# NATIONAL BUREAU OF STANDARDS REPORT 

NBS Project<br>NBS Report<br>302 $00000002 \quad 26$ Introk 2952

STATIETICAD UTITS OE CESSURTMENT

DTV<br>

# U. S. DEPARTMENT OF COMMERCE NATIONAL BUREAU OF STANDARDS 

Approved for public release by the

This report is issued production in any fos writing is obtained 1 Washington 25, D. C.

Director of the National Institute of
Standards and Technology (NIST)
on October 9, 2015
ion, reprinting, or reted unles's permission in al Bureau of Standards,

## FOREWORD

The adoption of statistical procedures for the interpretation of data will be encouraged, first, by drawing the attention of scientists and engineery to statistical procedures that are the counterpart of the questions which inevitably arise in the examination of data, und, socond, by indicating that these proo cedures are valid for small sets of data.

The puper was prepured as the first of a series of four lectures sponsored by the Philudelphia Chaperer of the imerican Society for lietals.

J. H. Curtis 88 Chies National Applicd Mathomatics Laboratories

A。V。Astin Acting Director National Bureau of Standards 26 March 1952

# STATISTICAL UNITS OF MEASUREMENT** 

by

W. J. Youden***

Engineers are accustomed to devise suitable measuring units to express the magnitude of the physical properties of engineering materials. In many cases these units are simple combinations of the basic units employed in everyday life. The tensile strength of an aluminum wire may be 35,000 pounds per square inch. A pound per square inch is a unit of measurement for tensile strength and the number 35,000 expresses the engineer's verdict regarding this physical property of the metal. Such units are so familiar to us that they are usually taken for granted, especially when the unit can be visualized and found meaningful.

There are many cases in which the unit or scale has an arbitrary basis. The scale of hardness for minerals is an example. The values 1 to 10 are assigned to ten materials ranging from talc to diamond. Other materials are rated by their response to scratching with specimens chosen from the standard list. Obviously a longer list of standard materials would give finer divisions. This scale of hardness is something which men have agreed to üse to convey their knowledge of the properties of materials. Other hardness scales are available for metals, such as the diameter of the indentation made by a hardened steel ball under specified circumstances.

Both these scales of hardness have a recognizable meaning in terms of everyday experience with the concept known as hardness. Sometimes the connection is more remote. If the measurement process is destructive recourse may be had to some other form of measurement the results of which are closely correlated with the performance of the material. It is difficult to see any simple property that is measured by the Charpy Notched-Bar Test yet such measurements are considered, at least by some, to furnish information on certain performanco characteristics of steel.

Making measurements of one kind or another is a primary activity for most engineers and scientists. Attention is directed to the answers, that is, the magnitudes which are obtained. Judgments

[^0]are then formed by appraising these magnitudes against the individual's accumulated experience with such measurements. Often the result or measurement is directly compared with some specification to determinc the fate of the matcrial in question. Men have learncd also by exporience that measurements vary and are aware that the fate of border-line material may depend on this variation. On one test the material may fall just short of specification. On a repoat test the inhorent variation in the measuring procoss may turn up a rosult which mocts the specification. Tho material has not changed; the uncortainty lies in the limitations of the procedure for making the measurement or possibly in the sample selectod or in both.

In the early stages of the development of a craft attention is properly diroctod to refining the moasurement procedure. Attempts are made to reducc the variation shown by repeatod measuroments on the same matorial so that it can be noglected. When this is achieved there is no uncortainty about whether or not a product moets specification or about the performance of tho product. This happy steto of affairs is not easy to attain. Sometimes, by building cxtra quality into the product, one can be surc that all measurements meot specifications and there will be no rejections. This can be expensive. Whonever we crowd the specification we risk the chance that good material will be rejectod simply bocause measurements vary. Consequently great efforts havo been made to improvo moasurements and, in recent times, to making tho most of the moasurements wo havo. It is at this point that someonc bogins to look into the subject of statistics sincc it is rumorod that statisticians can get information out of data.

It will bo my concorn to give some indication of what it is the statistician has to offer. Tho somewhat longthy introductory remarks on units had a purpose. We shall need a unit to measure variation. I shall montion throe common units that are used to give quantitativo expression to our knowlodge of the variation that moasuroments may oxhibit.

