NATIONAL BUREAU OF STANDARDS REPORT 1565

CONFIDENCE AND TOLERANCE INTERVALS FOR THE NORMAL DISTRIBUTION

U. S. DEPARTMENT OF COMMERCE national bureau of standards

U. S. DEPARTMENT OF COMMERCE Charles Sawyer, Secretary

NATIONAL BUREAU OF STANDARDS
A. V. Astin, Acting Director

THE NATIONAL BUREAU OF STANDARDS

The scope of activities of the National Bureau of Standards is suggested in the following listing of the divisions and sections engaged in technical work. In general, each section is engaged in specialised research, development, and engineering in the field indicated by its title. A brief description of the activities, and of the resultant reports and publications, oppears an the inside of the back cover of this report.

1. ELECTRICITY. Resistance Measurements. Inductasce and Capacitance. Electrical Instrumests. Magnetic Reasurements. Electrochemistry.
2. OPTHES AND METROLOGY. Photonetry and Colorimetry. Optical Instruments. Photographic Techology. Length. Gage.
3. HEAT AND POHER. Temperature Measurements. Thermodynanics. Cryogenics. Engines and lubrication. Engine Fuels.
4. ATCMIC AND RAD\|ATION PHYSICS. Spectroscopy. Radiometry. Mass Spectrometry. Physical Electronics. Electron Physics. Atomic Physics. Neutron Measurements. Nuclear Physics. Radioactivity. X-Rays. Betatron. Nuclecnic Instrumentation. Radiclogical Equipment. Atomic Energy Commission Instruments Branch.
5. CHEMISTRY. Organic Costings. Surface Chemistry. Organic Chemistry. Analytical Chemistry. Inorganic Chemistry. Electrodepositioa. Gas Chemistry. Physical Chemistry. Thermochemistry. Spectrochemistry. Pare Substances.
6. MECHANICS. Sound. Mechanical Instruments. Aerodynamics. Engineering Mechanics. Hydrealics. Mess. 'Capacity, Mensity, ond Fluid Meters.
7. ORGANIC AND FIBROUS MATERIALS. Hubber. Textiles. Paper. Leather. Testing and Specifications. Organic Plastics. Dental Research.
8. METALiURGY. Thermal Metallurgy. Chemical Metallurgy. Mechanical Metallurgy. Corrosion.
9. M\|ERAL PRODUCTS. Porcelsin and Potcry. Glass. Refractories. Enameled Metals. Puilding Stoae. Concreting Meterials. Constitution and Microstructure. Chemistry of Mineral Products.
10. BUILDING TECHNOLOGY. Structural Engineering. Fire Protection. Heating and Air Condicioning. Exterior and Interior Coverings. Codes and Specifications.
\|. APPLIED MATHEMATICS. Numerical Analysis. Computation. Statistical Engineering. Machine Development.
11. ELECTRONICS. Fngineering Electronics. Electron Tubes. Electronic Computers. Electreaic Instranentatios.
12. ORDHA $\begin{gathered}\text { HCE DEVELOPMENT. Mechanical Research and Development. Electromechanical }\end{gathered}$ Fases. Technical Services. Missile Fuzing Research. Missile Fuzing Development. Projectile Fuses. Ordanance Components. Ordmance Tests. Ordnance Research.
13. RAD 10 PROPAGATION. Upper Atnosphere Research. Ionospheric Research. Regular Propagation Services. Fregaency Utilization Research. Tropospheric Propagation Research. High Frequeacy Standards. Microverve Standards.
14. MISS ILE DEVELOPMEMT. Missile Engineering. Misaile Dynamics. Missile Irielligence. Missile Instrumentation. Technical Services. Conbustion.

by

Frank Proschan

Approved for public release by the

This report is issued in any form, either in froe the Office of the

Director of the National Institute of Standards and Technology (NIST) on October 9, 2015
ion, reprinting, or reproduction ermisaion in writing is obtained Washington 25, D. C.

