NATIONAL BUREAU OF STANDARDS REPORT

By

Kai Lai Chung

U. S. DEPARTMENT OF COMMERCE NATIONAL BUREAU OF STANDARDS

U. S. DEPARTMENT OF COMMERCE
 Charles Sawyer, Secretary

NATIONAL BUREAU OF STANDARDS
A. V. Astin, Acting Director

THE NATIONAL BUREAU OF STANDARDS

The scope of activities of the National Bureau of Standards is suggested in the following listing of the divisions and sections engaged in technical work. In general, each section is engaged in specialized research, development, and engineering in the field indicated by its title. A brief description of the activities, and of the resultant reports and publications, appears on the inside of the back cover of this report.

1. ELECTRICITY. Resistance Measurements. Inductance and Capacitance. Electrical Instruments. Magnetic Measurements. Electrochemistry.
2. OPTICS AND METROLOGY. Photometry and Colorimetry. Optical Instruments. Photographic Technology. Length. Gage.
3. HEAT AND PONER. Teaperature Measurements. Thermodynamics. Cryogenics. Engines and Lubrication. Engine Fuels.
4. ATOMIC AND RADIATION PHYSICS. Spectroscopy. Radiometry. Mass Spectrometry. Fhysical Electronics. Electron Physics. Atomic Physics. Neutron Measurements. Nuclear Physics. Radioactivity. X-Rays. Betatron. Nucleonic Instrumentation. Radiological Equipment. Atomic Energy Commission Instruments Branch.
5. CHEMISTRY. Organic Coatings. Surface Chemistry. Organic Chemistry. Analytical Chemistry. Inorganic Chemistry. Electrodeposition. Gas Chemistry. Physical Chemistry. Thermochemistry. Spectrochemistry. Pure Substances.
6. MECHANICS. Sound. Mechanical Instruments. Aerodynamics. Engineering Mechanics. Hydraulics. Mass. "Capacity, Density, and Fluid Neters.
7. ORGANIC AND FIBROUS MATERIALS. Rubber. Textiles. Paper. Leather. Testing and Specifications. Organic Plastics. Dental Research.
8. METALLURGY. Thermal Hetallurgy. Chemical Metallurgy. Mechanical Metallurgy. Corrosion.
9. MINERAL PRODUCTS. Porcelain and Pottery. Glass. Refractories. Enameled Metals. Building Stone. Concreting Materials. Constitution and Microstructure. Chemistry' of Mineral Products.
10. BUILDING TECHNOLOGY. Structural Engineering. Fire Protection. Heating and Air Conditioning. Exterior and Interior Coverings. Codes and Specifications.
II. APPLIED MATHEMATICS. Numerical Analxsis. Computation. Statistical Engineering. Machine Development.
11. ELECTRONICS, Engineering Electronics. Electron Tubes. Electronic Computers. Electronic Instrmentation.
12. ORDNANCE DEVELOPMEMT. Nechanical Research and Development. Electromechanical Fuzes. Technical Services. Missile Fuzing Research. Missile Fuzing Development. Projectile Fuses. Ordnance Components. Ordnance Tests. Ordnance Research.
13. RADIO PROPAGATION. Upper Atmosphere Research. Ionospheric Research. Regular Propagation Services. Frequency Utilization Research. Tropospheric Propagation Research. High Frequency Standards. Microwave Standards.
14. MISSILE DEVELOPMENT. Missile Engineering. Missile Dynamics. Missile Intelligence. Missile Instrunentation. Technical Services. Combustion.

NBS PROJECT

3011-60-0002

15 November 1951
1298

By

Kai Lai Chung

This report is issued fc in any form, either in wh from the Office of the Di

Approved for public release by the Director of the National Institute of Standards and Technology (NIST) on October 9, 2015 lission in writing is obtained hington 25, D. C.

ROREWORD

Tho theory of Martov chains is atoadily geining In innontance, Enc numerous new appiications spo boing made of this theory. It is hoped thet the 20 \&ults here presented will be of intcsest to vorlary In the fiold. The present report introduces \& nots DRODIOM in the thoory of Mastrov choins Dy consicianing throe staros: tho inftiaj stato, the final state, ana \therefore taboo stato Hinso miet be aroidod in the tratisitiono

This worle wiss dono by Professon Jo Io Churg winjio Lo tas a guost wosises at tho Mationel Busoru of Standriods duxing tho aummer of 1951 . It was persfonined under contract $\operatorname{cosTw} 525$ betroen the National Bureau of Standmed and the Univeraity of Nosth Caroling.
\therefore 等。Astin Acting Disector Matínal Bureau of Stancarcis

Ey

Mai Ini Chuns

ABSTle

2.the fundanoatals of the throzy of dorumemeble Adrloov shains wilih stationary thanaition probaWlitiss wore luid down by holnogoror, and further Wor's was dont ioy Dobling The theory of repurment evonts of Pell\% is closely related, if not coe extensive. Sone now pealits obeained by T. E_{0} Hapis tumb out to tio pery nicely with some cmpliflcations of Doblin's work. Harnia was led to consider the prombilities of bitting one state barope another, sberting firom a thind ore. This izea of considerine theae slates, one initisl ons "toboo, " and one final, fos nore fillay devolopad in the presont work. The notion of first passago time to the "union" or "intergection" of two states is also introduced here. The interplay betweer these notions is illustrated.

