » 1oJ
~S>

el^ °1'5) ol. o 1 )

T

X (3)x
o

s
( .U595, .0790

,

.1200, .0880 c, .0150, .0113

)

T

X (U)x
o

s
( ,oo5. o 005. •oo5. *00^, .01 )

T

x &x
n

s
( .01, •01, .01, ©01^ .01, .01 )

T

vO»

—

»

>

o
X St

( .1, o.l\S> elf, © el. ol )

T

X t7)x
0

*
( .05, »o5. <>05, .05, .05, ?

O*

CO

s
C ° ®o5. .05, °o5, .05 )

T
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Most of these vectors were chosen without ary special significance,

to see how the methods varied with different startso The vector © is

a reasonable start with the non-homogeneous problem with cq® The

vector x,
0

jn the coordinate system of Bl5,
© is identical with

run is an iteration of the

© in the coordinate system of B
q5

cq<

Column 3 g ft
is defined in

Column U s For all ft s as

step in formula (10)„

For 2, the term 88m steps and accelerate ,8
' means that m

steps of type (10), resulting in x
Q,

-o, x^, are

alternated with a minimization of £(x) for x along the line joining

x _ and x « according to
ra-2 nr

For ft- 2 a special acceleration was performed % After getting

the points Xq, x~s Xg, one optimum gradient (ft ^ 1) step

was taken from the point x s \ (xu, + Xg) s Then 8 more steps follow-

ed with ft " 2 j
etc®

Column 5> g In getting the total numbe^ called s s of steps of

a run, each acceleration is counted as one step®

Column 6g The number r(lu 5 k0 ) measures the mean proportion-

ate reduction in £(x,.) per step, for k between k^ and k^ 9 where

It Is defined by the relation

r(k_, k0 )
*

¥e may interpret r(lc , k^) as the geometric mean of the k , - k^

ratios
|
f(x^)/f(x^ .i + 1, K + 2, ««<><, k

2
,





It seems to us that for appropriate choice of k_
i5 r(kp k,) is

a useful index of the average speed of the iterative process for

solving the system Ax ~ b. For the modified gradient processes with

0 < & < 2S one always has 0 = r(k^$ k
? ) < 1 0 One must remember^,

however^, that the time of convergence of an iteration varies linearly

with log(l/r) 5 not with rj see (lU) and Table U®

The quantity r(0$ s) would measure the average reduction in

f(x) from, the beginning x~ to the end x, of a run*, Since in some
V S

runs a substantial portion of the reduction from f(xn ) to f(x ) occurs
vJ 3

in the first few steps*, where x;, has not yet settled down (see Table 1)

the quantity r(0p s) gives a deceptively high impression of the speed

of an iteration*, To avoid this initial effect^ we selected k. «

and accordingly have tabulated r(55 s) in column 6 as a measure of

the mean speed of the process over the major portion of the run G

Column 7 s In certain of the processes the quantity

r(k“l5 k) ® f(%^
1
)/f(x

k ) settles down and appears to approach a

limit o (The conjecture (11) would imply that, for all x^

f(x^
1
)/f(x

k ) approaches a limit in the optimum gradient process.

Since this limit would be a measure of the ultimate speed of the.

process^ ws give the last value s r ( s-1, s) ^ f(x
e

x )« in

column 7« In other processes,, where the ratio f(x^_^)/f (x^.) does

not settle down, we make no entry c

For comparison with Table we present in Table 3 a summary

of Stein “s runs [11] in. the same form..
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TABLE 2

Summary of Our Runs

(1) (2) (3) ft) (5) (6 ) (?)
MATRIX START <3 METHOD HD. OF STEPS r(s“l £ s)

(s)

w
o

a
o

© l c0 1+ Steps and accelerate 76 ,8226

B
0 S c

0
© 1,0 •J

88 19 88 65 .8002

98 98 88 g 86 90 6! UU ,7552

l( 88 It CJ 88 98 88 k9 ,833U

88 w 83 12 " 18 88 80 ,8295

88 •y.
(l)

-n
10 g 88 88 88 83 ,8379

88 Z (2) 30 g 88 88 98 $k ,7717
1(3)
u

2*0 Straight Run 77 1,0000

98 59 l yl 80 58 119 ,9775 ,9786

88 88 1,0 00 88 70 ,9733 o97U8

88 08 ,9 08 88 8? , 82014,

88 99 2.0 8 Steps and accelerate 78 ,87ii9

88 00 1,1 88 88 88 79 ,7873

89 80 1.0 00 88 08 119 o62U5

88 .y (U)
<?9 Straight Run 75 ,8,150

08 08 1.0 88 80 53 o9758

88 , 6 )
*0 *9 88 99 85 ,8310

89 98 1,0 88 88 ho ,9293 ,9693

B
2 5 ®

(6 )