FOREWORD

 Houmat of ino Amprisart Stetstateal associetiono

Confilance mnt folerance fntervels for the numal distribution aro prownated for the vanioug casce x lmown
 tration and interprotacion of thess intorrats aragiveno
 TRIS Finclly the polationship botwacn the two types of さnさexyals 1s doscrithed。

J．H．Cux宅13 Chlef Nevional Appiled Mathomatics Labosertorsom

hetrig Disector

by

Frank Proschan

2. Introduction. DIscussions of the theory of errors w111 sometimes state that the mean the probable error will include 50 percent of future observations (assumed normally distributed) This, of course, 1 s true only if the mon and the probable error of the population itself are used. Uniforms tunatoly, in most practical problems, one or both of those may not be known. Experimenters who use the sample mean the the a ample probable error with tho expectation that this Interval wi contain 50 percent of future observations may be seriousify deluding"; themselves.

However it is possible to construct intervals of the tree
 HiLl, on the average, Include 50 percent of the popinlatione From this one is led to more general consideration of such Intervals, and to the uses to which they can be put.
2. Summary. All populations discussed in this paper are normal undies otherwise specified. Leta, o refer to the population mean and standard deviation respectively.

Any one of four possible situritors may exist: (s) us o both known: (b) unlmomn, known (c) known a unknowns (d.) w. 0 both unknown

Let m represent either or $\%$ Int $\mathrm{s} \cdot \mathrm{d}$. represent either
 about intertey of the form

$$
\begin{equation*}
\text { 等 } 2 \mathrm{~m} \text { a } \tag{1}
\end{equation*}
$$

As Conftdence Intervat The probsbility is ythat the interval (i) contanis the poprlation mean (or altemetely, the second sample mean).
B. Tolerance Interval. In repeuted samplos. the proportion, p, of the populution contained in (1) is
B.1) a, on tre averago.
B.2) D, or more, of the tume。

Th the peper a cormatison is made amome the values of if Aporopriate to tine respective cases obtatned from varionk come binations of A ane B with (a) (b) (o) and (d) Practicaz

 Wij1ts (1941) for the cese B. . . These deta11s are Given beceuss they are sugnestive of a generre metron apolicsblo sn such problems. Also a table is prescatad of trasues of is for combiration
 $5120 n=2(1) 30,40,60,120,00$

Finally the relutionslip betreen confidence intervals and tolerance intervals in ciscussed.
3. Conficionce Intervals. A chenist mukes or determinations of the fron content of a solution. .hat interval shall he select so that he cun assert whth 50 percent confldence that the "truor tralve hates within thut inderval? The afstributzon of
observations is normal with mean raul
3.1 For the Population Mesne o Known First, consider the case where he mont oo (The determination is of a routine type, for which a great many sots of previous observations are ayallablo, from which o is calculated). In this cause

$$
\begin{equation*}
5 \frac{5 \% 45}{-4 n} \tag{2}
\end{equation*}
$$

was 11 contain tho "true" value (population mean) 50 percent of the time.

This may be seen from the following diagram:

 normally destrobutoc with mean dy standard deviation $\frac{0}{6}$ the
 ever, that for the Interval a $\pm \frac{.6745}{\sqrt{n}}$ o to contain is is exactly Qquivalonit to the interval $C D_{0} \times \frac{0.6745}{\sqrt{n}} 0_{0}$ containing do Hence s tine probability 18.50 that $\bar{x}+\frac{6745}{\sqrt{51}}$ o w111 contain mo
 presented in table 3_{0} column 1 。
 of of0）．the confidence interval for the ponulation mean is

$$
\begin{equation*}
\text { 里 } \pm \frac{I_{2 \sin }}{\sqrt{\pi}} 0 \tag{3}
\end{equation*}
$$

wher：

$$
\begin{equation*}
\int_{-I_{I_{\infty}}}^{I_{\infty} \frac{2}{\sqrt[4]{2}}}=\frac{e^{2}}{2} d t=x \tag{A}
\end{equation*}
$$

3． 2 For the Populathon Mean．Onlenown Considers nows the cass where the oniy information about ois in the prosent amples Then the interral

$$
\begin{equation*}
\frac{5}{5}=\frac{50, n-1}{\sqrt{n}} \tag{5}
\end{equation*}
$$

 whick is exceeced in absolute value，with probebility o50）wili： so pereent of the time，contain tho population meno

The following diseram domonstrates this．
Firume 2

 and whon x does not $11 e$ in $A B_{8}$ must Tall outside of CD. Eut the rrobability of
 probaboll ty that

sre presented in table 1 , columi 2o Gomparison af the aritiz

 of .50). the confidence intoryay booomes

3.3 Confidence Interval for second sampat Hesio

Suppose the chemfot mho made the aron determinations wishes to Stt un a confidence intorval not for the true mesn. but for the mean F_{2} of a second samplo of I_{2} obsaryetions. Suppose as 1 is paragreph 3.\&, 0 is wnknown.