The fundamentals of tho theory of denumerable Mirickov ehains with stationery transition probebilitios (INofoUSo) were laid down by Kolmogorov [i] and further worle vas done by Doblis [2]. The thoony of pecument overts of Feller [3] is closely rolated, if not comertensive. Recently sone inverest.
 catod wo tho author. She, turn out to tie up very zieeiy with 9)

1. "Denunerable" mants "with a donumeraiole number oi states;" "chatn" rofors to a process with ain integral time paraneter.

a
 I

While Harris' main purpose lies elsewhere, he was led to considor the probabilitios of hitting one stato before anothor. starting from a thira one。 This idea of considering three (instead of the customary two) states, one initial, one "taboo," and one firal, will bo more fully doveloped in the present worls. The notion of iirst parsage time to the "unicn" or "intersection" of two giates will also be introduced here. The interplay betweer: these notions will be 1llustretod.

Fiocordec results in this paper will be labeled as formulas and checrems, respoctively. Rolevint romarks as to thoir origin Oi signilicance will be found in the body of the paper. The Guthor $i 3$ indobted to Dr. Harris for communicating some of his resulta before publication.

1. The sequence of random variables $\left\{X_{n}\right\} \Omega=0,1,2$, oon forms D.M.C.So The states will be denoted simply by the positive integens. She (oneastep) transition probability from the stats 1 to the state f will le denoted by $\underset{i j}{p(1)}$. Because of stationarity we have

$$
P(I)=P\left(X_{m+1}=j \mid X_{m}=i\right)
$$

for ail. intogers $m \geq 0$ for which the conditional probability is dolined. With this undorstanding we shall permit ourseives to Write $m=0$ in the definitions to follow, as if the conditional probabllities were always doinned.

Notations.

n, II, v, $2, \mathrm{~s}$, denote positivo integers and will be used as time parameterg or genoral numerals;

$$
\text { i, j, } k, ~ h \text {, denote positive integers and will be used }
$$ as stake labels:

$$
\left.\begin{array}{l}
P_{1 j}^{(n)}=P\left(X_{n}=j \mid X_{0}=1\right) ; \quad P(0)=\left\{\begin{array}{l}
0, \\
1 j \neq j \\
1, \\
1
\end{array}=j\right.
\end{array}\right] \begin{aligned}
& \mathbb{K}_{1 j}^{(n)}=P\left(X_{n}=j, X_{V} \neq k, 1 \leq \nabla<n \mid X_{0}=1\right) \\
& F_{1 j}^{(n)}=P\left(X_{n}=j, X_{V} \neq j, 1 \leq \nabla<n \mid X_{0}=1\right) \\
& \mathbb{K}_{1 j}(n)=P\left(X_{N}=j, X_{V} \neq j, \neq k, 2 \leq \nabla<n \mid X_{0}=1\right) \\
& Q^{*}=\sum_{n=1}^{\infty} Q^{(n)}
\end{aligned}
$$

Whore Q may stand for any of the symbols $k_{i j}$, $F_{i j}$ or $k_{i j}{ }^{F}$
We offor the following clue to the above notstiong. The lotter p dosignates "passage;" the letter F " "irst passage;" the first right-hand subscript designates the initial stato: the second, the final state; the left-hand subscript designates the "taboo state," namely one to bo oscherod during the passage (oxclusive of both terminals): the star on a lotter with subscripts dealgnatos the sum of the corresponding infinite series (finite or $+\infty$) sumed from $n=1$ ad. Inf. We admit that this is not the most logical system of notations we could have invented. Wor instance, we have the superiluity $\underset{i j}{F(n)}=\underset{j}{P(n)} \underset{i j}{ }$, and if we hed allowod more than one left-hand subscript ${ }^{2}$, we

2 This naturally suggests the consideration of more than one taboo state。

However, we consider our notations to be preferred to the arbitrary use of all sorts of letters from the Latin and Grook alphabets. Also, after painful deliberations we decided not to define ${ }_{k i j}^{P(0)}, F(0)$ or $F(0)$, while reserving the right to do so later in some cases.

Formula I。 If $i \neq j$, then
where on the right side $0 . \infty$ is to be taken as 0.3
Proof. Wo start from the formula

$$
\begin{equation*}
F_{i j}^{(n)}=\sum_{v=0}^{n-1} p(v) \quad F(n \circ v) \tag{1}
\end{equation*}
$$

where we agree that $p_{f 1}^{P(0)}=1$. (1) is proved as follows. Either tho state 1 is not entered at all during the passage from i to j, which contingency contributes the term corresponding to $v=0$ on the right side of (1): or there is a last entry of 1 , occurring at the $\mathrm{v}^{\text {th }}$ stop. $I \leq v \leq n$ - I, which contingency contributes the general term.