Evon if but two measuroments are availablo the difforenco betweon them is a measure of the variation shown by such measuremonts. Onco sufficiont experionco with a given procodure has been accumulated it is possible to pass judgment on the agroment shown by a pair of readings and detorminc whether or not confidence may be placed in the average of those two readings. If more than two readings are available a simple extension of the rule of taking differencos leads to using the range, i.e., the
difference between the largest and smallest measurements in the sct, as a measure of the veriation. One important drawback to this simplo unit is that it needs adjustment doponding upon tho number of measuroments in the set. Five measurements will, on the average, have a range more than twicc as large as the average difference botweon two measuremonts. The average difference between the largest and smallest of a group of 14 measuroments exceeds three times the avcrage difference botween a pair of measuroments. The intrinsic variation of the measuroment operation concorned is the same rogardless of the number of moasurements taken, so a unit that dopends upon the number in the group must be adjustod by an appropriate factor.

Another unit for moasuring variation is the average deviation -- simply the averago of all the differences (without regard to sign) obtained by subtracting the average for the group from cvery measurement. This unit is in widespread use by ongineers and scientists. It would not be usod so much if the user know that this unit, like the range, depends upon the number of measurements in the group. Indeed the average deviation, if groups of threo measuroments arc taken, is, in the long run, but sevon tenths the corroct value. The correction factor depends on the numbor in the group. Almost invariably this correction is ignored. No engineer would use a unit of longth that got larger for long objects than for short ones.

Statisticians have their favoritc unit for measuring variation among measurements. It is called the standard deviation and is computed by squaring the differonces uscd in the average deviation and dividing the sum of the squares by one less than the number of measurements. The final step of taking the square root returns the unit to the same scale as the original measurements. This seems like a todious process but so is the process of taking the measurements in tho first place. The squaro of this unit meets the first requircment that, on the average its calculated size is not influenced by the numbor of measuremonts uscd in its computation. Equally important, this unit is particularly woll adapted to answering the questions that experimenters are bound to ask about thoir data. The numerical oporations with this unit are simple. Furthermore, the standard deviation extracts more information from the data than tho range or average deviation.

A word of caution may be interjected at this point. We are here considering measuroments that are independent and of equal precision. If the measurements are not indopendent the information furnishod by a measuromont is, in part, a duplication of informatior
already supplied by other measurements. This roducos the offective sizo of tho set of moasurements. Also, if measuromonts have. varying precision it bocomes nccossary to woigh thom appropriately othorwise a singlo impreciso roading may dominate the others.

Suppose wo cnumerate some of the questions that exporimenters ask about data and give somo examples to show how the standard deviation is put to work to answer thoir questions. It will not bo possible to do a complote job in this paper but some examples will show that a unit for the moasurement of variation is indispensable for a really closc cxamination of a set of measurements.

In the first placc it is ofton desirable to be able to state the variability of a measuromont procodurc.

## TABLE I

Measuremonts


Table I shows the computation or ostimation of the standard doviation from a group of five moasuroments. Tho result, 0.05, is callod an estimate of the standard doviation because, obviously cnough, anothor sct of five similar moasuroments will lead to another result difforing moro or less from the first. The original readings, or cstimatos of tho property, show variation and consequontly wo may anticipato variation among a serios of ostimates of the variation.

Further quostions immediately como to mind. Suppose these measurements have bcen obtainod by a modification of a test procedure which long oxporionce has shown to havo a standard
doviation of 0.12. Aro thosc data sufficient to warrant the conclusion that a real improvemont has been achiovod in tho test procedure? The statistician will divide tho sum of squares, 0.0102 , from above by the square of 0.12 obtaining

$$
\frac{0.0102}{0.0144}=0.71
$$

This ratio, known as Chì square, is looked up in a statistical table (soc Appondix l) which informs the statistician that only once in 20 times would he got five measuremonts to agroce as well as these do if the procodure has not beon improved and it still has the original standard doviation of 0.12. Perhaps this is the lucky ono in twonty shot. The usual conclusion, however, is that an improvemont has boen offoctod.

Thore is anothor quostion wo might consider even boforo the measuremonts are takon. Wo may sot our sights a bit lower and decide, in advance, that wo would be pleased if the modification in tho metrod cut the actral standard deviation (not merely its estimate) to one half the formor figure of 0.12. If the modification has roally brought about this much improvemont wo would like very much to establish that fact. It is nocessary to face the situation that, in any givon group of moasuromonts, the estimate of the standard deviation may, by chance, bc low and we could be misled. Wo shall insist, therofore, that the estimate obtained from the moasuromonts, when thoy become available, bo below such chanco valuos or wo will not bo improssed by it. On the other hand, the modification may roally cut tho standard deviation down to one half its former valuo and nevortheloss the set of measurements obtained give, by chance, an ostimate somowhat above the value 0.06. How many moasuromonts should we take to prevent our concluding an improvemont has beon achioved whon in fact it has not and also give us a good liklihood of catching this improvemont if it really has beon achicved. Tables have been preparod to guide the experimentor in this matter. If tho exporimenter decided he wants to risk only one chence in twenty of believing in an improvemont, whon none has taken placo, and to have nine chances in ten of picking it up if this 50 porcent roduction has beon achiovod, such tables show that 12 moasurements should be collected. If this seons a large number, it means that some peoplo underestimato the amount of work that it takos to demonstrate that such an improvemont has boon made. A short table is givon in Appondix II.