Jet us now call whomean of the fingt sample No and the

Sixe of the firet sample n_{1}. We may sot up the statistic

The numerator is a notmelly destributed varlable while the donominutor ss un indopendent ostimeto of the standurd doviation of the numerator. Hence the ratio, ty 4 , distributed as studentis to It pollows that the interyal
 That does ti is mean? It simply means that if pars of

 Sor 50 percent of those pusre $\bar{x}_{2 \pm}$ Win $11 e$ in

$$
\begin{equation*}
\mathrm{F}_{21}+t_{5} 50, n_{2}-1 \sqrt{\frac{1}{n_{2}}+\frac{1}{n_{2}} n_{1}} \tag{31}
\end{equation*}
$$

It does not xean that is one sirgt sample of size wath monn \%y de dramn, to be followed by the araming of a great nany
 thet for 50 percent of the "second"sumples xizi will 110 in (21) When $n_{2}=n_{1}$ o the coefficient of ${ }_{1}$ in (11) becones

$$
\begin{equation*}
-x_{z}=t \cdot 50, n_{2}=1 / \frac{P}{n I} \tag{12}
\end{equation*}
$$

Values of k_{3} for $n_{1}=2(1) 30,40,66,220,0$ are Giv en in table 1. column 3. for grxposan of comnerison. Note that $u_{3}=\sqrt{2 k} 2$. Qixnoly。

To generalize (10), If the coafidence coofficient fis γ (instead of 50), (10) becomes

$$
\begin{equation*}
\bar{z}_{1}+w_{1-i}, n_{1}-1 \sqrt{\frac{1}{n_{1}}+\frac{I}{n_{1}}} z_{2} \tag{23}
\end{equation*}
$$

Ao Tolerance Intervals. In puragraph 3, an Intorval (1) was formed to contain the population mean (with a certain probability) - Suppose, now, we are interosted in setting up an interval (I) which will contain a cextain proportion, p, of Ehe poplation. Such an interval is mown as a tolerance interval.

If eithora or o is unknown, then the interval (I), conteingng
 In (1) whil be a randow varlable.
1.1 Expected value of D. In Aol wo dotermine so
 determine is so that in a laree series of samples from normal miverses a certain proportion of the intervals (I) will friclude p or more of the univarse.

$$
\begin{align*}
& \text { A.I.I A. } 0 \text { Known. In this caso } \\
& \mu+14 \sigma \tag{24}
\end{align*}
$$

may be used as the tolerance intervaz. The proporion p contanned in (11) Is constant, and the appropriate value for specifiea p may be obtained from a table of normal areas. Thus for $p=.50$. $\mathbb{k}=.6745$ (listed in taible 1 , column 4, for purposes of comparison)。

> 4.1.2 a, onknown. Onfortunately in most
practiced problems a and ore not known. Hence 果 and s must

A solution was glven by :3nks An [B] w是thout civang
 Statec erplacthy Tet

Ther

$$
\begin{equation*}
t \approx 4 \sqrt{\frac{n}{n} 2 x} \tag{26}
\end{equation*}
$$

In Other worday the tolenance Imsta which will includes

Whese fina, nal is the walue of for which the Intecral in (16) Is aqual to *o Henca

Walues of 4 for $3=2\{1$) $30,10,50,120$, 4nd for a
 slould te of use both to the experimenter and to the quality
 [3]. An oxample of the use of tatie 2 is given:

My Aly thearames the voltu, es of a random sample of 30 brtterios from his production Iino. (Procuction is ins stutistacal control. and the successito battery woltaces may bo assumed to be random

 no wikhes to estimate tolerunce linits that will, on the average, contain 95 percent of the ponimition or batternes. inat shall theso tolorunce limits be?

