NATIONAL BUREAU OF STANDARDS REPORT

INTERIM REPORT ON THE THERMODYNAMICS OF CHEMICAL SPECIES IMPORTANT IN AEROSPACE TECHNOLOGY
(including Special Topics in Chemical Kinetics)

(The previous reports in this series have the NBS Report Nos. 6297, $6484,6645,6928,7093,7192,7437,7587,7796,8033,8186,8504$, $8628,8919,9028,9389,9500,9601,9803,9905,10004,10074,10326$, and 10481.)

USS. DEPARTMENT OF COMMERCE
 NATIONAL BUREAU OF STANDARDS

Qualified requestors may obtain additional copies from the Defense Documentation Center. All others should apply to the National Technical Information Service.

NATIONAL BUREAU OF STANDARDS REPORT
 NBS PROJECT
 NBS REPORT
 1 July 1972
 10904
 232-0423
 316-0401
 316-0403
 316-0405
 316-0426

INTERIM REPORT
 ON THE THERMODYNAMICS OF CHEMICAL SPECIES IIMPORTANT IN AEROSPACE TECHNOLOGY
 (including Selected Topics in Chemical Kinetics)

(The previous reports in this series have the NBS Report Nos. 6297, $6484,6645,6928,7093,7192,7437,7587,7796,8033,8186,8504$, 8628, 8919, 9028, 9389, 9500, 9601, 9803, 9905, 10004, 10074, 10326, and 10481.)

Reference: U.S. Air Force, Office of Scientific Research, Agreement No. AFOSR-ISSA-71-0003, Project No.9750-01

U.S. DEPARTMENT OF COMMERCE

NATIONAL BUREAU OF STANDARDS

CONDITIONS OF REPRODUCTION

Reproduction, Translation, publication, use and disposal in whole or in part by or for the United States Government is permitted.

FOREWORD

Structure, propulsion, and guidance of new or improved weapons delivery systems are dependent in crucial areas of design on the availability of accurate thermodynamic data. Data on high-temperature materials, new rocket propellant ingredients, and combustion products (including exhaust ions) are, in many cases, lacking or unreliable. This broad integrated research program at the National Bureau of Standards supplies new or more reliable thermodynamic properties essential in several major phases of current propulsion development and application. Measured are compounds of those several chemical elements important in efficient propulsion fuels; those substances most affecting ion concentrations in such advanced propulsion concepts as ion propulsion; and the transition and other refractory metals (and their pertinent compounds) which may be suitable as construction materials for rocket motors, rocket nozzles, and nose cones that will be durable under extreme conditions of high temperature and corrosive environment. The properties determined extend in temperature up to 6000 degrees Kelvin. The principal research activities are experimental, and involve developing new measurement techniques and apparatus, as well as measuring heats of reaction, of fusion, and of vaporization; specific heats; equilibria involving gases; several properties from fast processes at very high temperatures; spectra of the infrared, matrix-isolation, microwave, and electronic types; and mass spectra. Some of these techniques, by relating thermodynamic properties to molecular or crystal structures, make it possible to tabulate reliably these properties over far wider ranges of temperature and pressure than those actually employed in the basic investigations. Additional research activities of the program involve the critical review of published chemical-thermodynamic (and some chemical-kinetic) data, and the generation of new thermochemical tables important in current chemical-laser research.

ABSTRACT

This report presents recent results of the NBS research program. The nature and scope of the subjects covered may be inferred from the detailed Table of Contents to be found on the following pages. The most significant results may be summarized as follows, under four main headings. (1) Thermodynamic properties of molybdenum compounds-As a necessary preliminary to later measurement of the standard heat of formation of MoF_{5}, that of MoF_{6} (ℓ) was determined by solution calorimetry and found to be $\Delta H f^{\circ}=-376.43 \pm 0.52 \mathrm{kcal} \mathrm{mol}^{-1}$. The related standard heat of formation of $\mathrm{F}^{-}(\mathrm{aq})$ and heat of solution of $\mathrm{NaF}(\mathrm{c})$ are discussed critically. Fifteen new transpiration measurements on $\mathrm{MoF}_{5}(\ell)$ at $70^{\circ}, 90^{\circ}$, and $110^{\circ} \mathrm{C}$ are reported. To enable determination of the individual partial pressures of monomer and dimer vapor species, a second vapor-pressure method was developed which reproduced known vapor pressures of iodine to within 1 to 2%. Assuming the MoF_{5} molecule to have $\mathrm{D}_{3 \mathrm{~h}}$ symmetry, a complete vibrational assignment was made on the basis of new studies (infrared spectra of the matrixisolated vapor, using double-boiler techniques to enhance the monomer; and Raman spectra of the crystal and the liquid). The heat capacity of what is approximately $\mathrm{Mo}_{2} \mathrm{C}$ was measured from 273 to 1475 K using two drop-type calorimeters; these results are consistent among themselves and with two published low-temperature heat-capacity sets of data, and extension of the measurements to well above a first-order transition (at about 1675 K) is planned. (2) Thermophysical properties of refractory metals and alloys--The subsecond-duration pulse-heating technique previously developed and applied was used to measure simultaneously the specific heat, electrical resistivity, and hemispherical total emittance of two alloys, Ta-10(weight \%) W(1500-3200 K) and $\mathrm{Nb}-1$ (weight \%) Zr (1500-2700 K), with estimated accuracies comparable to those obtained on other samples previously. The specific heats show small departures from the additive values based on the pure components. The electrical resistivity of the former alloy shows significant departure from Mattiessen's law, and that of the latter alloy is 0.5% lower than for pure Nb . The pulse-technique melting point of W was found to be 3695 K , and that of Nb , 2750 K (both IPTS-68), with estimated uncertainties of 15 K and 10 K , respectively; the electrical resistivities of both metals also were measured above their melting points, and the normal spectral emittance of Nb remained constant at 0.348 ($\pm 3 \%$) during melting. The feasibility of a pulse-heating technique for measuring the heats of fusion of refractory metals was demonstrated by preliminary experiments on Nb ; and the feasibility of another such technique for solid-solid phase transformations at high temperatures was demonstrated by the rate of surface radiance-temperature variation in the gamma-to-delta transformation of Fe , during which the electrical resistivity increased by 0.3%. (3) Chemical kinetics of simple-gas reactions--On the basis of a critical examination of the data (especially shock-tube), suggested thermal rate constants are tabulated for the six
dissociation and recombination reactions (a) $\mathrm{NH}_{3} \rightleftarrows \mathrm{NH}_{2}+\mathrm{H}(0-100 \mathrm{~atm}$, and $200-4000 \mathrm{~K}$), (b) $\mathrm{N}_{2} \mathrm{H}_{4} \rightleftarrows 2 \mathrm{NH}_{2}\left(10^{-5}-100 \mathrm{~atm}\right.$, and $\left.200-3000 \mathrm{~K}\right)$, and (c) $\mathrm{N}_{2} \mathrm{~F}_{4} \rightleftarrows 2 \mathrm{NF}_{2}\left(10^{-5}-100 \mathrm{~atm}\right.$, and 200-1800 K). The best fit of (a) appears to require external rotation. A satisfactory data correlation of (b) was made using RRKM unimolecular rate theory, and the results are consistent with $\triangle H f_{298}^{\circ}=45.5 \pm 1.5 \mathrm{kcal} \mathrm{mol}{ }^{-1}$ for NH_{2} (g) (incorporate in a new thermochemical table) instead of the JANAF-table value of 40.1 ± 3. The $R R K M$ data correlation of (c) requires 18.0 kcal (0 K) for the $\mathrm{N}-\mathrm{N}$ bond energy (JANAF value, 20.8 kcal). In addition, a bibliography (1934-June 1972) covers the chemical kinetics of 60 gas-phase reactions of fluorides of Cl, N, and 0 based on 51 papers, with emphasis on the processes occurring during the thermal decompositions of these fluorides. (4) New ideal-gas thermochemical tables--Based on a critical review and correlation of the up-to-date heat-of-formation and molecular-constant data, new ideal-gas thermochemical tables and texts of the JANAF-Table format are given for 31 simple gas species containing $\mathrm{H}\left(\mathrm{or}^{1} \mathrm{H}\right), \mathrm{D}\left(\right.$ or $\left.^{2} \mathrm{H}\right), \mathrm{F}, \mathrm{C} \ell, 0, \mathrm{~S}$, and/or N . Included are $(H F)_{n}$ with $n=1$ to 7 , and texts (but no tables) for F and $\mathrm{H}_{2} 0$.

TABLE OF CONTENTS
Page
Foreword i
Abstract iii
Chap. 1. THE HEAT OF FORMATION OF MoF_{6} ($)$ BY SOLUTION CALORIMETRY (by R. L. Nuttall, K. L. Churney, and M. V. Kilday) 1

1. Introduction 1
2. Reaction Scheme of Solution Experiments. 4
3.0. Materials 5
3.1. Sample Bulbs for $\mathrm{MoF}_{6}(\ell)$. 6
3.2. Calorimeter 7
3.3. Experimental Procedures 8
3. Experimental Results 10
4.1. Reaction (2) 10
4.2. Reaction (3). 13
4.3. Reactions (4) and (5) 13
Reaction (7). 14
4. Discussion of Results. 14
8.1. Enthalpy of Formation of $\mathrm{MoF}_{6}(\ell)$ and $\mathrm{F}^{-}(\mathrm{aq})$ 14
8.2. Heat of Solution of $\mathrm{NaF}(\mathrm{c})$. 17
References 18
Table 1. Calorimetric Data for Reaction (2) 20
Table 2. Drift Rate Data for Reaction (2) 21
Table 3. Calculation of $\Delta \mathrm{H}_{2}$ 22
Table 4. Calorimetric Data for Reaction (3). 23
Table 5. Calculation of H_{3} 24
Table 6. Calorimetric Data for $\mathrm{\Delta H}_{4}$ (Set 5) and $\Delta \mathrm{H}_{5}$ (Set 6). 25
Table 7. Calculation of $\Delta \mathrm{H}_{4}$ 26
Table 8. Calculation of Δ_{4} 27
Table 9. Calculation of ${\Delta H_{7}}_{7}$ 28
Chap. 2. MOLYBDENUM PENTAFLUORIDE: VAPORIZATION PROPERTIES FROM
TRANSPIRATION, AND DEVELOPMENT OF AN EXPERIMENTAL METHOD TO EVALUATE THE TRUE VAPOR PRESSURES
(by Thomas B. Douglas and Ralph F. Krause, Jr.) 29
Abstract 29
I. Introduction 29
II. Transpiration Measurements 30
5. Experimental Results 30
Fig. 1. Transpiration apparatus 32
Table 1. Transpiration of $\mathrm{MoF}_{5}(\ell)$ by Helium Containing $\mathrm{MoF}_{6}(\mathrm{~g})$. 33
Page
6. Concerning the Molecular Weight of Molybdenum Pentafluoride in the Vapor State 35
Fig. 2. Deviations of the results of indi- vidual experiments from Equation (2) 36
III. Development of a Method to Measure the True Vapor Pressures 39
7. Brief Description of the Method. 39
8. Apparatus Design and Experimental Procedure. 40Fig. 3. Apparatus to measure true vaporpressures (schematic)41
9. Tests of the Apparatus in Reproducing Known Values 45
Table 2. Measurement of "Known' Pressures of Argon and Vapor Pressures of Iodine and Molybdenum Hexafluoride 47
IV. References. 48
Chap. 3. THE VIBRATIONAL SPECTRA OF MOLYBDENUM PENTAFLUORIDE (by Nicolo Acquista and Stanley Abramowitz) 49
Introduction 49
Experimental. 51
Experimental Results. 52
Discussion. 55
References 57
Table 1. Vibrational Assignment of MoF_{5} 59
Fig. 1. The infrared spectra of matrix isolated MoF_{5} in Argon at $20^{\circ} \mathrm{K}$ 60
Fig. 2. The far infrared spectrum of MoF_{5} trapped in Argon matrices at liquid hydrogen temperature 61
Fig. 3. The infrared spectrum of solid MoF_{5} at $20^{\circ} \mathrm{K}$. 62
Fig. 4. The Raman spectrum of solid MoF_{5} 63
Chap. 4. PRELIMINARY REPORT ON THE MEASUREMENT OF THE RELATIVE ENTHALPY OF Mo 2 C FROM 273.15 to 1475 K (by D. Ditmars and S. Ishihara) 64
10. Introduction 64
11. Sample. 65
Fig. 1. A portion of the Mo-C phase diagram 66
12. Experimental 67
a. 273.15 K to 1173.15 K 67
b. 1173.15 K to 1475 K 68
Page
13. Results 69
Table 1. NBS enthalpy measurements on MoC 4873 to 1173.15 K 70
Table 2. NBS ${ }^{4}$ enthalpy measurements on MoC. 4873 to 1476.87 K 71
14. Discussion. 72
Fig. 2. Deviation of $\mathrm{Mo}_{2} \mathrm{C}$ enthalpy data from eq. (2) 73
Fig. 3. Comparison of the average heat capacity of $\mathrm{Mo}_{2} \mathrm{C}$ calculated from the base temperature of 298.15 K for the two NBS calorimeters of this study 74
References 75
Chap. 5. HIGH-SPEED (SUBSECOND) SIMULTANEOUS MEASUREMENT OF SPECIFIC HEAT, ELECTRICAL RESISTIVITY, AND HEMISPHERICAL TOTAL EMITTANCE OF TANTALUM-10 (WT. \%) TUNGSTEN ALLOY IN THE RANGE 1500 TO 3200 K
(by Ared Cezairliyan) 76
Abstract 76
15. Introduction. 77
16. Measurements. 78
17. Experimental Results. 79
3.1. Specific Heat. 79
Table 1. Specific heat, electrical resis- tivity, and hemispherical total emittance of the alloy $\mathrm{Ta}-10$ (wt. \%) W 80
3.2. Electrical Resistivity 81
3.3. Hemispherical Total Emittance. 81
18. Estimate of Errors 82
19. Discussion. 82
20. Acknowledgement 85
21. Appendix. 86
Table A-1. Experimental results on thespecific heat and electricalresistivity of the alloy Ta-10(wt. \%) W86
Table A-2. Experimental results on hemi- spherical total emittance of the alloy Ta-10 (wt. \%) W 87
22. References. 88 88

Page

$$
\begin{aligned}
& \text { Fig. 1. Photomicrographs of the Ta-10W } \\
& \text { specimen } 89
\end{aligned}
$$

Fig. 2. Specific heat of Ta-10W alloy, and Ta and W metals. 90
Fig. 3. Electrical resistivity of Ta-10W alloy, and Ta and W metals 91
Fig. 4. Hemispherical total emittance of Ta-10W alloy, and Ta and W metals. 92
Fig. 5. Departure of the specific heat of Ta-10W alloy from Kopp's law 93
Fig. 6. Variation of the quantity ρ_{0} defined by Equation (6), as a func- tion of temperature for Ta-10Walloy.94
Fig. 7. Temperature derjvatives of the electrical resistivity (measured and computed according to Matthiessen's law) of Ta-10W alloy 95
Chap. 6. SIMULTANEOUS MEASUREMENT OF SPECIFIC HEAT, ELECTRICAL RESISTIVITY, AND HEMISPHERICAL TOTAL EMITTANCE OF NIOBIUM-1 (WT. \%) ZIRCONIUM ALLOY IN THE RANGE 1500 TO 2700 K BY A TRANSIENT (SUBSECOND) TECHNIQUE
(by Ared Cezairliyan) 96
Abstract. 96

1. Introduction. 97
2. Measurements 97
3. Experimental Results 98
Table 1. Specific heat, electrical resis- tivity, and hemispherical total emittance of the alloy $\mathrm{Nb}-1$ (wt. \%)
Zr. 99
Specific Heat. 100
Electrical Resistivity 100
Hemispherical Total Emittance. 100
4. Estimate of Errors. 100
5. Discussion 101
6. Acknowledgement 102
7. Appendix 103Table A-1. Experimental results on speci-fic heat and electrical resis-tivity of the alloy $\mathrm{Nb}-1$ (wt.\%) Zr103
Table A-2. Experimental results on hemi-spherical total emittance ofthe alloy $\mathrm{Nb}-1$ (wt. \%) Zr . . . 104
Page
8. References 105
Fig. 1. Photomicrographs of the $\mathrm{Nb}-1$ Zr specimen 106
Fig. 2. Specific heat, electrical resis- tivity, and hemispherical total emittance of $\mathrm{Nb}-1 \mathrm{Zr}$ alloy. 107
Fig. 3. Differences in specific heat, electrical resistivity, and hemi- spherical total emittance of Nb-1 Zr alloy with those of pure niobium 108
Chap. 7. MEASUREMENT OF MELTING POINT AND ELECTRICAL RESISTIVITY (ABOVE 3600 K) OF TUNGSTEN BY A PULSE HEATING METHOD
(by Ared Cezairliyan) 109
Abstract 109
9. Introduction 110
10. Measurements 111
Fig. 1. Temperature of the two tungsten specimens as a function of time at the melting point. 113
Fig. 2. Electrical resistance of tungs- ten-1 as a function of temperature near and at the melting point 114
11. Discussion 115
Table 1. Melting Point of Tungsten Reported in the Literature 116
12. References 118
Chap. 8. MEASUREMENT OF MELTING POINT, NORMAL SPECTRAL EMITTANCE (AT MELTING POINT), AND ELECTRICAL RESISTIVITY (ABOVE 2650 K) OF NIOBIUM BY A PULSE HEATING METHOD (by Ared Cezairliyan) 120
Abstract 120
13. Introduction 121
14. Measurements 122
2.1. Melting Point 123
2.2. Normal Spectral Emittance 124
2.3. Electrical Resistivity. 125
15. Estimate of Errors 126
16. Discussion 127
17. Acknow1edgement 128
Page
18. References 129
Table 1. Imprecision and inaccuracy of measured and computed quantities 130
Fig. 1. Variation of temperature of nio-bium (niobium-1) as a functionof time near and at the meltingpoint.131
Fig. 2. Variation of temperature of nio- bium (niobium-1 and niobium-2) as a function of time at the melting point. 132Fig. 3. Variation of surface radiancetemperature of niobium (nio-bium-3) as a function of timenear and at the melting point. . 133Fig. 4. Variation of electrical resis-tivity of niobium (niobium-1)as a function of temperaturenear and at the melting point. . 134
Chap. 9. A PULSE HEATING TECHNIQUE FOR THE MEASUREMENT OF HEAT OF FUSION OF METALS AT HIGH TEMPERATURES (by A. Cezairliyan) 135
Table 1. Heat of fusion of niobiumreported in the literature139
References 140
Fig. 1. Schematic diagram showing thearrangement of the compositespecimen, clamps, and surfaceradiance temperature measure-ment system.141
Fig. 2. Variation of surface radiance temperature of a composite specimen as a function of time during its heating period 142
Chap. 10. APPLICATION OF A PULSE HEATING TECHNIQUE TO RRELIMINARY
INVESTIGATIONS OF SOLID-SOLID PHASE TRANSFORMATIONS AT HIGH TEMPERATURES
(by A. Cezairliyan and J. L. McClure) 143
Abstract. 143
References 148Fig. 1. Heating curve showing the solid-solid phase transformation ($\gamma \rightarrow \delta$)and the melting point in iron. . . 150

Page
Fig. 2. Variation of electrical resis- $\begin{aligned} & \text { tivity of iron as a function } \\ & \text { of surface radiance temperature } \\ & \text { showing the behavior at } \gamma \rightarrow \delta \\ & \\ & \text { transformation and the melting } \\ & \\ & \text { point } 151\end{aligned}$
Chap. 11. RATE CONSTANTS FOR 'HE REACTIONS

(by W. Tsang) . 152
Abstract . 152

1. Summary of Experimental Data 153
I. Direct Studies. 153
II. Indirect Studies. 154
2. Comments on Experimental Data. 155
3. Discussion 156

References . 160
Table I. Recommended Rate Constants for the Decomposition of NH_{3} and Combination of Amine and H Radicals.161

Table II. Third body efficiencies from
(a) decomposition of $\mathrm{NO}_{2} \mathrm{Cl}$, and (b) isomerization of $\mathrm{CH}_{3} \mathrm{NC}$. . 163
Table III. Data used in deriving results in Table IV164

Table IV. Recommended rate constants for the unimolecular decomposition of ammonia and the bimolecular combination of amino and H radicals. 165
Fig. 1. Experimental and calculated rate constants for NH_{3} decomposition (in argon).

Chap. 12. RATE CONSTANTS FOR THE REACTIONS
$\xrightarrow{(M)+\mathrm{N}_{2} \mathrm{H}_{4} \stackrel{\mathrm{k}_{\mathrm{d}}}{\mathrm{k}_{\mathrm{r}}} 2 \mathrm{NH}_{2} \cdot+(\mathrm{M})}$
(by W. Tsang) ${ }^{r}$. 171
Abstract . 171Page

1) Survey of Experimental Data 172
I. Direct Studies 172
II. Indirect Studies 174
2) Comments on Individual Studies. 177
3) Discussion 181
References. 186
Table I. Rate Constants for the Reactionin the Temperature Range 200-$3000^{\circ} \mathrm{K}$ and Pressure Range .01-$100,000 \mathrm{~mm} \mathrm{Hg}\left(\mathrm{N}_{2} \mathrm{H}_{4}\right)$.187
Table II. Collision Efficiencies of Bath Gases 196Fig. I. Comparison of calculated andexperimental rate constants forhydrazine decomposition at con-stant pressure197
Fig. II. Comparison of the results of RRKM calculations with varying fre- quency patterns for the transi- tion state, but essentially in- variant high pressure rate parameters 197
Fig. III. Comparison of calculated and experimental rate constants for hydrazine decomposition at con- stant pressure 197
Chap. 13. RATE CONSTANTS FOR THE REACTIONS k_{d}
$\xrightarrow{(\mathrm{M})+\mathrm{N}_{2} \mathrm{~F}_{4}} \underset{\mathrm{k}_{\mathrm{r}}}{\longrightarrow} \underline{\mathrm{NF}_{2}{ }^{\circ}+(\mathrm{M})}$
(by W. Tsang) 202
Abstract 202
1. Survey of Experimental Data 203
I. Direct Studies 203
II. Indirect Studies 204
III. Comments 205
2. Discussion. 206
References. 209PageTable I. Data Used in Fall-off Calcula-tions210
Table II. Recommended rate constants forthe reactionsk (DEC)$\mathrm{N}_{2} \mathrm{~F}_{4} \underset{\mathrm{k}(\mathrm{COM})}{\longrightarrow} 2 \mathrm{NF}_{2}$ overthe pressure range . $01-100,000 \mathrm{~mm}$$\mathrm{Hg}\left(\mathrm{N}_{2} \mathrm{~F}_{4}\right)$ and $200-1800^{\circ} \mathrm{K}$.211Table III. Estimated rate constants for thereaction$\mathrm{N}_{2} \mathrm{~F}_{4} \underset{\mathrm{k}(\mathrm{COM})}{\stackrel{\mathrm{k}(\mathrm{DEC})}{\rightleftarrows}} 2 \mathrm{NF}_{2}$. over thepressure range . $01-100,000 \mathrm{~mm}$$\mathrm{Hg}\left(\mathrm{N}_{2} \mathrm{~F}_{4}\right)$ and $200-1800^{\circ} \mathrm{K}$. . . . 216
Table IV. Collisional Efficiencies of BathGases221
Fig. I. Comparison of experimental andcalculated rates of decompositionfor various ΔE_{0}° and $A_{d}(\infty)$222
Fig. II. Comparison of calculated and experimental rates of decomposi- tion of $\mathrm{N}_{2} \mathrm{~F}_{4}$ under various conditions 222
Chap. 14. CHEMICAL KINETICS OF REACTIONS OF CHLORINE, NITROGEN AND OXYGEN FLUORIDES IN GAS PHASE: A BIBLIOGRAPHY - 1934 THROUGH JUNE 1972 (by Francis Westley) 225
Introduction 225
Journal and Report Codes 227
I. Chlorine Fluorides 228
(a) Reactions 228
(b) Reviews. 230
II. Nitrogen Fluorides 230
(a) Reactions 230
(b) Reviews 231
III. Oxygen Fluorides 232
(a) Reactions 232
(b) Reviews 233
IV. References 234

Page

NEW IDEAL-GAS THERMOCHEMICAL TABLES

Chapter 1

THE HEAT OF FORMATION OF $\operatorname{MoF}_{6}(\ell)$ BY SOLUTION CALORIMETRY

R. L. Nuttall, K. L. Churney, M. V. Kilday

1. Introduction

This laboratory is currently engaged in a program to determine the heats of formation of the lower fluorides (and the oxy-fluorides) of molybdenum. Since it was deemed unlikely that the compound currently of interest, $\mathrm{MoF}_{5}(\mathrm{c})$, could be formed in reasonable quantities by direct reaction of $F_{2}(g)$ with $M o(c)$, two other reaction schemes are being used which involve either $\mathrm{MoF}_{6}(\mathrm{~g})$ or $\mathrm{MoF}_{6}(\ell)$. The first, the method of choice, is the reaction of $\operatorname{MoF}_{5}(c)$ with $\mathrm{F}_{2}(\mathrm{~g})$ to form $\mathrm{MoF}_{6}(\mathrm{~g})$. Because the available quantity of $\mathrm{MoF}_{5}(\mathrm{c})$ and the heat of reaction 1 / were expected to be small, a second, more sensitive, scheme was deemed necessary either as a che ck or as an alternative route. The method selected was the heat of solution of $\mathrm{MoF}_{6}(\ell)$ in base and MoF_{5} (c) in base containing an oxidant, based on the apparent success of this method with MoCl_{5} (c) [3], for example. Both methods require an accurate value for the heat of formation of $\mathrm{MoF}_{6}(\ell)$ or $\mathrm{MoF}_{6}(\mathrm{~g})$. Unfortunately, the heat of formation of $\mathrm{MoF}_{6}(\mathrm{~g})$
$\underline{1} /-24 \pm 15$ kcal per mol MoF_{5} (c) based on an estimated heat of formation of MOF_{5} (c) [2] and the heat of formation of $\mathrm{MoF}_{6}(\mathrm{~g})$ [1].
derived by solution calorimetry differs from that determined by direct combination of the elements.