Summing (1) over n, wo obtain

$$
\begin{aligned}
& 1 \geq F_{i j}^{3 k}=\sum_{n=1}^{\infty} F(n)=\sum_{n=1}^{\infty} \sum_{v=0}^{n \infty 1} P(v) P(n-v)
\end{aligned}
$$

Since the terms of the double series are nonenegative, the in version is justified and (I) is proved. Moreover, this proves that if $\mathrm{F}_{\mathrm{ij}}^{\mathrm{H}}>0$, then $\mathrm{P}_{\mathrm{ij}}^{*} \leqslant \infty$ 。 It follows from (I) that

3 This convention will bo understood in similar circumstances.

IUCimla II 。 if $j \neq k$, then

$$
\begin{equation*}
k_{i j}^{F_{i j}^{*}}=k_{i j}^{F^{3}}\left(I+k_{j j}^{*}\right) \tag{II}
\end{equation*}
$$

proof. We start from the formula

$$
\begin{equation*}
k_{i j}^{P(n)}=\sum_{v=1}^{n} k_{i j} F_{i j}^{(v)} k_{j j}^{(n \odot v)} \tag{2}
\end{equation*}
$$

where as before $\mathrm{k}_{\mathrm{p}}(0)=1$. If we 1 gnome the leftehand subscripts, (2) reduces to \& familiar formula. The proof of the letter extends immediately to (2)。

Summing (2) over n we obtain

$$
\begin{aligned}
& k^{P^{\prime / j}}=\sum_{n=1}^{\infty} k^{P(n)}=\sum_{n=1}^{\infty} \sum_{V=1}^{n} k_{i j} F_{i j}^{(v)} k_{j j}{ }^{(n=v)} \\
& =\sum_{v=1}^{\infty} k^{(v)} \sum_{n=v}^{\infty} k^{P(n j-v)}=F_{k i j}^{i j}\left(I+k^{P *} j j\right)
\end{aligned}
$$

We note the following corollaries to (I) and (II). to ba used later.

Formula (II). If $i \neq j$ then

$$
\begin{equation*}
{ }_{i}^{P_{i j}^{k}}={ }_{i} F_{i j}^{k}\left(1+{ }_{i} P_{j j}^{*}\right) \tag{TIa}
\end{equation*}
$$

Formula (II). If $j \neq k$ then

$$
\begin{equation*}
j_{j k k}^{F_{j}^{*}} P_{j j}^{H}=F_{j k k}^{k} F_{i j}^{k} \tag{II}
\end{equation*}
$$

Formula (ICc). If $i \neq j$ then

$$
\begin{equation*}
F_{i j}^{*}\left(I+{ }_{i} P_{j j}^{*}\right)={ }_{i}^{P_{i j}^{*}}\left(j+j_{j i}^{P^{*}}\right) \tag{TIC}
\end{equation*}
$$

Formal (III). If $i \neq j$ then

$$
\begin{equation*}
\lim _{N \rightarrow \infty} \frac{\sum_{n=0}^{N} P_{i j}^{N}}{\sum_{n=0}^{N} p_{i 1}^{N(n)}}=p_{i j}^{*}<\infty \tag{III}
\end{equation*}
$$

Proof o Wo tart from the formula

$$
\begin{equation*}
F(n)=\sum_{i j}^{n} P_{11}^{n}(v) p_{11}\left(x_{j}-v\right) \tag{3}
\end{equation*}
$$

Whore wo agree that $P(0)=0$. The proof of (3) is entirely similar to that of (1)。

Summing (3) from $n=0$ to $n \equiv N$, wo obtain

$$
\begin{equation*}
\sum_{n=0}^{N} p(N)=\sum_{n \equiv 0 \nabla \equiv 0}^{N} \sum_{i 1}^{N} p(v) p(n-v)=\sum_{\nabla=0}^{N} p(v)_{n}^{N} \sum_{n=0}^{N} p 1 j \tag{4}
\end{equation*}
$$

Wo mod an elementary lemma which is frequently used in such connections.

Lome Let $0 \leq a_{V} \leq I_{B} b_{V} \geq 0 ; \sum_{V=0}^{\infty} a_{V}>0$.
$\lim b_{\psi}=B \leftrightarrows \& \infty \quad \sigma$ Then $\nabla \rightarrow \infty$

$$
\operatorname{Lim}_{N \rightarrow \infty} \frac{\sum_{\nabla=0}^{N} \sum_{V=0}^{N} b_{N=V} a_{V}}{\sum_{V=0}}=B
$$

Applying tho lama to (4) wo obtain (IIIi。 That $p: \%$ co is clear from (II), and the remarks at the and of the proof of (I).