 2.079. Hence the tolerance limits ere:

$$
7.52 \pm 2.079(.90)=7.52 \pm 1.87=5.65 \text { to } 9.39
$$

Notice that ${ }_{0}{ }_{05}=2.070$ is lurger than the Value 1.96 that would be used if A and σ were avallable.

For purposes of compurisong values of $: 5$ for $n=2(1) 30$ o $40,60,180,00$, are includen In table 2, colunn 5.

One Sided Tolerance Ifinits. Suppose now the problem is to find the value of c_{s} such that, on the averuce, the proportion

1

$$
=10=
$$

In other words, if
find the value of k^{8} such that

$$
\begin{equation*}
E\left(p^{s}\right)=a \quad 0 \tag{21}
\end{equation*}
$$

From the previous proors ft follows that the answor now A3:

$$
\begin{equation*}
k^{2}=t_{a} \sqrt{\frac{n+1}{n}} \tag{22}
\end{equation*}
$$

winers if is the 100 a pereentile of the studentot distributiono Hence to get the answor from bable 2, fine wam. ${ }^{\circ}$. Then the Besprod paIue is

$$
\begin{equation*}
k^{3}=k_{20 \mathrm{c}} \tag{23}
\end{equation*}
$$

A sindlar result holda if the proportion of the normal
 oa the average.

EXADPLE: A pilot run of 40 electron tujes is made. For ach tube a cortain critical characteristic, x, is measured; for the sample $=12.25 s, y=.68$. From past experience, it is Fnown thet x is normaily distributed. What is the Fuilue of L such that 99 paresat of the population of tubes mill, on the nerega, Lave a value loss than L?

To may mrito

$$
\begin{equation*}
x=\ddot{X}+\mathbb{K}^{0} s \tag{24}
\end{equation*}
$$

Then acoording to (23)

$$
\begin{aligned}
& \angle 21=
\end{aligned}
$$

$$
L \approx 22025+2.455(-68)=23.32 \quad
$$

 of tho form
興
mat be usod。
 Tesule may be derivec：
if the expoctod value I（p）of the proportiong p，of the

$$
\begin{equation*}
15 \sqrt{\pi} \sqrt{\pi} \tag{86}
\end{equation*}
$$

 Eveg votioon＋Ing \％\％

For puxposas of compsisong of（26p is fyen in table is

> Ao Io A Mromn, o Jrimom. In thes case the
shterval

$$
\begin{equation*}
\mathfrak{A}+1 \tag{27}
\end{equation*}
$$

must be zseai。
Agtur using tie gane mothod as in the proof wbove，the Rppropritto value for for（2？）to Includo，on the tverage，a is ruven by

$$
\begin{equation*}
\text { ix } x_{2} 02, n-1 \tag{28}
\end{equation*}
$$

Is gqual to a

Fort purposes of compurison, values of lf of (28) are civen
 Soe Confidence Statenent About Tolerance Intormel.
A nuriver of pupers huve boen written on the problem of confidence Etatcments for tolerance Intoryals, [2],[3],[6],[7],[8]. Tho problen may be illustrated as follows:

Aosol fir Thmome Suppose the buttery encincer of 6.1.2 asked the following questions That value of whall I take so that I can be 95 percent confident thet䍚 + ts will Include at least 80 pereent of py population of watterfes?
[3] contains extencive tables of is such that in a large serfes of samples for normal undverses a eartain proportion y of. the intervals $\underset{x}{\ddagger}$ सs will fnciude p os more or the uniterse 2. Is called the "confidence coefficients since it is a moasure of the confidence mith which we my assert thet a given tolerance rance includes at least p of the miverse ${ }^{\text {an }}[3]$ In these tablos है $=.75, .90, .95$, $099, .999$ o

As으 R Known, O Unkown: Consider the caso whero an is know. Then an anterval of the form (27) can be sem up to include at leust P of the ponulation when confidence of ad E0120\%s:

Lot is take speciric values of $P=080$ and $\neq 0.95$ for 11lustrative purposes. $\%$ note ilrst that P is monotonic Incressenc with s (and rith s^{2})。 Honce, when s^{2} taikes on its

$$
\begin{equation*}
a_{08}^{2}=\frac{x^{2}-05 \cdot n \cdots 1}{12 \omega 1} 0^{2} \tag{80}
\end{equation*}
$$