Settle et al [l] obtained $-372.35 \pm 0.22 \mathrm{kcal} / \mathrm{mol}$
for the reaction

$$
\begin{equation*}
\mathrm{Mo}(\mathrm{c})+3 \mathrm{~F}_{2}(\mathrm{~g})=\operatorname{MoF}_{6}(\mathrm{~g}) \tag{1}
\end{equation*}
$$

by burning molybdenum sheet suspended on a nickel rod in 14-15 atm of $\mathrm{F}_{2}(\mathrm{~g})$ in a nickel combustion bomb. Correction for unburned molybdenum ($\leq 4 \%$ of initial sample weight) could be made unambiguously and accurately. While the corrections for the formation of MoF_{5} (c) (typically $0.10 \pm$ 0.05% of molybdenum burned), NiF_{2} (c) formed due to corrosion, and impurities in the original sample were somewhat uncertain, all made relatively small contributions to the resulting value of $\Delta H_{f}^{\circ}\left[\operatorname{MoF}_{6}(\mathrm{~g})\right](0.003 \%, 0.059 \%$, and 0.087% on the average, respectively). Recalculation of the latter two corrections using newer selected values for heats of formation (see [2,4]) yielded a value of -372.29 kcal [5] for reaction (1).

The only other determination of the heat of formation of $\mathrm{MoF}_{6}(\ell)$ was made by Myers and Brady [6] by measuring the heats of solution of $\mathrm{MoF}_{6}(\ell)$ and $\mathrm{MoO}_{3}(c)$ in 0.531 N aqueous NaOH and of $\mathrm{NaF}(\mathrm{c})$ in 0.531 N aqueous NaOH containing molybdate. These authors calculated their results according to the reaction scheme given by:
$\mathrm{MoF}_{6}(\ell)+8 \mathrm{NaOH}($ soln $)=\mathrm{Na}_{2} \mathrm{MoO}_{4}($ soln $)+6 \mathrm{NaF}(\mathrm{c})+4 \mathrm{H}_{2} \mathrm{O}($ soln $)$
to obtain $-388.6 \pm 4 \mathrm{kcal}$ for the heat of formation of $\operatorname{MoF}_{6}(\ell)$. Recalculation of their results using newer selected values $[2,4]$ of the heat of formation $[\mathrm{NaOH}$. $\left.515 \mathrm{H}_{2} \mathrm{O}\right](\mathrm{soln}), \mathrm{MoO}_{3}(\mathrm{c})$, and $\mathrm{NaF}(\mathrm{c})$ yields a value of $-393.2 \mathrm{kcal} \mathrm{mol}^{-1}$. Using the selected value of 6.66 $\mathrm{kcal} / \mathrm{mol}$ for the heat of vaporization of $\operatorname{MoF}_{6}(\ell)$ [5] (based on the measurements of Ruff and Ascher [7], Cady and Hargreaves [8], and Osborne et al [9]), one obtains $-386.6 \pm 4 \mathrm{kcal}$ for reaction (1). The uncertainty in this result greatly exceeds any error due to the failure of Myers and Brady to maintain rigid stoichiometry. The result is $14.2 \pm 4 \mathrm{kcal}$ more negative than that obtained by Settle et al.

Because of this discrepancy and particularly because solution calorimetry involving $\operatorname{MoF}_{6}(l)$ is also to be used to determine the heat of formation of $\operatorname{MoF}_{5}(c)$, it was considered necessary to repeat the measurements of Myers and Brady. We considered it more likely that the error lay in their work than in that of Settle et al.

In the following three sections an outline of the reaction scheme for the solution experiments is given, a summary of experimental method, and a summary and discussion of results.

2. Reaction Scheme of Solution Experiments

The actual reaction scheme involves the following five reactions:

$$
\begin{align*}
& \mathrm{MoF}_{6}(\ell)+\left[(8+x) \mathrm{NaOH}+\mathrm{yH}_{2} \mathrm{O}\right](\operatorname{soln})= \tag{2}\\
& {\left[\mathrm{Na}_{2} \mathrm{MOO}_{4}+6 \mathrm{NaF}+\mathrm{xNaOH}+(4+\mathrm{y}) \mathrm{H}_{2} \mathrm{O}\right](\text { soln })-\Delta \mathrm{H}_{2}} \\
& \mathrm{MoO}_{3}(\mathrm{c})+\left[(2+x) \mathrm{NaOH}+(3+y) \mathrm{H}_{2} \mathrm{O}\right](\mathrm{soln})= \tag{3}\\
& {\left[\mathrm{Na}_{2} \mathrm{MoO}_{4}+\mathrm{xNaOH}+(4+y) \mathrm{H}_{2} \mathrm{O}\right](\text { soln })-\Delta \mathrm{H}_{3}} \\
& 6 \mathrm{NaF}(\mathrm{c})+\left[\mathrm{Na}_{2} \mathrm{MoO}_{4}+\mathrm{xNaOH}+(4+\mathrm{y}) \mathrm{H}_{2} \mathrm{O}\right](\text { soln })= \tag{4}\\
& {\left[\mathrm{Na}_{2} \mathrm{MOO}_{4}+6 \mathrm{NaF}+x \mathrm{NaOH}+(4+y) \mathrm{H}_{2} \mathrm{O}\right](\text { soln })-\Delta \mathrm{H}_{4}} \\
& 6 \mathrm{NaF}(\mathrm{c})=6 \mathrm{NaF}(\mathrm{aq})-\Delta \mathrm{H}_{5} \tag{5}\\
& {\left[(2+x) \mathrm{NaOH}+(3+y) \mathrm{H}_{2} \mathrm{O}\right](\text { soln })+6 \mathrm{NaOH}(\mathrm{aq})=} \tag{6}\\
& 3 \mathrm{H}_{2} \mathrm{O}(\ell)+\left[(8+x) \mathrm{NaOH}+\mathrm{yH}_{2} \mathrm{O}\right](\text { soln })-\Delta \mathrm{H}_{6}
\end{align*}
$$

Adding reactions (2) $-(3)-(4)+(5)+(6)$, one obtains:

$$
\begin{aligned}
& \mathrm{MoF}_{6}(\ell)+60 \mathrm{H}^{-}(\mathrm{aq})=\mathrm{MoO}_{3}(\mathrm{c})+6 \mathrm{~F}^{-}(\mathrm{aq})+3 \mathrm{H}_{2} \mathrm{O}(\ell) \\
& -\Delta \mathrm{H}_{7}
\end{aligned}
$$

Thus, the heat of reaction (7), $\Delta \mathrm{H}_{7}$, is given by

$$
\Delta \mathrm{H}_{7}=\Delta \mathrm{H}_{2}-\Delta \mathrm{H}_{3}-\Delta \mathrm{H}_{4}+\Delta \mathrm{H}_{5}+\Delta \mathrm{H}_{6}
$$

The heat of formation of $\operatorname{MoF}_{6}(l), \Delta \mathrm{H}_{\mathrm{f}}^{\circ}\left[\operatorname{MoF}_{6}(l)\right]$, would then be given by the heats of formation of the other species in reaction (7) and ΔH_{7} :

$$
\begin{align*}
& \Delta \mathrm{H}_{\mathrm{f}}^{\mathrm{o}}\left[\mathrm{MoF}_{6}(\ell)\right]=\Delta \mathrm{H}_{\mathrm{f}}^{\mathrm{o}}\left[\mathrm{MoO}_{3}(\mathrm{c})\right]+3 \Delta \mathrm{H}_{\mathrm{f}}^{\mathrm{o}}\left[\mathrm{H}_{2} \mathrm{O}(\ell)\right]+ \tag{8}\\
& 6 \Delta \mathrm{H}_{\mathrm{f}}^{\circ}\left[\mathrm{F}^{-}(\mathrm{aq})\right]-6 \Delta \mathrm{H}_{\mathrm{f}}^{o}\left[\mathrm{OH}^{-}(\mathrm{aq})\right]-\Delta \mathrm{H}_{7}
\end{align*}
$$

Apart from experimental uncertainties, the uncertainty in the assumed value for heat of formation of F^{-}(aq) will cause the largest systematic error in the heat of formation of $\mathrm{MoF}_{6}(\ell)$.

Experimental determinations of the heat of reactions (2) through (5) were made; (4) and (5) were done to eliminate possible uncertainties due to the state and impurities of the $\mathrm{NaF}(\mathrm{c})$ sample.

3.0 Materials

MoF_{6} was purchased from Ozark-Mahoning Company. It was purified by trap-to-trap distillation in an all-metal system and was then transferred by distillation into Kel-F (polychlorotrifluoroethylene) bulbs for introduction into the calorimeter. Samples of MoF_{6} which had received similar treatment were analyzed by freezing point lowering by Krause [10] who found an impurity of .03 mol percent. The nature of the impurity was not determined.

The MoO_{3} (c) was CP grade and used without further purification. It was examined spectroscopically by the Analytical Chemistry Division, NBS, for metals. The only ones detected in amounts greater than 0.001 percent were Magnesium and Silicon which were in the range 0.001 to 0.01 percent. From the weight change on drying, the percent of water was estimated to be of the order of 0.02%.

NaF was CP grade used without further purification and was not analyzed for impurities. From the weight change on drying, the percent of water was estimated to be of the order of 0.12%.

3.1 Sample Bulbs for $\mathrm{MoF}_{6}(\ell)$

The sample bulbs for the $\operatorname{MoF}_{6}(\ell)$ were made from $1 / 2$ inch lengths of $3 / 8$ inch I.D. tubing by sealing on end windows of 0.005 inch film and a $1 / 8$ inch O.D. tube sidearm. The bulbs were filled through the sidearm which was then sealed off. Each bulb was tested for leakage by using a helium leak detector. The thin end windows were all permeable to the helium. A suitable maximum leak rate was chosen that corresponded to bulb leakage and bulbs were rejected if the leak rate exceeded this maximum value.

Some experiments were carried out to test the suitability of $\mathrm{Kel-F}$ capsules for containing the $\operatorname{MoF}_{6}(\ell)$ in a NaOH solution as follows: (1) a bulb was weighed and then soaked in NaOH solution for nineteen hours. It was then washed, dried, and weighed. The change in weight was less than $0.1 \mathrm{mg} ;(2)$ a weighed bulb was filled with $\operatorname{MoF}_{6}(l)$, sealed, and the bulb and remainder of the sidearm were weighed. This bulb was then soaked in NaOH solution for nineteen hours. It lost 5.1 mg of weight. The bulb was
then allowed to sit in the laboratory for ten days. During this time blue (later turning yellow) material formed on the outside of the bulb and small white crystals formed on the inside walls of the bulb above the liquid. The weight of the bulb increased by at least 14.6 mg over the period of ten days. The bulb was then opened under a solution of ammonium hydroxide, allowing the MoF_{6} to react. The washed and dried bulb had gained 12.6 mg in weight; (3) a sample bulb was made with $1 / 32$ inch thick end windows (instead of the usual 0.005 inch). Leakage through the se windows could not be detected with the helium leak detector. After a period of three weeks this bulb also showed blue colored material on the outside of the windows and white crystals on the inside. It appears from the results of the se experiments that Kel-F does not react with or absorb NaOH solution at room temperature; that it is permeable to moisture, oxygen, and/or MoF_{6}. The consequences of this permeability are discussed further in the section on experimental results.

3.2 Calorime ter

The platinum-lined calorimeter used in this work is the precise adiabatic solution calorimeter developed by E. J. Prosen and M. V. Kilday which has been described previously in earlier stages of development [11,12] and in more detail in its present state [13]. The calorimeter has
a solution capacity of $300 \pm 15 \mathrm{~cm}^{3}$ and, when filled with $300 \mathrm{~cm}^{3}$ of $\mathrm{H}_{2} \mathrm{O}$, an energy equivalent of approximately 1700 $J \cdot K^{-1}$. The stirring speed of the liquid for most of the experiments was 350 r.p.m. For the experiments involving $\mathrm{NaF}(c)$ and $\mathrm{MoO}_{3}(c)$, the regular platinum sample holder of the calorimeter was used. It has a volume of approximately $2.7 \mathrm{~cm}^{3}$, an opening energy of $0.00 \pm 0.02 \mathrm{~J}$, and is described in detail in ref. [13].

For the MoF_{6} solution experiments, the regular sample holder was replaced with a Monelframe which held a sample bulb wi th its end windows aligned horizontally. A Monel cutter was provided which cut out the end windows so that solution could flow freely through the bulb during the solution reaction. The energy required to open the bulbs in this way was normally about 0.44 J .

3.3 Experimental Procedures

The amount of sample introduced into the calorimeter was determined by weight. The MoO_{3} and NaF samples were weighed as crystalline solids directly in the sample holder. The weight of $\operatorname{MoF}_{6}(\ell)$ was determined by two weighing schemes, A and B. The empty bulb with its sidearm was weighed (Wl). It was then filled wi th sample and the sidearm sealed off. The filled bulb was weighed (W2). The remaining sidearm was weighed (W3). The sample weight (WA) is then given by: $W A=W 2+W 3-W 1$. After the calorimetric experiment was
complete the now empty sample bulb (with its end windows) was cleaned and weighed (W4). The sample weight (WB) is given by: WB = W2 - W4. In general, the sample weights WA and WB do not agree, WA was always found to be greater than WB. We have used as the weight of sample the average value and have weighted experimental results and assigned uncertainties based on the difference between WA and WB.

The operation of the calorimeter is discussed in detail in reference [13]. Basically the operation consists of measuring a temperature-time curve for four rating (drift) periods, two electrical heating (calibration) periods and the reaction period.

The energy equivalent of the initial calorimetric system is determined from the first rating period, first electrical heating period, and the second rating period, taken in that order. The solution reaction is started after the second rating period by opening the sample container. It is followed by the third rating period. A second electrical heating period is then carried out and is followed by the fourth rating period and an energy equivalent for the final calorimetric system is determined. The temperature rise due to the solution reaction is determined from rating periods two and three and the reaction period. It is combined with the average energy equivalent to determine the enthal py change for the solution reaction.
*After correcting for the opening energy of the sample container and, if added, electrical energy (Eit of Table 6).

The experiments were carried out in six sets. Sets 1,2 , and 3 were for reaction (2) in which $\operatorname{MoF}_{6}(\ell)$ was dissolved in NaOH solution. The primary division between these sets is time but they also may have some procedure changes such as a different tolerance on sample bulb leakage rate. Set 4 is for measurements on reaction (3) where MoO_{3} (c) is dissolved in NaOH solution. Set 5 and 6 are for measurements on reactions (4) and (5) where $\mathrm{NaF}(\mathrm{c})$ is dissolved in a solution of $\mathrm{Na}_{2} \mathrm{MoO}_{4}$ and NaOH , and in water, respectively.
4. Experimental Results
4.1 Reaction (2)

The calorimetric data for reaction (2) is presented in Table l. Columns (1) and (2) are set and experiment numbers. Column (3) is the weight of $\mathrm{MoF}_{6}(\ell)$ sample introduced into the calorimeter and is the average of weights WA and WB. Column (4) is the uncertainty in the sample weight given by (WA - WB)/2. Columns (5) and (6) give the electrical energy equivalent of the initial and final calorimetric systems, $E E E_{i}$ and $E E E E_{f}$, respectively. Column (7) gives the temperature rise of the calorimeter due to the reaction, ΔR_{c}, in ohms resistance increase of the platinum thermometer. Column (8) gives $\overline{\mathrm{T}}$, the mean temperature of the reaction. Column (9) gives the concentration of the

NaOH solution initially in the calorimeter. Column (10) gives $\Delta H(\bar{T})$, the enthalpy change for the reaction at the mean temperature, \bar{T}.

The experiments in set (1) are considered preliminary. They have two possible sources of error: prereaction and incomplete reaction. If the permeability of the windows of the sample bulb is too great a significant amount of reaction can occur before the bulb is opened to start the solution reaction. This situation can be detected by observing a blue color on the bulb windows before placing the sample in the calorimeter or by observing a larger than normal drift rate during the first rating period. If insufficient time is allowed for the reaction period, the reaction may not be complete before the third rating period is started. This can be detected by a larger than normal drift rate in the third rating period.

Table 2 shows the drift rates and the time allowed for the reaction period for experiments on reaction (2). Columns (8) and (9) are comments on observations concerning the experiment and conclusions drawn from analyses of the drift rate differences, respectively. In the "obs" column, P means possible prereaction; W means a weighing error; W(A) means sample weight by method A was not possible; Sp means that splashing of solution occurred in the calorimeter
as indicated by spots of blue around the top of the calorimeter above the solution (the sample in this experiment was much larger than in the other experiments) ; and St means that there were variations in stirring energy which would invalidate analysis of drift rate differences. In the "Drift" column, P means prereaction and an I means incomplete reaction. Previous experience with this calorimeter indicates that a difference in successive drift rates (D.R.) of greater than 3×10^{-6} ohm min ${ }^{-1}$ is significant so we have set the criteria that: P means D.R. (1) -D.R. (3) $\geq 6 \times 10^{-6} \mathrm{ohm} \mathrm{min}^{-1}$ or D.R. (2) -D.R.
(3) $\geq 3 \times 10^{-6} \mathrm{ohm} \mathrm{min}^{-1}$.

I means D.R. (3) -D.R. (4) $\geq 3 \times 10^{-6} \mathrm{ohm} \mathrm{min}^{-1}$.
Based largely on our observations and these criteria, we have rejected some of the experiments and not considered them further in calculations of results. These experiments are marked with an asterisk in Tables 1 and 2.

Table 3 gives the results of calculations of the enthalpy change for reaction (2), $\Delta \mathrm{H}_{2}$. As shown in column (3), the experiments are arranged in order of concentration of base. Columns (4), (5), and (6) give the molar ratios of NaOH to MoF_{6} (which equals (8+x) in eq (2); $\mathrm{H}_{2} \mathrm{O}$ to MoF_{6} (which equals y in eq (2); and $\mathrm{H}_{2} \mathrm{O}$ to NaOH . A temperature coefficient for ΔH_{2} of $+0.613 \mathrm{~kJ} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$ was derived from experiment 584 and the mean of experiments 586 and 588.

This has been used to calculate the values of $\Delta \mathrm{H}_{2}(25)$ given in columns (7) and (8). The uncertainties given in column (9) are derived from the sample weight uncertainties given in Table 1.

4.2 Reaction (3)

Table 4 gives the calorimetric data for reaction (3), the solution of MoO_{3} (c) in NaOH (soln). The column headings have the same meaning as in Table l.

Table 5 gives the results of calculations for ΔH_{3}. A value of $\Delta C_{p}=+93.6 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$ was derived from run 636 and the mean of runs 557,561 , and 634 . It was used to calculate the values of $\Delta \mathrm{H}_{3}(25)$ given in columns (6) and (7).
4.3 Reactions (4) and (5)

Table 6 gives the calorimetric data for reactions (4) and (5), the solution of $\mathrm{NaF}(\mathrm{c})$ in $\mathrm{a} \mathrm{Na}_{2} \mathrm{MoO}_{3}-\mathrm{NaOH}$ solution (set 5) and in $\mathrm{H}_{2} \mathrm{O}$ (set 6), respectively.

Table 7 gives the results for calculation of ΔH_{4}. A temperature coefficient of $+0.192 \mathrm{~kJ}(6 \mathrm{~mol} \mathrm{NaF})^{-1} \mathrm{~K}^{-1}$ was derived from experiments 635 and 637.

Table 8 gives the results of calculations of $\Delta \mathrm{H}_{5}$. The values of ${ }_{\Phi}$ used to extrapolate to infinite dilution were taken from Parker's compilation [14]. A value of $\Delta C_{p}=$ $-102.37 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$ was derived from runs 641-642, 647-649, and 643-645 was used to calculate $\Delta \mathrm{H}_{5}^{\prime} / 6$ at 298 K .

Table 9 gives the results of calculating ΔH_{7} from the data on the previous tables. The uncertainty given in column (9) is that given in Table 1 for ΔH_{2}. The experiments are weighted as shown in column (l0) by giving a weight of 1 if the uncertainty is less than 0.3 kcal and a value of $0.2 /(u n c e r t a i n t y)$ if the uncertainty is greater than 0.3 kcal . The values of ΔH_{4} for experiments 628 to 633 were obtained by extrapoling data from runs 635, 637 and 565 correlated with respect to base concentration. For experiment 584 to 588 the value of ΔH_{4} was the average of runs 635 and 637.

The dependence of $\Delta \mathrm{H}_{7}$ on base concentration is small and cannot be determined accurately from the data. We have therefore assumed it to be zero and have calculated a weighted mean value of $-\Delta \mathrm{H}_{7}=153.78 \mathrm{kcal}_{\mathrm{kcl}} \mathrm{mol}^{-1}$ with a standard deviation of the mean of 0.16 kcal . Combining twice this value with our estimates of systematic errors we estimate an uncertainty of 0.50 kcal giving a value of $-\Delta \mathrm{H}_{7}=153.78 \pm 0.50 \mathrm{kcal}$ over the concentration range of the experiments.
8.0 Discussion of Results
8.1 Enthalpy of Formation of $\mathrm{MoF}_{6}(\ell)$ and $\mathrm{F}^{-}(\mathrm{aq})$

In accordance with equation (8) the enthalpy of formation of $\mathrm{MoF}_{6}(\ell)$ can be calculated from $\Delta \mathrm{H}_{7}$ and en thalpy
of formation data for the other species in reaction (7). The needed auxiliary data are:

$$
\begin{align*}
\Delta \mathrm{H}_{\mathrm{f}}^{\mathrm{o}}\left[\mathrm{MoO}_{3}(\mathrm{c})\right] & =-178.08 \pm 0.08 \mathrm{kcal} \tag{5}\\
3 \Delta \mathrm{H}_{\mathrm{f}}^{\mathrm{o}}\left[\mathrm{H}_{2} \mathrm{O}(\mathrm{l})\right] & =-204.945 \pm 0.030 \mathrm{kcal} \tag{4}\\
6 \Delta \mathrm{H}_{\mathrm{f}}^{\circ}\left[\mathrm{F}^{-}(\mathrm{aq})\right] & =-477.0 \mathrm{kcal} \tag{4}\\
6 \Delta \mathrm{H}_{\mathrm{f}}^{\mathrm{o}}\left[\mathrm{OH}^{-}(\mathrm{aq})\right] & =-329.82 \pm 0.14 \mathrm{kcal} \tag{4}
\end{align*}
$$

The heat of formation of MoO_{3} (c) is that selected by Parker [5] of -178.08 kcal to which we assign an uncertainty of 0.08 kcal. The latter value is based on the work of Staskiewiczet al [15] (-177.99 $\pm 0.10 \mathrm{kcal})$ and Mah [16] (178.15 $\left.5^{\dot{\star}} \pm 0.11 \mathrm{kcal}\right)$ rather than the earlier work of Delepine [17] (-167 kcal), Mixter [18] (-185 kcal), Moose and Parr [19] (-175.6 kcal) or Neumann et al [20] (-180.4 kcal). Combining these enthalpies of formation values with the value of $\Delta \mathrm{H}_{7}$ we get for the enthalpy of formation of $\mathrm{MoF}_{6}(\ell)$:

$$
\begin{aligned}
\Delta \mathrm{H}_{\mathrm{f}}^{\mathrm{o}}\left[\mathrm{MoF}_{6}(\ell)\right] & =-376.43 \pm 0.52 \mathrm{kcal} \mathrm{~mol}^{-1} \\
& =-1574.98 \pm 2.18 \mathrm{~kJ} \mathrm{~mol}^{-1}
\end{aligned}
$$

This value can be compared to the value of -378.95 ± 0.22 kcal mol ${ }^{-1}$ for the enthalpy of formation of $\mathrm{MoF}_{6}(\ell)$ obtained from the recalculated value of the results of Settle et al [1]. The selected value for the heat of formation of F^{-}(aq) [4], $-79.50 \mathrm{kcal} \mathrm{mol}{ }^{-1}$, has been the subject of considerable controversy. A brief summary of the problem as of 1969 is
given by Armstrong [21] and in 1971 by Vanderzee and Rodenburg [22]. The latter determined a value of -14.72 $\pm 0.10 \mathrm{kcal} \mathrm{mol}^{-1}$ for the reaction at 25 C .

$$
\begin{equation*}
\mathrm{HF}(\mathrm{~g}, \text { ideal })=\mathrm{H}^{+}(\mathrm{aq})+\mathrm{F}^{-}(\mathrm{aq}) \tag{10}
\end{equation*}
$$

This value supports the value selected by Parker [10] of $-14.70 \mathrm{kcal} / \mathrm{mol}$. Recently, Smith et al [23] determined a value of $-7.691 \pm 0.030 \mathrm{kcal}_{\mathrm{mol}}{ }^{-1}$ for the reaction at 25 C

$$
\begin{equation*}
\mathrm{HF}(\ell)=\mathrm{H}^{+}(\mathrm{aq})+\mathrm{F}^{-}(\mathrm{aq}) \tag{ll}
\end{equation*}
$$

Using the value of $7.231 \pm 0.025 \mathrm{kcal} \mathrm{mol}^{-1}$ for the heat of vaporization of $\mathrm{HF}(\ell)$ to $\mathrm{HF}(\mathrm{g}, \mathrm{ideal})$ in its standard state determined by Vanderzee and Rodenburg [24], one obtains from the previous work of Vanderzee and Rodenburg on reaction (10) an alternative value for reaction (ll) of $-7.49 \pm 0.10 \mathrm{kcal} \mathrm{mol}^{-1}$. Recently, Settle et al [25] have completed a study of the heat of formation of $H F(l)$ for which they obtain $-72.57 \pm 0.09 \mathrm{kcal} \mathrm{mol}^{-1}$. In conjunction with the two more recent values for the enthalpy of reaction (1l), this yields values for the en thalpy of formation of $\mathrm{F}^{-}(\mathrm{aq})$ of $-80.26 \pm 0.09 \mathrm{kcal} \mathrm{mol}^{-1}$ (Smith et al) and $-80.06 \pm 0.14 \mathrm{kcal} \mathrm{mol}^{-1}$ (Vanderzee and Rodenburg). If we combine the value of enthalpy of formation of $\mathrm{MoF}_{6}(\ell)$ from the results of Settle et al [l] with our value of $\Delta \mathrm{H}_{7}$ and the other auxiliary data given previously, we obtain a value for the enthalpy of formation of $\mathrm{F}^{-}(\mathrm{aq})$ of -79.92 $\pm 0.09 \mathrm{kcal} \mathrm{mol}^{-1}$.