Theorem lo The limit

$$
\begin{equation*}
\lim _{N \rightarrow \infty} \frac{\sum_{n=0}^{N} P_{11}^{(n)}}{\sum_{n=0}^{N} P(n)} \tag{5}
\end{equation*}
$$

exists and is equal to any of the following three expressions:

0

 Proofo Doblin (2) hat shown, trivialiy, that

$$
\begin{equation*}
\lim _{N \rightarrow \infty} \frac{\sum_{n=0}^{N} p(z)}{\sum_{n=0}^{N} \Gamma(n)}=\text { Fik } i j \tag{6}
\end{equation*}
$$

Comparing (III) anc (6) wo obrain (IVb) if $1 \neq$ io (IVa) non follons from (IIC) and ObFtously holde for $i=j$ jo If

Fij ${ }_{i j}^{*}=0$, then the concminatot of (IVC) io not zerog and this

Thnt the Iimit. (5) exista and is ininito and not aero was
 pervert by tho authot [5]o The prosent approach seoms to be timo simplesto
 thon

Naturally thore aro othor exprossions for it and we onit the treious considsmetrons when son or the 3 tietus apm identicni.
2. We not conntien two dratos 1 and of belonying to tho axno nonum=ont class, nams?y:

$$
F_{11}^{\text {m }}=5_{3 j}^{*}=5_{1 j}^{\%}=1
$$

Tf Jijgely gencrelizins kolmogorov. wo deinine a class to be a sot of staten such that for any two statos i and j bolonging

A. fundamental idoa in the thoory of DoMoCoSo, elready found in holmozorou's wonks is to noticothet whetever transplsos betwoon successive entrios al, a recurpont stato form a soquenco of ino uspendent ovents. F.rsuing this idea, Harris [4] discoverod the following very elvgant thoorem。 Our proof in somewhat difforont from his.

Lot 1 ; j nad ioinno

$$
\begin{aligned}
& Y_{n}=\text { ine number of } v, 1 \leq v \leq n \text {, such tirat } X_{V}=1 ; \\
& Z_{n}=t \text { th numbor of } v_{8} 1 \leq v \leq n \text {, such thit } X_{V}=j_{0}
\end{aligned}
$$

In woras. In ($\mathrm{r}_{\mathrm{s}}{ }_{n}$) 18 tho number of entries at the state 1 (or j) in the firgt "stips. Using the avorage oligodio tincorem (50e (2I) below) it 1 a asy to show that \hat{A} is a posilive state, and $P\left\langle X_{0} \in C\right\}=1$ where C is \therefore olass containing J_{0} then we tave

Tas :0116 : theorem oovers both pissitivo ax sull olasees.
Whe ?in 2 (Harris)o If 1 nad y are two iratos in a pecurrent cless C na $P\left(X_{0} \varepsilon C\right)=1$ then

$$
\begin{equation*}
P\left(\lim _{n+\infty} \frac{Z_{n}}{Y_{n}}=\lim _{n \rightarrow \infty}^{\sum_{v=0}^{n} p(v)} \frac{\sum_{j}^{n} p(v)}{v=1} \frac{p(1}{n}\right)=1 \tag{7}
\end{equation*}
$$

 Jet $v_{j}: v_{2}<\ldots$ bo the succossive indices v, such trat $X_{v}=1_{0}$ Jict N, the number of $\nabla_{0} \nabla_{S}<\nabla<\nabla_{S+1}$ sucl that $\nabla^{*} J_{0}$
 d. : :ltod random variables. Euldontly we luvo

$$
\begin{aligned}
& \text { and }
\end{aligned}
$$

$$
\begin{align*}
& \text { Conswguently, } \\
& \begin{array}{l}
\begin{array}{c}
Y_{n}=1 \\
Z \\
S=1
\end{array} W_{S} \\
Y_{n}
\end{array} \frac{Z_{n}}{Y_{n}} \leq \frac{\tilde{Y}_{n}}{Y_{n}}+\frac{\sum_{n=1}^{Y_{n}} W_{S}}{Y_{n}} \tag{6}
\end{align*}
$$

Anolyiag KhintahineaKolmogarov'a strong law of large numbers

$$
\begin{equation*}
P\left(\lim _{Y_{n} \rightarrow 00} \frac{Y_{n}}{S_{i=1} i_{S}} Y_{n} p \sum_{i j}\right)=I \tag{9}
\end{equation*}
$$

Moreover $P\left(v_{1} \&+\infty\right)=1$. It follows from (8) enc (9) that

Now $\mathrm{F}_{1,}=1$. Hence Theorem 2 follows from (10) and Theorem 1 o using (TV0) there

This theorem includes as special case a previous result by Eras and the author [\%]o Conefdor indopondent $100 n t i c a l y$ distributed pandora variables $f U_{n}$ which assume on dy integer values With moan zero. They form a DoMocosowith ali integers as tho states. Since the mean $3.8201 q^{2} 11$ possible state are nocurrent by a theorem of Fuchs and the author [8].5