Then the appropritu waluc of is to use in (a7) \&

$$
\begin{equation*}
k=L_{0}, 20 / \sqrt{x_{0}^{2}, 95, n-1 /(n m)} \tag{30}
\end{equation*}
$$

Varizes of 4 for $P=8=0.50$ for $n=2\{1 / 30,10,80,120,00$ aico civen in table 1, coluars B, for purposes of ccmparison。
 appropxats value or is bo use in (27) is

$$
\begin{equation*}
z=\frac{I_{1 \infty} P}{\sqrt{x^{2} \%, n-1 /\left(n-1 \frac{1}{8}\right.}} \tag{32}
\end{equation*}
$$

4.2.3 a Thmown o Knome. In this ease interval
(25) mast be used. Let us solve for k when $P=080, y=0.95$ to Pilustrate the reasoming.

 conters insiden $\frac{I_{0} .05}{\sqrt{13}} \sigma^{2}$. Now zind H_{0} such that

$$
\begin{align*}
& \beta A+\frac{L_{0} .05}{\sqrt{23}} \sigma+159^{\sigma} \tag{32}
\end{align*}
$$

It follows thet the intorval

$$
\begin{equation*}
\frac{p}{}+1_{5}{ }_{5}^{\circ} \tag{35}
\end{equation*}
$$

Will contain o80 or more of the popuituson． 093 or the time。
 for $n=2(1) 30,40,60,1200_{1} \mathrm{co}$ 。

For seneral P，it is found frors

Whero $I_{\text {my }}$ is dafinetas in \｛26\}。
5．Relationshin Fotween Conficence Interyala and ToLerance Intervals．Thore is a very futeresting relatlowshlp between anfidence intervals and tolerance intervals that can be iliugo trated by the following arsmple：

Suppose as in paragraph 3.5 wo manted to find a conflemeo intental for the mean of a socord sampla．But now $100 \mathbb{Z}_{8}=3 \mathrm{~s}$ Ir other words，wo whil now be finding a confidence iaterval for a single future obsarvation Accorang to the rosult in paran grepo 3．5，our answer is
where a is the confidence coefficiento
That doas（35）means Onc way of lookine at it is that if repeatedly a sample of size n_{2} is first dram and then a second sample of one item is arewn then a of the time tho sinculo item
will Ile in the corresponcinc interval (5b) But a Iftte thought shows that this is exactly equivalent to statinc that in reperted samples of shac z_{2}, the uverace proportion, P_{0} of the popurstion contained in (35) Is a, In other words, conficence Lhmits with conficence coefficient in for a second sample of size 2 are sdentical tith tolerance Imits that mill smolude a pros
 (3) is ficenticul mich (18)。

The above is an sliustration of a theorem by Paulson [5]:

$$
\text { MI confidenco } \operatorname{lingta} U_{1}\left(x_{1} \ldots \ldots x_{n}\right) \text { und } U_{2}\left(x_{1} \ldots \ldots x_{n}\right)
$$

on a probability level $=0$ are determined for ga function of (2) future sarple of E observations. [with alstribution f (C)], anci $p=\int_{0_{1}}^{0_{2}} y(\varepsilon) d_{\varepsilon}$, tion $E(p)=0_{0}^{\circ}$

The proof is now given, because it is shost and instructive:

 Falue

Thas triple laterral is however oxactly the probubility that of will Ile between U_{2} and J_{8} which by the nature of confidence lumits must equal © $0^{\text {on }}$

In the fllustration given above 6 corresponcs to the value of the single future observations and $k=1$ 。