The heat of solution of $\operatorname{NaF}(c)$ at infinite dilution, $\Delta \mathrm{H}_{5} / 6=+0.221 \pm 0.004 \mathrm{kcal} \mathrm{mol}^{-1}$, confirms the value of $+0.218 \pm 0.010 \mathrm{kcal} \mathrm{mol}^{-1}$ selected by Parker [14] (see p. 26) on the basis of very few experimental measurements. The lack of a marked trend of calculated values of $\Delta H_{5} / 6$ with the concentration of $\mathrm{NaF}(\mathrm{c})$ supports Parker's estimates [14] (see p. 56) of Φ_{L} for aqueous NaF solutions.

References

[1] Settle, J. L., Feder,M., Hubbard, W. N., J. Phys. Chem. 5, 1337 (1961).
[2] Wagman, D. D., Evans, W. H., Parker, V. B., Halow, I., Bailey, S. M., Schumm, R. H., Nat. Bur. Std. (U.S.) Tech Note 270-4 (1969).
[3] Shchukarev, S. A., Vasil'kova, I. V., Sharupin, R. N., Vestnik Leningrad Univ. 14, No. 4, Ser. Fiz. i Khim., No. 1, 73-77 (1959).
[4] Wagman, D. D., Evans, W. H., Parker, V. B., Halow, I., Bailey, S. M., Schumm, R. H., Nat. Bur. Std. (U.S.) Tech Note 270-3 (1968).
[5] Parker, V. B., Private Communication, Nat. Bur. Std. (U.S.), See Ref. [2].
[6] Myers, O. E., Brady, A. P., J. Phys. Chem. 64, 591 (1960).
[7] Ruff, O., Ascher, E., Z. Anorg. Chem. 196, 413 (1931).
[8] Cady, G. H., Hargreaves, G. B., J. Chem. Soc. 1563 (1961).
[9] Osborne, D. W., Schreiner, F., Malm, J. G., Selig, H., Rochester, L., J. Chem. Phys. 44, 2802 (1966).
[10] Krause, R. F., NBS Report 10481, Chapt. 7 (1971).
[11] Kilday, M. V., Prosen, E. J., NBS Report 8306 (1964).
[12] Kilday, M. V., Prosen, E. J., Wagman, D. D., NBS Report 10004 (1969).
[13] Prosen, E. J., Kilday, M. V., to be published in J. Res. NBS.
[14] Parker, V. P., Thermal Properties of Aqueous Uni-valent Electrolytes. National Standard Reference Data SeriesNBS 2. U.S. Govt. Printing Office, Washington, D.C., 1965.
[15] Staskiewicz, B. A., Tucker, J. R., Snyder, P. E., J. Amer. Chem. Soc. 77, 2987 (1955).
[16] Mah, A. D., J. Phys. Chem. 6l, 1573 (1957).
[17] Delepine, M., Bull. Soc. Chim. 29, 1166 (1903).
[18] Mixter, W. G., Amer. J. Sci. 29, 488 (1910).
[19] Moose, J. E., Parr, S. W., J. Amer. Chem. Soc. 46, 2656 (1924).
[20] Neumann, B., Kroger, C., Kunz, H., Z. anorg. und Allgem. Chem. 218, 379 (1934).
[21] Armstrong, G. T., AFOSR Scientific Report AFOSR 69-2154 TR, NBS Report l0074, July l (1969).
[22] Vanderzee, C. E., Rodenburg, W. W., J. Chem. Thermodynamics 3, 267 (1971).
[23] Smith, P. N., Johnson, G. K., Hubbard, W. N., Private Communication, Argonne Nat. Lab., March 1970.
[24] Vanderzee, C. E., Rodenburg, W. W., J. Chem. Thermodynamics 2,461 (1970).
[25] Settle, J. L., Hubbard, Johnson, G. K., Greenberg, E., Private Communication, Argonne Nat. Lab., July 1970.

Table 1. Calorimetric Data for Reaction (2)

Set	$\begin{aligned} & \text { Exp. } \\ & \text { No. } \end{aligned}$	Sample Mass, g .	(vacuo) Uncert. g.	$\begin{aligned} & \mathrm{EEE}_{\mathrm{i}} \\ & -17,000 \\ & \mathrm{~J} \text { ohm} \end{aligned}$	$\begin{gathered} \mathrm{EEE}_{\mathrm{f}} \\ -17,000 \\ \mathrm{~J} \text { ohm} \end{gathered}$	$\begin{aligned} & \Delta R_{c} \\ & \times \quad 10 \\ & \text { ohm } \end{aligned}$	$\overline{\mathrm{T}}$, React. ${ }^{\circ} \mathrm{C}$	[NaOH] Moles/ liter	$\begin{gathered} \Delta \mathrm{H}_{2}(\overline{\mathrm{~T}}) \\ -3000 \\ \mathrm{Jg}^{-1} \end{gathered}$
1	559*	. 5060	. 0005	220.67	254.26	100413	25.549	. 706	419.8
do	560*	. 3395	. 0010	251.25	263.60	65751	24.783	. 643	340.9
do	562*	. 1999	. 0012	252.33	256.50	39160	24.627	. 643	377.9
do	563*	. 2359	. 0009	250.30	260.43	45603	24.666	. 643	333.9
do	564*	. 2536	. 0033	306.81	305.73	47590	29.620	. 643	245.9
2	583*	. 3542	. 0028	303.83	318.18	64954	35.325	. 694	173.3
do	$584{ }^{1}$. $3698{ }^{1}$	--	261.63	266.36	73648	30.155	. 694	434.2
do	585*	. 5530	. 0009	202.19	214.38	105552	24.470	. 694	283.8
do	586	. 5116	. 0007	179.33	218.27	102591	24.410	. 694	448.0
do	587*	. 8100	. 0008	189.17	214.16	160735	24.363	. 694	412.9
do	588	. 2289	. 0016	202.47	196.85	46008	23.993	. 694	455.1
do	589	. 2714	. 0012	436.25	440.96	53369	24.905	. 302	427.6
3	611	. 4266	. 0008	--	239.30	85551	25.169	. 653	456.1
do	612	. 3348	. 0000	--	303.22	63301	25.076	. 653	425.3
do	628	. 3610	. 0016	178.75	194.81	72359	24.939	. 718	443.7
do	629	. 3963	. 0007	180.57	196.00	79788	24.961	. 718	459.5
do	630	. 2353	. 0009	169.30	198.51	47309	24.758	. 718	453.1
do	632	.4015	. 0006	161.87	147.25	80670	24.930	. 718	445.6
do	633	.4102	. 0008	165.00	199.34	82372	24.945	. 718	449.3

*Preliminary experiments

${ }^{1}$ Mass, Method B, the opening energy was 1.5 J rather than 0.44 J

Table 2. Drift Rate Data for Reaction (2)

Set	Exp. No .	Drift Rate				ReactionTime	Comments	
		1	2	3	4		obsv.	Drift
			-	$\Omega \mathrm{mi}$	-	min.		
1	559*	17.4	22.0	16.9	8.9	40	P	P, I
do	560*	19.2	21.4	10.1	8.3	40	P	P
do	562*	11.8	15.2	13.3	9.2	40	P	I ?
do	563*	17.7	20.0	11.1	9.0	40	P	P
do	564*	22.8	29.0	16.2	8.6	40	P	P,I
2	583*	67.6	74.0	22.8	19.9	60	P, W	P
do	584	24.9	26.7	26.3	23.4	55	W (A)	
do	585*	48.8	49.3	23.4	24.3	25	P	P
do	586	24.1	22.5	19.6	18.7	35		
do	587*	31.5	31.7	23.5	22.9	30	Sp	P
do	588	23.0	25.9	26.7	26.8	55		
do	589	24.9	24.3	24.0	23.0	45		
3	611	--	10.3	12.6	10.8	55		
do	612	--	8.1	6.7	5.3	35		
do	628	40.9	40.2	34.7	32.5	70	St	
do	629	36.1	35.0	34.5	32.0	85		
do	630	14.0	13.0	14.3	12.9	70		
do	632	14.6	13.9	14.3	13.1	45		
do	633	14.0	13.7	10.9	9.9	75	St	

[^0]Table 3. Calculation of \mathbb{H}_{2}

Set	Exp No .	[NaOH] mole/ liter	$\frac{[\mathrm{NaOH}]}{\left[\mathrm{MoF}_{6}\right]}$	$\begin{gathered} \frac{[\mathrm{H}}{[\mathrm{Mo}} 2 \frac{\mathrm{O}}{\left.\mathrm{~F}_{6}\right]} \\ (\mathrm{y}) \end{gathered}$	$\frac{[\mathrm{H}}{[\mathrm{Na}} 2 \frac{\mathrm{O}]}{}$	$<-\Delta H_{2}(25) \longrightarrow$		
						kJ mol	kcal mo1-1	Uncert. kcal mol-1
3	628	. 718	126.54	9,806	77.49	722.90	172.78	0.77
do	629	. 718	115.21	8,932	77.53	726.23	173.57	0.24
do	630	. 718	194.05	15,044	77.53	724.65	173.20	0.33
do	632	. 718	111.31	8,628	77.51	723.30	172.87	0.05
do	633	. 718	107.03	8,297	77.52	724.80	173.06	0.24
2	584	. 694	119.44	9,579	80.20	724.10	173.06	--
do	586	. 694	86.34	6,922	80.17	723.48	172.92	0.24
do	588	. 694	192.96	15,477	80.21	724.72	173.21	1.22
3	611	. 653	97.58	8,318	85.24	725.64	173.43	0.31
do	612	. 653	124.34	10,595	85.21	719.12	171.87	0.03
2	589	. 302	72.01	13,253	184.04	719.50	171.96	0.73

Table 4. Calorimetric Data for Reaction (3)

Set	Exp. No.	Sample (vacuo) g	$\begin{gathered} \mathrm{EEE}_{\mathbf{i}} \\ -17,000 \\ \mathrm{~J}^{\mathrm{ohm}} \\ \hline \end{gathered}$	$\begin{aligned} & \operatorname{EEE}_{\mathrm{f}} \\ & -17,000 \\ & \mathrm{~J} \text { ohm } \end{aligned}$	$\begin{gathered} \Delta \mathrm{R}_{\mathrm{c}_{7}} \\ \times 10 \end{gathered}$	$\begin{gathered} \overline{\mathrm{T}} \\ (\text { React.) } \\ { }^{\circ} \mathrm{C} \end{gathered}$	[NaOH] mole/ 1iter	$\begin{array}{r} -\Delta \mathrm{H}_{3}(\overline{\mathrm{~T}}) \\ \mathrm{J} \mathrm{~g}^{-1} \\ \hline \end{array}$	$\begin{aligned} & -\Delta \mathrm{H}_{3}(\overline{\mathrm{~T}}) \\ & \mathrm{kJ} \cdot \mathrm{~mol}^{-1} \end{aligned}$
4	556	. 606753	101.41	119.53	192645	24.891	. 706	543.26	78.196
do	557	. 256518	361.08	365.63	79712	24.933	. 304	539.56	77.663
do	634	. 218740	117.89	122.31	68991	25.035	. 694	539.97	77.722
do	636	. 236135	223.61	219.18	73276	34.950	. 694	534.40	76.921
do	561	. 226222	139.72	147.86	71694	24.879	. 643	543.32	78.205

Table 5. Calculation of ΔH_{3}

Exp. No.	[NaOH] moles/ Iiter	$\frac{[\mathrm{NaOH}]}{\left[\mathrm{MoO}_{3}\right]}(2+X)^{3}$	$\begin{aligned} & {\left[\mathrm{H}_{2} \mathrm{O}\right]} \\ & {\left[\mathrm{M} 0 \mathrm{O}_{3}\right]} \\ & (3+y) \end{aligned}$	$\frac{\left[\mathrm{H}_{2} \mathrm{O}\right]}{[\mathrm{Na}} \frac{0}{0 \mathrm{H}]}$	$-\Delta \mathrm{H}_{3}(25 \mathrm{C})$	
					$\mathrm{kJ} \cdot \mathrm{mol} \mathrm{I}^{-1}$	kcal mol ${ }^{-1}$
556	. 706	50.77	4,000	78.80	78.182	18.687
557	. 304	52.6	9,479	180.3	77.657	18.560
634	. 694	138.44	11,104	80.21	77.725	18.577
636	. 694	128.31	10,288	80.18	77.852	18.607
561	. 643	124.26	10,757	86.57	78.194	18.689
		Mean		$=$	77.923	18.624
		2 xSdm		=	0.226	0.054

Table 6. Calorimetric Data for ΔH_{4} (Set 5) and ΔH_{5} (Set 6)

Set No.	Exp. No.	$\begin{gathered} \text { Sample } \\ \text { (vacuo) } \end{gathered}$	$\begin{aligned} & E E E_{i} \\ & -17,000 \end{aligned}$	$\begin{aligned} & E E E_{F} \\ & -17,000 \end{aligned}$	$\begin{gathered} \Delta R_{G} \\ \times \quad 10^{7} \end{gathered}$	Eit	$\begin{gathered} \mathrm{T} \\ (\text { React }) \end{gathered}$	$+\triangle H_{4}(T)$
5	565	$\frac{\mathrm{g}}{.386751}$	$\frac{\text { Johm }^{-1}}{102.29}$	$\frac{\text { Johm }^{-1}}{109.84}$	Ohm 273441	${ }_{476.26}$	${ }^{\circ}{ }^{\circ} \mathrm{C}$	$\frac{\mathrm{J} \mathrm{~g}^{-1}}{22.00}$
do	635	. 379646	89.75	102.23	501280	863.66	25.056	17.56
do	637	. 383307	186.77	195.49	499182	861.99	34.969	10.02
do	639	. 392711	337.13	332.51	493965	865.47	25.058	23.41
								$\Delta H_{5}^{\prime}(\mathrm{T})^{*}$
6	641	. 383806	588.39	581.82	483354	861.23	25.047	28.436
6	642	. 382450	654.37	645.02	487644	862.12	35.246	3.781
do	643	1.635741	610.02	568.69	460108	862.69	25.026	32.632
do	644	. 997894	603.59	566.16	474028	863.36	25.525	29.854
do	645	1.592839	653.68	631.80	486120	871.16	35.269	8.485
do	646	1.600157	567.27	529.12	495350	872.95	25.089	33.266
do	647	1.035573	624.92	598.69	516696	863.65	35.309	5.136
do	648	. 633079	557.71	545.16	509222	862.26	25.091	30.682
do	649	. 797662	558.84	540.49	506911	863.70	25.100	31.070
do	650	. 212321	585.81	584.69	487202	862.49	25.048	27.002

*Uncorrected for heat of dilution
***Aded electrical energy

Table 7. Calculation of Δ_{4}

$\begin{aligned} & \text { Exp } \\ & \text { No. } \end{aligned}$	Init. Soln.	$\begin{gathered} {[\mathrm{NaOH}]} \\ {[6 \mathrm{NaF}]} \\ (\mathrm{x}) \end{gathered}$	$\begin{aligned} & {\left[\mathrm{H}_{2} \mathrm{O}\right]} \\ & {[6 \mathrm{NaF}]} \\ & (4+\mathrm{y}) \end{aligned}$	$\begin{aligned} & {\left[\mathrm{MoO}_{3}\right]} \\ & {[6 \mathrm{NaF}]} \end{aligned}$	$\begin{aligned} & {\left[\mathrm{H}_{2} \mathrm{O}\right]} \\ & {[\mathrm{NaOH}]} \end{aligned}$	$\begin{gathered} \Delta \mathrm{H}_{4} \quad \Delta \mathrm{H}_{4}(25) \\ \left.\mathrm{kJ}(6 \mathrm{Mol})^{-1} \mathrm{kcal}_{(6 \mathrm{~mol})}^{6}\right) \end{gathered}$	
565	561	124.97	10,820	1.00583	8658	5.538	1.324
635	634	139.29	11,171	1.00609	80.20	4.413	1.055
637	636	137.90	11,059	1.07495	80.20	4.438	1.061
639	638	60.91	11,138	1.12673	182.86	5.887	1.407

Table 8. Calculation of ΔH_{5}

Expt. No.	$\frac{\left[\mathrm{H}_{2} \mathrm{O}\right]}{[\mathrm{NaF}]}$	$\begin{gathered} \leftarrow \frac{\Delta H_{5}^{\prime}(2)}{6} \\ \mathrm{~kJ} \mathrm{~mol}^{-1} \end{gathered}$	$\begin{aligned} & -\longrightarrow \\ & \leftarrow \mathrm{kcal} \end{aligned}$	$\begin{aligned} & \varphi_{\mathrm{L}} \\ & \mathrm{~mol}^{-1} \end{aligned}$	$\xrightarrow{\frac{\Delta \mathrm{H}_{5}}{6}}$
641	1898	1.1988	. 2865	. 066	. 221
642	1904	1.2049	. 2886	. 066	. 223
643	445	1.3728	. 3281	. 107	. 221
644	730	1.3073	. 3124	. 093	. 219
645	457	1.4074	. 3364	. 106	. 230
646	419	1.4059	. 3360	. 109	. 227
647	647	1.2709	. 3038	. 097	. 207
648	1058	1.2942	. 3093	. 083	. 226
649	670	1.3148	. 3143	. 096	. 218
650	3431	1.1386	. 2721	. 052	. 220
			Average $=$. 221
			$2 \mathrm{x} \operatorname{Sdm}=$. 004
Uncorrected for heat of dilution					

Table 9. Ca1culation of AH_{7}

Exp. $\begin{array}{ccccccc}{\left[\mathrm{H}_{2} \mathrm{O}\right]} & -\Delta \mathrm{H}_{2} & -\Delta \mathrm{H}_{3} & \Delta \mathrm{H}_{4} & \Delta \mathrm{H}_{5} & \Delta \mathrm{H}_{6}{ }^{*} & -\Delta \mathrm{H}_{7}\end{array}$ Uncert. ${ }^{* *}$ Weight No. [NaOH]

628	77.49	172.78	18.624	(0.951)	1.326	0.259	153.52	0.77	0.260
629	77.53	173.57	do	do	do	do	154.31	0.24	1
630	77.53	173.20	do	do	do	do	153.94	0.33	1
632	77.51	172.87	do	do	do	do	153.61	0.05	1
633	77.52	173.06	do	do	do	do	153.80	0.24	1
584	80.20	173.06	do	1.058	do	0.271	153.90	(1.06)	0.189
586	80.17	172.92	do	1.058	do	do	153.76	0.24	1
588	80.21	173.21	do	1.058	do	do	154.05	1.22	0.165
611	85.24	173.43	do	1.324	do	0.340	154.47	0.31	1
612	85.21	171.87	do	1.324	do	do	152.91	0.03	1
589	184.04	171.96	do	1.407	do	0.636	152.78	0.73	0.274
Mean $=153.78$									
						$2 \mathrm{xSdm}=$	0.32		

${ }^{*} 6 \cdot \overline{\mathrm{~L}}_{2}$ derived from φ_{L} values listed in ref. [14]
** Column 9, table 3

MOLYBDENUM PENTAFLUORIDE: VAPORIZATION PROPERTIES FROM TRANSPIRATION, AND DEVELOPMENT OF AN EXPERIMENTAL METHOD TO EVALUATE THE TRUE VAPOR PRESSURES
by Thomas B. Douglas and Ra1ph F. Krause, Jr.

Abstract

Using $\mathrm{MoF}_{6}(\mathrm{~g})$ to suppress sample disproportionation, 15 additional precise transpiration measurements were made on $\mathrm{MoF}_{5}(\ell)$ (purity, $>99.8 \%$) at $70^{\circ}, 90^{\circ}$, and $110^{\circ} \mathrm{C}$. The remaining disproportionation appears to be small (1% or 1ess), but will be tested in a few future measurements. Titration with permanganate was adopted as an accurate method to analyze the MoF_{5} in the presence of the hexavalent-molybdenum contaminants. A second method was developed to measure the small vapor pressures directly; later application and combination with the transpiration data will yield also the vapor densities of MoF_{5}, which other evidence suggests will reflect considerable vapor association. The new method is as simple as the transpiration method, but the apparatus parameters were carefully chosen to minimize error. Preliminary tests reproduced a known pressure of argon (to 0.1 or 0.2%) and known vapor pressures of iodine (to 1 or 2%) and MoF_{6} (to 3 or 4%).

I. Introduction

The fluoride of molybdenum most stable near room temperature is MoF_{6}, and its common chemical thermodynamic properties are now known with comparatively high accuracy. In contrast, the several known lower fluorides of molybdenum are much less stable, and only sketchy property data, often seriously inconsistent, have been published. A concerted effort is being made in the present program, at the National Bureau of Standards, to obtain reliable properties of these lower molybdenum fluorides, beginning with MoF_{5}. The standard heat of formation of $\mathrm{MoF}_{5}(\mathrm{c})$ is being measured, and spectroscopic measurements recently formed the basis of a frequency assignment to the monomer molecule [1] ${ }^{1}$.

[^1]The work described in this chapter and designed to measure the vaporization properties is a continuation of that reported earlier [2], which included historical background, the methods of preparation, purification, elemental sample analysis, melting point, and cryoscopic purity, as well as preliminary transpiration results.

The transpiration method is accurately applicable to a substance such as MoF_{5} which has vapor pressures of a few torr in its temperature range of relative stability; but the method measures only vapor density (when the gaseous solutions are dilute) but without indicating the vapor pressure unless the effective molecular weight is unambiguous. Now MoF_{5} is an "odd" molecule (in the sense of containing at least one unpaired electron), so that it would be surprising if the simple molecules showed no appreciable tendency to associate. In fact, recent rough mass-spectrometric results at the Oak Ridge National Laboratory (sumnarized later in this chapter) suggest that saturated molybdenumpentafluoride vapor not only contains more dimer than mononer, but may contain appreciable proportions of trimer (and even snall amounts of higher polymers). For this reason we refined and tested a simple method to measure vapor pressures directly. When applied later to molybdenun pentafluoride, the data combined with the transpiration results should yield both the true vapor pressures and vapor densities of the saturated vapor.

In principle, such methods can be extended to unsaturated vapor to yield the proportions of more than two gas species (assuming gas ideality for each species). In practice, however, it is doubtful whether the accuracy would be sufficient to be meaningful--as exemplified by the well-known difficulties encountered in trying to discriminate among the several polymers in gaseous hydrogen fluoride. A mean degree of association should, however, lead to useful thermodynamic properties.

II. Transpiration Measurements

1. Experimental Results

The sample of $\mathrm{MoF}_{5}(\ell)$ used was prepared and purified as described in the earlier report [2], which presented the results of eight
preliminary transpiration experiments that clearly showed the need to suppress disproportionation of the MoF_{5}, during its vaporization, by shifting an equilibrium which may be

$$
\begin{equation*}
2 \mathrm{MoF}_{5}=\mathrm{MoF}_{6}+\mathrm{MoF}_{4} . \tag{1}
\end{equation*}
$$

In the further transpiration experiments reported here, carefully dried helium was passed over thrice-distilled crystalline MoF_{6} in a bath thermostated at a suitable low temperature, the approximate partial pressures of $\mathrm{MoF}_{6}(\mathrm{~g})$ being calculated from published results [3]. (Owing to its much greater volatility, the $\operatorname{MoF}_{6}(g)$ is believed to have dissolved in the $\mathrm{MoF}_{5}(\hat{\ell})$ to less than 0.1%.) These $\mathrm{He}-\mathrm{MoF}_{6}$ mixtures were passed over the $1 i q u i d \operatorname{MoF}_{5}$ sample contained in a cleansurface monel vessel in a stirred oil bath thermostated to $\pm 0.005^{\circ} \mathrm{C}$ (see Fig. 1). The monel vessel replaced the glass vessel of the earlier experiments [2] in order to obviate what appeared to be slight reaction between the fluorides and the pyrex glass at the elevated temperatures. (While there is no evidence that any slight reaction with the monel surfaces introduced error, it was not proved that monel is better than glass in this respect.) The combined vapors were condensed at the DryIce temperature, with subsequent evacuation at room temperature to remove the MoF_{6} and any trapped helium.

The results of the additional transpiration experiments made are given in Table 1.

An important improvement over last year's analytical work [2] was the adoption of titration with permanganate to determine the total amount of MoF_{5} volatilized in each experiment. (Each distillate was weighed, then dissolved in an oxygen-free aqueous solution of $\mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3}$ and $\mathrm{H}_{2} \mathrm{SO}_{4}$, treated with $\mathrm{H}_{3} \mathrm{PO}_{4}$, and titrated colorimetrically with a standard solution of KMnO_{4}.) Since complete exclusion of the element oxygen from the transpiration system was practically impossible, many of these distillates contained condensable oxyfluorides in much greater abundance than did the liquid sample, so that reliance on the distillate masses would be unreliable. On the other hand, the elemental analysis for molybdenum used previously is a more laborious and less sensitive method, whereas permanganate oxidizes molybdenum quantitatively from valence 5 to valence 6 without reflecting any hexavalent-molybdenum contaminants.

Table 1. Transpiration of $\mathrm{MoF}_{5}(\ell)$ by Helium Containing $\mathrm{MoF}_{6}(\mathrm{~g})$
[The sample of $\mathrm{MoF}_{5}(\ell)$ (initial mass, 11.755 g) was contained in monel, and its vapor was condensed in pyrex glass.]