*0 1.0 8 Steps and accelerate 55 ,U566

88 89 80 Straight Run lh 98836 ,8939

88 88

,9 18 8! 73 ,653©

Bgg © x (7)x
0

1,0 8 Steps and accelerate 11? ,14738

89 18 1,0 Straight Run 69 ,8809 08917

88 89 *9
IJ 88 71 o?H7

„ ( 8 ) 1.0 8 Steps and accelerate 123 0U373

88 18 10 Straight Run 73 ,8903 08938

88— 88 o/ 88 18 71 ,6333

Notes is similar to B^e B^
5 © with ^ is same problem as B^ c

f)
with ©„





TABLE 3

Summary of Stein's Runs

(1) (2) (3) (U)
.

(5 ) .

(6) (7)
MATRIX START $ METHOD HO. STEPS 4 vn

Vs
m r(s-l.s)

B . c
cr o

e cl Straight Runs 30 .933k

88r 88'

.3
381 30 o9$09

«S( 18! .6 88: 30 .9339

89! 88 08 88: 30 .8685

18 88:
«

CO vn
88; 30 .9156

891 98 .9 83 30 .8065

88 81 .95 n 30 c955U

88! 98 1.0 88i 30 .9702 .9752:

88 38 1 1.1 88: 30 .9737 .9779

89 88: 1.3 88: 30 .9739 .9779

88: 88: 1.6 88: 30 e97 2.8 .9779

88! 18; 1.9
! .. . 3

s
'

; 30 .9385 .9755
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It may be useful occasionally to transform r ® r(k
^s k

?
)

to a unit which is proportional to the time spent in an iteration*

Let K ” K(r) be the number of steps needed to reduce jAx^. - bj

by one decimal place j i.e. 5 to one-tenth of its value^ when

2.

f(x^i)/f ( 3^) has the mean value r. Since f(x^) ® |Ax^ - b
| s

find K(r) from the relation

we

r
,K(r:

whence

(1U)

10

2

-2

K
'
r ^ * log^

0
(l/r)

In Table k we give K(r) for some values of r. Note that a small

variation in r near 1 makes a large difference in K(r)j the quantity

K is an approximate measure of the time required to solve a system*

I?. STUDY OF THE DATA

The first question we faced was; at what intervals should the

acceleration step (13) best be applied to the optimum gradient method

(6)? There seem to be two possibilities o (i) Some property of

the sequence
^

might indicate when it was ready to be accelerated

for example
5 the property of having ^-l5 a"'jnos^ ^n

a 2-plane . To simplify the I 0B*M* procedure this was not tried,

(ii) The acceleration step could be inserted after each m steps*

The latter procedure was adopted^, and we needed to select a preferred

value of i»
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TABIE ii

Iterative Steps Per 1-Decimal Reduction of Jibe - b
|

r~ "“Wj

.01 X.O
eX. 2*0
.2 2.9
.3 3.8
oil 5.x

.5 6 © 6

»

6

9.0
13 oO

.8 20 e 6

33.0

*90 13.7
„9X ii8„8

*92 55 o3

o93 63.5

*9U 7 ii.ii

o95 89 .8

*96 3X3
.97 X6Il

*98 227
©98.5 305

*990 U58
o99X 509
.992 57ii

o993 656

.994 765

e995 9X9
.996 XXii9

.997 1533
*998 2300

.999 U603





2k

For the matrix B we made several tests designed to choose m„
u

In one* starting always with a vector near the of Table we

repeatedly ran 12 optimum gradient steps and an acceleration step.

These thirteen steps were performed in 10 different ways5 viz with

the acceleration step following the 2nd^ 3rda
° * °

9
or 11th optimum

gradient step. The results of the test (not shown in this paper)

were that one got to the least f(x) in these thirteen steps when the

acceleration was taken as late as possible . This fact by itself

suggests taking a large value of m© On the other hand<, use of a

large m means that relatively fewer accelerations can be taken in

a run of a given number of steps© Since the main reduction in f(x)

comes in the accelerations^ one wants as many such steps as possible.

The balance between these opposing factors determines the best

value for m„ For the matrix we tried out m ® 7
9 8# 9p and

12. Study of the values of r(55 s) for the runs with B^ at the

start, of Table 2 indicates that (for x ® 9) m “ 8 is best,, while
u

m « 7 is next besto

It is probable that the optimal v alue of m depends on the value

of the initial vector Xq. Me suspect^, however^ that the variation

of m with Xq is commonly slight^ because each acceleration is a comp-

licated transformation which effectively produces a new initial vector.

Thus each single run is the average of a. number of different starts.