5 This important step cannot bo circumvented by the present, more general, approach.

Without loss of generality wo may suppose that every integer is a possible，therefore recurrent，tito Writing

$$
P(n)=P\left(S_{n}=j-1\right)
$$

Hance，$P\left(\begin{array}{l}n \\ j\end{array}=P_{j j}^{(n)}=P_{00}^{(n)}\right.$ ，and（7）becomes

$$
P\left(\begin{array}{c}
11 m \\
\frac{Z_{n}}{I_{n}}
\end{array}=1\right)=1
$$

which is Theorem 8 in［B］。 Needless to say，as far as this statement is concerned，Harris o approach is incomparably better． However，we note that there wo actually proved a sharper result i。e。

$$
p\left(\frac{Z_{n} \circ I_{n} d}{I_{n}} M_{n}^{-\frac{1+e}{4}} i .0_{0}\right)=0
$$

 1
in $[\phi] 0$ It would be of interest to investigate corresponding strong relations for the general Markovachain case，using perhaps a more precise form of the strong law of large numbers．

Bo Wo now consider e positive recurrent class C ．Accordo ing to Kolmogorov，in C all moan recurrence and first passage times ares finite，namely for all i，j\＆c wo have

$$
m_{i j}=\sum_{n \equiv 1}^{\infty} n F\{(\xi)<\infty
$$

\because Incr luce tho notions of forget passage to futz and to jots，as follow Lot $\mathrm{f} \neq \mathrm{k}$ 。

$$
\begin{aligned}
& \text { T(2, jut }=\text { the smallest integer } n \geq 2 \text { such the } X_{n}=j \text { or } \\
& X_{n}=k_{0} \text { whichever happens fist, given that } X_{0}=1 \text {; } \\
& \text { (T) } f(0 \mathrm{~L})=\text { the smallest integer } n \geq 1 \text { such that there exist } \\
& \text { two integers } n_{1} \text { and } n_{2} \text { such that } n_{1} \$ n_{2}, 1 \leq n_{1} \leq n_{0} \\
& 1 \leq n_{2} \leq n \text {, and } X_{n_{1}}=j, X_{n_{2}}=k \text {, given that } X_{0}=1:
\end{aligned}
$$

$$
\begin{aligned}
& m+j(2 k)=E\left\{\begin{array}{c}
(1, j 0 k)\} \quad 。 ~
\end{array}\right.
\end{aligned}
$$

Let w ie ate the sample point．Put

$$
\begin{aligned}
& e_{I}=\left\{w: X_{0}(w)=1, X_{v}(w) \neq j, f k \text { for } 2 \leq v<n ; X_{n}(w)=j\right\}: \\
& 0_{0}^{j}=\sum_{n=1}^{\infty} e_{n}^{j} 0
\end{aligned}
$$

Thus a．s the overt that $X_{0}=1$ and the state j is reached before
 30 have

$$
\text { (0.) } k=\left\{w: x_{0}(w)=1\right\}
$$

Let $P(\%=1)=c>0$ 。 We have the following relations，Imadiato consequaseos of the definitions．

$$
\begin{aligned}
& \left.c m A=\sum_{n=1}^{\infty}\left\{\int_{n} \pi P(d w) \approx \int_{n}\left(n+m_{n}\right\}\right) d P(w)\right\} \\
& =\cos \left(1, j(0 x)+P\left(e^{k}\right) x_{k j}\right.
\end{aligned}
$$

$$
\begin{aligned}
c m(1, j \rho k) & =\sum_{n=1}^{\infty}\left\{\int_{n}^{j}(n+m j k) P(d w)+\int_{0_{k}}^{j}\left(n+m_{k j}\right) P(d w)\right\} \\
& =c m(1, j u k)+P(0 j) m_{j k}+P\left(\theta^{k}\right) m_{k j} \quad
\end{aligned}
$$

Now by lofinition we have

$$
\frac{P\left(\theta^{j}\right)}{\partial}=F_{k}^{z}, \quad \frac{P\left(e^{k}\right)}{C}=F^{*} \quad 0
$$

Hence wo obtain from the above：
FOTula VI。 If $j \neq k$ then

$$
\begin{equation*}
m(1, j \cup k)=m_{1 j} \circ j^{F_{i k}} m_{k j}=m_{1 k}=k^{F}\left\{j m_{k}\right. \tag{VI.}
\end{equation*}
$$

Ferula VII。 If $j \neq k$ then

$$
\begin{equation*}
m(1, j 0 k)=m_{1 j}+k_{1 j} m_{j k}=m_{1 k}+j F_{1 k} m_{k} \tag{VII}
\end{equation*}
$$

Sun e

$$
F_{i j}^{2 t}+j_{i k}^{2 k}=1
$$

we deduce from（VII）：
Morula VIII．Is j is then

$$
\begin{equation*}
m_{1 k}+m_{k j}-m_{1 j}=k_{i j} F_{i j}\left(m_{j k}+m_{k j}\right) \tag{VIIT}
\end{equation*}
$$