Temperature ${ }^{\text {a }}$ (K)	Experiment No. ${ }^{\text {b }}$	Flow Rate	Distillate		$\begin{gathered} \text { Partial Pressure } \\ \text { (torr)f } \end{gathered}$		```Deviation of P(MoF from Mean(%)```
		$\left(\mathrm{cm}^{3} \mathrm{sec}^{-1}\right)$	Mass (g) ${ }^{\text {d }}$	\% $\mathrm{MoF}_{5}{ }^{\mathrm{e}}$	MoF_{6} (added)	MoF_{5} (found) ${ }^{\mathrm{g}}$	
362.8	9	1.26	0.6749	96.65	0.6	2.832	-1.18
	10	1.18	0.4454	96.86	0.5	2.855	-0.38
	11	0.58	0.3647	97.49	0.5	2.871	+0.18
	12	1.23	0.4402	98.22	1.0	2.909	+1.51
	13	1.30	0.4867	98.03	0.5	2.862	-0.13
					Mean	2.866	
382.9	14	1.34	0.8657	98.71	2.1	8.265	0.00
	15	1.27	0.8791	99.13	2.1	8.249	-0.19
	16 c	1.34	0.7273	99.17	2.1	8.292	+0.33
	17	0.67	0.5727	98.75	2.1	8.285	+0.24
	18	1.30	0.8424	99.02	1.0	8.234	-0.37
					Mean: 8.265		
343.2	19	1.28	0.2782	98.61	0.45	0.8999	+0.09
	20	1.36	0.2213	99.16	0.45	0.8951	-0.44
	21	1.58	0.3039	99.21	0.45	0.8979	-0.13
	22	1.75	0.2469	99.65	0.45	0.8962	-0.32
	23	1.57	0.2848	100.09	0.45	0.9063	+0.80
					Mean: 0.8991		

${ }^{\mathrm{a}}$ The actual temperatures of the individual experiments differed from those listed by an average of 0.025 kelvin, but the calculated pressures of MoF_{5} (penultimate column) have been corrected to the nominal temperatures using a temperature coefficient of 5.8% per kelvin.
${ }^{\mathrm{b}}$ This is a complete list of successive experiments in chronological order.
${ }^{\text {c }}$ A slight leak developed and was repaired before Experiment 16 began.
$\mathrm{d}_{\text {Excluding the }} \mathrm{MoF}_{6}$, which, being much more volatile, was condensed further downstream. ${ }^{\mathrm{e}}$ As determined by titrating the distillate with permanganate.
f_{1} torr $=(1 / 760) 101325 \mathrm{Nm}^{-2}$
gThe vapor pressure of MoF_{5} calculated assuming an ideal-gas vapor having a molecular weight equal to that of the monomer $\left(\mathrm{MoF}_{5}\right)$. At each temperature the true vapor pressure is smaller by the same factor by which the actual vapor density is greater. See Section III of this chapter.

The fact that the experiments are given in Table 1 in chronological order facilitates examination of the results for chronological trends. As the mass of the liquid sample (initially 11.755 g) was successively reduced by what may be assumed to be the amounts in the fourth column, the percentage of MoF_{5} found in the distillate (fifth column) steadily increased from less than 97% to approximately 100%. The simplest explanation is that a more volatile impurity was being distilled preferentially from the sample, and a "dilute solution" treatment of the first five experiments indicated a volatility ratio of greater than 5 (and so a concentration more than 5 times as great in the vapor as in the liquid). Some thin white films in the condenser in some experiments (MoF_{5} is yellow) supports this explanation; the contaminant was likely MoOF $_{4}$, whose vapor pressures have been measured [4].

The values of vapor pressure of MoF_{5} listed in the penultimate column of Table 1 for the individual experiments were calculated on the basis of the titration results by assuming gas ideality and the molecular weight of molybdenum pentafluoride monomer, MoF_{5}. That the last assumption, while convenient, is probably highly arbitrary is discussed in Section III.1. The last column of the table shows the percentage deviations of the calculated vapor-pressure values from the mean at each temperature.

The table may be examined further for evidence of other systematic errors. Turning to the sixth column, it is easy to realize that what could be considered an adequate partial pressure of MoF_{6} will probably vary widely from one temperature to another. However, making comparisons only at the same temperature, it will be noted that deliberately doubling the MoF_{6} in Experiment 12 led to the highest vapor-pressure value at 362.8 K , and deliberately halving the MoF_{6} in Experiment 18 1ed to the lowest value at 382.9 K . We would expect the subfluoride resulting from disproportionation of the MoF_{6} to be highly soluble in the liquid sample, so theoretically an infinite pressure of MoF_{6} would be required to prevent disproportionation completely. (A simple calculation from these data suggested, however, less than 1% disproportionated in these experiments.) The consideration of flow rates of the transpiring (carrier) gas is similar except that one seeks a sufficiently low rate. The only
variation in flow rate was halving it in Experiments 11 and 17, where the effects are small and virtually within the precision (see last column). A few more transpiration experiments are planned with the aim of providing small corrections to the present results for these systematic errors.

The various detailed precautions routinely appropriate in accurate work were observed. These included calibration of the individual measuring instruments (such as thermocouples), accurate buoyancy corrections in weighing, close thermostating of temperature baths, and accurate standardization of titrating solutions and application of blank corrections in their use. Details are not given because at this stage we are unprepared to make quantitative estimates of the composite uncertainties of the experimental values obtained.

The following equation represents the "least-squares" fit of the vapor-pressure values for molybdenum pentafluoride in the penultimate column of Table 1 , giving equal weight to each of the 15 values of $\log P$. (\underline{P} is in atm, \underline{T} is the temperature in K, and the tolerances given are standard deviations.)

$$
\begin{equation*}
\log _{10} P(\mathrm{~atm})=6.3670(\pm 0.016)-3189.5(\pm 6) / \mathrm{T} \tag{2}
\end{equation*}
$$

Deviations of individual values from Eq(2) are shown in Fig. 2. The limitations peculiar to molybdenum pentafluoride on deriving thermodynamic properties from this equation are discussed in the following section.
2. Concerning the Molecular Weight of Molybdenum Pentafluoride in the

Vapor State

The foregoing transpiration results give practically no information as to whether MoF_{5} is associated in the vapor state, but a recent massspectrometric study, at the Oak Ridge National Laboratory by C. F. Weaver and J. D. Redman on the various fluorides of molybdenum and niobium, does [5]. They studied molybdenum-pentafluoride vapor at a total pressure which they thought was between 0.001 and 0.1 torr, and presumably around $80^{\circ} \mathrm{C}$. They reported finding under these conditions that the vapor was approximately 80% monomer $\left(\mathrm{MoF}_{5}\right), 20 \%$ dimer $\left(\mathrm{Mo}_{2} \mathrm{~F}_{10}\right)$,

and $<1 \%$ trimer $\left(\mathrm{Mo}_{3} \mathrm{~F}_{15}\right)$. In addition, they reported standard enthalpy changes as follows:

$$
\begin{array}{ll}
\mathrm{Mo}_{2} \mathrm{~F}_{10}=2 \mathrm{MoF}_{5} ; & \Delta \mathrm{H}=28 \mathrm{kca1} \\
\mathrm{Mo}_{3} \mathrm{~F}_{15}=3 \mathrm{MoF}_{5} ; \quad \Delta \mathrm{H}=34 \mathrm{kcal} \tag{4}
\end{array}
$$

Though these data lack refinement that they hoped to achieve by improved calibration, they can easily be used to calculate for the composition of the saturated vapor at our temperatures (Table 1) considerably more dimer than monomer, as well as possibly a few percent of trimer.

Suppose for the sake of present argument we limit ourselves to monomer and dimer, and examine the consequences to transpiration results when the vapor consists of a mixture of substantial amounts of these two gas species. We can immediately dismiss gas nonideality as being small and essentially negligible at total pressures not greater than a few torr. The two (independent) vaporization reactions and the related all-gas reaction (with symbols defined for future reference) are:

$$
\begin{align*}
& \operatorname{MoF}_{5}(\ell)=\mathrm{MoF}_{5}(\mathrm{~g}): \quad \Delta \mathrm{H} \equiv \Delta \mathrm{H}_{1}, \Delta \mathrm{C}_{\mathrm{P}} \equiv \Delta \mathrm{C}_{1} ; \mathrm{p} \equiv \mathrm{P}_{1} \tag{5}\\
& 2 \mathrm{MoF}_{5}(\mathrm{l})=\mathrm{Mo}_{2} \mathrm{~F}_{10}(\mathrm{~g}): \Delta \mathrm{H} \equiv \Delta \mathrm{H}_{2}, \Delta \mathrm{C}_{\mathrm{P}} \equiv \Delta \mathrm{C}_{2} ; \mathrm{p} \equiv \mathrm{P}_{2} \tag{6}\\
& \mathrm{Mo}_{2} \mathrm{~F}_{10}(\mathrm{~g})=2 \mathrm{MoF}_{5}(\mathrm{~g}): \Delta \mathrm{H}=2 \Delta \mathrm{H}_{1}-\Delta \mathrm{H}_{2} \tag{7}
\end{align*}
$$

When (as in Table 1 and Eq (2)) transpiration data are treated as if the vapor is all monomer, then the calculated vapor pressure \underline{P} measures the total available monomer units, so

$$
\begin{equation*}
P=P_{1}+2 P_{2}=(1+r) P_{1} \tag{8}
\end{equation*}
$$

where \underline{r} is defined by

$$
\begin{equation*}
r \equiv 2 P_{2} / P_{1} \tag{9}
\end{equation*}
$$

Assuming ΔC_{1} and ΔC_{2} independent of temperature, one can combine the Clausius-Clapeyron equations for Reactions (5) and (6) with the above definitions to derive a Clausius-Clapeyron equation (and its derivative) for the transpiration process:

$$
\begin{gather*}
d \ln P / d(-1 / R T)=\left(\Delta H_{1}+r \Delta H_{2}\right) /(1+r) \tag{10}\\
d^{2} \ln P / d(-1 / R T)^{2}=r\left[\left(\Delta H_{1}-\Delta H_{2}\right) /(1+r)\right]^{2}+\left(\Delta C_{1}+r \Delta C_{2}\right) R T^{2} /(1+r) \tag{11}
\end{gather*}
$$

Equations (10) and (11) show two significant things worth pointing out. Firstly, the right-hand side of (10) is the "molar heat of vaporization" which one would derive from transpiration results such as Eq (2). But if the ratio $\underline{\underline{x}}$ is not zero or infinity but well in between (as seems likely in the present case), the "transpiration data" heat of vaporization is neither ΔH_{1} nor ΔH_{2}, but a function of them which is difficult to describe in simple terms (being a heat of vaporization to form an amount of vapor which is neither one actual mole nor one mole of "available" monomer). Secondly, the second term of Eq (11) cannot be negative, but the third ("heat-capacity") term ordinarily is, and in fact often overbalances the second term to give a negative curvature to a $\log \mathrm{P}-\mathrm{vs}-1 / \mathrm{T}$ plot (first term).

Using the present transpiration results for $80^{\circ} \mathrm{C}$, values of $\Delta H_{1}, \Delta H_{2}$, and \underline{r} were obtained by simultaneous solution of Eqs (10), (11), and Weaver and Redman's value of Eq (3) $\left(2 \Delta H_{1}-\Delta H_{2}=28 \mathrm{kcal}\right)$. One of the two possible solutions is reasonable, giving $\Delta H_{1}=21 \mathrm{kcal}, \Delta \mathrm{H}_{2}=$ $14 \mathrm{kcal}, \mathrm{P}_{2} / \mathrm{P}_{1}=7$ in the saturated vapor, and Weaver and Redman's value of $\mathrm{P}_{2} / \mathrm{P}_{1}(=1 / 4)$ if their total pressure were 0.008 torr, which is within their reported pressure range. Despite this rough agreement, these calculations should be considered quite uncertain, especially because the curvature of the "best" curve one could construct through the points of Fig. 2 is obviously highly uncertain. The results do suggest, however, that the saturated molybdenum pentafluoride vapor in our transpiration experiments was highly associated. Preliminary work on an attempt to measure the degree of association is described in the next section.

III. Development of a Method to Measure the True Vapor Pressures

1. Brief Description of the Method

Because of the evidence discussed in Section II. 2 that molybdenum pentafluoride is extensively but incompletely associated, yet to an illdefined extent that leaves the thermodynamic interpretation of our precise transpiration data incomplete, we decided to adopt some additional type of measurement which, when combined with the transpiration results, will yield both the vapor density and the true vapor pressure--hopefully, with an accuracy of the order of 1%. The chemical instability and corrosiveness of MoF_{5} impose serious limitations on the materials with which it can be in contact without serious error, and also dictate relatively low temperatures where the vapor pressures are only a few torr. We dismissed known vapor-density methods in favor of some method to measure the true vapor pressures, which can be combined with the transpiration data to yield the vapor densities.

Accurate pressure transducers have been developed and used which balance the vapor against a comparable known pressure of inert gas. However, because such transducer membranes, if sufficiently sensitive, are fragile and subject to calibration changes, we substituted for the membrane a valve which can be opened long enough to establish pressure equilibrium. In its simplest form the adopted method is essentially a null method, but in principle exact initial balance between vapor and gas pressures is unnecessary, since (assuming gas ideality) one can calculate the number of moles of vapor, knowing the moles of inert gas and their sum. The same type of method has been used previously--e.g., in measurements on sodium metal [6].

Obviously, pressure equilibrium must be established while the dissociable vapor is confined to a known volume. The following sections summarize the design details adopted to achieve this requirement, and preliminary measurements made on known cases to test their overall adequacy.

The apparatus is diagrammed schematically (not to scale) in Fig. 3. With the exception of two valves (\underline{a} and \underline{f}) and their short leads (stainless steel), all container parts were constructed of pyrex glass. Distinguishing gas spaces by their volumes, an excess of the condensed substance whose vapor pressure is to be measured is placed in degassed and evacuated V_{A} and isolated by closed valves a and \underline{f}. After having evacuated the remaining gas spaces and sufficiently degassed the manometric fluid, valve c is closed, then high-purity argon is admitted through valve \underline{b} until its pressure exceeds by a small amount the expected vapor pressure; the argon occupies V_{B} at temperature $\mathrm{T}_{2}, \mathrm{~V}_{\mathrm{C}}$ at T_{1} (room temperature if sufficiently constant), and the newly created volume V_{D} at $T_{1}--a l l$ at a pressure corresponding to the manometer depression, which at this stage will be labeled x_{1}. After then waiting for a sufficient time to ensure a steady state with respect to the temperatures, the manometer displacement, and the slight solution of argon in the manometer fluid, valve a is then opened briefly two or more times until the new manometer depression $x_{2}\left(x_{2}<x_{1}\right)$ has ceased to change by more than can be attributed to diffusion of vapor through valve \underline{a} and its subsequent condensation or absorption.

Assuming the ideal-gas law, the basic equation giving the vapor pressure $P\left(=\Sigma_{i} P_{i}\right.$ for all the vapor species) in terms of the data and apparatus constants is
$P=\rho g\left(1+\left[d_{1} / d_{2}\right]^{2}\right)\left(x_{2}-\left\{\left(x_{1}-x_{2}\right) / V_{A}\right\}\left\{V_{B}+\left[T_{2} / T_{1}\right]\left[V_{C}+\pi d_{1}{ }^{2}\left(x_{1}+x_{2}\right) / 4\right]\right\}\right)$,
where ρ is the density of the manometric fluid and g is the gravitional acceleration.

Di-n-butyl phthalate (vapor pressure, about 0.001 torr at room temperature) is used as the manometric fluid; its low density and visosity are obvious advantages. The adoption of unequal-bore manometer arms almost doubled the sensitivity of reading the small-bore arm alone and also almost halves the number of readings necessary, since the ratio d_{1} / d_{2} was carefully measured at several different manometer levels.

The theoretical equal-pressure manometer-1evel inequality, 0.051 cm , was verified by observation. Precautions were taken in measuring the other apparatus constants accurately--e.g., the density of the sample of manometric fluid used was measured individually; the various volumes entering into Eq (12) were determined before assembly by filling with water and weighing; the half-meter calibrated Pt-Ir (in steel) manometer scale was read with a telescope; and the bath thermocouple was calibrated accurately. The thermomolecular pressure gradient due to the temperature difference $T_{2}-T_{1}$ is entirely negligible for work of about 1% accuracy. Having a "ballast" volume V_{B} decreases the effect of uncertainty in temperature near the bath level, but too great a ratio V_{B} / V_{A} would unduly decrease the overall sensitivity.

The rise in manometer level ($\mathrm{x}_{1}-\mathrm{x}_{2}$) when the valve (a) to the vapor is opened must be positive and should not be too smal1, to prevent appreciable vapor from escaping from V_{A} by flow and diffusion, respectively; however, a rise which is small (say, not greater than 10% of the initial manometer depression x_{1}) has the distinct advantages of minimizing the time required for virtual gas-pressure and manometer equilibration and of minimizing any error due to changing solubility of the argon in the manometer fluid.

The present apparatus constants are at room temperature as follows: $\mathrm{V}_{\mathrm{A}}=70.39 \mathrm{~cm}^{3} ; \mathrm{V}_{\mathrm{B}}=38.68 \mathrm{~cm}^{3} ; \mathrm{V}_{\mathrm{C}}=19.54 \mathrm{~cm}^{3} ; 1+\left(\mathrm{d}_{1} / \mathrm{d}_{2}\right)^{2}=1.0577$; $d_{1}=1.011 \mathrm{~cm} ; \rho=1.0415[1-.0007(\mathrm{t}-25)] \mathrm{g} \mathrm{cm}^{-3}$ at $\mathrm{t}^{\circ} \mathrm{C} ; \ell=5 \mathrm{~cm} ; \mathrm{d}=$ 0.15 cm . (Small corrections to these which have not been applied would change the vapor pressures calculated and listed in Section III. 3 by perhaps as much as 0.2%, which is well within the overall uncertainties.)

Large erratic and systematic errors in vapor-pressure determination could occur if opening valve a does not result in final pressure and vaporization equilibrium while all the vapor remains in its vessel V_{A}. To optimize the chance of approximating this ideal fairly closely, the length $\underline{\ell}$ and inside diameter \underline{d} of the "capillary" tube shown in Fig. 3 were selected after several kinetic-theory calculations of evaporation rate, wall adsorption, viscous flow, and gaseous interdiffusion.

If the rate of evaporation of the condensed vapor were comparatively slow, it is conceivable that after argon enters the vapor the vaporization equilibrium might be upset and be reestablished long after the valve (a) had been closed, producing unregistered pressure changes. A simple calculation showed that evaporation from each $1 \mathrm{~cm}^{2}$ of solid iodine at $80^{\circ} \mathrm{C}$ (used for tests of the method-see Section III.3) is 99% complete in 0.05 sec if an accommodation coefficient of unity is assumed. The accommodation coefficient of the much more complexly oriented molecules in $\mathrm{MoF}_{5}(\ell)$ is apparently many times smaller, requiring a correspondingly longer time; however, a subsequent opening of the valve as a test of pressure equilibrium should obviate any error from this source. Incidentally, if a little vapor were to diffuse out of the vapor vessel V_{A} but not be condensed or absorbed, any evaporation to replace the escaped vapor would produce a corresponding error.

Taking MoF_{6} as a typical vapor, it was estimated that the adsorption of a monolayer on the inside surface of the present vapor vessel (V_{A}) would remove vapor equivalent to a pressure of 0.03 torr at $90^{\circ} \mathrm{C}$. $\mathrm{Ad}-$ sorption should produce no systematic error if the vapor is maintained saturated by condensed phase, but obviously would (unless corrected for) if the measurements are extended to unsaturated vapor. One of the standard empirical procedures to enable correction for wall adsorption is to make measurements on an unsaturated vapor using two or more different surface-to-volume ratios. Here, some caution would be needed: it has been reported that the adsorptivity of "fire-polished" glass is increased manyfold (and unpredictably?) by a single washing with water[7].

Rapid mixing of the argon entering the vapor is needed, and this is promoted by gravitation by introducing the argon near the bottom of the (heavier) vapor, as well as having the vapor vessel (V_{A}) taller than its diameter (Fig. 3). Even so, it was desirable to know whether any appreciable fraction of the argon would rise to the top before time for its thorough horizontal interdiffusion with the vapor, or whether any argon reaching the top requires an undue length of time to mix by diffusing downward.

The interdiffusion of two gases in one dimension is given by

$$
\begin{equation*}
\partial \mathrm{N}_{\mathrm{i}} / \partial \mathrm{t}=\mathrm{D}\left(\eta^{2} \mathrm{~N}_{\mathrm{i}} / \partial \mathrm{x}^{2}\right) \text {, } \tag{13}
\end{equation*}
$$

where N_{i} is the concentration of either gas, t is time, x is distance, and \underline{D} is the specific interdiffusion coefficient. Although series solutions of Eq (13) are known for specified boundary conditions, dimensionless numerical integration of the equation was readily performed by computer for the initial condition of one pure gas (argon) occupying one end (10% of the volume) of a closed cylinder and the other pure gas (the vapor) occupying the other end (90% of the volume), all of course at a uniform total pressure. Using 30 steps in $\Delta x, 1000$ steps in Δt, and a constant arbitrary value $\frac{\Delta N_{i}}{\Delta t} \left\lvert\, \frac{\left.\Delta N_{i}\right) D}{(\Delta x)^{2}}=0.25\right.$, the accuracy was checked by repetition using a coarser "grid". The interdiffusion coefficient D can be estimated [8] from

$$
\begin{equation*}
D=\left[8\left(1 / M_{1}+1 / M_{2}\right)\right]^{1 / 2}[R T / \pi]^{3 / 2} / 3 N_{A} P \sigma^{2} \tag{14}
\end{equation*}
$$

where M_{1} and M_{2} are the two molecular weights; \underline{R} is the gas constant; T, the absolute temperature; N_{A}, Avogadro's number; P, the total pressure; and $\underline{\sigma}$, the mean collision diameter of the two kinds of molecules. For argon and molybdenum pentafluoride at $90^{\circ} \mathrm{C}$ and a total pressure of 3 torr, Eq (14) gave $D=25 \mathrm{~cm}^{2} \mathrm{sec}^{-1}$, and using this value the computer results indicated that the interdiffusion involving an original thickness of argon of 1 cm would be 99.7% complete in 2 sec .

The capillary (length $=t$ and $I D=\underline{d}$ in Fig. 3) should be of such dimensions that during the time the valve (a) is open to admit argon to the vapor, only a negligible amount of vapor diffuses out (of V_{A}) (favoring a small d^{2}), yet the (viscous) flow of argon must be rapid enough to achieve virtual pressure equilibrium (favoring a large d^{4}). For the compromise capillary dimensions chosen, an integration of Poiseuille's equation for the volume rate of viscous flow,

$$
\begin{equation*}
\mathrm{dV} / \mathrm{dt}=\pi \mathrm{Pd}^{4} / 128 \eta \mathrm{l} \tag{15}
\end{equation*}
$$

indicated 99.9% pressure equilibration in 8 sec for argon at a pressure of 3 torr. (η is the specific viscosity; and \underline{P}, the average pressure, is a function of V .)

In the following section are summarized the results of four test experiments in which a known vapor pressure of iodine of about 15 torr was consistently reproduced to 1% or better without applying any hypothetical corrections. As evidence of the importance of the foregoing design considerations, it may be mentioned that an earlier version of this apparatus consistently gave values of the same vapor pressure of iodine that were in error by about 10% (but a little better if corrected for obvious vapor diffusion). The principal improvements of the present design over the earlier one are: (1) argon replaces helium (reducing vapor diffusion by a factor of about 3); (2) the capillary now abuts the valve seat (eliminating a short large-diameter dead-space whose considerable amount of vapor probably escaped quickly); (3) the length of the capillary was considerably reduced (promoting viscous flow); (4) constrictions in the manometer were eliminated, and the less viscous manometer fluid di-n-butyl phthalate was substituted (greatly hastening manometer equilibration, and thereby obviating the need to correct for compression of argon by manometer fluid after the valve (a) was closed).

3. Tepsts of the Apparatus in Reproducing Known Values

The apparatus and procedure in their present form (described in detail in Section III.2) were used to measure known pressures of the following three substances in the simulation of unknown vapor pressures:

1. Argon at pressures of approximately 13 to 22 torr. (This simulates a vapor except that it omits testing the features associated with vapor diffusion and condensation.)
2. Iodine at vapor pressures of approximately 15 and 8 torr. (The volatility is comparable to that of MoF_{5} in the same temperature range; but iodine is completely stable, the monomer is entirely negligible at these temperatures, many observers have measured its vapor pressure, and the completeness of existing data has enabled tests of third-law consistency [9].)
3. MoF_{6} at a vapor pressure of approximately 7 torr. (MoF 6 simulates MoF_{5} (and its polymers) in type of molecule and chemical corrosiveness.

In addition, similar measurements will be needed on MoF_{6} in conjunction with future measurements on MoF_{5}. Vapor pressures can be calculated from the Gibbs-energy functions of Osborne et al. [3], which are based on their low-temperature thermal and vapor-pressure data.)

The essential results of the measurements on the above three substances are given in Table 2. The valve between argon and the vapor cell (valve a in Fig. 3) was opened by an estimated one-half turn for 5 sec , and except in the case of Experiments $1-4$ this process was repeated one or more times at intervals of 5 to 10 min each, the manometer (and temperature) readings being taken while this valve was closed. (Error in the calculated vapor pressure had been estimated to be $<0.1 \%$ from diffusion during 5 sec .)

This procedure of successive openings provided an empirical test of whether equilibrium had been reached, and for each experiment one may examine the entries in the last five columns and take the last entry (or an estimated asymptotic value, particularly for Experiments 5 and 12) as the final value for that experiment. (In Experiments 1-4 no vapor was involved, so the valve was opened only once, but long enough to ensure pressure equilibrium.)

The agreement with the "accepted" values using argon (Experiments $1-4$) averages 0.1%, and is entirely satisfactory, since this corresponds to the precision of reading pressures and temperatures in this apparatus. The agreement for iodine (Experiments 5-13) also is satisfactory, being essentially within the estimated uncertainty of the "accepted" value of $\pm 1.5 \%$ (especially for the higher pressure). While no estimate was made of the uncertainty of the "accepted" (published) vapor pressure of MoF_{6}, this fact is irrelevant to the inferior reproducibility among different experiments (Nos. 14-16), and the need for further work on MoF_{6} is indicated. The inferiority of the MoF_{6} results may reflect some difficulty at that time in valve leakage, or the absence of condensed MoF_{6} in the vapor cell $\left(\mathrm{V}_{\mathrm{A}}\right)$ may be a significant factor.

So far no application of the new apparatus to molybdenum pentafluoride has been made, but such experiments are planned for the near future.