These techniques for assessing the variation among measurements are, of course, equally applicable to the assessment of the variation shown by units of a product that is being manufactured. Almost always the objective is to achieve greater uniformity in a product and various steps are taken with this in mind. Sooner or later the question arises: Has the variation been reduced by the steps taken? It may be that there is no limit on the number of units available. On the other hand, if the tests are destructive of a valuable item, or if the measurement of quality or performance of the product is expensive, then it is useful to be able to make an estimate, in advance, of the amount of work required in order to arrive at a sound decision. Not the least benefit accruing from the statistical approach is that it removes the matter from the field of personal opinion and submits it to an objective criterion.

Another variation of this question is often encountered. A purchaser may be offered items from two suppliers. Naturally he will wish to choose the more uniform material; the one showing least variation. Presumably this will assist him in producing a uniform product. Here the variability of noither material is known in advance. The purchaser must first ostimate the standard deviations. These are comparod by takin; the ratio of the squares of the standard deviations, setting up the fraction so that the ratio is greater than unity. This ratio, called F, must attain a certain critical value before it can be concluded that a difference in variability between the products really exists (see Appendix III). Furthermore, statistical tables are available to guide the purchaser in tho amount of data required, to be reasonably suro of detecting a difference in variability that would be important in his process. (See Appendix IV).

These examples by no means exhaust the list of ways of making good use of knowledge of the variation exhibited by a group of numerical quantitios. This variation is one of the reasons for making repeat tests. It is well known that the average of a serie is less prone to variation than the individual moasurements enteril into the average. In fact, the standard deviation of the average of $\underline{n}$ measurement's is estimated by dividing the standard deviation (as calculated in Table I) by the $\sqrt{n}$. This is one step toward answering a question of greater interest to the man with the data. He would like to know whethor an interval can be specified such that, when centered on the observed average, he can have a certain confidence that it will bracket an average based upon a great many measurements. If this interval does not overlap some rejection value the data do not contradict the claim that
the product meets the specification. Of course more data might show that the product does not meet the specification.

Here again there are two distinct situations - first, the case where the standard deviation has been established through an accumulation of earlier records and, second, the case in which the limited set under examination is the sole source of infore mation on the variation of the data. It is reasonable to expoct that a narrower interval can be set if thore is available a well established figure for the standard deviation. Indeed, for 95 percent confidenc it is customary to make the interval extend two (more accurately l.96) standard deviation* on either side of the average. The factor becomes larger as the number of measurements available for estimating the standard deviation decreases. With 20 measurements the factor is 2.09, for 10 measurements 2.26 , and for 5 masurements 2.78 . These are the well known $t$ values taken from Nidely available Tables of $t$ (See Appendix V). The larger f'actors reflect the additional uncertainty introduced by the variation in the estimates of the standard deviation which naturally enough gets worse as the number of measurements peoomes snaller.

When carlier records provide a roliable estimate of the standard deviation it is possible to specify the number of measure ments required to have a given chance of picking up a shift in the average. The shift is expressed in units of the standard deviation and a table may be consulted (see Appendix VI) for the required number of measurements. The table vividly shows the large number of measurements necessary to be reasonably sure of catching a small shift in the average.

There are still some workers who hold that statistical procedures can only be used when large masees of data are involved. This simply is not true. Ofton these same workers do not hesitate to express their intuitive judgments upon rather small sets of data. But statistical procedures are nothing more than the translation of such intuitive judgments into more exact appraisals by makins use of an appropriate unit of measurement for the evaluation of tho variation in the observed results.

Ever since mon began to make moasurements they have focused their attention on the quantity under moasurement. There is always a second quintity which requires measuroment. This

[^1]second quantity is the variation in the original measurements - the scatter they exhibit about their average. The examples given above show emphatically that it is desirable to have a unit to measure this variation. Once this variation has boen moasured it is rolatively casy to faco the questions about the data that sooner or later confront every experimenter.

## APPENDIX I

| Crîti One in | Values for Chi Square |  |
| :---: | :---: | :---: |
| $\underline{n}$ | Lower | Uppor |
| 2 | 0.00393 | 3.841 |
| 3 | 0.103 | 5.991 |
| 4 | 0.352 | 7.815 |
| 5 | 0.711 | 9.488 |
| 10 | 3.325 | 16.919 |
| 15 | 6.571 | 23.685 |
| 20 | 10.117 | 30.144 |

This table is usod to detormino whother a group of $\underline{n}$ measurements shows (a) less variation than some standard value or (b) moro variation than some standard valuo for the Standard Deviation.

