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FOREWORD

Ha© adoption of statistical procedures for the

interpretation of data will be encouraged, first, by

drawing the attention of scientists and engineers to

statistical procedures that, are the counterpart- of the

questions which inevitably arise in the examination

of data, and, second, by indicating that these pro®

cedures are valid for small sets of data*

The paper was prepared as the first of a series

of four lectures sponsored by the Philadelphia Chapter

of the American Society for* Metals®

J e Curtiss
Chief, National Applied
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Acting Director
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STATISTICAL UNITS OF MEASUREMENT*

^7

W. J. Youden**

Engineers are accustomed to devise suitable measuring units
to express the magnitude of the physical properties of engineering
materials. In many cases these units are simple combinations of
the basic units employed in everyday life. The tensile strength
of an aluminum wire may be 35,000 pounds per square inch. A pound
per square inch ia a unit of measurement for tensile strength and
the number 35,000 expresses the engineer’s verdict regarding this
physical property of the metal. Such units are so familiar to us
that they are usually taken for granted, especially when the unit
can be visualized and found meaningful.

There are many cases in which the unit or scale has an arbitrary
basis. The scale of hardness for minerals is an example. The
values 1 to 10 are assigned to ten materials ranging from talc to
diamond. Other materials are rated by their response to scratching
with specimens chosen from the standard list. Obviously a longer
list of standard materials would give finer divisions. This scale
of hardness is something which men have agreed to use to convey
their knowledge of the properties of materials. Other hardness
scales are available for metals, such as the diameter of the inden-
tation made by a hardened steel ball under specified circumstances.

Both these scales of hardness have a recognizable meaning in
terms of everyday experience with the concept known as hardness.
Sometimes the connection is more remote. If the measurement process
is destructive recourse may be had to some other form of measure-
ment the results of which are closely correlated with the perfor-
mance of the material. It is difficult to see any simple property
that is measured by the Charpy Notched-Bar Test yet such measure-
ments are considered, at least by some, to furnish information on
certain performance characteristics of steel.

Making measurements of one kind or another is a primary
activity for most engineers and scientists. Attention is directed
to the answers, that is, the magnitudes which are obtained. Judgment
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are then formed by appraising these magnitudes against the
individual's accumulated experience with such measurements.
Often the result or measurement is directly compared with some
specification to determine the fate of the material in question.
Men have learned also by experience that measurements vary and
are aware that the fate of border-line material may depend on
this variation. On one test the material may fall just short of
specification. On a repeat test the inherent variation in the
measuring process may turn up a result which meets the specifica-
tion. The material has not changed; the uncertainty lies in the
limitations of the procedure for making the measurement or possibly
in the sample selected or in both.

In the early stages of the development of a craft attention
is properly directed to refining the measurement procedure.
Attempts are made to reduce the variation shown by repeated
measurements on the same’ material so that it can be neglected.
When this is achieved there is no uncertainty about whether or
not a product meets specification or about the performance of
the product. This happy state of affairs is not easy to attain.
Sometimes, by building extra quality Into the product, one can
be sure that all measurements meet specifications and there will
be no rejections. This can be expensive. Whenever we crowd the
specification we risk the chance that good material will be
rejected simply because measurements vary. Consequently great
efforts have been made to improve measurements and, in recent
times, to making the most of the measurements we have. It is at
this point that someone begins to look into the subject of stat-
istics since it is rumored that statisticians can get information
out of data.

It will be my concern to give some indication of what it is
the statistician has to offer. The somewhat lengthy Introductory
remarks on units had a purpose. We shall need a unit to measure
variation. I shall mention three common units that are used to
give quantitative expression to our knowledge of the variation
that measurements may exhibit.

Even If but two measurements are available the difference
between them is a measure of the variation shown by such measure-
ments. Once sufficient experience with a given procedure has
been' accumulated It is possible to pass' judgment on the agreement
shown by a pair of readings and determine whether or not confi-
dence may be placed in the average of these two readings. If
more than two readings are available, a simple extension of the
rule of taking differences leads to using the range, i.e., the
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difference between the largest and smallest measurements in the
set, as a measure of the variation. One important drawback to
this simple unit is that it needs adjustment depending upon the
number of measurements in the set. Five measurements will, on
the average, have a range more than twice as large as the average
difference between two measurements. The average difference
between the largest and smallest of a group of 14 measurements
exceeds three times the average difference between a pair of
measurements. The intrinsic variation of the measurement operation
concerned is the same regardless of the number of measurements
taken, so a unit that depends upon the number in the group must
be adjusted by an appropriate factor.

