NATIONAL BUREAU OF STANDARDS REPORT

1601

Explicit Formulae for the Distribution Function of the Sums of n Unilormly Distributed Variables

by
A. M. Ostrowsixi

American Üniversity

April. 1952

U. S. DEPARTMENT OF COMMERCE
 Charles Sawyer, Secretary

NATIONAL BUREAU OF STANDARDS
A. V. Astin, Acting Director

THE NATIONAL BUREAU OF STANDARDS

The ecope of activities of the Nationsl Bureau of Standarda is suggested in the following listing of the divisions and sections engaged in technical work. In general, each section is engaged in specialized research, development, and engineerimg in the fieldindicared by its title. A brief description of the activities, and of the resultant reports and publications, appears on the inside of the back cover of thia report.

1. ELECTR\|CITV. Resistance Meamurementa. Inductance and Capacitance. Electrical Instruments. Magnetic Measurements. Electrochemistry.
2. OPTICS AHD METROLOGY. Photometry and Colorimetry. Optical Instruments. Photographic Technology. Length. Gage.
3. HEAT AND POWER. Temperacure Measurements. Thermodynamics. Cryogenics. Engines and inbrication. Engine Fuels.
4. ATOHIC AND RADIATION PHYSICS. Spectroscopy. Radiometry. Mass Spectrometry. Fhysical Electronics. Electron Physics. Atomic Physics. Neutron Measurements. Nuclear Physics. Radioactivity. X-Rays. Betatron. Nucleonic Instruantation. Radiological Equipment. Atomic Energy Commission Instrveenir Branch.
5. CHEMISTRY. Orgenic Coatings. Surface Chemistry. Organic Chemistry. Analytical Chemistry. Inorganic Chemistry. Electrodeposition. Gas Chemistry. Physical Chemistry. Thermochemistry. Spectrochemistry. Pure Subatancea.
6. MECHANICS. Sound. Mechanical Instrusents. Aerodyanaics. Engineering Mechanics. Hydraulics. Mass. "Capacity, Density, and Fluid Meters.
7. ORGAMIC AMD FIBROUS MATERIALS. Pabber. Textiles. Paper. Leather. Testing and Srecifications. Organic Plastics. Dental Rezearch.
8. METALLURGY. Thermal Metallurgy. Chemical Metallurgy. Mechenical Metallurgy. Corrosion.
9. MINERAL PRODUCTS. Porcelain and Portery. Glass. Mefractories. Fameled Metals. Building Stone. Concreting Materials. Constitution and Microstructure. Chemistry'of Mineral Products.
10. BUILDING TECHNOLOGY. Structural Engineering. Fire Protection. Heating and Air Conditioning. Exterior and Interior Coverings. Codes and Specifications.
11. APPLIED MATHEMATICS. Nusericel Analysis. Computation. Statistical Engineering. Machine Development.
12. ELECTRONICS. Fngineering Electronics. Electron Tubes. Electronic Computers. Elec= treaic Instrumetation.
13. ORDMAMCE DEVELOPMEMT. Nechanical Research and Development. Electromechanical Finzes. Technical Services. Missile Fuzing Research. Missile Furing Development. Projectile Fusea. Ordnance Components. Ordance Tests. Ordnance Rasearch.
14. RADIO PROPAGATION. Upper Atnomphere Research. Inospheric Research. Regular Propagation Services. Frrequeacy Uiilizetion Research. Tropospheric Propagation Research. High Frequency Standerds. Microwave Standarda.
15. MISSILE DEVELOPMENT. Missile Eagineering. Missile Dynamics. Missile Intelligence.趹ssile Instrumentation. Technical Services. Combation.

