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to Linear Inequalities

Jeriy W„ Gaddum

National Bureau of Standards, Los Angeles, California

1. INTRODUCTION

This note is concerned with the convex cone associated with

the two systems of linear inequalities

n *

(1) 2 a.. . x. « 0, i » 1, 2, ••• m, and
0-1 0 0

n

( 2 ) 2 a. . x = ^ 0, i » 1, 2,
0<,e

, m, where the symbol

demands that the inequality ( > ) hold for at least one value of i,

For brevity these systems will be written (l) Ax 0 and (2) Ax ^ 0.

Interpreting (a. nd a. ) as a vector a. in E s with initial* ^ il* J in i r/

point at the origin, we denote by A the convex cone generated by

these m vectors and by A'' the polar cone, the vectors of which give

the solutions of (l) e A cone will be considered null if it contains

only (0, 0, •••, 0).

The purpose of this paper is to show that in general A ® A ^ 0

and to characterize the cases in which A and A do not intersect
?

Some applications are then made to obtain theorems on the existence

-X
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of, and methods of obtaining, solutions of (l) and (2) c

He THE MAIN THEOREM

Before proving the main theorem, it should be remarked that

the proof given does not require that the cone A be generated by

finitely many vectors but the applications to be made do require

this. The theorem, of which a special case has been stated in

[2]^, can be formulated as follows

s

Theorem 2.1 . If A" is no nr-null and if some vector of A is

not perpendicular to all the vectors of A then A * A" ^ 0.

Proof . Let x be a vector of A which is not perpendicular to

all the vectors of A". If x is not in A' (otherwise the theorem

holds immediately) let y be that vector of A', of unit length,

closest to x. In other words, among the unit vectors of A ',

y makes the inner product x • y a maximum. In the hyperplane

orthogonal to y let u be the unit vector farthest from x, that is,

minimizing x • u.

Now u is a vector of A. This follows since it is a vector

of the polar cone of A and since (A")
-

'

- Ac To see that u is in

(A")" we remark that if A" contained a vector z making an obtuse

angle with u, the plane containing y and z would contain a unit

vector of A.'' closer to x than y.

Letting % - ,
the vector y - %x is orthogonal to js since

y is a unit vector. Among the unit vectors orthogonal to y, u

^Numbers in brackets refer to the bibliography*





>
minimizes x « u and hence maximizes y - Xx ° Thus y - ^x has the

same direction as 11
,

and y - Xx ~ ku^ k > 0„

Then y ~ Xx + ku^ X an<^ k both positive^ and y is a vector in

A A*A ° A e

If A is not contained in an E _ * the conditions of the theorem
n-1*

are satisfied upless A ” is null. If A is contained irreducibly in

an E , r < n9
and A ® A' s then A is equal to the E * since no

vector of A
'

lies in the E <> Thus we can characterize those cones
r

with A ° A” - 0 as follows?

Theorem 2<,2 0 A • A" - 0 if and . only if A is an E^ and A'' an

orthogonal E^ ®

IIIo SOME EXISTENCE THEOREMS

In this section the foregoing discussion is applied to obtain

theorems on the existence of solutions for a system of linear-

inequalities. A vector y is called positive if y^ > 0 for each i,

non-negative if y^
s 0 for each i and y^ > 0 for some i.

Theorem 3d. The system (2) has a solution if and only if

A 0 AT 4 0 •

The proof being immediate from Theorem 2.2, we state the same

result algebraically.

Corollaxy % If (2) has a solution it has one of the form

x s A ?y , where y is non-negative and A 8 is the transpose of the

matrix A„

Theorem 3.2. In order that- (2) have a solution, it is necessary

and sufficient that the system AA*y - 0 have a non-negative solution .
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Proof : Firsts if AA 5y ~ 0 has any solution at all, the relaiion

x s A !y gives a solution of Ax - 0® On the other hand, if Ax - 0

has a solution, the corollary to Theorem 3d states that it has

one of the form x * A 8

y, y non-negative, and this y is a solution

of AA 9y - 0 o

It should be observed that this theorem is a strengthening

of the result, in [l], that Ax ~ 0 and AA 8y ^ 0 are either both

consistent or both inconsistent 0

Corollary ; If B is a symmetric positive semi-definite matrix^

By - 0 has a solution if and only if it has a non-negative one .

Corollary t A sufficient condition that (l) have a solution

' is that AA’y - 0 have a (non-negative) solution *

Corollary ; If the rank of A is n, a necessary condition that

(l) have a non-trivial solution is that AA 8y « 0 have a (non-ne|

solution^

In [3] a necessary and sufficient condition is given that a

system of type (2) be solvable . Using Theorem 2 of [3] we can

state the following theorem*

Theorem 3*3» AA *y ~ 0 (and hence ( 2 )

)

has a solution if and

only if AA 8y ~ 0 has no positive solution *

In [1|] a method is given for determining whether or not a

system of homogeneous linear equations has a positive solution.

In the form given, however, the method does not seem feasible for

purposes of computation*

An obvious necessary condition that AA 8y = 0 have a positive

solution is that for ary collection of rows of AA \ the m column
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sums be all zero or have a pair of terms of opposite sign. Hence

a sufficient condition that AA ey ~ 0 (and hence (2)) have a solution

is that for some collection of rows of AA% the m column sums form

a non-negative set*

Still another form can be given to the problem of determining

whether or not AA 8y - 0 is solvable c Let us write AA 5 ~ B * (b. .)

and denote the rank of B by r, We can suppose that the r-th order

principal minor in the upper left-hand corner^ is non-singular

and^ for the purpose of solving By s 0, we can assume its deter-

minant positive* For 1 ^ j ^ r and r + 1 ~ k ^ m9 let denote

the negative of the determinant of the matrix obtained from R by

substituting the first r elements of the k-th column of B for the

j-th column of R« If we assign values arbitrarily to J.r^ 9 •••, y.^

and solve By * 0 for y ,
• ® ®

s y^ we obtain^ for j
- ls 29 • • % r9

y. “ [/?. , y ^ . y ]• Thus the problem reduces
J

j

R
|

1 jr+1 r+1 r jm ^ m ^

to that of finding positive solutions of the sys terns

fl> m „ y + + k, y ) 0p lr+1 ^r+l ,
lm

o

^ rr+1 ^r+1
+ ^ rm 4> m ^ *

In Theorem p* 50^ of [%] 9 a criterion for the existence

of positive solutions of this system is given*

IV* COMPUTATION OF SOLUTIONS

Theorem 2*1 suggests a method for computing a solution of a

system of inequalities^ assuming a solution exists* We begin by

normalizing the rows of the matrix k
3

that is^ by making
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aj.

2
2 a; ,

= 1 for each i. We then siirply generate a set of unit

j®l ^

vectors dense in the set of unit vectors of A, and hence come

arbitrarily close to some vector of A * A% If A A* / 0. This,

can be done by adjoining to the vectors corresponding to the rows

of A the mid-vector of each pair* If no solutions are obtained at

the first step, continue the process on the larger set of vectors*

The normalized midvector of the vectors a and b has for its k-th

component (a^ + b^)/y2(l+a«b)
_

'«, The computation of one midpoint

presents no problem but the number of such confutations becomes

very large as we repeat the process* It would therefore be of

considerable value to know how to find only essential midpoints*

February lU, 1952
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