/

Another unit for measuring variation is the average deviation— simply the average of all the differences (without regard to
sign) obtained by subtracting the average for the group from
every measurement. This unit is in widespread use by engineers
and scientists. It would not be used so much if the user knew
that this unit, like the range, depends upon the number of mea-
surements in the group. Indeed the average deviation, if groups
of three measurements are taken, is, in the long run-, but seven
tenths the correct value. The correction factor depends on the
number in the group. Almost invariably this correction is ignored.
No engineer would use a unit of length that got larger for long
objects than for short ones.

Statisticians have their favorite unit for measuring variation
among measurements. It is called the standard deviation and is
computed by squaring the differences used in the average deviation
and dividing the sum of the squares by one less than the number
of measurements. The final step of taking the square root returns
the unit to the 'same scale as the original measurements. This
seems like a tedious process but so is the process of taking the
measurements in the first place. The square of this unit meets
the first requirement that, on the average its calculated size
is not influenced by the number of measurements used in its
computation. Equally important, this unit is particularly well
adapted to answering the questions that experimenters are bound to
ask about their data. The numerical operations with this unit
are simple.- Furthermore, the standard deviation extrac.ts more
information from the data than the range or average deviation.

A word of caution may be interjected at this point. We are
here considering measurements that are independent and of equal
precision. If the measurements are not independent the information
furnished by a measurement is, in part, a duplication of informatioi
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already supplied by other measurements. This reduces the effective
size of the set of measurements. Also, if measurements have
varying precision it becom'es necessary to weigh them appropriately
otherwise a single imprecise reading may dominate the others.

Suppose wo enumerate some of the questions that experimenters
ask about data and give some examples to show how the standard
deviation is put to work to answer their questions. It will not
be possible to do a complete job in this paper but some examples
will show that a unit for the measurement of variation is indis-
pensable for a really close examination of a set of measurements.

In the first place it is often desirable to be able to state
the variability of a measurement procedure.

TABLE I

Measurements Diff. from Average Diff. Squ;

2.59 .06 .0036
2.31 -.02 ,0004
2.38 .05 .0025
2.32 -.01 .0001
2.27 -.06 .0036

Average 2.33 Sum 0.0102

Standard Deviation =
/0.0102
j _->/0.0025 = 0.05
V 5-1

Table I shows the computation or 'estimation of the standard
deviation from a group of five measurements. The result, 0.05,
is called an estima te of the standard deviation because, obviously
enough, another set of five similar measurements will lead to
another result differing more or less from the first. The original
readings, or estimates of the property, show variation and con-
sequently we may anticipate variation among a series of estimates
of the variation.

Further questions immediately come to mind. Suppose these
measurements have been obtained by a modification of a test
procedure which long experience has shown to have a standard
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deviation of 0.12. Are those data sufficient to warrant the
conclusion that a real improvement has "been achieved in the test
procedure? The statistician will divide the sum of squares,
0.0102, from above by the square of 0.12 obtaining

0.0102

0.0144
0.71

This ratio, known as Chi square, is looked up in a statistical
table (see Appendix 1) which informs the statistician that only
once in 20 times would he get five measurements to agree as well
as these do if the procedure has not been improved and it still
has the original standard deviation of 0.12. Perhaps this is the
lucky one in twenty shot. The usual conclusion, however, is that
an improvement has been effected.

There is another question we might consider even before the
measurements are taken. We may set our sights a bit lower and
decide, in advance, that we would be pleased if the modification
in the method cut the actual standard deviation (not merely its
estimate) to one half the former figure of 0.12. 'If the modif-
ication has really brought about this much improvement we would
like very much to establish that fact. It is necessary to face
the situation that, in any given group of measurements, the estimate
of the standard deviation may, by chance, be low and we could be
misled. We shall insist, therefore, that the estimate obtained
from the measurements, when they become available, be below such
chance values or we will not be impressed by it. On the other
hand, the modification may really cut the standard deviation down
to one half its former value and nevertheless the set of measure-
ments obtained give, by chance, an estimate somewhat above the
value 0.06. How many measurements should we take to prevent our
concluding an improvement has been achieved when in fact it has
not and also give us a good liklihood of catching this improve-
ment if it really has been achieved. Tables have been prepared
to guide the experimenter in this matter. If the experimenter
decided he wants to risk only one chance in twenty of believing
in an improvement, when none has taken place, and to have nine
chances in ten of picking it up if this 50 percent reduction has
been achieved, such tables show that 12 measurements should be
collected. If this seems a largo number, it means that some
people underestimate the amount of work that it takes to demon-
strate that such an improvement has been made. A short table
Is given In Appendix II.
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These techniques for assessing the variation among measure-