Explicit Formulae for the Distribution Function of the Sums of n Uniformy Distributed Variables

by
A. M. Ostroweki

American University

$$
\text { April, } 1952
$$

Approved for public release by the

Director of the National Institute of
Standards and Technology (NIST) on October 9, 2015

[^0]

A. A. OEtrowsho
$$
\xi_{\ldots \ldots \ldots, 0} \xi_{1 .}
$$

$$
\left|\xi_{y}\right| x_{y}, \alpha_{y}>0(v \ldots 1, \ldots .03)
$$

\[

$$
\begin{equation*}
\xi_{1}+\ldots o \xi_{\mathrm{B}} \tag{13}
\end{equation*}
$$

\]

 21

$$
k_{t}=\frac{k+|k|}{2}= \begin{cases}k, & k \geqslant 0 \tag{85}\\ 0, & k<0\end{cases}
$$

(6)

2.)
(17) $F(\sigma)=\frac{1}{\alpha_{1}^{2} n} \frac{1}{\alpha_{1} \ldots \alpha_{n}} \overbrace{v=1}^{n}\left(1-s^{2 \alpha_{v}}\right)(\alpha+\sigma)^{n},\left(\alpha=\alpha_{2}+\ldots+\alpha_{n}\right)$ 。

$$
\begin{equation*}
x_{v}=\frac{\infty}{n},\left|x_{\psi}\right| \leqslant m_{\nu} \tag{8}
\end{equation*}
$$

 thas Anecuactity

$$
\begin{equation*}
x_{1}+\ldots \ldots+x_{n} x_{0} \sigma \tag{9}
\end{equation*}
$$

nad ent fixally

$$
\frac{\sqrt{s y}}{\frac{10}{x}} \rightarrow \alpha_{\nu} .
$$

 …

$\left(\eta^{n}\right) \frac{d}{d a}(\alpha+0)^{n}=n(\alpha+\sigma)^{n-1},(n=2,3, \ldots \ldots)$

$$
\begin{equation*}
F(O)=\frac{\hat{H} Q_{j} \mid}{\Gamma \mid} \tag{array}
\end{equation*}
$$

 (1) wuthisct so win conaltulons (20)

$$
=1
$$

\qquad
\qquad

$$
+2+2+2+2+2
$$

$$
\cdot f=2
$$

\qquad
8 通
a
ITO-
ITO- $\square-$ $\square-$
\square
\square - -
 1

* - -

\square

- B.ay -1.
4 $1+\ln$
$+1$ ianlinl
 $=$
 an
（13） $\max _{\nu=1_{1}, \ldots} \frac{\left|x_{\nu}\right|}{m_{\nu}}=1 \%$
them fu（ σ ）is defined as

We obtain in this wey
（25）$F^{*}(\sigma)=\frac{1}{2^{n}(n-1)!}$

T．This expression cen be interprect in the followhg

 5rom the formule（7）exsily the oxpression
（16）$F^{(p)}(\sigma)=\frac{\alpha_{\beta}}{2^{n}(n-1)!\alpha_{2}-\alpha_{n}} \frac{1+s^{2} \alpha_{p}}{1-s^{2} \alpha_{p}} \prod_{\nu=1}^{n}\left(1+s^{2 \alpha_{\nu}}\right)(\alpha+\sigma)_{+}^{n-s}$ and（25）enn be witton in the form

$$
\begin{equation*}
P^{*}(\sigma)=\sum_{\mu=1}^{n} \omega_{\mu}{ }^{n}(\mu)(\sigma) \tag{27}
\end{equation*}
$$

$$
\begin{equation*}
\omega_{\mu}=\frac{1 / \alpha_{\mu}}{\frac{1}{\alpha_{1}}+\ldots+\frac{1}{\alpha_{11}}} \tag{18}
\end{equation*}
$$

8．It might therefore sem that（15）can bo obtained Dy streight fowned applection of the elementary provenility

 ＂waight coerpiciants＂ω_{p} cannot be interpreted in this way since the proberolity that the aquatty sign in（2）is ossumed at least for both $y=1$ and $y=2$ would thon bo $\sum_{1} \omega_{1} \omega_{2}$ whille the corres－
时解 $\rightarrow \infty$ 。
里
9. On the other hand the geonetroc intoravetation in this

An a

(25) $\quad \left\lvert\, p_{9}=\frac{1}{n!} f^{n}\left(1-5^{2 \alpha}\right)\left(0+\sigma^{n}+\right.\right.$

