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On Certain Character Matrices'""

by

D. H. Lehmer

National Bureau of Standards, Los Angeles, California

For only a very limited class of matrices M is it possible to give

explicit formulas for the determinant of M, the general element of i-A,

the characteristic roots of M and the inverse of M* Non-trivial instances

of such matrices are useful as examples in testing the correctness and

efficacy of various matrix computing routines especially -when the ele-

ments of the matrices are exact integers or rational numbers. The pur-

pose of this note is to indicate a new set of such matrices* Although

they arose in connection with a class of exponential sums, they appear*

to warrant an independent treatment. A discussion of the most general

case will not be attempted here. The matrices considered are real and

symmetric and of order p-1 where p is an odd prime.

The elements of our matrices are equal to Ch 1 or -1 and are based

on what are called real non-principal characters modulo p # r These

are^ for the cases considered, Legendre* s symbols for which we use the

if p divides a
p

if the congruence x = a (mod p) is
impossible

otherwise

The preparation of this paper was sponsored (in part) by the
Office of Naval Research.

notation [1]
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For example if p = 7 we have

-X(a)

0 1 2 3 U 5 6

o l l-l l-l-l

Besides the simple properties

X^ a) X(b ) " X(ab )

X(a + p) - X(a)

we use the following identities

(1)

(2)

P"1

E x^ a + k )
= ~

E 'X^
a + k ^ X(b+k ) “ P S& - 1 “ X(a) X(h)

where is Kronecker 1 s delta modulo p^ that is

1 a = b (mod p)

0 a ^ b (mod p)

The first of these identities is equivalent to the well known fact

that there is a residue for every noi>-residue modulo p. The second

identity may be written

P-1 b
£ x(a+k ) 'X(b * k ) *= p ya

D - 1 •

k-o

2
This is obvious if a § b (mod p) since \“(a+k) = 0 or 1 accord-

ing as a + k is divisible by p or not. If a d b (mod p) we may
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set b - a e r (mod p) and write the left side as follows

*Z ^(a+k) 'XCb+k) • £ X( h ) X(r+h) •

k«so h**o

If x^e denote this sum by S(r) and x-rrite

him (mod p)

xre have

p-i
S(r) “ Z )c(m) X(rm + r)

mesO

= >
2

(r ) Z *X(m) XCl+m) *= S(l) #

ra«o

Hence to show that S(r) = -1 we have only to show that

Vz1

Z S(r) • 1 - p *

r=l

How

p-l p-l p-l

Z S(r) - Z z X(h) ^(r+ h)

r=l r»l h*0

P-l P-l
* z Xh) z >(r+ h)

hco r=l

P-l ?
- - Z V ( h)

- - (p-D
hso

by (l). This proves (2) in all cases. This identity appears to

be due to E. Jacobsthal [2].
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With these preliminaries we proceed to introduce our general

matrix and to give its properties.

Let t< be any integer parameter and let M* be the square

matrix of order p~l whose general element a^. is XC^ + i+j),

then;

I. The inverse has for its general element

- jxC* +i + 3) - X(* +i) ~ X<* +3) + X(*)J /p •

II o The characteristic equation

1
X X -

|
- 0

E=3
of is ( X

2 - Pr ( x
2
+ XW)A-1) = 0 .

IIIo The determinant of is - (-p)
(P”"3)/2

^

The result III follows at once from II by setting X ~ 0. The

result Ij once guessed^ may be verified as follows* We have to

show that

A ^ a

Substituting^ we have

-1
p-*1 c 1

p z x^ +±+k
) i x(* +k+j) - x (* +k ) - xw+d) + xo*)r

k^l L

* p^tp £ i
^-l-X(* + i) X(°< + d) - P f^+i

+ 1+ X(°<+ XM

>(* + d ) - >(*o| (- X^ + i) ) ]

by (l) and (2), Since i ^ 0 (mod p) the above expression reduces

as required.
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It remains to prove II, The method of proof given below is

not the most direct one that could be given,”** It has the merit,

however, of producing as a byproduct the general element of any

power of and this information may be useful in checking routine

computations of powers of a given matrix.