We rote tho following spacial case $(1=k)$ of（VIII）：

$$
\begin{equation*}
m_{k k}=k_{k j} F_{k j}^{*}\left(m_{j k}+m_{k j}\right) \tag{VIII}
\end{equation*}
$$

This las formula is due to Harris［4］，who also derived from it the following cute relation：

$$
\begin{equation*}
\frac{m_{i}}{m_{k k}}=\frac{j^{W^{3}} j k}{k^{m i k j}} \tag{VIII}
\end{equation*}
$$

Now in positive class the ergodic theorem of Kolmogorov holds： 6
This theorem actually establishes the limit of $p(n)$ as $n a \infty$ 。 The average form（II）is an easy consequence of jjardyo Littlekood Tauberian theorem．

Thus (VIII) turns out to be a special cases of thoorern I, using (IVC) and noting that $\mathrm{F}_{j k}=\mathrm{F}_{\mathrm{kj}}=1$ 。
Dividing (VIII) by the product of (VIIIa) and (VIIIb)

Wo obtain

$$
\begin{equation*}
\frac{m_{i k}+m_{k j}-m_{i j}}{m_{j j}}=\frac{k^{F_{i}^{+}} j}{j^{F} j k} \tag{12}
\end{equation*}
$$

By Formula (JIb), the left side is $k_{i j}^{*}$, since $F_{j k}^{k}=1$ in the present case. Thus we obtain

Formula (IX). If $j \neq k$ then

$$
\begin{equation*}
k_{1 j}^{p_{1}}=\frac{m_{1 k}+m_{k j}-m_{1 j}}{m_{j j}} \tag{IX}
\end{equation*}
$$

As an application consider, 23 in the Central Limit Thoorem for Markov chains, random variables $\left\{Y_{n}\right\}$ attached to the Markov chain $\left\{x_{n}\right\}$ in the following way:
$Y_{n}-x_{1}$ if $X_{n}=1$ where the $x_{1}^{1} 8$ are arbitrary real numbers.
Theorem 3. Let 1 be a positive state. Given $X_{0}=1$, let v_{0} denote the smallest $n \geq 1$ such that $X_{n}=1$. Then if the series on the 21 ght-hand sides converge, we have

$$
\begin{align*}
& E\left\{Y_{1}+000+Y_{v_{0}} \mid X_{0}=1\right\}=m_{i 1} \sum_{j=1}^{\infty} \frac{T_{j j}}{\infty}{ }^{\infty}\left(\left(X_{1}+000+Y_{v_{0}}\right)^{2} \mid X_{0}=1\right\} \tag{Xa}
\end{align*}
$$

$$
=m_{i i} \sum_{j=1}^{\infty} \frac{x_{j}^{2}}{m_{j j}}+2_{i i} \sum_{j=1}^{\infty} \frac{x_{j}}{m_{j j}} \sum_{k=2}^{\infty} \frac{m_{j 1}+m_{1} k=m_{j} k}{m_{k j}} \tilde{l}_{k}
$$

DOOU pointed out to mo that this is a case of wald g equation for Markov chains.
\qquad

 $Z_{\mathrm{n}} \cos 12 \mathrm{~d}$ as §ol10\%11:

$$
Z_{n}=\left\{\begin{array}{l}
0 \text { ir } X_{V}=i \text { for some } v, 1 \leq V<n ; \\
x_{j} \text { if } X_{n}=j \text { and } X_{W}+1,1 \leq v<n ;
\end{array}\right.
$$

shore f may bo ? in the lastowritton line. Evidently we have tho 2

$$
\begin{aligned}
& =\sum_{n=1}^{\infty} \sum_{j \geq 1}^{\infty} p_{1 j} x_{j}=\sum_{j=1}^{\infty} i_{i j}^{x_{j}}=\sum_{j=1}^{\infty} \frac{m_{i j}}{m_{j j}} x_{j} \quad .
\end{aligned}
$$

by (IX) itu 1 k 。
Furthermore we save

$$
\begin{aligned}
& \left.E:\left(\sum_{n=1}^{V} Y_{n}\right)^{2} \mid x_{0}=1\right\}=E\left\{\left(\sum_{n=1}^{\infty} Z_{n}\right)^{2} \mid X_{0}=1\right\} \\
& =E\left\{\sum_{n=1}^{\infty}\left(Z_{n}^{2}+2 \underset{1 \leq r<s s_{n}}{\infty} Z_{n} Z_{\infty}\right)\right\}
\end{aligned}
$$

As before wo obtain readily

$$
E\left\{\sum_{n=1}^{\infty} z_{n}^{2}\right\}=\sum_{j=1}^{\infty} \frac{m_{1 i}}{m_{j j}} x_{j}^{2}
$$

Next we have

By (IX) tins reduces to (XV):