Tor 3 : 1 the mgh hend side Ls
(20)

$$
\left(\sigma^{\circ}+\alpha_{1}\right)+-\left(\sigma-\alpha_{y}\right)+
$$

 (20) $\left|x_{1}\right| \leqslant \alpha_{1}, \ldots . . .\left|x_{n-1}\right| \leqslant a_{n-1}, \quad x_{1}+\ldots \ldots+x_{n-1} \leqslant \sigma-u$ thaverore in griytug (19) to $p(u)$ we hevo roso its (a-1)-dimensiong volume
(22) $\quad\left|p_{q}^{(i)}\right|=\frac{1}{(n-2)!} \sum_{\nu=2}^{n-2}\left(1-s^{2 \alpha,}\right)\left(\alpha_{1}-\alpha_{n}+y^{n-\infty}-u^{(n-2}\right.$
ank obtsix now

$$
-\frac{1}{n}\left[\left(\alpha-\alpha_{n} v-\alpha_{n}\right]-\left(\alpha-\alpha_{n}+\sigma_{0}+\alpha_{n}\right)_{f}^{n}\right]=\frac{1}{n}\left(1-s_{0}^{2 \alpha_{n}}\right)\left(\alpha_{0}+\sigma\right)^{n}
$$

(23) $\left[\begin{array}{c}\gamma \\ n\end{array}\right]=\left\{\begin{array}{ll}\binom{\gamma}{n}, & \gamma \geqq 0 \\ 0, & \gamma \leqslant 0\end{array} \quad n=1,2,3, \ldots\right.$.

The systervitic use of this notation togetaes with tiae symbolish introunces in ao. 2 apperss to be very convenient in anmy combinatrond discuasions. Its use would slso simplify considerably
 For ay integer k =2 and any integer Y
(2k) $\left[\begin{array}{l}\gamma \\ k\end{array}\right]-\left[\begin{array}{c}\gamma-1 \\ k\end{array}\right]=\left[\begin{array}{l}\gamma-1 \\ k-2\end{array}\right],(k=2,3, \ldots)$

8s folnows at onco frow (23) for $\gamma \geqslant 1$ and y=0.
 frod exy intogar kit 2
(25) $\left.\sum_{\nu=k_{2}}^{\sum_{k}}\left[\begin{array}{c}v \\ k-2\end{array}\right]=\left[\begin{array}{c}k_{2}+1 \\ k\end{array}\right]-\left[\begin{array}{l}k_{1} \\ k\end{array}\right]=\left(1-5^{k_{2}-k_{1}+1}\right)^{k_{2}+1} \begin{array}{c}k\end{array}\right]$ 。
 toger is

$$
\frac{b}{\mathrm{~b}} \rightarrow \beta \quad(m-\infty),
$$

than
(27)

$$
\left[\begin{array}{l}
0 \\
n
\end{array}\right] / \frac{\mathrm{m}^{2}}{3!} \rightarrow \beta_{\mathrm{n}}^{n} \quad \quad(n=1,2 \ldots)
$$

Indec is β o, then $\frac{2}{w^{n}}\left[\begin{array}{l}b \\ n\end{array}\right]$ is olther wero of

$$
\frac{3}{n!} \frac{b}{m n} \cdots \cdot \frac{b-n+2}{n} \Rightarrow 0 .
$$

Aaci is $3: 0$, the leit side in (28) tonds to $\frac{B^{n}}{n!}$. Hores generally in wo asmune in adaition to (26) thet/a varsabic integen $l, \quad h / x a \rightarrow \lambda$ thon lio buvo farm (27)

4.

1 2

(29) $5^{n}\left[\begin{array}{l}0 \\ n\end{array}\right] / \frac{m^{n}}{n!} \rightarrow\left(5-\alpha_{+}^{n}=5^{2} 3^{n},\left(\frac{1}{m} \rightarrow 3, \frac{2}{m} \rightarrow 2\right)\right.$.

25. We beva with the notation (23)

Ixased the xight side axpession is by (23)

$$
\begin{aligned}
& =(2-x)^{-2 n} \text { 中 } x^{I-1 n} \sum_{i=0}^{n-2}(n-1)^{n}=(2-2 x)^{-28} \circ
\end{aligned}
$$

26. If พย buve a develoment

$$
\begin{equation*}
S(x)=\sum_{k=-\infty}^{\infty} W(x) x \tag{33}
\end{equation*}
$$