ments are, of course, equally applicable to the assossment of the

variation shown by units of a product that is -being manufactured.

Almost always the objective is to achieve greater uniformity in

a product and various steps are taken with this in mind. Sooner

or later the question arises? Has the variation been reduced by

the steps taken? It may be that there is no limit on the number

of units available. On the other hand, if the tests are destruc-

tive of a valuable item, or if the measurement . of quality or

performance of the product is expensive, then it is useful to be

able to make an estimate, in advance, of the amount of work

required in order to arrive at a sound decision. .Not the least

benefit accruing from the statistical approach is that it removes

the matter from the field of personal opinion and submits -it to

an objective criterion.

Another variation of this question is often encountered. A

purchaser may be offered items from two suppliers. Naturally he

will wish to choose the more uniform material; the^one showing

least variation. Presumably this will assist him in producing a

uniform product. Here the variability of neither material is

known In advance. The purchaser must first estimate the standard

deviations. These are compared by taking the ratio of the squares

of the standard deviations, setting up the fraction so that the

ratio is greater than unity. This ratio, called F, must attain

a certain critical value before it can be concluded that a diff-

erence In variability between the products really exists (see

Appendix III). Furthermore, statistical tables are available

to guide the purchaser in the amount of data required,^ to be

reasonably sure of detecting a difference in variability that

would be Important in his process. (See Appendix IV).

These examples by no means exhaust the list of ways of making

good use of knowledge of the variation exhibited by a group of

numerical quantities. This variation is one of the reasons for

making repeat tests. It is well known that the average of a serie

is less prone to variation than the individual measurements enter!:

into the average. In fact, the standard deviation of the average

of n measurement’s is estimated by dividing the standard deviation

(as”"calculated in Table I) by the V?T. This Is one step toward

answering a question of greater interest to the man with the data,

He would like to know whether an interval can be specified such

that, when centered on the observed average, he can have a certain

confidence that it will bracket an average based upon a great

many measurements. If this interval does not overlap some

rejection value the data do not contradict the claim that
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the product meets the specification. Of course more data might
show that the product does not meet the specification.

Here again there are two distinct situations — first, the
case where the standard deviation has been established through
an accumulation of earlier records and, second, the case in which
the limited set under examination is the sole source of infor-
mation on the variation of the data. It is reasonable to expect
that a narrower interval can be set if there is available a well
established figure for the standard deviation. Indeed, for 95
percent confidence it is customary to make the interval extend
two (more accurately 1,96) standard deviation'* on either side
of the average. The factor becomes larger as the number of
measurements available for estimating the standard, deviation
decreases. With 20 measurements the factor is 2,09, for 10
measurements 2,26, and for 5 measurements 2.78, These are the
well known jb values taken from widely available Tables of t, (See
Appendix V), The larger factors reflect the additional uncer-
tainty introduced by the variation In the estimates of the
standard deviation which naturally enough gets worse as the
number of measurements becomes smaller.

When earlier records provide a reliable estimate of the
standard deviation it is possible to specify the number of measure-
ments required to have a given chance of picking up a shift in
the average. The shift Is expressed in units of the standard
deviation and a table may be consulted (see Appendix VI) for
the required number of measurements* The table vividly shows the
large number of measurements necessary to be reasonably sure of
catching a small shift in the average.

There are still some workers who hold that statistical
procedures can only be used when large masses of data are in-
volved, This simply is not true. Often these same workers do
not hesitate to express their intuitive judgments upon rather
small sets of data. But statistical procedures are nothing more
than the translation of such intuitive judgments into more exact
appraisals by making use of an appropriate unit of measurement
for the evaluation of the variation in the observed results.