Table 2. Measurement of "Known" Pressures of Argon and Vapor Pressures of Iodine and Molybdenum Hexafluoride

Substance	Experiment	$\begin{gathered} \text { Temper- } \\ \text { ature } \end{gathered}$	Accepted Pressure	Deviati after V	$\begin{aligned} & \text { (\%) } \\ & \text { lve-0 } \end{aligned}$	$\begin{aligned} & \text { P found } \\ & \text { ing } \end{aligned}$	$\begin{aligned} & \text { rom } \\ & \text { vo. } e \end{aligned}$	epted
	No.	(K)	(torr)			3	4	5
Ar	1 2 3 4	296.2	$\begin{aligned} & 22.05^{\mathrm{b}} \\ & 13.47 \\ & 21.34 \mathrm{~b} \\ & 12.75 \\ & \hline \end{aligned}$	$\begin{array}{r} -0.22 \\ -0.12 \\ 0.00 \\ +0.06 \\ \hline \end{array}$				
I_{2}	5	352.75	$14.72{ }^{\text {c }}$	$\begin{array}{r} +7.7 \\ +10.4 \\ +8.3 \\ +6.3 \\ \hline \end{array}$	+3.3 +3.3	$\begin{aligned} & +1.6 \\ & +0.9 \\ & +0.8 \\ & +0.08 \\ & \hline \end{aligned}$	$\begin{aligned} & -0.2 \\ & +1.1 \\ & -0.06 \\ & \hline \end{aligned}$	-0.3
	7	352.67	$14.65{ }^{\text {c }}$		+2.3 +2.0			
	9	342.88	$8.04^{\text {c }}$	+10.4	+4.3	+2.0	$\begin{array}{r} +2.0 \\ +0.3 \\ +2.2 \\ +1.0 \\ \hline \end{array}$	
	10			+12.0	+3.8	+1.1		
	11			+6.4	+3.8	+2.9		
	12			+2.1	+1.7 +2.4			
	13			$+5.1$	+2.4	+1.2		
MoF_{6}		$231.64{ }^{\text {a }}$	$6.63{ }^{\text {d }}$			-5.8		
	15			+1.4	-3.4			
	16			-2.0	-2.5			

${ }^{\mathrm{a}}$ The MoF_{6} vapor was generated from the solid at 231.64 K , but measured in the apparatus at 392.6 K .
${ }^{\mathrm{b}}$ Pressures as measured by direct manometry in the apparatus.
${ }^{\mathrm{C}}$ Calculated from the values of Reference [10]. The values of Reference [9] give essentially identical values for these vapor pressures.
${ }^{\mathrm{d}}$ Calculated by interpolating the Gibbs-energy functions of Reference [3].
${ }^{e}$ The valve between argon and the vapor cell (valve a in Fig. 3) was opened by an estimated one-half turn for 5 sec , at intervals of 5 to 10 min .
[1] N. Acquista and S.Abramowitz, This Report, Chapter 3 .
[2] R. F. Krause, Jr., NBS Report 10481, July 1971, p. 97.
W. H. Rodebush and E. G. Walters, J. Amer. Chem. Soc. 52, 2654 (1930).
[7] L. A. Guildner, National Bureau of Standards, private communication.
[8] S. Glasstone, "Textbook of Physical Chemistry," 2nd ed., D. Van Nostrand, New York, 1946, p. 281.
[9] JANAF Thermochemical Tables, D. R. Stull and H. Prophet, Proj. Directors, 2nd ed., NSRDS--NBS 37, U. S. Government Printing Office, Washington, D. C. June 1971 [tables for I_{2} (c), $I_{2}(g)$, and $\left.I(g)\right]$.
D. D. Wagman, W. H. Evans, V. B. Parker, I. Halow, S. M. Bailey, and R. H. Schumm, NBS Technical Note 270-3, U. S. Government Printing Office, Washington, D. C., January 1968, p. 36

Chapter 3

THE VIBRATIONAL SPECTRA OF MOLYBDENUM PENTAFLUORIDL

Nicolo Acquista and Stanley Abramowitz

Introduction

The vibrational spectra of the MF_{5} molecules have been interpreted either on the basis of $D_{3 h}$ (trigonal bipyramid) or $C_{4 v}$ structure. Recently the authors interpreted the observed infrared spectrum of matrix isolated NbF_{5} as possibly indicative of $\mathrm{C}_{4} \mathrm{v}$ symmetry for this species ${ }^{1}$. The apparent observation of three stretching modes and a feature at $513 \mathrm{~cm}^{-1}$ were taken as experimental proof of the $\mathrm{C}_{4 \mathrm{v}}$ structure. Recently a Raman spectrum of the vapors in equilibrium with $\mathrm{NbF}_{5}(\mathrm{~s})$ and $\mathrm{NbF}_{5}\left(\mathrm{C}_{\mathrm{t}}\right)$ in the stretching region has been interpreted as indicating $D_{3 h}$ structure for the monomer. ${ }^{2}$ The pentafluorides of arsenic ${ }^{3}$, phosphorous ${ }^{4}$ and vanadium ${ }^{5}$ have been shown to have $D_{3 h}$ symmetry while $S b F_{5}$ has $C_{4 v}$ symmetry ${ }^{6}$. It should be noted that the Raman spectrum of gaseous SbF_{5} has recently been observed (and in a manner similar to NbF_{5}) and has been interpreted on the basis of $\mathrm{D}_{3 \mathrm{~h}}$ symmetry for the monomeric species ${ }^{7}$. Since MoF_{5} is the next higher member to NbF_{5} in the transition metal series, it was thought worthwhile to investigate its vibrational spectra.
MoF_{5} has only recently been prepared ${ }^{8}$. Edwards et al, ${ }^{9}$ reported another method of preparation and studied the structure of the solid using x-ray single crystal techniques. They concluded that MoF_{5} crystallize to form square tetramers in which the four Mo atoms are joined thru fluorine bridges, and that it is isostructural with NbF_{5} and TaF_{5}.

Quellette et a1, ${ }^{10}$ have reported the Raman and infrared spectra of liquid and polycrystaline MoF_{5}. A vibrational assignment was proposed for molten MoF_{5} on the basis of $\mathrm{D}_{3 \mathrm{~h}}$ symmetry, but the polycrystaline spectrum was not interpreted.

Bates ${ }^{11}$ has remeasured the room temperature Raman spectrum of crystalline MoF_{5} observing essentially the same spectrum as Ouellette et al ${ }^{10}$. Using frequencies and assignments of the bands observed by Ouellette in molten MoF_{5}, he assigned the Raman spectrum by a double correlation scheme which maps the symmetry species $D_{3 h}$ for MoF_{5} monomer into the factor group $\mathrm{C}_{2 \mathrm{~h}}$ in the solid. The lowest line found by Bates is at $180 \mathrm{~cm}^{-1}$. The lowest frequencies of $\mathrm{VF}_{5}{ }^{5}$, $\mathrm{AsF}_{5}{ }^{3}$ and PF_{5}^{4} appear at 109,138 , and $179 \mathrm{~cm}^{-1}$ respectively. It is therefore possible that MoF_{5} crystal will have a fundamental be $10 \mathrm{ow} 180 \mathrm{~cm}^{-1}$. The Raman spectrum of polycrystalline MoF_{5} was reinvestigated in this study using both $\mathrm{He} / \mathrm{Ne}$ and $\mathrm{Ar}^{+}\left(4880 \AA\right.$) excitation to within $30 \mathrm{~cm}^{-1}$ of the exciting line.

A molecular beam-mass spectrometer has been designed and constructed by Vasile et al ${ }^{12}$, to study reactive fluorides and similar molecules. The pentafluorides of $\mathrm{Nb}, \mathrm{Ta}, \mathrm{Mo}, \mathrm{Re}, \mathrm{Os}, \mathrm{Ir}, \mathrm{Ru}, \mathrm{Pr}$, Sb and Bi were $a 11$ found to be associated in the saturated vapor phase. Dimeric and trimeric species were dominant in the low temperature vapors ($\sim 50^{\circ} \mathrm{C}$) and tetrameters were found for $\mathrm{MoF}_{5} \mathrm{NbF}_{5}$ and other pentafluorides. They observed that those pentafluorides found to be associated in the vapor phase in their study were also associated in the solid phase as tetramers or in infinite chains. They concluded, by implication, that the liquid is very likely associated.

Weaver et al ${ }^{13}$ reports similar results to Vasile et al, and finds that at $80^{\circ} \mathrm{C}$ the vapor is $80 \% \mathrm{MoF}_{5}$ monomer. Ouellette ${ }^{10}$ also reports the presence of monomer at $70^{\circ} \mathrm{C}$.

There have been no reported structural studies of the vapors of MoF_{5}. Infrared matrix isolation studies should be uniquely suited for a study of the vibrational spectrum. This is particularly true since the monomer polymer ratio in MoF_{5} vapor may be expected to be enhanced in high temperature unsaturated vapors. Therefore a systematic study of the matrix isolated vapors of MoF_{5} was initiated using double boiler techniques. Raman spectra of polycrystalline MoF_{5} and liquid MoF_{5} were also observed.

Experimental

The experimental method used to observe the infrared spectrum of matrix isolated MoF_{5} monomer was essentially the same as in the $\mathrm{NbF}_{5}{ }^{1}$ study with only slight modification. An Air-Products cryotip operated at liquid hydrogen temperature, a Perkin-Elmer spectrophotometer 301 operated between 4000 to $50 \mathrm{~cm}^{-1}$ and a resistively heated furnace with a stainless steel tube were employed ${ }^{14}$. The stainless steel tube, which in the present apparatus performs as the upper crucible, is approximately $6^{\prime \prime}$ long. The first $3^{\prime \prime}$ of this tubing has $3 / 16^{\prime \prime}$ ID $x 1 / 4^{\prime \prime}$ OD and is located inside of a coiled tungsten heater. The remaining $3^{\prime \prime}$ is $1 / 8^{\prime \prime}$ tubing with a 1 mm hole. This tubing leads to a brassplate where it is brazed to a $1 / 4^{\prime \prime}$ quick-connector. The MoF_{5} sample was prepared by R. F. Krause ${ }^{15}$ of NBS. The cryoscopic impurity was estimated to be $0.15 \mathrm{~mol} \%$. His vaporation data was used to set the temperature of the sample tube to the desired vapor pressure. The MoF_{5} was sealed in vacuo in a pyrex sample tube and was never exposed to the atmosphere at any time during the experiments. The pyrex sample tube with teflon needle valve was connected to the stainless steel tube in the furnace. The temperature of the stainless steel tube was measured with a chromel-alumel thermocouple. It was the temperature of the stainless tube that was varied during the experiments from room temperature to $\sim 150^{\circ} \mathrm{C}$. The sample pyrex tube was maintained at room temperature, although a hot water bath could be used to change its temperature. During the course of the experiment, it was found that room temperature was adequate for developing sufficient vapor pressure in the lower-oven to obtain good intensity spectra in 3 to 4 hours.

The entire deposition system was thorough1y baked out before exposure to MoF_{5} vapors; MoF_{5} reacts with moisture adhering to the walls of the deposition system to form volatile oxyfluorides, which will codeposit in the matrices and give spurious bands.
MoF_{5} tends to disproportionate slowly at room temperature and more rapidly at higher temperatures to involatile MoF_{4} and to $\mathrm{MoF}_{6}(\mathrm{~g}) \quad 12,15$. Therefore, when an experiment was started, the first vapors were pumped away. This procedure also served to pickle the deposition
system, including the stainless steel furnace. After the first few experiments it was clear that the system was seasoned because the spectra become more and more reproducible. Temperatures above $150^{\circ} \mathrm{C}$ were not used to form matrices because, we observed, the spectra became less reproducible probably because of increased disproportionation and decomposition.

The matrix gas used was argon. Some matrices were formed in nitrogen but yielded no new results and are not included in this report. The M / R ratios, are estimated to be in the range of 5001000 。

Atmospheric water, CO_{2} and NH_{3} were used to calibrate the spectra. Many of the bands were overlapped and are good to about $\pm 2 \mathrm{~cm}^{-1}$. The solid infrared spectral bands are very broad and the measurements are not as good.

Raman spectra of the polycrystalline MoF_{5} were observed with a Spex Ramalog 14 using a cooled photomultiplier. $\mathrm{He} / \mathrm{Ne}$ and argon ion ($4880 \AA$) laser lines were used for excitation. Spectra were observed to within $30 \mathrm{~cm}^{-1}$ of the exciting line. Raman spectra of supercooled MoF_{5} liquid were also observed.

Experimental Results

Fig 1 shows the infrared spectrum of MoF $_{5}$ vapors isolated in argon matrices at liquid hydrogen temperature. The pyrex sample tube was maintained at room temperature for all these experiments except for one, while the upper stainless steel tube was varied from room temperature to $150^{\circ} \mathrm{C}$. Curve a shows the spectrum resulting when MoF ${ }_{5}$ effuses from the double-oven when both lower and upper boilers are at room temperature. Since the saturated vapors at this temperature contains mostly dimers and trimers ${ }^{12}$, the infrared spectrum is representative of these species. These bands appear at 768,716 , and $704 \mathrm{~cm}^{-1}$. Curve b is the spectrum of vapors of MoF_{5} in equilibrium with room temperature heated to $50^{\circ} \mathrm{C}$. The spectrum is essentially the same as a; a weak feature appears at $735 \mathrm{~cm}^{-1}$ which coincides with a matrix band of $\mathrm{MoF}_{6} / \mathrm{Ar}$. Curve c shows the spectrum obtained when the upper crucible is at $100^{\circ} \mathrm{C}$ (the sample is at room
temperature). The spectrum continues to change with temperature. The polymer bands intensities have decreased, while new features are beginning to appear at 713,695 and $683 \mathrm{~cm}^{-1}$. The MoF_{6} has also increased and broadened, suggesting its growth with temperature and a possible new feature at about $733 \mathrm{~cm}^{-1}$.

At a temperature of $140^{\circ} \mathrm{C}$, curve d, the polymeric features, at 768,704 and $716 \mathrm{~cm}^{-1}$ have diminished to a greater extent. The decreased intensity of the $716 \mathrm{~cm}^{-1}$ feature is obscured by the growth of a new feature at $713 \mathrm{~cm}^{-1}$. It is clear that the band at $683 \mathrm{~cm}^{-1}$ has grown considerably. The band at $695 \mathrm{~cm}^{-1}$ has not grown, suggesting it is not due to the same species causing the bands at 733,713 , and $683 \mathrm{~cm}^{-1}$.

A final experiment was carried out, in which the lower MoF_{5} sample temperature was raised to $50^{\circ} \mathrm{C}$ and the S.S. upper crucible was operated at $150^{\circ} \mathrm{C}$. The spectrum, curve e, is a combination of polymers, and monomers; the bands are broadened. When the lower crucible is heated, above room temperature, the vapors effuse more rapidly, there is little time for equilibrium in the upper crucible, allowing more polymeric species to effuse, and possibly, also leading to poor isolation in the matrix.

To check the presence of oxyfluoride in our spectra, MoF_{5} was effused at $140^{\circ} \mathrm{C}$ (the sample MoF_{5} at room temperature) and codeposited with an $\mathrm{Ar} / \mathrm{H}_{2} \mathrm{O},(=100)$ sample at liquid hydrogen temperature. The spectrum showed a decrease of all bands except the $695 \mathrm{~cm}^{-1}$, which grew. Therefore this $695 \mathrm{~cm}^{-1}$ feature is most likely due to an oxyfluoride.

Our experiments suggest three bands that should be considered when assigning bands to MoF_{5} monomer. We prefer the bands at 713 and $683 \mathrm{~cm}^{-1}$ as due to monomeric MoF_{5}. The two bands have grown most consistently together in intensity. The band at $733 \mathrm{~cm}^{-1}$ is weak, masked by MoF_{6} and has shown some uncertain intensity variations which could be due to variable amounts of MoF_{6} in the matrix. Because of these uncertainties, we feel this feature may be due to MoF_{4} which, although having a low vapor pressure at the temperatures of our experiments probably is deposited in the matrix with MoF_{6} and monomeric MoF_{5}. The solid phase Raman spectrum of MoF_{4} has recently been reported by Bates ${ }^{16}$.

Fig 2 shows the far infrared spectrum from 300 to $100 \mathrm{~cm}^{-1}$ when the MoF_{5} vapors were heated to $140^{\circ} \mathrm{C}$ (the sample at room temperature), curves a, c. Three bands appear here. The bands at 261 and $112 \mathrm{~cm}^{-1}$ were assigned to monomers because they grew in together under conditions favorable to monomeric MoF_{5}. The band at $231 \mathrm{~cm}^{-1}$ did not appear consistently with these two bands and was considered a species other than MoF_{5} monomer.

Curve "b" shows a spectrum of MoF_{5} vapors in argon when the upper crucible is at $150^{\circ} \mathrm{C}$ anc the lower at $50^{\circ} \mathrm{C}$. Both the monomer feature at $261 \mathrm{~cm}^{-1}$ and the $231 \mathrm{~cm}^{-1}$ feature have grown. It is clear here that the relative intensities of these two bands are different that those in curve a.

These experiments suggest four features as due to monomeric MoF_{5} : 713, 683, 261 and $112 \mathrm{~cm}^{-1}$. The frequencies are listed in Table I.

Fig 3 shows the infrared spectrum of solid MoF_{5} at liquid hydrogen temperatures effused at $50^{\circ} \mathrm{C}$ from 750 to $400 \mathrm{~cm}^{-1}$. The spectrum was scanned to $200 \mathrm{~cm}^{-1}$. The bands shown are the only ones observed. They appear at about $725,700,660$ and $525 \mathrm{~cm}^{-1}$, are very broad and are suggestive of a polymer spectrum. The frequencies are approximate because of the uncertainty in finding the band centers. In contrast the bands in the matrices of Argon are relatively sharp. These frequencies are also in Table I.

Several diffusion experiment were performed on a $\mathrm{MoF}_{5} / \mathrm{Ar}$ matrices. The resulting spectrum of MoF_{5} residue after the argon had boiled away, was very similar to the solid spectrum of Fig 3.

The Raman spectrum of solid MoF_{5} is shown in Figure 4. These results are essentially equivalent with those of Bates ${ }^{11}$ and 0 uellette et. al. ${ }^{10}$ except in the low frequency region. The band at about $120 \mathrm{~cm}^{-1}$ which is also present in the liquid corresponds to the $112 \mathrm{~cm}^{-1}$ found in an argon matrix for monomeric MoF_{5}. The bands at displacements of abcut 90 and $60 \mathrm{~cm}^{-1}$ from the exciting line are only present in solid MoF_{5} and may be due to vibrations of the tetrameric unit. These features were observed with both the helium-neon and argon ion lasers. The power of the argon ion laser at $4880 \AA$ had to be kept rather low (22 milliwatts) in order to avoid melting the yellow sample.

Discussion

The infrared spectra of the vapors over solid MoF_{5} have been observed in argon matrices at liquid hydrogen temperatures. By varying the temperature of the upper boiler in the double oven, significant changes in the composition of the vapors were effected. The low temperature spectrum of the saturated vapors produced bands at 768,716704 , and $231 \mathrm{~cm}^{-1}$ (Fig 1, curves a, andFig 2), which were interpreted as due to polymers. ${ }^{12}$ At high temperatures, the unsaturated vapors are known to contain a larger proportion of monomer relative to polymers. The spectra reflect these changes. New bands appear at $713,683,261$ and $112 \mathrm{~cm}^{-1}$ while aggregate band intensities decrease. Our experiments suggest that these bands are due to monomeric MoF_{5}.

A study of MF_{5} spectra has shown these molecules to have a $D_{3 h}$ (trigonal bipyramid or $C_{4 v}$ (tetragonal pyramid) structure. The vibrational representation of a $D_{3 h}$ molecule is $2 a_{d}{ }^{\prime}+2 a_{2}^{\prime \prime}+3 e^{\prime}+$ $e^{\prime \prime}$ with $a_{2}{ }^{\prime \prime}$ and e^{\prime} infrared active and the $a_{1}{ }^{\prime}$, e^{\prime}, and $e^{\prime \prime}$ modes Raman active. For a $C_{4 v}$ molecule, the vibrational representation is $3 a_{1}+2 b_{1}+b_{2}+3 e\left(a_{1}+e\right.$ are infrared active) ; $a_{1}, b_{1}{ }^{2} b_{2}$, and e are Raman active.) $\mathrm{D}_{3 \mathrm{~h}}$ requires the presence of 5 infrared ative bands while $C_{4 v}$ requires six. Four infrared bands have been found in these experiments. Depositions lasting longer than 6 hours have produced no other bands.

The assignment of MoF_{5} to a symmetry species is rather difficult. The absence of a band at $500 \mathrm{~cm}^{-1}$ suggests that MoF_{5} does not possess $C_{4 v}$ symmetry. (although this band could be very weak). Such a band is found in the interhalogens. ${ }^{17}$ Tetramers of MoF_{5} are associated thru Mo-F-Mo bridge bands, a connection favored by $\mathrm{C}_{4 \mathrm{v}}$ monomer structure.

Bates has described the Raman spectra of the solid assuming $\mathrm{D}_{3 \mathrm{~h}}$ symmetry for the basic structure of MoF_{5} tetramer while Quellette favors $D_{3 h}$ also for the structural unit in molten MoF_{5}.

Our spectra show only 2 bands at the high frequency region of the infrared (ie. 713 and $683 \mathrm{~cm}^{-1}$). This favors $D_{3 h}$ symmetry. Three bands are required for $C_{4 v}$ symmetry.

Additional experimental evidence is needed before the structure of MoF_{5} can be conclusively determined. We have assigned MoF_{5} assuming it is a $D_{3 h}$ molecule in analogy with $\mathrm{PF}_{5}, \mathrm{AsF}_{5}, \mathrm{VF}_{5}$ which are known to possess this symmetry. The assignments of all the bands found are listed in Table I with the data of Bates and Ouellette.

In polycrystaline MoF_{5}, the infrared band appearing at $525 \mathrm{~cm}^{-1}$ is not present in the matrix spectrum. This band is probably due to the Mo-F-Mo bridge that exists in the tetramer. These frequencies are also in Table 1.

References

[1] N. Acquista, S. Abramowitz, J. Chem. Phys. J. Chem. Phys. 56, 5221 (1972).
[2] L. E. Alexander, I. R. Beattie, P. J. Jones, J. Chem. Soc. (Da1ton) 1972, 210.
[3] a) L. C. Hoskins, R. C. Lord, J. Chem. Phys. 46, 2402 (1967).
b) L. C. Hoskins, C. N. Perng, J. Chem. Phys. 55, 5063 (1971).
a) J. E. Griffiths, R. D. Carter Jr., R. R. Holmes, J. Chem. Phys. 41, 863 (1964).
b) I. W. Levin, J.Mol.Spectroscopy 33, 61 (1970).
c) I. R. Beattie, R. M. S. Livingston, D. J. Reynolds, J. Chem. Phys. 51, 4269 (1969).
d) F.A. Miller, R. A. Capwel1, Spectrochim. Acta 27A 125 (1971).
[5] H. Selig, J. H. Holloway, J. Tyson, H. A. Claasen, J. Chem. Phys. 53, 2559 (1970).
[6] A. L. K. Aljibury and R. L. Redington, J. Chem. Phys. 52, 453 (1970).
[7] L. E. Alexander and I. R. Beattie, J. Chem. Phys. 56, 5829 (1972).
[8] R. D. Peacock, Proc. Chem. Soc., 1957, 59.
[9] A. J. Edwards, R. D. Peacock, R. W. H. Sma11, J. Chem. Soc. (A) 1962, 4486.
[10] T.J. Ouellette, C. T. Ratcliffe, D. W. A. Sharp, J. Chem. Soc.(A) 1969, 2351.
J. B. Bates, Spectrochem. Acta. 27A, 1255 (1971).
[12] M. J. Vasile, G. R. Jones, W. E. Falconer, International Journal of Mass Spectroscopy, to be published.
[13] C. F. Weaver and J. D. Redman, ORNL Report 4449 pp . 116-119 Oak Ridge, Tenn. February, 1970. adequately the experimental procedure. In no case does such identification imply recommendation or endorsement by NBS .
[15] R. F. Krause, Natl. Bur. Std. Report 10481 pp. 97 (1971).
[16] J. B. Bates, Inorganic Nucl. Chem. Letters 7957 (1971).
[17] G. M. Begun, W. H. Fletcher, and D. F. Smith, J. Chem. Phys., 42, 2236 (1965).

Table I

Vibrational Assignment of MoF_{5}

	Me It (a)	Crystal,	Raman, (b)	IR	Crystal present work	$\begin{gathered} \text { Matrix } \\ \text { IR } \end{gathered}$	Assignment
747		759	Ag			768	polymer
		738	Ag			735	$\mathrm{MoF}_{6}\left(\nu_{3}\right)$
730	IR	747					
						733	$\mathrm{MoF}_{4}(?)$
					725		
						716	polymer
						713	$\mathrm{MoF}_{5}\left(\mathrm{E}^{\prime}\right) \mathrm{v}_{5}$
703		$\begin{aligned} & 706 \\ & 696 \end{aligned}$	$\begin{aligned} & \mathrm{Ag} \\ & \mathrm{Ag} \end{aligned}$			704	polymer
					700		
685	IR	684				683	$\mathrm{MoF}_{5}\left(\mathrm{~A}_{2}^{\prime \prime}\right) \cup_{3}$
					660		
500	IR	494			525		bridge-bond
440		436					
		402					
		332					
		282					
250						261	$\mathrm{MoF}_{5}{ }_{6}{ }_{6}\left(\mathrm{E}^{\prime}\right)$
	IR	252	Ag				
		239	Ag				
231						231	polymer
201		199					
		181					
		120	(c)			112	$\mathrm{MoF}_{5} \nu_{7}$ (E^{\prime})
		90	(c)				polymer
		60	(c)				polymer

(a) Frequencies and assignments of molten MoF_{5} were taken from reference 10. The frequencies are from the Raman spectrum except where noted otherwise.
(b) Bates assignment of solid, reference 11.
(c) Present Raman results.

NOIIdyOSg*

FIGURE 2. The far infrared spectrum of $M o F_{5}$ trapped in Argon
matrices at liquid hydrogen temperature. Curve a and c
the lower crucible at room temperature the upper at
$140^{\circ} \mathrm{C}$; Curve b, the lower crucible at $50^{\circ} \mathrm{C}$, the upper
at $150^{\circ} \mathrm{C}$.

FIGURE 3. The infrared spectrum of solid MoF_{5} at $20^{\circ} \mathrm{K}$.

FIGURE 4. The Raman spectrum of solid MoF_{5}.