(7) heva fox fay integer γ

$$
x^{\gamma} P(x)=\sum_{k=-\infty}^{\infty} N(k) x^{n+\gamma}=\sum_{\lambda=-\infty}^{\infty} N(\lambda-\gamma) x^{\lambda}=\sum_{k=-\infty}^{\infty} \int_{n}^{Y} N(k) x^{k}
$$

axa more semeridily for any polymonim in x

$$
\begin{equation*}
x_{0}(x) P(x)=\sum_{k=-\infty}^{\infty} \phi\left(s_{n}\right) N(u) x^{k} \tag{32}
\end{equation*}
$$

$$
\begin{aligned}
& \sum_{k \rightarrow \infty}^{20} C_{k} x^{k}=\left(x^{-m_{2}}+x^{-m_{2}^{+1}}+\ldots+x^{m_{1}}\right) \ldots\left(x^{6 m_{n}}+x^{-m_{n}^{+s}} \ldots+x^{m_{n}}\right)= \\
& =x^{-m} \prod_{\nu=2}^{n}\left(1+n^{n}+\ldots .+x^{2 m_{v}}\right)=x^{-m} \prod_{\nu=1}^{n}\left(\frac{1-y^{2 m_{n}+2}}{1-x}\right)
\end{aligned}
$$

14
$1+$ $=8$
$=$
$=$
$=$ ron

$$
\begin{aligned}
& =
\end{aligned}
$$

$41-(8)+x_{1}+\frac{1}{2}$

$$
3
$$

4 mel
相
Divesindmand 2
 $=2$ $\operatorname{lin} 2$ 3

2 $1+-x=1$ 1

 $x=-2+2$ that

 $4-2$
\square
 12 ? t
(34) $\sum_{x=\infty}^{\infty} C_{n} x^{k}=x^{-k}(1-x)^{n} \prod_{v=1}^{n}\left(1-x^{2 m_{v}+1}\right)_{i}$

Tin xisk

3B. Frow (35) we have gein for two integers $k_{3}, k_{2}, k_{1} \& k_{2}$ i

$$
\sum_{k=k_{k}}^{k_{2}} C_{k}=\sum_{k=k_{2}}^{K_{2}} \prod_{N=1}^{n}\left(1-S_{M}^{2 n_{n},-1}\right)\left[\begin{array}{c}
M+k+n-1 \\
n-1
\end{array}\right]=\prod_{\nu=1}^{n}\left(1-S_{M}^{2 m_{N}+1}\right)_{k=k_{2}}^{k_{n}^{2}}\left[\begin{array}{c}
M+k+n-1 \\
n-1
\end{array}\right]
$$

$$
C_{n}^{\prime}=\prod_{v=1}^{n}\left(1-S_{M}^{2 m-1}\right)\left[\begin{array}{c}
m+k-1 \\
n \cdots 1
\end{array}\right]
$$

$$
(57) \sum_{k=1}^{k_{2}} n_{k}^{1}=\left(1 \cdots S_{p_{1}}^{k_{2}-k_{1}+1}\right) \prod_{v=2}^{n_{1}}\left(1-S_{M}^{2 m_{v}-2}\right)\left[\begin{array}{c}
M+k_{2} \\
n
\end{array}\right]
$$

$$
\begin{equation*}
\operatorname{mos}_{y} \frac{\left|x_{y}\right|}{m}=1 \tag{13}
\end{equation*}
$$

 wa cbrack

(199) $A_{m}=\prod_{\nu=1}^{n}\left(2 m_{v}+1\right)-\frac{n}{7}\left(2 m m_{v}-1\right)$

Wy dxactisg wie ontefy

But we LRTM Jactituculy

$$
\left(2-5^{2 m_{\mu}+2}\right)-5\left(1-5^{2 m_{M}-1}\right)=\left(1+5^{2 m_{m}}\right)(1-5)
$$

ama (43) Decoras

$$
\text { (44) }\left\}=\sum_{\mu=2}^{n}\left(1+5^{2 m_{2 t}}\right) \prod_{\nu=1}^{\operatorname{mon} 2}\left(1-5^{\hat{\omega} m_{\nu}+2}\right) \prod_{\gamma=1}^{n}\left(1-5^{2 m_{\nu}-2}\right) 5^{n+p}(1-3)\right.
$$

an then otian hasu we heo by (2t)

$$
S^{n-k \theta}(1-5)\left[\begin{array}{c}
M+k+n \\
n
\end{array}\right]=\left[\begin{array}{c}
M+k+\beta-1 \\
n-1
\end{array}\right]
$$