Similerly we can cheor the results of paracraphs 401.3 and

Proschan

Reforencos

[1] G. A. Batcer, The orobabinity that the mean of a second gamnle wil. differ from the mean of a first gample by I985 than a certaln nuitione of the standand devietion of che ripst samples kmals or inatho Stat. Volovis No. 49 Dome 2935。
[2] A. H. Bowker, Computatlon of factors for tolerance 11mita on a nomnal alstmoution when the sample is laries Annal of hath. Stat. VI XVII. No.2, June 3.946
[3] Fisornart, Hastats and Thasws. Fochmiauen of statesticai finalysis, MCGraw-H11. 1947, Chaptor 20
[4] A. II Hood, Introduction to the Incory or Stathstias
[5] E, Paulson, is note on tolerance limits innsz of silutho State, VOL. XIV, NO. 1 , Therch 1943.
[6] A. Wald. Settinr of tolerence Ilmits when trae sample is larce knnals of Jiath Stat. VOl. XIII, NO. DEC I942.
[7] A. vald and J. Wolfowitz, Iolerance Ifmits fon rimmal distrioution. Annels of Iatho Staze Volo XVII, No.2. sune 1946.
[8] $S_{0} S_{0} 11 k s$ Detorminetion of sampio sizes for sotthic

[9] WiTAll en Wallis Tolerance intervals ror ifnear resteasiono Second Berieney Symposinm on ilathematical Stetistuce and Probability, odited by Jerry Neyman. 1951.

Kthematicul Proof of (16). The detajle of the proos (4adependont?y corixed by I. R. Savage of the Statistical Thernacing Laborutory, Whefonal Bureau of Standards) of (26) are civen, since the mothod is an angestive ono:

By an appropriuto lunear transforution, the problem mey be reduced to that of finding

Where C_{2} is congtant reo of wo In the folloming $c_{2}=$ constent friea of ko

The condftions for diferentiating under the integral hold. fince to have

Let $u=\sqrt{n+1} \bar{x}+\frac{14 g}{\sqrt{n+1}}$ in the Airst integral and

027

$$
\begin{equation*}
\left.\frac{b \pi}{d k}=c_{2} \int_{0}^{\infty} 8^{n-1} e^{-\frac{1}{2}\left(2 x \alpha 1+k^{2}\right.} \frac{3 \pi}{2+1}\right) x^{2} d \Sigma \tag{40}
\end{equation*}
$$

Int $y=\frac{1}{2}\left(n-1+k^{2} \frac{n}{n+1}\right) s^{2}$. Ther

$$
\begin{align*}
& =C_{3} \frac{2}{\left(203+k+\frac{n}{n+2}\right)^{2}}
\end{align*}
$$

Heneo

$$
\begin{equation*}
E(p)=C_{3} \int_{\pi=15}^{k} \frac{d x}{\left[n \operatorname{coj}+i^{2} \frac{5}{n+1}\right)^{2}} \tag{43}
\end{equation*}
$$

Now 18 名

$$
t=15 \sqrt{\frac{n}{n+2}}
$$

so that

$$
\begin{equation*}
E(p)=C_{4} \int_{\infty t}^{D_{0}^{t}} \frac{d t}{\left(n-1+t^{2}\right\}^{n}} \tag{4.5}
\end{equation*}
$$

$$
=C_{5} \int_{-\pi}^{\frac{2}{4}} \operatorname{ait} /\left(2+i^{2} /(n \tan)\right)^{\frac{22}{2}}
$$

But Ghe sntegrand is the well knom strdentot dengety gunctiono

$$
Q_{0} \mathbb{E S}_{2} D_{0}
$$

Factorefor considence and tolerance intervals

Benple
Size

For
rplanation 3.13 .23 .3 4.1.1 4.1.2 4.1 .3 4.1.4 4.2.2 4.2.3 so paragraph
\％actors ion totomance interranso
$-n y \%$ o
2 20 20