PRELIMINARY REPORT ON THE

MEASUREMENT OF THE RELATIVE ENTHALPY OF MO 2 C
FROM 273.15 TO 1475 K
D. Ditmars and S. Ishihara

1. Introduction

The molybdenum carbide Mo 2 C is one of the refractory metal carbides currently being studied in a joint effort of the Los Alamos Scientific Laboratory and the NBS. The Los Alamos work, with Dr. E. K. Storms as principal investigator, has concentrated mainly on elucidating the phase behavior of this compound (and others in the Mo-C system) by DTA techniques as well as high-temperature x-ray and neutron diffraction analysis. Recently, evidence has been found for the existence of an order-disorder transition in $\mathrm{Mo}_{2} \mathrm{C}$ in the vicinity of $1400^{\circ} \mathrm{C}$ [2,3] ${ }^{\text {a }}$. The NBS contribution to this effort, a preliminary report on which follows, has been planned to eventually provide through high-temperature calorimetric measurements, additional information on this transition as well as to derive improved thermodynamic functions for $\mathrm{Mo}_{2} \mathrm{C}(\mathrm{s})$.
$\mathrm{Mo}_{2} \mathrm{C}$ belongs to the class of "defect compounds", so-called because they can exist over a considerable range of composition with a high concentration of defects in the non-metal sub-lattice. $\mathrm{Mo}_{2} \mathrm{C}$ can, for instance, exist with anywhere from 26 to 36 atomic percent carbon, depending on the temperature. Melting near $2500^{\circ} \mathrm{C}$, it has

[^2]an attractive potential for high-temperature applications. Yet, certain thermodynamic data on it are either lacking or seem inadequate [1].

The complete phase diagram for the portion of the Mo-C system of greatest interest has been given in a previous report [1]. Figure 1 of the present work, taken from reference [4], depicts an enlarged portion of that diagram and summarizes present knowledge on the phase relationships of compounds near to and including the one of which this work treats.

There exist two low-temperature calorimetric studies on $\mathrm{Mo}_{2} \mathrm{C}$ [5,6] and two series of enthalpy measurements extending above room temperature to $2500 \mathrm{~K}[6,7]$. These investigations were carried out with compounds with compositions differing from the one available in the current study. This can be significant for the interpretation of the $\mathrm{Mo}_{2} \mathrm{C}$ enthalpy and specific heat data as it has been observed $[2,3]$ that the speed with which this compound completes its orderdisorder transition in cooling through $1400^{\circ} \mathrm{C}$ is remarkably sensitive to the concentration of non-metal, as little as half a weight percent difference in the carbon content considerably retarding the process.

2. Sample

The sample of $\mathrm{Mo}_{2} \mathrm{C}$ used in the experiments reported below was obtained on loan from the Los Alamos Scientific Laboratory of the University of California where it was fabricated to a specific composition and partially anaylzed by Dr. E. K. Storms. This composition was chosen as one which would ensure rapid completion of the anticipated transition at $1400^{\circ} \mathrm{C}$. It was achieved by taking advantage of the fact that $\mathrm{Mo}_{2} \mathrm{C}$ vaporizes congruently near MoC.49 [2]. High-purity Mo and C powders in approximately this proportion were mixed and cold-pressed into cylindrical shape with a binder which was subsequently driven off in a vacuum. This cylinder was heated to $2400^{\circ} \mathrm{C}$ and held there to achieve the congruently vaporizing composition, losing in the process approximately ten percent of its weight. It was later annealed at $1900^{\circ} \mathrm{C}$ for $1 / 2$ hour and at $1100^{\circ} \mathrm{C}$ for 2 hours.

Preliminary chemical analyses of portions of the sample have indicated a carbon content of 5.75 weight percent (corresponding to a formula of MoC.4873) and an oxygen content of about 50. ppm. X-ray analysis has indicated that it is single-phase $\alpha-\mathrm{Mo}_{2} \mathrm{C}$.

The sample was received in the form of a cylinder approximately $3 / 8 \mathrm{in}$. O.D. and 1 in. long, weighing 26.6274 grams.

Figure 1. A portion of the Mo-C phase diagram. Shaded bars at top denote composition ranges for which order-disorder transition proceeds slowly [2,3]. Arrows indicate compositions investigated by other workers and by NBS. Dashed boxes surrounding joining points indicate temperature and composition uncertainties. Diagram adapted from [4].

Two different calorimeters were used to complete the enthalpy measurements over the range 273.15 K to 1475 K . The techniques used are described below with reference to the temperature range in which they were employed.
a. 273.15 K to 1173.15 K

In this temperature range, relative enthalpies were measured with a Bunsen ice calorimeter. Briefly, the procedure, more complete details of which are contained in other publications [8,9], is as follows: The sample, enclosed in a suitable container, is suspended in a resistance furnace until it attains the constant furnace temperature. It is then dropped into the ice calorimeter beneath the furnace and the heat given off is measured as the container and sample cool to $0^{\circ} \mathrm{C}$. The enthalpy of the container and the heat lost during the fall into the calorimeter are accounted for by subtracting from the enthalpy of the container plus sample, that of the container alone, measured in a separate experiment. In the present study, a series of enthalpy measurements on an empty Pt10Rh container similar to the one used to contain the sample had already been made and reported [8]. The smoothing equation which was chosen to represent these previous measurements (equation 1, below) was used to calculate the empty container enthalpy values needed for the measurements on $\mathrm{Mo}_{2} \mathrm{C}$ after making corrections for the small differences in the container masses.

$$
\begin{align*}
\mathrm{H}_{\mathrm{t}}-\mathrm{H}_{0}{ }^{\circ} \mathrm{C}= & (4.529744) 10^{-8} \mathrm{t}^{3}+(8.068654) 10^{-5} \mathrm{t}^{2} \\
& +(1.901653) \mathrm{t}-(34.94647)\left(\frac{\mathrm{t}}{\mathrm{~T}}\right) . \tag{1}\\
\mathrm{H}, \mathrm{~J} ; \mathrm{T}, \mathrm{~K}= & \mathrm{t},{ }^{\circ} \mathrm{C}+273.15^{\mathrm{b}}
\end{align*}
$$

For measurements in this temperature range, the complete sample, as received from the producer, was encapsulated in a .008 in. wall Pt10Rh capsule sealed under approximately 100. torr absolute helium pressure. Prior to making the measurements on the $\mathrm{Mo}_{2} \mathrm{C}$ sample, check measurements on a specimen of $\alpha-\mathrm{Al}_{2} \mathrm{O}_{3}$, a calorimetric heat-capacity standard, were made which verified the correct functioning of the calorimetric system.
$\overline{\mathrm{b}} \mathrm{A11}$ temperatures are to be expressed on the scale IPTS-68.

In this temperature range, enthalpy relative to 298.15 K for this molydenum carbide sample was measured with the adiabatic "drop" apparatus which was comprehensively described in a previous report [10]. This temperature interval is sufficiently below any known transition to B phase for this sample so a check can be made on the accuracy of the apparatus at 1173.15 K with the results obtained from the Bunsen calorimeter and the smoothness in fit of the relative enthalpy and heat-capacity measurements of the two methods can be inspected.

The principle of operation in this method is similar to that of the Bunsen ice calorimeter. A hot capsule is "dropped" from an RF induction furnace maintained at a constant temperature into an adiabatic calorimeter operating near room temperature. The heat energy added to the calorimeter is measured by the rise in the calorimeter temperature and a calculation of the energy equivalent necessary for this rise. A minimum of two drop experiments, one on an empty capsule and the other on a capsule loaded with sample is required at each furnace temperature. The difference in energy supplied to the calorimeter is the change in enthalpy of the sample after a small correction is applied to account for the difference between the final calorimeter temperatures inherent in an adiabatic calorimeter.

For this series, three drops were made for each furnace temperature, the first and third drops on an empty capsule and the second drop on a capsule filled with the sample. The agreement of the results of the first and third drops gives a check that no serious change in the optical, physical or chemical properties of the container had occurred and, therefore, that the result is valid for that furnace tempera ture.

The same brittle $\mathrm{Mo}_{2} \mathrm{C}$ sample, described in section 2 , above, was used for this portion of the work. Only the shape was altered by crushing part of the sample between two $1 / 8$ in. sheets of Teflon on the jaws of a vise, so that the "Poco" graphite capsule could accomodate the resulting granules of $\mathrm{Mo}_{2} \mathrm{C}$. The Teflon sheet was sufficient in thickness that the abrasive sample did not rupture the sheet nor scratch the steel surface of the vise.

All high temperature measurements of the furnace were determined using an L and \mathbb{N} automatic optical pyrometer focused on the bottom surface of the capsule through a diaphragm with a $1 / 8$ in. hole at blackbody conditions. Since the first measurementis made at least $41 / 2 \mathrm{hrs}$. after the
furnace is heated, the thermal gradients along the graphite core of the furnace as well as the solid state and electronic circuitry of the temperature measuring system settle down sufficiently to give precise results. The automatic pyrometer was periodically calibrated by the NBS optical radiation laboratory.

4. Results

The NBS enthalpy measurements on $\mathrm{Mo}_{2} \mathrm{C}$ completed to date are presented in Tables 1. and 2. In Table 1, column 1 gives the equilibrium sample temperature before dropping. Column 2 gives the total measured heat for container plus sample. Column 3 was derived by subtracting from column 2 the appropriate empty container heats derived from eq. (1), including a small correction for the difference in mass of the actual sample container and the container to which eq. (1) is applicable. The net heat so obtained was then expressed per gram formula weight of specimen, MoC.4873. The data of column 3 were fit by eq. (2), the constants determined using the method of least squares. ${ }^{\text {c }}$ The NBS enthalpy data above 1173.15 K was not included in this fit as measurements in this region will be extended to about $2000^{\circ} \mathrm{C}$ and are not yet complete.

$$
\begin{array}{rl}
H_{T}-H_{T_{0}}=A\left(T^{3}-T_{0}^{3}\right)+B\left(T^{2}-T_{0}^{2}\right)+C\left(T-T_{0}\right)+D\left(\frac{1}{T}-\frac{1}{T_{0}}\right) \tag{2}\\
A=-1.10268 E-06 & \\
B=+6.23370 E-03 & T_{0}=273.15 \mathrm{~K} \\
C=+3.20199 E+01 & H_{T}=\mathrm{J} / \mathrm{GFW} ; G F W=101.793 \\
D=+4.94170 \mathrm{E}+05 & T, K(I P T S-68)
\end{array}
$$

Preliminary results of the enthalpy measurements on $\mathrm{Mo}_{2} \mathrm{C}$ for the temperature range 1173.15 to 1475 K are listed in table 2. Although the results were not included in the least squares fit in determining eq. (2), the agreement at 1173 K is good and the remaining data points can be expected to merge smoothly by revising eq. (2). This can be best dealt with after enthalpy measurements beyond 1475 K have been completed.

[^3]Table 1
NBS enthalpy measurements on MoC .4873 to 1173.15 K

Furnace Temperature	Gross Measured Heat	$\mathrm{H}_{\mathrm{t}}-\mathrm{H}_{0}{ }^{\circ} \mathrm{C}$		ObservedSmooth
		Net Heat Observed	Net Heat Smooth ${ }^{\text {c }}$	
${ }^{\circ} \mathrm{C}$	J	J/GFW ${ }^{\text {b }}$	J/GFW ${ }^{\text {b }}$	\%
100.00	989.66	3088.9	3085.2	+. 12
200.00	2061.58	6470.0	6475.4	-. 08
300.00	3192.24	10060.1	10056.6	+. 03
400.00	4358.70	13773.8	13778.6	-. 03
500.00	5563.71	17622.1	17614.0	+. 04
500.00	5561.60	17614.0	17614.0	. 00
600.00	6790.06	21539.0	21544.6	-. 02
700.00	8047.05	25559.9	25557.2	+. 01
800.00	9323.06	29638.5	29640.9	-. 01
900.00	10620.50	33784.4	33786.3	-. 01
900.00	10621.78	33789.3	33786.3	+. 01

a IPTS-68
b $\mathrm{GFW}=101.793$, Specimen mass $=26.6274 \mathrm{~g}$
c Calculated from eq. (2).

Table 2
NBS enthalpy measurements on MoC. 4873 to 1476.87 K

Furnace Temperature	Heat from sample to calorimeter at 298.15 K	$\begin{gathered} \mathrm{H}_{\mathrm{T}}-\mathrm{H}_{298}{ }_{\text {(observed) }}{ }^{15} \end{gathered}$	Deviation from Eq. (2) ${ }^{c}$
K	(J)	(J/GFW)	(obs-calc., \%)
1173.15	1520.43	33069.6	+. 04
1277.72	1711.52	37503.9	+. 15
1377.04	1909.32	41854.3	+. 45
1476.87	2108.47	46251.4	+. 67

a IPTS-68
b \quad GFW $=101.793$; theoretical density $=9.18 \mathrm{gm} / \mathrm{cm}^{3}$. Sample mass was slightly different for each run since small loose particles which separated were not included in subsequent runs.
c Enthalpy data in this table was not used for determining eq. (2).

The present NBS enthalpy measurements up to 1173.15 K are believed to have an accuracy of 0.2 percent. They lie on the average about . 5 percent above the earlier measurements of Pankratz et al [6] (see fig. 2), and show improved precision. These differences might be though to arise from frozen-in disorder in the sample of Pankratz. However, a preliminary comparison of the present NBS thermal data with the low-temperature specific heat measurements of Pankratz et al [6] and Paukov et al [5] indicates a correct merging both with respect to magnitude and to slope of the specific heat curves in their region of overlap.

The enthalpy data of Neel et al [7], which up to $1400^{\circ} \mathrm{C}$ consists of three points, have not been included in the comparison of fig. (2) as they differ by two or three percent from eq. (2) and could not agree with any reasonable extrapolation of the low-temperature data.

Pankratz et al [6] and Paukov et al [5] have derived from their low-temperature data, values for $\mathrm{S}_{298} .15$ of $15.74 \pm .09$ and $15.74 \pm .03 \mathrm{cal} / \mathrm{mole}, \mathrm{K}$ respectively (based on the composition $\mathrm{Mo}_{2} \mathrm{C}_{1} .0180$) a1though Paukov's heat capacity data are one to two percent higher than the Pankratz data below 125 K . As soon as the combined low-temperature data have been re-analyzed and the complete NBS high-temperature data become available, more reliable thermodynamic functions for $\mathrm{Mo}_{2} \mathrm{C}(\mathrm{s})$ will be generated.

In Figure 3 a plot of the average heat capacity from a base temperature of 298.15 K is shown. The smoothness of the experimental points indicates that the sample has probably not undergone a transition in the range of measurement. The plot also indicates that the enthalpy determinations of Mo2C with the two different calorimeters of this study are consistent with one another.

Figure 3. Comparison of the average heat capacity of $\mathrm{Mo}_{2} \mathrm{C}$ calculated from the base temperature of 298.15 K for the two NBS calorimeters of this study.

References

[1] Ditmars, D. A., NBS Report 10 481, p. 120, 1 July 1971.
[2] Storms, E. K., private communication, March 1971.
[3] Rudy, E., private communication, March 1971.
[4] Rudy, E., AFML-TR-65-2, Part V, 1969.
[5] Paukov, I. E., Strelkov, P. G., and Filatkina, V. S., Russ. J. Phys. Chem. 42 (11), 1576 (1968).
[6] Pankratz, L. B., Weller, W. W., and King, E. G., Bureau of Mines Rept. Invest. 6861 (1966).
[7] Nee1, D. S., Pears, C. D., and Oglesby, S., ASD-TDR-62-765 (1963).
[8] Ditmars, D. A., and Douglas, T. B., J. Res. Nat. Bur. Stand. (U.S.), 75A (5), 401 (1971).
[9] Douglas, T. B., and King, E. G., High Temperature Drop Calorimetry, Chapter 8 in Experimental Thermodynamics V.I. (Butterworths, London, 1968).
[10] S. Ishihara and T. B. Douglas, NBS Report 10 481, U.S. Air Force OSR Agreement No. AFOSR-ISSA-70-0002, p. 59 (July, 1971).

Chapter 5

> HIGH-SPEED (SUBSECOND) SIMULTANEOUS MEASUREMENT OF SPECIFIC HEAT, ELECTRICAL RESISTIVITY, AND HEMISPHERICAL TOTAL EMITTANCE OF TANTALUM - 10 (WT. $\%$) TUNGSTEN ALLOY IN THE RANGE 1500 to $3200 \mathrm{~K} *$

Ared Cezairliyan
National Bureau of Standards
Washington, D. C. 20234

Abstract

Simultaneous measurements of specific heat, electrical resistivity, and hemispherical total emittance of tantalum - 10 (wt. \%) tungsten alloy in the temperature range 1500 to 3200 K by a subsecond duration pulse heating technique are described. Estimated inaccuracy of measured properties are: 3% for specific heat and hemispherical total emittance, and 0.5% for electrical resistivity. Properties of the alloy are compared with the properties of the constituent elements. The values of measured specific heat are approximately 2% higher than the values computed according to Kopp's additivity law. However, this difference is within the combined estimated errors. The electrical resistivity results indicate a significant departure from Mathiessen's law. Like tantalum, the alloy showed a negative departure from linearity in the curve of electrical resistivity versus temperature.

[^4]
1. Introduction

A high-speed technique was developed in this laboratory for the measurement of selected thermophysical properties of refractory metals at high temperatures. In this paper, application of this technique to the simultaneous measurements of specific heat, electrical resistivity, and hemispherical total emittance of the alloy tantalum - 10 (wt. \%) tungsten in the temperature range 1500 to 3200 K is described.

The method is based on rapid resistive self-heating of the specimen from room temperature to any desired high temperature (up to its melting point) in less than one second by the passage of electrical currents through it; and on measuring, with millisecond resolution, experimental quantities such as current through the specimen, potential drop across the specimen, and specimen temperature.

Current through the specimen is determined from the measurement of the potential difference across the standard resistance placed in series with the specimen. Potential difference across the middle two thirds of the specimen is measured using spring-loaded, knife-edge times probes. Specimen temperature is measured at the rate of 1200 per second with a high-speed photoelectric pyrometer (Foley, 1970). A small hole in the wall at the middle of the tubular specimen provides an approximation to blackbody conditions. The experimental quantities are recorded with a digital data acquisition system, which has a time resolution of 0.4 ms and a full-scale signal resolution of one part in 8000 . Details regarding the construction and operation of the measurement system, the methods of measuring experimental quantities, and other pertinent
information, such as formulation of relations for properties, etc. are given in earlier publications (Cezairliyan et al., 1970; Cezairliyan, 1971).

2. Measurements

The specimen was a tube fabricated from a tantalum - 10 (wt. \%) tungsten rod ${ }^{(1)}$ by removing the center portion by an electro-erosion technique. The outer surface of the specimen was polished to reduce heat loss due to thermal radiation. The nominal dimensions of the specimen were: length, 102 mm ; outside diameter, 6.3 mm ; and wall thickness, 0.5 mm .

Tungsten content of the specimen was 9.45% by weight. The total amount of impurities was less than 0.1%. Photomicrographs of the specimen, shown in Figure 1, indicate that considerable grain growth took place as the result of pulse heating to high temperatures.

The measurements were performed in the temperature interval 1500 to 3200 K . To optimize the operation of the pyrometer, this interval was divided into seven ranges. One experiment was performed in each range. Before the start of the experiments, the specimen was annealed by subjecting it to 30 heating pulses (up to 3000 K). All the experiments were conducted with the specimen in a vacuum environment of approximately 10^{-4} torr.

To optimize the operation of the measurement system, the heating rate of the specimens was varied depending on the desired temperature
(1) The specimen in rod form was furnished by the U. S. Air Force Materials Laboratory, Wright-Patterson Air Force Base, Ohio.
range by adjusting the value of a resistance in series with the specimen. Duration of current pulses in the experiment ranged from 400 to 470 ms ; and the heating rate ranged from 4400 to $6700 \mathrm{~K} \mathrm{~s}^{-1}$. Radiative heat loss from the specimen amounted to approximately 1% at $1500 \mathrm{~K}, 7 \%$ at 2500 K , and 20% at 3200 K of the input power.

Data on voltage, current, and temperature were used to obtain third degree polynomial functions for each quantity in terms of time, which then provided the input information for the determination of properties.

3. Experimental Results

This section presents the thermophysical properties determined from the measured quantities. All values are based on the International Practical Temperature Scale of 1968 (1969). In all computations, the geometrical quantities are based on their room temperature (298 K) dimensions. The experimental results for properties are represented by polynomial functions in temperature obtained by least squares approximation of the individual points. The final values on properties at 100 degree temperature intervals computed using the functions are presented in Table 1. Results obtained from individual experiments, by the method described previously (Cezairliyan et al., 1970), are given in the Appendix (Tables A-1 and A-2). Each number tabulated in these tables represents results from over fifty original data points.

3.1. Specific Heat

Specific heat was computed from data taken during the heating period. A correction for power loss due to thermal radiation was made using the

Tab1e 1
Specific heat, electrical resistivity, and hemispherical total emittance of the alloy tantalum -10 (wt.\%) tungsten

Temp K	$\mathrm{J}_{\mathrm{g}}^{\mathrm{C}_{\mathrm{P}}} \mathrm{~K}_{\mathrm{K}}-1$	$\begin{gathered} \rho^{*} \\ 10^{-8} \Omega \mathrm{~m} \end{gathered}$	ε^{*}
1500	0.1662	61.60	
1600	0.1683	64.96	
1700	0.1704	68.27	0.199
1800	0.1726	71.52	0.213
1900	0.1748	74.73	0.226
2000	0.1771	77.88	0.239
2100	0.1796	80.97	0.251
2200	0.1825	84.02	0.263
2300	0.1857	87.01	0.275
2400	0.1893	89.95	0.286
2500	0.1934	92.83	0.296
2600	0.1981	95.66	0.307
2700	0.2035	98.45	0.316
2800	0.2095	101.17	0.326
2900	0.2163	103.85	0.335
3000	0.2240	106.47	0.343
3100	0.2326	109.04	
3200	0.2422	111.56	

*Based on ambient temperature (298 K) dimensions.
results on hemispherical total emittance. The function for specific heat (standard deviation $=1 \%$) that represents the results in the temperature range 1500 to 3200 K is:

$$
\begin{equation*}
c_{p}=7.769 \times 10^{-2}+1.221 \times 10^{-4} \mathrm{~T}-5.972 \times 10^{-8} \mathrm{~T}^{2}+1.176 \times 10^{-11} \mathrm{~T}^{3} \tag{1}
\end{equation*}
$$

where T is in K, and c_{p} is in $J^{-1} K^{-1}$.

3.2. Electrical Resistivity

The electrical resistivity was determined from the same experiments that were used to calculate the specific heat. The function for electrical resistivity (standard deviation $=0.1 \%$) that represents the results in the temperature range 1500 to 3200 K is:

$$
\begin{equation*}
\rho=4.863+4.178 \times 10^{-2} \mathrm{~T}-2.637 \times 10^{-6} \mathrm{~T}^{2} \tag{2}
\end{equation*}
$$

where T is in K, and ρ is in $10^{-8} \Omega \mathrm{~m}$. In the computations of the specimens cross-sectional area, that is needed for the computations of electrical resistivity, the density of the specimen was taken as $16.968 \times 10^{3} \mathrm{~kg} \mathrm{~m}^{-3}$ (Taylor et al., 1971). The measurement, before the pulse experiments, of the electrical resistivity of the specimen at 293 K with a Kelvin bridge yielded a value of $17.6 \times 10^{-8} \Omega \mathrm{~m}$.

3.3. Hemispherical Total Emittance

Hemispherical total emittance was computed using data taken during both heating and initial free radiative cooling periods. The function for hemispherical total emittance (standard deviation $=0.8 \%$) that represents the results in the temperature range 1700 to 3000 K is:

$$
\begin{equation*}
\varepsilon=-9.765 \times 10^{-2}+2.108 \times 10^{-4} \mathrm{~T}-2.129 \times 10^{-8} \mathrm{~T}^{2} \tag{3}
\end{equation*}
$$

where T is in K.

4. Estimate of Errors

The details for estimating errors in measured and computed quantities in high-speed experiments using the present measurement system are given in an earlier publication (Cezairliyan et al., 1970). In this paper, the specific items in the error analysis were recomputed whenever the present conditions differed from those in the earlier publication. The results for imprecision ${ }^{(2)}$ and inaccuracy ${ }^{(3)}$ in the properties are: 1% and 3% for specific heat, 0.1% and 0.5% for electrical resistivity, 0.8% and 3% for hemispherical total emittance.

5. Discussion

The specific heat, electrical resistivity, and hemispherical total emittance of the tantalum - 10 tungsten alloy measured in this work are presented graphically in Figures 2, 3, and 4, respectively. For comparison purposes, similar results for tantalum and tungsten metals, measured and reported earlier (Cezairliyan et al., 1971; Cezairliyan and McClure, 1971) are also included in the figures.

A comparison of the electrical resistivity results of this work with those reported by Taylor et al. (1971) on a similar specimen up to 2400 K indicates that the present results are higher by approximately 0.3\% at $1500 \mathrm{~K}, 0.6 \%$ at 2000 K , and 0.8% at 2400 K . The average absolute difference between the two results, in the temperature interval 1500 to 2400 K ,
(2) Imprecision refers to the standard deviation of an individual point as computed from the difference between measured value and that from the smooth function obtained by the least squares method.
(3) Inaccuracy refers to the estimated total error (random and systematic).
is approximately 0.6%. However, this difference is less than the combined estimated errors. When the present measurement of electrical resistivity at 293 K is extrapolated to 300 K a value of $18.0 \times 10^{-8} \Omega \mathrm{~m}$ is obtained that compares favorably with the value $17.9 \times 10^{-8} \Omega \mathrm{~m}$ reported by Taylor et al. (1971).

A comparison of the hemispherical total emittance results of this work with those of Taylor et al. (1971) up to 2700 K indicates that the present results are higher by approximately 4% at 1700 K , and 1% at 2200 K, and are lower by approximately 2% at 2700 K. Some of this difference may be attributed to the differences in specimen surface conditions.

According to Kopp's law, specific heat of a binary alloy, c_{12} (on mass basis), may be expressed as

$$
\begin{equation*}
c_{12}=x_{1} c_{1}+x_{2} c_{2} \tag{4}
\end{equation*}
$$

where x_{1} and x_{2} are mass fractions of the constituent elements 1 and 2 , and c_{1} and c_{2} are their respective specific heats.