22. Aswume now
(46) $\quad \frac{m \psi}{m} \rightarrow \alpha_{v}, \frac{M}{m} \rightarrow \alpha_{2}+\ldots+\alpha_{n} \equiv \alpha, m \rightarrow c \infty$
磁 (v) and

$$
\frac{A_{m}}{m_{n}^{n-2}}=m\left\{\prod_{v=1}^{n}\left(2 \frac{m v}{m}+\frac{a}{m}\right)-\prod_{v=1}^{n}\left(2 \frac{m}{m}-\frac{1}{m}\right)\right.
$$

易
 Prey that ade revitur

$$
\begin{aligned}
& =\sum_{N=1}^{n} \prod_{v=1}^{R-1} A_{\nu=\mu+1}^{n} B_{\gamma}\left(A_{\mu}-B_{n}\right)
\end{aligned}
$$

and thts enncis to
(47)

$$
2^{n} x_{1} \ldots x_{n}\left(\frac{1}{\alpha_{1}}+\infty .0+\frac{2}{x_{1}}\right)
$$

2. In the nume?toror

$$
=\sum \pm \frac{1}{m^{n-1}} S^{2\left(m_{\mu}+\infty+\ldots b+c\right.}\left[\begin{array}{c}
M+1+M-1 \\
n-1
\end{array}\right]
$$

$$
\pm \frac{1}{(m-1)!} S^{2\left(\alpha_{1}+\alpha_{y}+\ldots\right)}\left(\alpha_{p}+\sigma\right)^{n+m}
$$

We obtaix fixcluy
(50) $\frac{N_{m}(\sigma)}{m^{n-1}} \rightarrow \frac{1}{(n-1)!} \sum_{\mu=1}^{n} \frac{1+5^{2 \alpha} \mu}{1-5^{2 \alpha} \mu} \sum_{V=1}^{n}\left(1-5^{2+}+(\alpha+\sigma)^{r-1}\right.$

That Pommua (15) follow immealatedy.

$$
\begin{aligned}
& \text { yno rin: } 1=0 \\
& 1=-2<1-2
\end{aligned}
$$

THE NATIONA 1 SUREAU OF STANDARDS

Functions and Activities

The National Bureau of Standards is the principal agency of the Federal Government for fundamental and applied research in physics, mathematics, chemistry, and engineering. Its activities range from the determination of physical constants and properties of materials, the development and maintenance of the national standards of measurement in the physical sciences, and the development of methods and instruments of measurement, to the development of special devices for the military and civilian agencies of the Government. The work includes basic and applied research, development, engineering, instrumentation, testing, evaluation, calibration services, and various scientific and technical advisory services. A major portion of the NBS work is performed for other government agencies, particularly the Department of Defense and the Atomic Energy Commission. The functions of the National Bureau of Standards are set forth in the Act of Congress, March 3, 1901, as amended by Congress in Public Law 619, 1950. The scope of activities is suggested in the listing of divisions and sections on the inside of the front cover.

Reports and Publications

The results of the Bureau's work take the form of either actual equipment and devices or published papers and reports. Reports are issued to the sponsoring agency of a particular project or program. Published papers appear either in the Bureau's own series of publications or in the journals of professional and scientific societies. The Bureau itself publishes three monthly periodicals, available from the Government Printing Office: the Journal of Research, which presents complete papers reporting technical investigations; the Technical News Bulletin, which presents summary and preliminary reports on work in progress; and Basic Hadio Propagation Predictions, which provides data for determining the best frequencies to use for radio communications throughout the world. There are also five series of nonperiodical publications: the Applied Mathematics Series, Circulars, Handbooks, Building Materials and Structures Reports, and Miscellaneous Publications.

Information on the Bureau's publications can be found in NBS Circular 460; Publications of the National Bureau of Standards ($\$ 1.00$). Information on calibration services and fees can be found in NBS Circular 483, Testing by the National Bureau of Standards (25 cents). Both are available from the Government Printing Office. Inquiries regarding the Bureau's reports and publications should be addressed to the Office of Scientific Publications, National Bureau of Standards, Washington 25, D. C.
NBS

[^0]: ion, reprinting, or reproduction ermisaion in writing is obtained Washington 25, D. C.