The two expressions on the left sides of (Xa) and (mb)
 B. Hin. S. We refer the reader to [2] for detalla. They are here evialuatsa in what seems to uss mora tangible terms,
4. Prom Formulas (VI) and (VII) it follovts that

$$
m(1, f y n s)+m(1, j n k)=m_{1 j}+n_{1 k}
$$

This relation is in striking resemblance to a familiar comma in the olsmontary calculus of probabilities, according so which If A and B apo any two events then

$$
P(\cap \cup B)+P(A \cap B)=P(A)+P(B)
$$

The generalization of the last relation to any finite number of events is known as poincarés formula (soc arg. \{9\} , ~ R. 61\%; and wo immediately suspect that the same may be true for the man first passage times. fins is indeed so. Wo define $\left.\mathfrak{a l}, j_{0} U \ldots U j_{s}\right)$ and $m\left(1, d_{9} \cap \ldots \cap f_{8}\right)$ as the obvious extensions
 note $j_{1} \cap \ldots \cap j_{x-1} \cap j_{r \& 1} \cap \ldots \cap j_{s}$ if $j=j_{r}(1 \leq \leq \leq 8)$ and i_{1} n...njs is not one of the $j_{r}{ }^{3}$ s.

Formula XI. If $j_{i n}$,oo, j_{ε} are distinct states in a positive class to which i also belongs, then

$$
\begin{aligned}
& +(=1)^{s 01} \mathrm{~m}\left(1, j_{1} 00 \ldots\left(0 j_{\mathrm{a}}\right)\right.
\end{aligned}
$$

Proof o put
$0=\left\{N: X_{0}(w)=i_{0} X_{V}(w) \neq j_{1} \ldots \ldots j_{B} \operatorname{ror} 1 \leq v<n, X_{n}(w)=j_{T}\right\}$ $a^{x}=\sum_{n=1}^{\infty} e_{n}^{x}$

Wo have, 28 at the beginning of § ss

$$
\begin{equation*}
r\left(x_{0} s_{s_{1}} \cap \ldots n j_{r_{\ell}}\right) \tag{13}
\end{equation*}
$$

$=0^{-1} \sum_{r_{i 1}}^{s} \sum_{n=1}^{\infty} \int_{\theta_{n}^{r}}^{r}\left\{n+m\left(j_{x}, j_{x_{1}} \cap \ldots \cap j_{x_{\varepsilon}} \div d_{x}\right)\right\} P(d w)$

Substitute (13) into the right side of (XI) and consider the
 $x_{1} \cdots{ }^{2}{ }_{f}$. It appears on the right side of (XI) once in
 opposite aligns; and does not appear in any other termed. Hence its net coefilaient on the right side of (XI) is zero. It remains only to consider the term $L\left(1, j_{2} 1 \ldots\right.$....Vj). This appears once in every term and hence its net coefficient is

$$
\binom{8}{1}=\binom{5}{2}+\binom{5}{3}+\ldots+(=1)^{8-1}=1
$$

Therefore (KI) is establisila.
We remark that trivial as this proof is, it does not exactly correspond with the familiar proof of poincareis formula and we do not knew if there is any closer relation botweon the two apo parent twins. Wo also leave issiblo extensions suggested by the mow extensions of Poincare: formula to the interested reader.
S. We no il give another method of computing $k_{i j}^{P /}$ 。 This method requires the ergodic tourer (11). An interesting by = prociuct. is the following:

belong to positive class, then

$$
\sum_{n=2}^{\infty}\left\{P \left\{\begin{array}{l}
n) \\
\sum_{k}=P\{k) \\
n_{k}
\end{array}=\frac{m_{j k}-m_{i k}}{m_{k k}}\right.\right.
$$

Profs. Using the familiar formula (cfo the remark after (2))

$$
P_{1 k}(n)=\sum_{v=1}^{n} F_{1 k}^{(v)} p_{k k}^{(n \odot v)}
$$

we have

Substituting from (1 i.), we see that the right aide of (14) is. as $\mathrm{H}_{\mathrm{h}} \rightarrow \mathrm{ar}$ asymptotic livy equivalent to
 $=$ In $_{\mathrm{jk}}<0$, wo have os $\mathrm{N} \rightarrow \infty$

Using this in (25), :o see that its limit as $N+\infty$ is

$$
\lim _{N \rightarrow \infty} \frac{1}{m_{k k}} \sum_{v=1}(-v)\left\{F_{i k}(v)-F_{j k}^{(v)}\right\}=\frac{\sum_{j k}=m_{i k}}{m_{k k}}
$$

We rote that Theorem 5 gives a convenient determination of the mean first passage times in terms of the transition probes bllities: in particular

We do net know what the situation is in a null. ciasso All we can fifo from thea m (IVC), ism: If i and j belong bo one

$$
\sum_{n=1}^{\infty}\left\{P\left\{\begin{array}{l}
n)=p(n)\}=t \infty \\
\sum_{j}
\end{array}\right)= \pm \infty\right.
$$