Departure of the measured specific heat of this work from Kopp's law was computed using the data on tantalum and tungsten reported in earlier publications (Cezairliyan et al., 1971; Cezairliyan and McClure, 1971). The results are presented graphically in Figure 5. It may be seen that in the temperature interval 2000 to 3000 K the measured values are approximately two percent higher than the computed values. Above 3000 K , the difference between measured and computed values decreases, changes sign and then increases (in the negative direction). A sharp increase in tantalum specific heat above 3000 K may account for this trend. However, one should not place too much significance to the
difference between measured and computed specific heat values since its magnitude is less than the combined estimated errors in the measurements of specific heat of the alloy and its two constituents.

According to Matthiessen's law (as presented by Gerritsen, 1956), electrical resistivity of a binary alloy, ρ_{12}, may be expressed as

$$
\begin{equation*}
\rho_{12}=X_{1} \rho_{1}+X_{2} \rho_{2}+\rho_{0} \tag{5}
\end{equation*}
$$

where X_{1} and X_{2} are atomic fractions of the constituent elements 1 and 2, and ρ_{1} and ρ_{2} are their respective electrical resistivities. The quantity ρ_{0} is considered to be constant (temperature independent) for a given alloy.

Rearrangement of Equation (5) yields

$$
\begin{equation*}
\rho_{0}=\rho_{12}-\left(X_{1} \rho_{1}+X_{2} \rho_{2}\right) \tag{6}
\end{equation*}
$$

Departure of the electrical resistivity of the tantalum - 10 tungsten alloy from Matthiessen's law is determined using Equation (6). The measured values for the alloy are substituted for ρ_{12} and data on tantalum and tungsten reported in earlier publications (Cezairliyan et al., 1971; Cezairliyan and McClure, 1971) are used for ρ_{1} and ρ_{2}. The results are presented graphically in Figure 6 in terms of the quantity ρ_{0}. According to the law, ρ_{0} should be constant, however computations show that it decreases with increasing temperature and undergoes sign reversal at high temperatures. The dashed line in Figure 6 was obtained by fitting the high temperature points to a linear function, using the least squares method, and forcing the function to pass through the room temperature value. Average absolute difference of the points from the linear function is $0.1 \times 10^{-8} \Omega \mathrm{~m}$. This is considerably less than the estimated uncertainty
of the individual points $\left(0.8 \times 10^{-8} \Omega \mathrm{~m}\right.$ which is obtained from the combination of estimated errors in the electrical resistivity of the alloy and its two constituents.

Departure from Matthiessen's law may also be determined by comparing temperature derivatives of measured and computed electrical resistivities, namely derivatives of Equations (2) and (5), respectively. The advantage of this approach is that the quantity ρ_{0} is eliminated during the differentiation. The results are shown graphically in Figure 7. Difference between the two derivatives, which may be a measure of the departure from Matthiessen's law, is approximately 4% at 2000 K and increases to approximately 6% at 3000 K .

At 293 K , electrical resistivity of the alloy ($17.6 \times 10^{-8} \Omega \mathrm{~m}$ is higher than the resistivity of either one of its constituents (14.0 x $10^{-8} \Omega$ for tantalum, and $5.45 \times 10^{-8} \Omega m$ for tungsten). However, at high temperatures (Figure 3) the resistivity of the alloy is lower than that of tantalum. Like tantalum, at high temperature the alloy showed a negative departure from linearity in the curve of electrical resistivity versus temperature.

6. Acknowledgement

The author expresses his gratitude to Dr. C. W. Beckett for his continued interest and encouragement of research in high-speed methods of measuring thermophysical properties. The contribution of Mr. M. S. Morse in connection with electronic instrumentation is also greatly appreciated.

Table A-1
Experimental results on specific heat and electrical resistivity of the alloy tantalum- 10 (wt.\%) tungsten

T K	$\begin{gathered} c_{P} \\ \mathrm{~J}^{-1} \mathrm{~K}^{-1} \end{gathered}$	$\Delta_{\%} c_{p}^{*}$	$10^{-8} \Omega \mathrm{~m}$	$\begin{aligned} & \Delta 0^{*} \\ & \% \end{aligned}$
1500	0.1656	-0.30	61.75	+0.25
1550	0.1683	+0.64	63.36	+0.12
1600	0.1709	+1.52	64.98	+0.03
1650	0.1671	-1.37	66.65	+0.04
1700	0.1714	+0.61	68.23	-0.05
1750	0.1690	-1.44	69.88	-0.02
1800	0.1728	+0.17	71.44	-0.11
1850	0.1760	+1.35	73.01	-0.16
1900	0.1714	-1.91	74.73	+0.01
1950	0.1742	-0.96	76.25	-0.07
2000	0.1769	-0.09	77.77	-0.12
2050	0.1796	+0.72	79.30	-0.16
2100	0.1822	+1.44	80.83	-0.17
2150	0.1785	-1.37	82.56	+0.08
2200	0.1812	-0.71	84.04	+0.04
2250	0.1838	-0.08	85.52	+0.01
2300	0.1866	+0.50	87.00	0.00
2350	0.1894	$+1.04$	88.47	-0.01
2400	0.1888	-0.26	90.01	+0.08
2450	0.1911	-0.07	91.44	+0.06
2500	0.1936	+0.08	92.86	+0.04
2550	0.1961	+0.22	94.28	+0.03
2600	0.1988	+0.33	95.68	+0.02
2650	0.2016	+0.44	97.07	+0.02
2700	0.2046	+0.54	98.46	+0.02
2750	0.2078	+0.66	99.83	+0.02
2800	0.2112	+0.81	101.18	+0.02
2850	0.2150	+1.02	102.53	+0.02
2900	0.2110	-2.55	103.96	+0.12
2950	0.2164	-1.70	105.23	+0.07
3000	0.2219	-0.96	106.50	+0.04
3050	0.2275	-0.31	107.77	+0.01
3100	0.2331	+0.21	109.01	-0.02
3150	0.2388	+0.61	110.22	-0.07
3200	0.2443	+0.84	111.38	-0.15

The quantities Δc_{p}, and $\Delta \rho$ are percentage deviations of the individual results from the smooth functions represented by Equations (1) and (2), respectively.

Experimental results on hemispherical total emittance of the alloy tantalum -l0 (wt.\%) tungsten

$\begin{aligned} & \mathrm{T} \\ & \mathrm{~K} \end{aligned}$	ε	$\begin{aligned} & \Delta \epsilon^{*} \\ & \% \end{aligned}$
1708	0.198	-0.95
1708	0.200	+0.01
1708	0.202	+0.67
1708	0.203	+1.44
1873	0.223	+0.37
1873	0.222	-0.45
1873	0.221	-0.69
1874	0.224	+0.77
2059	0.244	-0.86
2059	0.244	-1.09
2059	0.244	-0.90
2060	0.244	-1.01
2312	0.278	+0.71
2313	0.278	+0.74
2313	0.279	+1.05
2315	0.279	+1.00
2656	0.312	-0.07
2658	0.312	-0.06
2658	0.311	-0.46
2661	0.311	-0.36
2960	0.340	+0.01
2964	0.341	+0.13
2964	0.340	-0.13
2969	0.341	+0.04

*The quantity $\triangle c$ is percentage deviation of the individual results from the smooth function represented by equation.

8. References

/. Cezairliyan, A., Morse, M. S., Berman, H. A., and Beckett, C. W., 1970, J. Res. Nat. Bur. Stand. (U.S.), 74A (Phys. and Chem.), 65-92.
2. Cezairliyan, A., 1971, J. Res. Nat. Bur. Stand. (U.S.), 75C Eng. and Instr.), 7-18.
3. Cezairliyan, A., and McClure, J. L., 1971, J. Res. Nat. Bur. Stand. (U.S.), 75A (Phys. and Chem), 283-290.
4. Cezairliyan, A., McClure, J. L., and Beckett, C. W., 1971, J. Res. Nat. Bur. Stand. (U.S.), 75A (Phys. and Chem.), 1-13.
3. Foley, G. M., 1970, Rev. Sci. Instr., 41, 827-834.

Gerritsen, A. N., 1956, in Handbuch der Physik, Vol. 19 (SpringerVerlag, Berlin), p. 206.
7. International Practical Temperature Scale of 1968, 1969, Metrologia, 5, 35-44.
8. Taylor, R. E., Kimbrough, W. D., and Powell, R. W., 1971, J. LessConmon Metals, 24, 369-382.

Figure 1.
Photomicrographs of the tantalum - 10 tungsten specimen. Upper photograph, specimen as received; lower photograph, specimen after the entire set of experiments.

Figure 2.
Specific heat of tantalum - 10 tungsten alloy, and tantalum and tungsten metals.

Chapter 6
SIMULTANEOUS MEASUREMENT OF SPECIFIC HEAT, ELECTRICAL RESISTIVITY, AND HEMISPHERICAL TOTAL EMITTANCE OF NIOBIUM - 1 (WT. \%) ZIRCONIUM ALLOY IN THE RANGE 1500 TO 2700 K BY A TRANSIENT (SUBSECOND) TECHNIQUE*

Ared Cezairliyan
National Bureau of Standards Washington, D. C. 20234

Abstract

Simultaneous measurements of specific heat, electrical resistivity, and hemispherical total emittance of niobium - 1 (wt. \%) zirconium alloy in the temperature range 1500 to 2700 K by a subsecond duration pulse heating technique are described. Estimated inaccuracy of measured properties are: 3% for specific heat and hemispherical total emittance, and 0.5% for electrical resistivity. Properties of the alloy are compared with the properties of pure niobium. It was found that specific heat and emittance of the alloy were approximately 0.5% and 1.5%, respectively, higher than those of pure niobium. Electrical resistivity of the alloy was 0.5% lower than that of pure niobium. Like niobium, the alloy showed a negative departure from linearity in the curve of electrical resistivity versus temperature.

[^5]
1. Introduction

In this paper, application of a transient technique to the simultaneous measurements of specific heat, electrical resistivity, and hemispherical total emittance of the alloy niobium - 1 (wt. \%) zirconium in the temperature range from 1500 to 2700 K is described.

The method is based on rapid resistive self-heating of the specimen from room temperature to any desired high temperature (up to its melting point) in less than one second by the passage of electrical currents through it; and on measuring, with millisecond resolution, experimental quantities such as current through the specimen, potential drop across the specimen, and specimen temperature. Details regarding the construction and operation of the measurement system, the methods of measuring experimental quantities, and other pertinent information, such as formulation of relations for properties, etc. are given in earlier publications $[1,2]^{1}$.
2. Measurements

The specimen was a tube of the following nominal dimensions: length, 102 mm ; outside diameter, 6.3 mm ; and wall thickness, 0.5 mm . Zirconium content of the specimen was 1.05% by weight. The total amount of impurities was less than 0.17%; the major impurity was tantalum with 0.09%. Photomicrographs of the specimen, shown in Figure 1, indicate that considerable grain growth took place as the result of pulse heating to high temperatures.

[^6]To optimize the operation of the high-speed pyrometer, the temperature interval (1500 to 2700 K) was divided into six ranges. One experiment was performed in each range. Before the start of the experiments, the specimen was annealed by subjecting it to 30 heating pulses (up to $2500 \mathrm{~K})$. The experiments were conducted with the specimen in a vacuum environment of approximately 10^{-4} torr.

To optimize the operation of the measurement system, the heating rate of the specimen was varied depending on the desired temperature range by adjusting the value of a resistance in series with the specimen. Duration of current pulses in the experiment ranged from 360 to 410 ms ; and the heating rate ranged from 4500 to $6600 \mathrm{~K} \mathrm{~s}^{-1}$. Radiative heat loss from the specimen amounted to approximately 1% at 1500 K , and 9% at 2700 K of the input power.
3. Experimental Results

The thermophysical properties reported in this paper are based on the International Practical Temperature Scale of 1968 [3]. In all computations, the geometrical quantities are based on their room temperature (298 K) dimensions. The experimental results for properties are represented by polynomial functions in temperature obtained by least squares approximation of the individual points. The final values on properties at 100 degree temperature intervals computed using the functions are presented in Table 1. Results obtained from individual experiments, by the method described previously [2], are given in the Appendix (Tables A-1 and A-2). Each number tabulated in these tables represents results from over fifty original data points.

Table 1

Specific heat, electrical resistivity, and hemispherical total emittance of the alloy niobium -1 (wt.\%) zirconium

Temp K	$\mathrm{c}_{\mathrm{p}} \mathrm{g}^{2} \mathrm{I}_{\mathrm{K}}-1$	ρ^{*} $10^{-8} \Omega \mathrm{~m}$	ϵ^{*}
1500	0.3207	57.36	
1600	0.3263	60.13	
1700	0.3322	62.87	0.218
1800	0.3385	65.59	0.232
1900	0.3455	68.27	0.245
2000	0.3535	70.93	0.257
2100	0.3627	73.56	0.268
2200	0.3735	76.16	0.278
2300	0.3861	78.74	0.287
2400	0.4007	81.29	0.295
2500	0.4177	83.81	0.303
2600	0.4373	86.30	0.309
2700	0.4598	88.76	

*Based on ambient temperature (298K) dimensions.

Specific Heat. Specific heat was computed from data taken during the heating period. A correction for power loss due to thermal radiation was made using the results on hemispherical total emittance. The function for specific heat (standard deviation $=1 \%$) that represents the results in the temperature range 1500 to 2700 K is:

$$
\begin{equation*}
c_{p}=7.073 \times 10^{-2}+3.783 \times 10^{-4} \mathrm{~T}-2.091 \times 10^{-7} \mathrm{~T}^{2}+4.532 \times 10^{-11} \mathrm{~T}^{3} \tag{1}
\end{equation*}
$$

where T is in K, and c_{p} is in $J_{g^{-1}} K^{-1}$.
Electrical Resistivity: The electrical resistivity was determined from the same experiments that were used to calculate the specific heat. The function for electrical resistivity (standard deviation $=0.06 \%$) that represents the results in the temperature range 1500 to 2700 K is:

$$
\begin{equation*}
\rho=12.50+3.199 \times 10^{-2} \mathrm{~T}-1.387 \times 10^{-6} \mathrm{~T}^{2} \tag{2}
\end{equation*}
$$

where T is in K, and ρ is in $10^{-8} \Omega \mathrm{~m}$. The measurement, before the pulse experiments, of the electrical resistivity of the specimen at 293 K with a Kelvin bridge yielded a value of $16.2 \times 10^{-8} \Omega \mathrm{~m}$.

Hemispherical Total Emittance: Hemispherical total emittance was

 computed using data taken during both heating and initial free radiative cooling periods. The function for hemispherical total emittance (standard deviation $=1 \%$) that represents the results in the temperature range 1700 to 2600 K is:$$
\begin{equation*}
\varepsilon=-1.647 \times 10^{-1}+3.056 \times 10^{-4} \mathrm{~T}-4.749 \times 10^{-8} \mathrm{~T}^{2} \tag{3}
\end{equation*}
$$

where T is in K.

4. Estimate of Errors

The details for estimating errors in measured and computed quantities in transient experiments using the present measurement system are given in
an earlier publication [2]. In this paper, the specific items in the error analysis were recomputed whenever the present conditions differed from those in the earlier publication. The results for imprecision ${ }^{2}$ and inaccuracy ${ }^{3}$ in the properties are: 1% and 3% for specific heat, 0.06% and 0.5% for electrical resistivity, 1% and 3% for hemispherical total emittance.

5. Discussion

The specific heat, electrical resistivity, and hemispherical total emittance of the niobium-1 zirconium alloy measured in this work are presented in Figure 2. A comparison of the present results for the alloy with those for pure niobium [4] obtained using the same method is given in Figure 3. It may be seen that specific heat and hemispherical total emittance of the alloy were approximately 0.5% and 1.5%, respectively, higher than those of pure niobium. The difference in specific heat cannot be accounted for by the additivity law. Electrical resistivity of the alloy was 0.5% lower than that of pure niobium. However, one should not place too much significance to these differences since their magnitudes are less than the combined estimated errors in the measurements for the alloy and for the pure metal.

At 293 K , electrical resistivity of the alloy ($16.2 \times 10^{-8} \Omega \mathrm{~m}$)
is higher than the resistivity of pure niobium (15.9 $\times 10^{-8} \Omega \mathrm{~m}$) [4]. However, at high temperatures (Figure 3) the resistivity of the alloy

[^7]${ }^{3}$ Inaccuracy refers to the estimated total error (random and systematic).
is lower than that of niobium. A similar trend was also observed in the electrical resistivity of the alloy tantalum - 10 (wt. \%) tungsten [5]. Like tantalum, at high temperature the alloy showed a negative departure from linearity in the curve of electrical resistivity versus temperature.
6. Acknowledgement

The author expresses his gratitude to Dr. C. W. Beckett for his continued interest and encouragement of research in high-speed methods of measuring thermophysical properties. The contribution of Mr. M. S. Morse in connection with electronic instrumentation is also greatly appreciated.

Table A-1

Experimental results on specific heat and electrical resistivity of the alloy niobium-1 (wt.\%) zirconium

T K	$\mathrm{J}^{\mathrm{c}} \mathrm{~g}^{-1} \mathrm{~K}^{-1}$	$\begin{array}{r} \Delta c^{*} \\ \% \end{array}$	$10^{-8} \Omega_{\mathrm{m}}$	$\begin{gathered} \Delta \rho^{*} \\ \% \end{gathered}$
1500	0.3198	-0.24	57.37	+0.01
1550	0.3206	-0.87	58.75	-0.01
1600	0.3275	+0.37	60.13	0.00
1650	0.3344	+1.57	61.53	+0.03
1700	0.3311	-0.31	62.90	+0.04
1750	0.3392	+1.19	64.27	+0.05
1800	0.3339	-1.34	65.59	+0.01
1850	0.3416	-0.06	66.92	-0.02
1900	0.3480	+0.74	68.26	-0.03
1950	0.3419	-2.14	69.58	-0.03
2000	0.3505	-0.82	70.88	-0.07
2050	0.3587	+0.26	72.19	-0.09
2100	0.3666	+1.08	73.50	-0.09
2150	0.3739	$+1.62$	74.81	-0.08
2200	0.3700	-0.91	76.25	+0.10
2250	0.3779	-0.42	77.51	+0.06
2300	0.3859	-0.00	78.77	+0.03
2350	0.3943	+0.33	80.03	+0.01
2400	0.4030	+0.60	81.28	-0.01
2450	0.4024	-1.59	82.68	+0.16
2500	0.4217	+0.98	83.79	-0.02
2550	0.4228	-1.01	85.11	+0.07
2600	0.4426	+1.24	86.28	-0.02
2650	0.4461	-0.43	87.52	-0.02
2700	0.4594	-0.07	88.69	-0.08

*The quantities Δc_{p} and $\triangle O$ are percentage deviations of the individual results from the smooth functions represented by equations (1) and (2), respectively.

Experimental results on hemispherical total emittance of the alloy niobium-1 (wt. \%) zirconium

T	ε	$\Delta \varepsilon^{*}$
K		
1711	0.218	-0.44
1711	0.223	+1.71
1711	0.217	-1.01
1712	0.223	+1.76
1899	0.242	-1.01
1899	0.242	-0.93
1899	0.240	-1.76
1900	0.241	-1.50
2055	0.264	+0.36
2056	0.265	+0.62
2056	0.266	+1.05
2322	0.266	+1.22
2324	0.287	-0.69
2324	0.289	-0.11
2325	0.290	+0.14
2667	0.291	+0.64
2670	0.312	-0.31
	0.312	-0.11
	0.313	+0.02
		+0.20

*The quantity $\triangle \epsilon$ is percentage deviation of the individual results from the smooth function represented by equation
8. References
[1] Cezairliyan, A., Design and operational characteristics of a high-speed (millisecond) system for the measurement of thermophysical properties at high temperatures, J. Res. Nat. Bur. Stand. (U.S.), 75C (Eng. and Instr), 7 (1971).
[2] Cezairliyan, A., Morse, M. S., Berman, H. A., and Beckett, C. W., High-speed (subsecond) measurement of heat capacity, electrical resistivity, and thermal radiation properties of molybdenum in the range 1900 to 2800 K , J. Res. Nat. Bur. Stand. (U.S.), 74A (Phys. and Chem.), 65 (1970).
[3] International Practical Temperature Scale of 1968, Metrologia, 5, 35 (1969).
[4] Cezairliyan, A., High-speed (subsecond) measurement of heat capacity, electrical resistivity, and thermal radiation properties of niobium in the range 1500 to 2700 K , J. Res. Nat. Bur. Stand. (U.S.), 75A (Phys. and Chem.), 565 (1971).
[5] Cezairliyan, A., High-speed (subsecond) simultaneous measurement of specific heat, electrical resistivity, and hemispherical total emittance of tantalum-10 (wt. \%) tungsten alloy in the range 1500 to 3200 K, High Temperatures-High Pressures, to be published.

Figure 1. Photomicrographs of the niobium - 1 zirconium specimen. Upper photograph, specimen as received; lower photograph, specimen after the entire set of experiments.

Chapter 7
 MEASUREMENT OF MELTING POINT AND ELECTRICAL RESISTIVITY (ABOVE 3600 K) OF TUNGSTEN BY A PULSE HEATING METHOD*

Ared Cezairliyan
National Bureau of Standards
Washington, D. C. 20234

Abstract

A subsecond duration pulse heating method is used to measure the melting point, and electrical resistivity of tungsten above 3600 K . The results yield a value of 3695 K (on the International Practical Temperature Scale of 1968) for the melting point with an estimated inaccuracy of 15 K . Estimated inaccuracy in electrical resistivity measurements is 1 percent.

[^8]
1. Introduction

Serious difficulties are encountered in the measurement of electrical resistivity and melting point of substances at temperatures above 2500 K by conventional steady-state and quasi steady-state methods. Most of the problems inherent in these methods are eliminated by using high-speed measurement techniques. An application of a high-speed (pulse heating) technique to the accurate measurement of the melting point and electrical resistivity (above 2940 K) of molybdenum is described in the literature [1].

In the present study, the same pulse heating technique was used for the measurement of the melting point and electrical resistivity of tungsten above 3600 K . The tubular specimen was heated in vacuum (10^{-4} torr) from room temperature to its melting point in 0.7 s by a single heavy current pulse. During the heating period, current flowing through the specimen, potential difference across the specimen, and specimen temperature were measured. Temperature was measured with a high-speed photoelectric pyrometer [2] which permits 1200 evaluations of specimen temperature per second. The pyrometer's target was a rectangular hole ($1 \times 0.5 \mathrm{~mm}$) in the wall at the middle of the specimen. Recordings of voltage, current, and temperature were made with a high-speed digital data acquisition system [3], which is capable of recording data with a full-scale signal resolution of approximately one part in 8000 and a time resolution of 0.4 ms. Details regarding the construction and operational characteristics of the entire measurement system are given in earlier publications [3, 4].

2. Measurements

Measurements were performed on two specimens designated as tungsten-1 and tungsten-2. Each specimen was a tube fabricated from a tungsten rod by removing the center portion by an electro-erosion technique. The nominal dimensions of the specimens were: length 102 mm (4 in.) , outside diameter, 6.3 mm (0.25 in.); and thickness, 0.5 mm ($0.02 \mathrm{in)}$. . The outer surface of the specimen was polished to reduce heat loss due to thermal radiation. The rods used in the fabrication of the two specimens were obtained from two different sources. They were manufactured by two different techniques: sintered (tungsten-1), and arc cast (tungsten-2). Both specimens were 99.9 ${ }^{+}$percent pure. Spectrochemical analyses on tungsten-1 indicate the presence of the following impurities in ppm weight: Mo, 310; Th, < 250; Fe, 60; Zr, 30; Ca, Nb, < 20 each; Cu, Ti, 10 each; A1, Cr, Si, 5 each; and $\mathrm{B}, \mathrm{Co}, \mathrm{Mg}, \mathrm{Mn}, \mathrm{Ni}, \mathrm{Pb}, \mathrm{Sn}, \mathrm{Sr},<2$ each. The residual resistivity ratio of tungsten-1 was 41. All measurements reported in this paper, unless stated otherwise, are based on the International Practical Temperature Scale of 1968 (IPTS-1968) [5].

Specimen temperature near and during the initial melting period was measured as a function of time. The plateau in temperature indicates the region of solid and liquid equilibria. By averaging temperature points on the plateau the following values were obtained for the melting point: 3692.6 K for tungsten-1, and 3696.8 K for tungsten-2, with a standard deviation (individual point) of 1.3 K and 1.1 K , respectively. The measured temperatures at the plateau for the two specimens are shown in
figure 1. Averaging the results of the two specimens yields a value of 3695 K for the melting point of tungsten. To determine the trend of measured temperatures at the plateau, temperature data were fitted to a linear function in time using the least squares method. This procedure indicated that the slope of the linear function was small, corresponding to a maximum temperature difference of less than 0.5 K between the beginning and end of the plateau for both specimens.

Electrical resistance of tungsten-1 near and at the melting point is shown in figure 2. It may be seen that resistance behaved normally until approximately 10 K below the melting point was reached. Electrical resistivity was calculated using the relation $\rho=R A / L$, where R is the resistance, A the cross-sectional area, and L the length of the specimen between the potential probes. Dimensions were based on their room temperature values. The cross-sectional area was determined from measurements of density and weight. Measured values for the electrical resistivity (in $10^{-8} \Omega \mathrm{~m}$) are: 112.0 at $3600 \mathrm{~K}, 113.5$ at 3650 K , and 114.4 at 3680 K .

Sources and estimates of errors in experiments similar to the one conducted in this study are given in detail in earlier publications [1, 3]. The combination of errors gives an estimate for the inaccuracy of measured properties: I percent for electrical resistivity, and 15 K for the melting point.

FIGURE 2. Electrical resistance of tungsten-1 as a function of temperature near and at the melting point.

3. Discussion

As may be seen in Table l, considerable differences exist in the tungsten melting points reported in the literature. In order to have a common ground for comparisons, all reported values were converted to IPTS-1968. It is interesting to note that, in general, the reported values increase chronologically. The measurements were performed either before 1930 or after 1960. The melting points reported prior to 1915, as were summarized by Langmuir [6], were lower than that of Langmuir by as much as 50 to 500 K . Experimental difficulties, including pyrometry problems, encountered in high temperature quasi steady-state measurements might have been responsible for the large discrepancies. Another source of the discrepancies could have been the differences in the purity of various tungsten specimens.