If we denote by a.^ the general element of we have

piy 1
' = XU +i+j) - M* + i) “ XU + o) + XU)

a (°) p 5a
ij h

a
ij

1
'1 = XU + i+ j)

p - XU + i) XU + j) - 1

the last result following directly from (2)

.

An inspection of even

(k)
this small sample of a.. together with considerations of symmetry

“d
(k)

leads one to the conclusion that a^ depends somewhat on the

parity of k and that in making an inductive proof of the general

(k)
form of a.. one should assume that

(3) a
ij^ * %(ij3) + sv[ X(* + i) + XU + 5)] + pv XU+ i) X(« + j)+Ck

where depend on ©< and p only and

yk
(i»j) - -

p^/2
^

j if k is even

(k“l)/2
+ if k is odd

"*"An alternative short method of proof was suggested by R„ M, Robinson
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At least* (3 ) is seen to hold for k = —1, 0, 1* 2 and we have in

fact

S e 0
0

T)

O
81 0 c «=

0
0

(It) S-^ s 0 p
x

s 0 IQ

H
O 0

• 0u
CM

CO P
2

-1 ^2
” -1

That a.^ has the form ( 3 ) follows at once from (l) and (2) and*

moreover* these latter identities give us recurrence relations for

the P^. and C
y

0 In fact if we assume that (3) holds for k = 2m

and if we substitute into the relation

L

(2m+l) c
Pg1

^ A a.
ir

a (2»>

ro

we find

S
2m+1

= " P
2m

= " ^^ ^ S
2m

" C
2m

P
2m+1

s " S
2m

“ P
2m

"

C
2m+1

e " S
2m

*

Similarly we find

(6 )

S
2m+2

* " 'M*') S
2m+i

“ C
2m+1

“ " P
2m+1

P
2k+2

“ " p D
2m+1

" P
2m+1

r m c0
2m+2

= “ P “ b
2m+l *

We have only to solve these difference equations for S^* P^*

subject to the initial condition (4)0
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The case of X( *0 s 0 is much simpler than XC* )
s + 1* In

fact the above relations then become simply

“ S
k+1

“ C
k

= P
k

C
2m+1

" C
2m-1

'2m

m n- p + C
2m *

The solution is easily seen to be

0 P
2m

“ C
2m

e X)^~ X)

S~ ' “ (P
m
-DAP-1) P

2m+1
e

^2m+l
" 0

2m

5

2m+l

Hence if

a
±j

c X(i + 5)

then

(7) a.<

(8) a
(2m+l)

ij

{»*!)*4
m -

m -v /
. p -1

P Xu + o) + ^“TT 1
\(i)+ >(j)

In case *(«) ^ 0 the solution of the systems (5) and (6)

involves the Fibonacci numbers

U
n - (A

n - B
n
)/(A— B)

'

where

A - | (1 + /?) ,
B - f (1 -vT) .
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Early values of U
n

are given by the following table

n

U
n

-2-10123U56 7 8

-1 1 0 1 1 2 3 5 8 13 21

and in general

U . « U + U . .
n+1 n n-1

In what follows we shall need to refer also to the companion sequence

( 9 ) V «=A
n +Bn =U , + U -

n n+1 i>-l

The solution of (5 ) and (6) may be given as follows

S, e — p _
k k-1

m+1
2m+l X(^) Ip -P U

2m+2
+U

2m /(p
'“ 3p+1)

(10 )

C
2m+1 “ X<«> 1

pffi " p U
2m

+ U
2m-2 \

/&-* + *>

P- “ "
-i

pm+1 - pm
"P U

2m+l
+U

21>-ll‘ /(P
2
-3P + D2m

(H)