To return to $k^{\text {Pit }} \boldsymbol{j}$. If $j \neq k$ wo have evidently

$$
\sum_{h \neq k} k^{P}\left(\begin{array}{l}
n) \tag{16}\\
n
\end{array}(1)=k_{1}(n+1)\right.
$$

where, 6 later, an unspocifiod summation run from 1 to co Summing (10) over n_{6} wo obtain

OI

Wo assent that in general

$$
\sum_{k} p_{i n}^{p} P_{n j}^{(n)}=k_{i j}^{p+i} \sum_{v=1}^{n}\{p(k j) o p(j) y
$$

This is readily shows by induction on n, starting with (17)。 Now sum rom $n=1$ to $z N$, divide by N, and let N on $B=0$ (11) and Thiso:om 5 wo obs in

NOH

$$
\begin{align*}
& =\sum_{n=1}^{\infty} \sum_{i=n}^{\infty} i k=m_{1 k} \quad 0 \tag{19}
\end{align*}
$$

REFERENGSS

 ochon Kotlon mit unandilchen violon roglichen Zustinden＂Matomasicselili Sbomit，Foso，Vol＝ 1 （1936），pp．607－610；BuIIn de 1才才niv doEtat Moscow （in Russian），Vol． 1 （193）．for an expocition in English see Chapter 2 of［5］．
［2］ 1 ＂。 Voblin，＂Sux doux problinos de Me Eolmogorofíconoernanto le：chaines dejombrablos．＂Bull．Soc，Matho de Fsenco， VoI． 52 （194．2）， $\mathrm{pp}_{\mathrm{L}} 37.304$.
［3］W．Foller，＂Fluctuation theory of recuriont ovents．＂Trans． 4mos．Math．SOCo，Volo 67．（1940），ppo 98w119．SOe EIsollo！o chapter 12.
［4］T．E．Harris＂Flust passage and recurrence distributions．＂ Net yet publishod．
［5］Ko Chung，＂An orgodic thoorom＇sor statioremy piandrov chains with \＆countabio number of statos＂Tochnicat Peport No． 18 ，Projoct ONP $042-036$ ，Borkeleỹ CeIifo 1950.
［6］K．Lo Chung，Locture notes on Flerisov shains．Columbia Graduat Mathomaticnt stathotics Comeo，Now Yown． 1951.
［物］ $\mathrm{K}_{0} \mathrm{~L}_{0}$ Chung and P_{0} Erdos，＂Probability limit theorems assuming only the first moment I＂Memoirs Aner．Math． SoE．1r0． 6 （2751）．
［0］Io wo Chung and W Fuchs．＂On tho diatribution of values of surns of pandon variablos，＂Momolrs Amero Matho Soces No． 6 （1951）．
［8］W．Folier．An introduction to pirobability thoory and its appl1catione，Jchn Wiloy and Sons，Wat Yorks 10，50．

THE NATIONAL BUREAU OF STANDARDS

Functions and Activities

The National Bureau of Standards is the principal agency of the Federal Government for fundamental and applied research in physics, mathematics, chemistry, and engineering. Its activities range from the determination of physical constants and properties of materials, the development and maintenance of the national standards of measurement in the physical sciences, and the development of methods and instruments of measurement, to the development of special devices for the military and civilian agencies of the Government. The work includes basic and applied research, development, engineering, instrumentation, testing, evaluation, calibration services, and various scientific and technical advisory services. A major portion of the NBS work is performed for other government agencies, particularly the Department of Defense and the Atomic Energy Commission. The functions of the National Bureau of Standards are set forth in the Act of Congress, March 3, 1901, as amended by Congress in Public Law 619, 1950. The scope of activities is suggested in the listing of divisions and sections on the inside of the front cover.

Reports and Publications

The results of the Bureau's work take the form of either actual ${ }^{\circ}$ equipment and devices or published papers and reports. Reports are issued to the sponsoring agency of a particular project or program. Published papers appear either in the Bureau's own series of publications or in the journals of professional and scientific societies. The Bureau itself publishes three monthly periodicals, available from the Government Printing Office: the Journal of Research, which presents complete papers reporting technical investigations; the Technical News Bulletin, which presents summary and preliminary reports on work in progress; and Basic Radio Propagation Predictions, which provides data for determining the best frequencies to use for radio communications throughout the world. There are also five series of nonperiodical publications: the Applied Mathematics Series, Circulars, Handbooks, Building Materials and Structures Reports, and Miscellaneous Publications.

Information on the Bureau's publications can be found in NBS Circular 460, Publications of the National Bureau of Standards ($\$ 1.00$). Information on calibration services and fees can be found in NBS Circular 483, Testing by the National Bureau of Standards (25 cents). Both are available from the Government Printing Office. Inquiries regarding the Bureau's reports and publications should be addressed to the Office of Scientific Publications, National Bureau of Standards, Washington 25, D. C.