Chi squaro is computod by taking the ratio of the sum of the squares of tho doviations from tho avorage to tho square of the known standard deviation.

$$
\text { Chi Square }=\frac{(x-\bar{x})^{2}}{(\text { known S.D. })^{2}}
$$

Onc in 20 sets of moasuroments will yield values below tho lower critical values, and one in 20 above the critical values oven if tho procedure roally has the Standard Deviation ontered in the denominator.

This tablo is oxtractod from larger tables availablo in most statistical texts. In thesc toxts tho ontries will be found opposite (n - I).

## APPEINDX II

Number of measurements required to reveal whother a given proceduro has a standard deviation that is a givon fraction of an assignod value

| Given fraction of assigned value | Chanco that tho indicatod number of measurements will reveal the improvement |  |
| :---: | :---: | :---: |
|  | - Four out of five | Ninc out of ten |
| . 70 | 28 | 38 |
| . 65 | 20. | 26 |
| . 60 | 15 | 19 |
| . 55 | 12 | 14 |
| . 50 | 9 | 12 |
| . 45 | 8 | 9 |
| . 40 | 7 | 8 |

The value of Chi square for tho set of measurements, when they are obtained, is calculatod as in Appondix I and is judged by the lowor critical limit values. Tho numbers of measurements that are entered in tho above table aro sufficiont to reduce the chance of claiming an improvement, when in roality thore has beon no improvoment, to one in 20. The two colums refer to the chanco of dotecting tho improvemont, if actuully there to the oxtent indicated in the first column.

For larger tables seo "Soloctod Tochniques of Statistical Analysis", cditod by Eisenhart, Hastay and Wallis. McGraw-Hill Book Company, Inc., 1947.

## APPENDIX III

| Critical Values for the $F$ Ratio <br> Each Group with $n$ Measuroments |
| :---: |
| $\underline{n}$ |
| 2 |

Compute the squared standard doviation for each set and divide the larger result by the smaller to get the F ratio.

If circumstancos dictate that one of the sources must have a smaller standard deviation than the other in order to bo of interost and the squared standard doviation from this source made the denominator of the ratio, there is but one chance in 20 of attaining the $F$ ratio shown abovo if both sources in fact have the same standard doviation.

## APPENDIX IV

Number of measurements required in each of two groups to have a four out of five chance of detecting whether the standard deviation of one source is a given multiple of the other.

| Multiple | No. of Measurements |
| :---: | :---: |
| 1.5 | 39 |
| 2.0 | 15 |
| 2.5 | 9 |
| 3.0 | 7 |
| 3.5 | 6 |
| 4.0 | 5 |

The ratio of squared standard deviations is obtained by putting the value from the source expected to have the smaller standard deviation in tho denominator. The ratio is judged by the critical values in Appendix III.

APPENDIX V

Factors to multiply the standard deviation of the average estimated from $n$ measurements
in order to set up a 95 percent confidence interval for the average.

| $n$ | $t$ |
| ---: | ---: |
| 2 | 12.706 |
| 3 | 4.303 |
| 4 | 3.182 |
| 5 | 2.776 |
| 10 | 2.262 |
| 15 | 2.145 |
| 20 | 2.093 |
| 25 | 2.064 |
| $\infty$ | 1.960 |

## APPENDIX VI

Given that past experionce with a process has provided a good estimate of the standard deviation of tho output, tho table shows the number of moasuremonts necessary
to detoct whether the process avcrage has shifted from a standard valuc.
Shift in
Average $4 \frac{\text { Measuroments noeded }}{\text { out of } 5 \quad 9 \text { out of } 10}$

| 0.5 | S.D. | 30 | 42 |
| :--- | :--- | ---: | ---: |
| 1.0 | S.D. | 8 | 11 |
| 1.5 | S.D. | 4 | 5 |
| 2.0 | S.D. | 2 | 3 |
| 2.5 | S.D. | 2 | 2 |
| 3.0 | S.D. | 1 | 2 |

Compute

$$
t=\frac{\text { standard valuc - avcrage }}{\text { S,D. } / \sqrt{n}}
$$

Accept shift if $t>1.96$. Thon there is onc chance in 20 that thero has boen no shift in the process average.

Tho S.D. is takon from prior work.
SEE: Ferris, Grubbs, and Weaver: Annals of Mathematical Statistics, XVII, 178, 1946.


[^0]:    Talk given before the Philadelphia Chapter of the American Society for Metals, March 4, 1952. *National Bureau of Standards, Washington 25, D. C.

[^1]:    * 

    Standard deviation of the avergge.