With matrices B^ and the procedure with m ® 8 was run for more

than one start x^® The variation in r(5$s) is not great j see Table 2*

Thai m depends materially on the matrix B and its order m is not

questionedf; it would be an interesting experiment to study the depend-

ence on these factors





25

Hairing accepted m = 8 as the best value for the matrix

(and for the similar matrix B^) s we retained m ® 8 for the matrix

Bp but we do not claim it to be optimalo

Table 1 shows a run of 11,8 steps with matrix Bp using m - 8

( 3 )
and, starting with the vector x^ s which corresponds to the start

0 for Bq used above and in [11] „ The table of values of f(x^) and

their ratios shows what a complicated process we are dealing with®

Ey a cycle we refer to a block of eight optimum gradient steps follow-

ed by one acceleration® The cycles vary greatly in their success

in reducing f(x^)o When the optimum gradient steps within a cycle

bring x^. - A b nearly into the plane Tf defined in section 2$ then

the following acceleration brings f(%^
+^)

to a value much less than

f(XjP© The efficiency of the next following cycles varies within

wide bounds^, apparently according to rather subtle properties of

the vector x^
+^

"^)« Thus the progress of the error vector

to zero is irregular^ and the values of r in Table 1 are certainly

not predictable® Part of the reason for this is thats as can be

shown,, the asymptotic behavior of the direction vectors

(\ - if ^b)/ - A
ml
b

|
is exceedingly sensitive to a change in

the initial vector xQO

Nevertheless - and this is the important practical consideration -

in the accelerated procedure x^ was able to progress rapidly toward

the solution A For the matrix Bp the average reduction r(5^119)

in f(x) was *6215 (Table 2) s representing a speed of convergence 18

times as fast as that of the optimum gradient method,, for which

r(86„87) s .9?18 0 (i ee c (©9718)
1®

»6215 «) For the matrix B^ s the
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corresponding figures for starts :x
rj

' \ x
Q
^ were *>5566

and „ 893%, #14-738 and #89X7,, .5373 and #8938°’ here the speed was

7 or 8 times that of the optimum gradient method#

It seems impossible to say how the improvement would behave

with larger n#

The irregular decrease of f(.^) was observed also by Stein

[11] for the almost optimum methods ( § & 0#9)e The gradient methods

for @ i 1 are slow to converge because the sequence {\

"

4-1 b
]

approaches periodicity# On the other hand*, the strongly non-periodic

character of our accelerated process and of the almost optimum process

is 5 we believe,, at the root of their success j the vectors - k 8

are not permitted to settle down into a periodicity.

We have in Table 2 a few data which afford a comparison of the

accelerated gradient process m « 8 with the almost optimum, method

$ » 0®9o The comparison should be regarded as only tentative^, since

we have no idea how the speed of either process varies with the order

(3)
of the matrices or other factors# For the matrix: B.p and start s

we find r(5 5 87) ~ #8205 for 87 steps of the almost optimum process

( ft » 009 )'% while for the accelerated process (m ® 8) we have

r(5 g 119 ) * *6255° For B^s Gs and starts x
q
^ s>

the

comparable figures ares #6.530 and «U5 66

3

#7117 and #5738 j #6333

and * 5373. If these figures are representative^, the accelerated

scheme ( m s 8 ) is about twice as fast as the almost-optiraum method

( $ s 0.9)* Cm the other hand,, the latter process surely requires

'’'For the similar matrix B
Q^ Stein’s runs yield r(5*30) * #8065 (see

Table 3)| the irregularity of the process accounts for the discrepancy*
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a simpler and shorter code - an exceedingly important advantage with

machines

o

In the straight nans with and of the optimum gradient

method ( ft ® i) .in Table 2 we have several samples of the ratio

r(s”l5 s) 5 which appears to be near its limit e According to (8) p

this ratio cannot exceed p 0 Now

for B
q

and B^ p'~ s „97865832 $

for B
g, p - e 89li8l373 »

We find that,, of the six values of r{s“l5 s) s all are greater than

9
99 per cent of their' maximum value jx~$ while five exceed 99 06 per

cento This confirms the statement made in section II that Kantovorichls

inequality (9) is close to an equality in practice c

In our one long run made with § > X5 we observe that-

r(s=-l5 s) * 0978665,
which agrees with to five decimals 0 We also

observe thatp in Stein 5s four runs with (3 > 15 three of them have

r(s“ls S') = <,9779 © We thus observe for n ® 6 an apparent behavior

of the modified gradient method (X<^< 2 ) which is like that remark”

ed in section II to be universally true for ri « 2% for most x
Q

and

for {$ in a range 1 < ft & ^ < 2S one has f(x^)/f(x^_^) ^ as

k «n
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