21	48.50	15.75	3.90	${ }_{0} 95$	2.88	${ }^{3 \pi} .99$	15.999
2	1.225	2.957	9.753	25.562	38.973	97\％．964	779.699
3	． 989	1.852	3.378	4．969	3.942	12.460	36，286
4	－ 355	2.597	2．6．31	3.558	5.977	6.530	24．869
5	． 822	2.477	20．535	3.041	4．205	5.043	9．a违2
\％	． 780	1.405	2.276	2.5777	\％．635	4.355	7.408
7	． 768	1．361	2.077	2.625	3.380	3.963	6.370
3	． 754	1.330	2.010	2.508	3.280	3.712	5.733
9	－744	1.30%	1．961	2.432	3.053	3.536	5.324
40	0787	1.290	1.828	2：372	\％．959	3.409	5.014
11.	． 73	1.276	2.893	2．387	8.887	3.310	4.791
12	－725	1.2264	1.859	2.891	2．839	5.233	4.61 .8
1．88	－ 782	1.255	2．849	2.261	2.785	3.1780	4.483
$1 \leq$	7116	1.246	1.833	2． 235	2.748	3.118	4.369
15	－125	1.539	2.819	2.215	8.710	3.075	＊2\％6
36	． 732	2.234	2.897	2．197	2，682	3.038	4.198
18	¢ 780	1．228	2.897	2．12\％	2，658	3.006	40， 31
18	$\checkmark 708$	1.224	1． 7.788	2.468	$2 \cdot 6597$	2.87%	$\triangle .074$
28	.705	1.820	1．779	2.3 .56	2.818	2.95%	4.024
20	.705	2.216	2.8779	\％．${ }^{3}$ 部	2．602	2.95 気	3.979
21	0708	2.213	2．068	2． 133	2.5597	2.938	己。98篤
20	． 702	3.210	2.760	2． 22.8	2.575	2.895	\％．805
33	．70\％	2． 2.07	2.754	2．17	2.562	\％．800	
38	－ 699	3.205	5． 0774	2.152	9．55\％	2.865	3.845
25	． 599	I． 202	3．${ }^{\text {\％}}$／ 45	2.105	9．5A2	2.85%	3.819
26	． 698	3.200	20789	2.099	2.532	2.340	3.756
2 \％	－697	1.298	1．7．73\％	2.092	2．588	2.830	3．7375
23	． 996	2.297	$2 \mathrm{~L}+483$	2.089	2．51\％	2.820	\％．8755
29	． 695	2.195	1．93\％	0.083	2．509．．	2.810	3.785
30	.694	2.193	1．7897	2．07\％	2.503	2.80%	3.719
30	.639	1．282	？．706	2．0．47	\％． 455	2.7818	3.602
30	－ 585	3.973	2． 236	2.027	2.412	2.684	3.492
20	． 620	2．361	1.665	1.988	2.368	2.528	3.388
0	．694	3.150	2.645	1.060	2.326	2.576	3．291

table is such tinat $E(p)=a$ mpepatod sampling．（seo par．a．1．2）．

THE NATIORAL BUREAU OF STANDARDS

Functions and Activities

The National Bureau of Standards is the principal agency of the Federal Government for fundamental and appliedresearch in physics, mathematics, chemistry, and engineering. Its activities range from the determination of physical constants and properties of materials, the development and maintenance of the national standards of measurement in the physical sciences, and the development of methods and instruments of measurement, to the development of special devices for the military and civilian agencies of the Government. The work includes basic and applied research, development, engineering, instrumentation, testing, evaluation, calibration services, and various scientific and technical advisory services. A major portion of the NBS work is performed for other government agencies, particularly the Department of Defense and the Atomic Energy Commission. The functions of the National Bureau of Standards are set forth in the Act of Congress, March 3, 1901, as amended by Congress in Public Law 619, 1950. The scope of activities is suggested in the listing of divisions and sections on the inside of the front cover.

Reports and Publications

The results of the Bureau's work take the form of either actual equipment and devices or published papers and reports. Reports are issued to the sponsoring agency of a particular project or program. Published papers appear either in the Bureau's own series of publications or in the jourrals of professional and scientific societies. The Bureau itself publishes three monthly periodicals, available from the Government Printing Office: the Journal of Research, which presents complete papers reporting technical investigations; the Technical News Bulletin, which presents summary and preliminary reports on work in progress; and Basic Radio Propagation Predictions, which provides data for determining the best frequencies to use for radio communications throughout the world. There are also five series of nonperiodical publications: the Applied Mathematics Series, Circulars, Handbooks, Building Materials and Structures Reports, and Miscellaneous Publications.

Information on the Bureau's publications can be found in NBS Circular 460, Publications of the National Bureau of Standards (\$1.00). Information on calibration services and fees can be found in NBS Circular 483, Testing by the National Bureau of Standards (25 cents). Both are available from the Government Printing Office. Inquiries regarding the Bureau's reports and publications should be addressed to the Office of Scientific Publications, National Bureau of Standards, Washington 25, D. C.

NBS

