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FOREWORD

In this report the Strong Law of Large Numbers is stated

and proved in a form that has been found to be particularly
r

useful in connection *&th work on the mathematical theory of

diract^measurement processes currently in progress in the

Statistical Engineering Laboratory of the National Bureau

of Standards 0

The formulation of the Strong few here presented „ and

its proof, were accomplished originally by Professor So Do

Chung while he was a guest worker at the National Bureau of

Standards during the summer of 1951 o This work was performed

under Contract CST~525 between the National Bureau of Standards

and the University of North Carolina e
’ Subsequently Professor

Chung submitted a somewhat shorter proof that had boon

communicated to him by Professor William Feller of Princeton

University, and it is this more concise proof that is reproduced

in this i5©porto

J* E 0 Curtiss
Chief, National Applied
Mathematics Laboratories

A * V o Astin
Acting Director
National Bureau of Standards
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A USEFUL FORM OF THE STRONG LAW OF LARGE NUMBERS

by

Kai~Lai Chung

Theorems Let {X } be a g@qiu©no© of in&@p@nd©nt p identically

distributed random variables with mean O 0 Let {o^} be a

hounded sequence of real numbers:

In the special oae© where all ep
s 1, this la the well®

known Kolmogorov 8 s strong law of large numbers ([1] p 0 §9) 0

Proof:* Define

Then w© have

* This very simple proof was communicated to m© by Professor

Feller; my original proof was unnecessarily longer*
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$©3ct, the series

09 0ax^ - 0aE{2^}

n

converges with probability one, by Kolmogorov 9 s criterion

{loe* ©lt «) 9 for

1 is ««&2
> < °'Zr5 J *2 ">*>

n»l n”ia |x|<n

* Cs r ~2 £ j x'"’ <LP(x)
. n^L a k„i k=1<ix!<k

< Cs f * J |x|d»(x) f i
k“l k»l<lx|<fc n=k a

< 2G
2 £ J |x|dP(x) <».
k"1

fc~l<j|xj< k

It follows as usual that
n

(“» &^ - eu*’

*

, <,) 1

H©no© also n

pflim
n«*00

k
2
x

CkUk ^E(Xk ))

0 ] S 1
n

Slno© E(Xk ) ® 0, clearly lim E|X }
“ k^a> *

» 0 and eo

lim
J.Ok E(ll)
k*l s is

n

Thus the theorem follows
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Corollary It Let
} 9 {

o
} p {X n)b© altogether independent

random variables such that the variables in each set are identically

distributed o Suppose that the means all exist and are equal t©

Eix) „ E(a) 9 E(x) respectively o Furthermore suppose that the

o 9 s are uniformly bounded? |an | J K with probability ons 0

Consider th© sequence {Yn }s

orkXnk^ ! * V 0 ° *

o

where n
1< 000 < n^,. eoJ> and n - n

k k«r
< M 0 Then the strong

law of large numbers holds for {Yn} as follows

)
B 1 o

Corollary 2% As in Corollary 1 # consider the sequence
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a Y
1 nk-l +1

b o e o $ a Z
1 n, * he >j.

k-1

* ° • ® * *

where the s are re&l eonstantg p |a
4 j

< A 0 Then the strong

law of large numbers holds for* {^n j
as follows i

4r lira
P I

Z1 + Zn
u *«=?> OO n (

V«

.

.+aa ) (B; c) E( X) EfcJ})

[1] A 0 H 0 Kolmogorov, aruu&b©griffe d@? WahrsGheinXi©hk©its«
r©ohausigs Chalsea Publishing 0o o5 Hew York,
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