G2m^iP
ra+1" 2P

m
”P U2^1 +U2^3

2
V(v -3p + l)

The fact that these values satisfy the difference equations (5),

(6) and the initial conditions (Ij.) may be verified without using

anything more complicated than the fact that

U - 3U o ~ 1 !
•n n~2 nr-4

Of course the expressions (10) and (11) are polynomials in p®
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If (10) and (11) are substituted into (3) we obtain expres-

sions for a.!^ and a
(2m+l)

3-3 13

For example

( 12 )

a^^ s *)c(^ + i+j) + (p+2) j^(
©< + i) + 'XC <K J

) J*

+ (p + 3) X(*) )c(^ + i) X(®< + 3) + •

We note that this does not become- (8), with m = 2
S
if we set = 0,

which

is also the sum of the k-th powers of the characteristic roots of

The case of )((^) * 0 is simple. From (7) and (8) we have

We now consider the trace of m3 that is the sum 2?*?" a.^* 5
3 s3! 33

P
Y
1

a,<
2m)

A (p-1) P
m - 2(p

lu
-l) = (p-3) p

1 '1

+ 2
m m

P
y
X

a
(2m+l)

= 0

Hence in both cases

2
-if

1
•¥ « * { _ ,k _k

•p*0 * (-±) + 1

Since this holds for k = 1, 2
3 3* ••• the characteristic roots of

M
0
must be those of the equation

(13 ) (X
2
-p) (p-3 )/2(X

2
-l) 0 .

This proves II in case \{*<) 88 0*

For x(-o * o we find from (3)

P"X
„ (2m)

- (p-1) p
m - 2 X(a) S_ + (p- 2) P„ + (p- 1 ) C

33 2m 2m '2m

f a
j

2m+1
) - - X(a)p

m - 2 X(a)S2m+1 + (P“2)P2m+1 + (p-DC^ .

3
*0,
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If we substitute from (10) and (ll) and simplify we obtain

w 2m)

0=1
(p - 3)p

m
+ + U

2m+]_

(p-3)p
m

+

a
(2m+l) „A 33

*(•0^2 +V
\ ( ^ ) ^2n+l •

Recalling the definition (9) of we may write in general

f = |(p-3)(ph
k
+ |(p-3)(-ph

k
+ (-}(«)A)

k
+ (- X(«)B)

k
.

0=1

This shows that the characteristic roots of consist of J(p=3)li
roots p

2
, J(p— 3) roots -p2

, - ^(«<)A and - ")((^0B o Since

A + B *® 1 ,
A B e «l

9

the characteristic equation of is

(\
2
-p) (i^3)/2 U 2

+ *(*)X-i) = 0 .

Although this was derived on the assumption that *(®0 / o s if

we set X<*0 - 0 we do obtain (l3)o This completes the proof

of II.

Concerning the latent vectors of M the reader may verily

that, corresponding to a root
f>

of

\(^) A - i ® o
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there is the latent vector whose j—th component is

x(* + o) - y(.*) - f •

The following example will illustrate the foregoing* We take

p a 7 5 ® 3 ,
then our matrix It, is

"3

by 7 we obtain

-1 -1 0 1 1 -1

=1 0 1 1 -1 1

0 i 1 -1 1 -1

1 i -1 1 -1 -1

1 -i 1 -1 -1 G

-1 i -1 =1 0 1

-U9* if the elements of M~'

-U —2 m1 —1 -2 -u

-2 1 2 1 *•2 0

-1 2 2 -1 0 -2

*=1 1 -1 0 -3 “3

-2 -2 0 -3 •"It -3

-U 0 —2 -3 -3 ~2

BF (12) we have
j
for example

9

5L5

-U2 -Uo 9 57 56 «ia

-Uo -29 20 39 —IjO 58

9 20 20 -59 58 -Uo

57 39 -59 H8 -la -ia

56 -IjG 58 -la -U2 7

-U2 58 -Uo -la 7 56

Februaiy 26 5 1952
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