Ever since men began to make measurements they have focused
their attention on the quantity under measurement. There is
always a second quantity which requires measurement. This

Standard deviation of the aver age ,
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second quantity is the variation in the original measurements —
the scatter they exhibit about their average. The examples given
above show emphatically that it is desirable to have a unit to
measure this variation. Once this variation has been measured
it is relatively easy to face the questions about, the data that
sooner or later confront every experimenter.



APPENDIX I

Critical Values for Chi Square
One in 20 Level, n Measurements

n Lower Upper

2 0.00393 3.841
3 0.103 5.991
4 0 . 352 7.815
5 0.711 9 c 488

10 3.325 16.919
15 6.571 23.685
20 10.117 30,144

This table is used to determine whether a group of n
measurements shows (a) less variation than some standard value
or (b) more variation than some standard value for the Standard
Deviation.

Chi square Is computed by taking the ratio of the sum of
the squares of the deviations from the average to the square
of the known standard deviation.

( x - x) 2

Chi Square = 77 rrr
“l, _

(known S.D .

)

c

One in 20 sets of measurements will yield values below the
lower critical values, and one in 20 above the critical values
even if the procedure really has the Standard Deviation entered
in the denominator.

This table is extracted from larger tables available in
most statistical texts. In these texts the entries will be
found opposite (n - 1).



APPENDIX II

Number of measurements required to reveal
whether a given procedure has a standard deviation
that is a given fraction of an assigned value

Given fraction
of assigned

value

Chance that tho indicated number of
measurements will reveal the improvement

• Pour out of five Nine out of ten

.70 28 38

.65 20. 26

.60 15 19

.55 12 14
o 50 9 12
.45 8 9
.40 7 8

The value of Chi square for the set of measurements, when
they are obtained, is calculated as in Appendix I and is judged
by the lower critical limit values. The numbers of measure-
ments that are entered in the above table arc sufficient to
reduce the chance' of claiming an improvement, when in reality
there has been no improvement, to one in 20. The two tolunns
refer to the chance of detecting the improvement, if actually
there to the extent indicated in the first column.

For larger tables see ’’Selected Techniques of Statistical
Analysis”, edited by Eiscnhart, Hastay and Wallis. McGraw-Hill
Book Company, Inc., 1947.



APPENDIX III

Critical Values for the F Ratio
Each Group with n Measurements

n F

2 161 One chance
3 19 in ten of
4 9.28 attaining F
5 6.39 if both sets

10 3.18 come ffom
15 2.48 sources with
20 2.13 same standard
25 1.98 deviation.

Compute the squared standard deviation for each set and
divide the larger result by the smaller to get the F ratio.

If circumstances dictate that one of the sources must
have a smaller standard deviation than the other in order to
be of interest and the squared standard deviation from this
source made the denominator of the ratio, there is but one
chance in 20 of attaining the F ratio shown above if both
sources In fact have the same standard deviation.



APPENDIX IV

Number* of measurements required in each of two groups
to have a four out of five chance of detecting
whether the standard deviation of one source

is a given multiple of the other.

Multiple No.

1.5
2.0
2.5
3.0
3.5
4.0

of Measurements

39
15
9
7
6

5

The ratio of squared standard deviations is obtained by
putting the value from the source expected to have the smaller
standard deviation in the denominator. The ratio is judged by
the critical values in Appendix III.

APPENDIX V

Factors to multiply the standard deviation of the average
estimated from n measurements

in order to set up a 95 percent confidence interval
for the average.

n t

2 12.706
3 4.303
4 3.182
5 2.776

10 2.262
15 2.145
20 2.093
25 2.064
00 1.960



APPENDIX VI

Given that past experience- with a process has provided
a good estimate of the standard deviation of the output,
the table shows the number of measurements necessary

to detect whether the process average has shifted
from a standard value.

Shift in
Average

Measurements needed

4 out of 5 9 out of 10

0.5 S.D. 30 42
1.0 S.D. 8 11
1.5 S.D. 4 5
2.0 S.D. 2 3
2.5 S.D. 2 2
3.0 S.D. 1 2

Compute

standard value - average

S jD* /r
-jy/

n

Accept shift if t> 1.96. Then there is one chance in 20 that
there has been no shift in the process average.

The S.D. is taken from prior work.

SEE: Ferris, Grubbs, and Weaver: Annals of Mathematical
Statistics, XVII, 178, 1946.