Probably, the most reliable measurement performed on the melting point of tungsten before 1930 was that of Worthing [7] which is 25 K below the present value; however, this difference is within the combined vatue
uncertainties of the two results. The average, of the melting points reported by three investigators [11, 12, 14] since 1960 is 3693 K ; average and maximum differences from this value being 7 K and 10 K , respectively. The melting point obtained in this study is 2 K higher than the above average.

TABLE 1
Melting Point of Tungsten Reported in the Literature

Investigator	Ref.	Year	Constants*		Melting Point, K	
			T_{Au} (K)	$c_{2}(\mathrm{~cm} \mathrm{~K})$	as reported\%*	on IPTS-1968
Langmuir	6	1915	1335	1.439	3540 ± 30	3559
Worthing	7	1917	1336	1.435	3675 ± 15	3670
Henning and Heuse	8	1923	1336	1.430	3643	3616
Pirani	9	1923	1336	1.430	3660 ± 60	3633
Forsythe and Worthing	10	1925	1336	1.433	3655	3641
Zalabak	14	1961	1336.15	1.438	3680 ± 25	3687
Allen	11	1962	1336.15	1.438	3682 ± 20	3689
Rudy et at	12	1966	1336.15	1.438	3696 ± 30	3703
IPTS-1968\% $\%$ \%	5	1968	1337.58	1.4388	3660	3660
Present Work			1337.58	1.4388	3695 ± 15	3695

*Values of $T_{A u}$ (gold point) and c_{2} (second radiation constant) used by the investigator.
**Based on T_{Au} and c_{2} used by the investigator.
***Recommended as secondary reference point on IPTS-1968.

The presence of impurities in a specimen alters (in general, reduces) the melting point of the element. Based on the Raoult-Van't Hoff equation, the melting point depression for the tungsten specimen (with total amount of impurities less than 0.1 percent) is estimated to be less than 3 K . Also, under the present operating conditions, it is very unlikely that the effect of superheating, if present at all, is more than a fraction of a degree. One may conclude that the melting point of tungsten is $3695 \pm 15 \mathrm{~K}$.

The electrical resistivity of this work at 3600 K is approximately 2 percent lower than the value reported by Jones [13].

Measurements indicate a normal behavior of electrical resistivity until approximately 10 K below the melting point was reached. Above this temperature, a departure from normalcy is observed which may be due to: (1) premelting effects of impurities present in the specimen, and (2) increase in vacancy concentration. Small temperature gradients in the specimen also may partially account for this.

With the present system it was not possible to follow the entire melting process because the specimen collapsed and opened the main electrical circuit prior to the completion of melting.
[1] Cezairliyan, A., M. S. Morse, and C. W. Beckett. Measurement of melting point and electrical resistivity (above 2840 K) of molybdenum by a pulse heating method. Rev. Int. Hautes Tempér. et Réfract. 7, 382 (1970).
[2] Foley, G. M. High-speed optical pyrometer. Rev. Sci. Instr. 41, 827 (1970).
[3] Cezairliyan, A., M. S. Morse, H. A. Berman, and C. W. Beckett. High-speed (subsecond) measurement of heat capacity, electrical resistivity, and thermal radiation properties of molybdenum in the range 1900 to $2800 \mathrm{~K} . \mathrm{J}$. Res. Nat. Bur. Stand. (U.S.) 74A (Phys. and Chem.), 65 (1970).
[4] Cezairliyan, A. Design and operational characteristics of a highspeed (millisecond) system for the measurement of thermophysical properties at high temperatures. J. Res. Nat. Bur. Stand. (U.S.) 75C (Eng. and Instr.), 7 (1971).
[5] International Practical Temperature Scale of 1968. Metrologia 5, 35 (1969).
[6] Langmuir, I. The melting point of tungsten. Phys. Rev. 6, 138 (1915).
[7] Worthing, A. G. The true temperature scale of tungsten and its emissive powers at incandescent temperatures. Phys. Rev. 10, 377 (1917).
[8] Henning, F. and W. Heuse. Melting points of platinum and tungsten. Zeit. Physik 16, 63 (1923).
[9] Pirani, M. and H. Alterthum. A method of measuring the melting points of metals having high melting points. Zeitschrift Electrochemie 29, 5 (1923).
[10] Forsythe, W. E. and A. G. Worthing. The properties of tungsten and the characteristics of tungsten lamps. Astrophys. J. 61, 146 (1925).
[11] Allen, R. D. Techniques for melting point determination on an electrically heated refractory metal. Nature 193, 769 (1962).
[12] Rudy, E., S. Windisch, and J. R. Hoffman. AFML-TR-65-2, Part I, Vol. VI,Air Force Materials Laboratory Research and Technology Division, Dayton, Ohio (1966).
[13] Jones, H. A. A temperature scale for tungsten. Phys. Rev. 28, 202 (1926).
[14] Zalabak, C. F. NASA Technical Note D-761, 1961.

Chapter 8

MEASUREMENT OF MELTING POINT, NORMAL SPECTRAL

EMITTANCE (AT MELTING POINT), AND ELECTRICAL RESISTIVITY (ABOVE 2650 K) OF NLOBIUM BY A PULSE HEATING METHOD*

Ared Cezairliyan
National Bureau of Standards
Washington, D. C. 20234

Abstract

A subsecond duration pulse heating method is used to measure the melting point, normal spectral emittance (at the melting point), and electrical resistivity (above 2650 K) of niobium. The results yield a value of 2750 K for the melting point on the International Practical Temperature Scale of 1968. Normal spectral emittance at the melting point is 0.348 , and remained constant during melting. At 2740 K , electrical resistivity is $90.11 \times 10^{-8} \Omega \mathrm{~m}$. Estimated inaccuracy is 10 K in the melting point, 3% in normal spectral emittance and 0.5% in electrical resistivity.

[^9]
1. Introduction

A millisecond resolution pulse heating technique was developed earlier in connection with the measurement of selected thermophysical properties of electrical conductors at high temperatures (Cezairliyan et al., 1970a). This technique was also applied to the measurement of the melting point of molybdenum (Cezairliyan et al., 1970b), and the normal spectral emittance of tantalum at its melting point (Cezairliyan, 1970).

In the present study, the same technique is used for the measurements of the melting point, normal spectral emittance (at the melting point), and electrical resistivity (above 2650 K) of niobium.

The technique is based on resistive pulse heating of the specimen from room temperature to its melting point in less than one second and measuring, with millisecond resolution, current through the specimen, potential difference across the specimen, and specimen temperature. Specimen temperature was measured with a high-speed photoelectric pyrometer (Foley, 1970) which permits 1200 evaluations of specimen temperature per second. The recordings of voltage, current, and temperature were made with a high-speed digital data acquisition system (Cezairliyan et al., 1970a), which is capable of recording data with a full-scale signal resolution of approximately one part in 8000 and a time resolution of 0.4 ms . Details regarding the construction and operational characteristics of the entire measurement system is given in an earlier publication (Cezairliyan, 1971a).

Melting point and electrical resistivity measurements were performed on two niobium specimens in the form of tubes, designated as niobium-1 and niobium-2. The nominal dimensions of the tubes were: length, 102 mm ; outside diameter, 6.3 mm ; thickness, 0.5 mm . A small rectangular hole ($0.5 \times 1 \mathrm{~mm}$) fabricated in the wall at the middle of the specimen approximated blackbody conditions for temperature measurements. Normal spectral emittance measurements were performed on two niobium specimens in the form of strips, designated as niobium-3 and niobium-4. The nominal dimensions of the strips were: length, 102 mm ; width, 6.3 mm ; thickness, 0.25 mm . The surfaces of all specimens were polished.

The specimens were 99.9 percent pure. Spectrochemical analysis indicated the presence of the following impurities in ppm by weight: Ta, 450; W, < 100; Hf, < 50; Sb and $\mathrm{Zn},<10$ each; A1, Mo, 5 each; As, $\mathrm{Bi}, \mathrm{Cd}, \mathrm{Si}, \mathrm{Te}, \mathrm{Zr},<5$ each; $\mathrm{Sn}, 3$; $\mathrm{Fe},<3$; and $\mathrm{B}, \mathrm{Ca}, \mathrm{Co}, \mathrm{Cr}, \mathrm{Cu}$, $\mathrm{Mg}, \mathrm{Mn}, \mathrm{Ni}, \mathrm{Pb}, \mathrm{Ti}, \mathrm{V},<1$ each.

Before starting the experiments, all the specimens were annealed by subjecting them to 30 heating pulses (up to 2400 K). The experiments were conducted with the specimens in a vacuum environment of approximately 10^{-4} torr. Duration of the current pulses was 500 ms for the tubes and 600 ms for the strips. This corresponds to a heating rate of approximately $4700 \mathrm{~K} \mathrm{~s}^{-1}$ for the tubes and $2000 \mathrm{~K} \mathrm{~s}^{-1}$ for the strips near the melting point. The magnitude of current pulses near the melting point was approximately 1400 A in the case of the tubes, and 250 A in the case of the strips.

Al1 measurements reported in this paper, unless stated otherwise, are based on the International Practical Temperature Scale of 1968 (IPTS -68, 1969).

2.1. Me1ting Point

Temperature of the tubular specimens was measured near and during the initial melting period. The results on niobium- 1 are shown in Figure 1. Temperature of the heating specimen increased almost 1inearly with time above 2650 K . A linear fit of temperature in terms of time obtained using the least squares method yielded a standard deviation (individual point) of 0.8 K . The plateau in temperature indicates the region of solid and liquid equilibria. Measured temperatures at the plateau for the two niobium specimens are shown in Figure 2. The melting point was obtained by averaging temperature points on the plateau of a given specimen.

The melting point obtained by this approach was 2750.6 K for niobium-1, and 2750.5 K for niobium-2. Standard deviation of an individual temperature point from the average for each specimen was 0.7 K . The duration of the plateau of niobium-1 was longer than that of niobium-2. This may be attributed to an early collapse of niobium-2. To determine the trend of measured temperatures at the plateau, temperatures for niobium-1 were fitted to a linear function in time using the least squares method. The slope of the linear function was $1.8 \mathrm{~K} \mathrm{~s}^{-1}$, which corresponds to a maximum temperature difference of less than 0.03 K between the beginning and the end of the plateau. This procedure gave a standard deviation of 0.7 K , which is the same as that obtained by averaging the temperatures.

It may be concluded that the melting point of niobium is 2750 K .

2.2. Normal Spectral Emittance

Normal spectral emittance was determined from the measurements of the surface radiance temperature of niobium strips and the melting point obtained from the measurements on the tubular specimens. Based on the Wien radiation equation, the relation between emittance and temperature is

$$
\begin{equation*}
\epsilon:=\frac{1}{\exp \left[\frac{c_{2}}{\lambda}\left(\frac{1}{\mathrm{~T}_{\mathrm{s}}}-\frac{1}{\mathrm{~T}_{\mathrm{m}}}\right)\right]} \tag{1}
\end{equation*}
$$

where ε is normal spectral emittance, T_{m} the melting point, T_{s} the surface radiance temperature, c_{2} the second radiation constant (1.4388 $\times 10^{-2} \mathrm{~m} \mathrm{~K}$), and λ the effective wavelength of the optical system. The measurements were performed at 650 nm which corresponds to the effective wavelength of the pyrometer's interference filter. The bandwith of the filter was 10 nm . The circular area viewed by the pyrometer was 0.2 mm in diameter.

The experimental results of the surface radiance temperature for niobium-3 near and at the melting point are shown in Figure 3. Each measured temperature during melting is an average quantity representing a combination of solid and liquid phases over the area viewed by the pyrometer. It is interesting to note the sharp peak in the radiance temperature, which amounts to approximately 5 K , at the start of melting. A peak similar in shape and magnitude was also observed in the case of niobium-4. The plateau in the surface radiance temperature corresponds to melting of the specimen.

The average surface radiance temperature was computed to be 2432.5 K for niobium-3, and 2431.0 K for niobium-4 with a standard deviation of 0.7 K . To check the deviations from constancy at the plateau, temperature data for niobium-3 were fitted to a linear function in time (standard deviation $=0.7 \mathrm{~K}$). The results do not indicate any significant departure from constancy. The slope of this function was approximately $0.6 \mathrm{~K} \mathrm{~s}^{-1}$, which corresponds to a maximum temperature difference of 0.1 K between the beginning and the end of the plateau.

Normal spectral emittance was computed for each temperature using Equation (1). The average of the results for each specimen was 0.349 for niobium-3 and 0.347 for niobium-4 with a standard deviation of 0.3%. The results on the two specimens are in agreement within 0.6%. It may be concluded that the normal spectral emittance of niobium at its melting point is 0.348 .

2.3. Electrical Resistivity

Electrical resistivity of the tubular niobium specimens was calculated using the relation $\rho=R A / L$, where R is the resistance, A the cross-sectional area, and L the length of the specimen between the potential probes. Dimensions were based on their room temperature values. Cross-sectional area was determined from the measurement of weight and density. The results of the electrical resistivity of niobium-1 above approximately 2650 K are shown in Figure 4. In the range 2650 to 2740 K, the electifcal resistivity was fitted to a linear function in temperature with a standard deviation of 0.02% using the least squares method. The average absolute difference in the measured electrical resistivity of
the two niobium specimens in the range 2650 to 2740 K was approximately 0.4%. The final result for the electrical resistivity of niobium was obtained by averaging the results of the two specimens. This yielded a value of $87.92 \times 10^{-8} \Omega \mathrm{~m}$ at $2650 \mathrm{~K}, 89.14 \times 10^{-8} \Omega \mathrm{~m}$ at 2700 K , and 90.11 $\times 10^{-8} \Omega \mathrm{~m}$ at 2740 K . As shown in Figure 4, electrical resistivity continued to increase during melting of the specimen.

3. Estimate of Errors

Sources and estimates of errors in experiments similar to the one conducted in this study are given in detail in earlier publications (Cezairliyan et al., 1970a, 1970b). Specific items in the error analysis were recomputed whenever the present conditions differed from those in the earlier publications. A summary of the results on imprecision and inaccuracy of some of the measured and computed quantities are given in Table 1.

It may be seen from Table 1 that the imprecision of blackbody temperature measurements during heating of the specimen (before reaching the melting point) was approximately the same as that during the melting period. This indicates that in the experiment the initial melting phase progressed normally and that there were no undesirable effects during melting of the specimen, such as vibration of the specimen, movement of the blackbody sighting hole in the specimen, and the instantaneous development of hot spots or zones in the speaimen. Also the imprecision of the surface radiance temperature measurements was the same as that of blackbody temperature measurements, which indicates that the specimen's surface conditions did not change in a random fashion during the melting period.

Conversion of the results of the two recent measurements reported in the 1iterature to IPTS-68 yie1ds 2746 K (Schofield, 1956-1957) and 2745 K (Pemsler, 1961) for the melting point of niobium. These are 4 to 5 K lower than the present result, 2750 K . However, the differences are within the measurement uncertainties reported by the investigators. In addition to this, there are indications that the specimens used in the earlier measurements were less pure than those used in the present study, which may account partially for the lower melting points obtained earlier. The melting point depression due to the impurities in the present specimens is estimated to be not more than 2 K .

Normal spectral emittance of niobium at its melting point is reparted to be 0.368 (Pemsler, 1961); this is approximately 4% higher than the present value of 0.348. Earlier results (Cezairliyan, 1971b) on tubular niobium specimens in the range 1700 to 2300 K showed a linear variation of normal spectral emittance with temperature. Extrapolation of these results to the melting point yields 0.348 for normal spectral emittance, which is identical to the present value.

Electrical resistivity reported by Gebhardt et al. (1966) goes only to 2500 K . Extrapolation of the results to 2700 K yields a value of 90.74 $\times 10^{-8} \Omega \mathrm{~m}$, which is 1.8% higher than the present valueof $89.14 \times 10^{-8} \Omega \mathrm{~m}$. Electrical resistivity behaved normally until approximately 5 to 10 K below the melting point was reached (Figure 4). Above this, a departure
from normalcy was observed which may be due to: (1) premelting effects of impurities present in the specimen, and (2) increase in vacancy concentration. Small temperature gradients in the specimen also may partially account for this.

The sharp peak in surface radiance temperature observed at the beginning of melting (Figure 3) was reproducible, both in shape and magnitude, for the two strips. However, no such peak was observed in the true temperature of the tubes (Figure 1). This implies that the peak could not have been due to superheating of the specimen. The effect of superheating in metals (if present at all), under the present operating conditions, is unlikely to be more than a fraction of a degree. Also, it is not likely that the strip surface was in the liquid phase several degrees above the melting point for a short period before establishing the melting plateau. A possible explanation is that a sudden change in the surface conditions took place at the start of melting. An earlier investigation on tantalum (Cezairliyan, 1970) did not show a sharp peak in surface radiance temperature at the start of melting. However, a uniform decrease in normal spectral emittance was observed in tantalum as melting progressed. The results on niobium do not show any such variation.

5. Acknowledgement

The author expresses his gratitude to Dr. C. W. Beckett for his continued interest and encouragement of research in high-speed methods of measuring thermophysical properties. The contribution of Mr. M. S. Morse in connection with electronic instrumentation is also greatly appreciated.
|. Cezairliyan, A., 1970, High Temp. - High Pres., 2, 501-506.
2. Cezairliyan, A., Morse, M. S., Berman, H. A., and Beckett, C. W., Bur. 1970a, J. Res. Nat. Stand. (U. S.), 74A (Phys. and Chem.), 65-92.
3. Cezairliyan, A., Morse, M. S., and Beckett, C. W., 1970b, Rev. Int. Hautes Tempér. et Réfract. 7, 382-388.
4. Cezairliyan, A., 197la, J. Res. Nat. Bur. Stand. (U. S.), 75C (Eng. and Instr.), 7-18.
5. Cezairliyan, A., 1971b, J. Res. Nat. Bur. Stand. (U. S.), 75A (Phys. and Chem.), 565-571.
6. Foley, G. M., 1970, Rev. Sci. Instr., 41, 827-834.
7. Gebhardt, E., Dürrschnabel, W., and Hörz, G., 1966, J. Nuc. Materials, 18, 119-133.
8. International Practical Temperature Scale of 1968, 1969, Metrologia, 5, 35-44.
9. Pemsler, J. P., 1961, J. Electrochem. Soc., 108, 744-750.
10. Schofield, T. H., 1956-1957, J. Inst. Metals, 85, 372-374.

TABLE 1

Imprecision and inaccuracy of measured and computed quantities*

Quantity	Imprecision	Inaccuracy
Temperature-blackbody (during heating) Temperature-blackbody (during melting)	0.8 K	7 K
Temperature-surface radiance (during melting)	0.7 K	7 K
Voltage Current	0.7 K	7 K
Me1ting point Normal spectral emittance Electrical resistivity	0.02%	0.05%

*Imprecision refers to the standard deviation of an individual point as computed from the difference between measured value and that from the smooth function obtained by the least squares method. Inaccuracy refers to the estimated total error (random and systematic).

(240

Chapter 9

A PULSE HEATING TECHNIQUE FOR
THE MEASUREMENT OF HEAT OF FUSION OF METALS AT HIGH TEMPERATURES*

A. Cezairliyan
National Bureau of Standards
Washington, D. C. 20234

A pulse heating technique was developed earlier for the measurement of selected thermophysical properties (specific heat, electrical resistivity, and hemispherical total emittance) of electrically conducting substances at high temperatures. In this paper a preliminary experiment (on niobium) is described which demonstrates the feasibility of extending the technique to the measurement of heat of fusion of metals.

[^10]The method is based on rapid resistive self-heating of a composite specimen by the passage of high currents through it, and measuring the pertinent quantities as a function of time. The details of the measurement system and its operational characteristics may be found in an earlier publication [1].

The composite specimen (Figure 1) was made of three strips, each having the following nominal dimensions: length, 75 mm ; width, 6.3 mm ; and thickness 0.25 mm . The middle strip was niobium, and the two outer strips were tantalum. The specimen was pulse heated from room temperature to approximately 200 K above the melting point of niobium in 0.8 s . During the heating period, current through the composite specimen, potential drop across the composite specimen, and surface radiance temperature of the outer strip were measured every 0.4 ms . Potential measurements were made across the middle 25 mm portion of the specimen using spring-loaded knife-edge probes. Temperature was measured with a high-speed photoelectric pyrometer [2].

Variation of surface radiance temperature of the tantalum strip as a function of time is shown in Figure 2. The plateau corresponds to melting of the inner strip (niobium). When niobium reached a temperature approximately 200 K above its melting point, heating was stopped by automatically switching off the current. Since the melting point of tantalum is approximately 500 K higher than that of niobium, the outer strips did not melt during the entire experiment and acted as a container for niobium. At the end of the experiment (after the specimen cooled down to room temperature), it was observed that the entire specimen had retained its original geometry and weight.

The heat of fusion of niobium was computed using the following equation:

$$
Q_{f}=\text { ei } \Delta t-Q_{r}-Q_{s}
$$

where

```
\(Q_{f}=\) heat of fusion
e = potential drop across the specimen
i \(=\) current through the specimen
\(\Delta t=\) duration of plateau, \(t_{2}-t_{1}\) in Figure 2
\(Q_{r}=\) heat loss due to thermal radiation
\(Q_{S}=\) energy absorbed by two outer strips during melting of niobium
```

The quantity Δt was obtained from the points of interaction of polynomial functions (obtained by the least squares method) representing temperature versus time data in premelting, melting, and postmelting periods of niobium. Standard deviation of an individual point from the function was 0.7 K for premelting and postmelting regions, and 0.9 K for the melting region. Heat loss by thermal radiation, Q_{r}, was determined from data obtained during the radiative cooling period following the rapid heating period. The correction Q_{S} was necessitated as the result of the existing 5 K difference between the temperatures at the beginning and the end of the plateau.

The results of computations using the experimental data indicate that energy imparted to the specimen (ei Δt) was 145.1 J , energy radiated $\left(Q_{r}\right)$ was 47.5 J , and energy absorbed by the two outer strips $\left(Q_{s}\right)$ was 1.5 J . The above yield 96.1 J for energy absorbed during melting, which corresponds to a value of $26,900 \mathrm{~J} \mathrm{~mol}^{-1}$ for the heat of fusion of niobium. In the computations the atomic weight of niobium was taken as 92.91. If one considers that the melting point of niobium is $2750 \mathrm{~K}[3]$, entropy of fusion becomes $9.80 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$ (2.34 cal mol ${ }^{-1} \mathrm{~K}^{-1}$).

The only other experimental results on the heat of fusion of niobium were those reported by Margrave [4], and more recently by Sheindin et al. [5]. Both investigations utilized the lavitation calorimetry technique. A summary of the results is given in Table 1. It may be seen that the result of the present work agrees, within 2.6%, with that of Sheindlin et al. However, the value reported by Margrave is considerably higher than the value given both in the present work (by 23%) and by Sheindlin et al. (by 20%).

The present preliminary investigation has demonstrated that the millisecond resolution transient technique shows considerable promise in measuring heat of fusion of electrically conducting substances at temperatures above 2000 K where other more conventional techniques encounter serious difficulties. However, additional work, both mathematical and experimental, is required to assess the reliability and the accuracy of the technique.

TABLE 1

Heat of fusion of niobium reported in the literature

Investigator	Ref.	Year	$\begin{aligned} & \text { Heat of } \\ & \text { cal mol-1 } \end{aligned}$	$\begin{aligned} & \text { usion } \\ & \mathrm{J} \text { mol }{ }^{-1} \end{aligned}$	Me1ting Point K	Entropy of cal $\mathrm{mol}^{-1} \mathrm{~K}^{-1}$	$\begin{aligned} & \text { Fusion } \\ & \mathrm{J} \text { mol } 1^{-1} \mathrm{~K}^{-1} \end{aligned}$
Margrave	4	1970	7,900	33,050	2740	2.88	12.1
Sheindlin et al.	5	1972	6,600	27,600		2.41	10.1
Present work			6,430	26,900	2750	2.34	9.8

References

[1] Cezairliyan, A., Design and operational characteristics of a high-speed (millisecond) system for the measurement of thermophysical properties at high temperatures; J. Res. Nat. Bur. Stand. (U.S.), 75C (Eng. and Instr.), 7 (1971).
[2] Foley, G. M., High-speed optical pyrometer, Rev. Sci. Instr., 41, 827 (1970).
[3] Cezairliyan, A., Measurement of melting point, normal spectral emittance (at melting point), and electrical resistivity (above 2650 K) of niobium by a pulse heating method, High TemperaturesHigh Pressures, to be published.
[4] Margrave, J. L., Thermodynamic properties of liquid metals, High Temperatures-High Pressures, 2, 583 (1970).
[5] Sheindiin, A. E., Berezin, B. Ya., and Chekhovskoi, V. Ya., Enthalpy of niobium in solid and 1iquid states, High TemperaturesHigh Pressures, to be published.

Figure 1. Schematic diagram showing the arrangement of the composite specimen, clamps, and surface radiance temperature measurement system (dimensions are not to scale). Strip of material "B" is sandwiched between two strips of material "A". The melting point of " B " is lower than that of " A ".
A. Cezairliyan and J. L. McClure National Bureau of Standards Washington, D. C. 20234

Abstract

Preliminary results of an experiment concerning the $\gamma \rightarrow \delta$ phase transformation in iron demonstrate the feasibility of applying a high-speed pulse heating technique to the study of high temperature solid-solid phase transformations in electrically conducting substances. The variations of surface radiance temperature as a function of time and the electrical resistivity as a function of surface radiance temperature clearly show the phase transformation. The surface radiance temperature of iron at the transformation point is 1561 K . Electrical resistivity shows an increase of approximately 0.3% during the phase transformation.

[^11]A millisecond resolution pulse heating technique was developed in connection with the measurement of selected thermophysical properties of electrical conductors at high temperatures [1]. This technique has recently been applied to measurements of the melting point and the normal spectral emittance at the melting point of selected metals $[2,3,4]$.

This paper describes an experiment which was conducted to demonstrate the feasibility of applying the same technique to a study of solid-solid phase transformations. A preliminary investigation of the phase transformation $(\gamma \rightarrow \delta)$ in iron, that occurs at approximately 1675 K , is reported. Approximate determinations of the transformation temperature, the normal spectral emittance at the melting point, and the electrical resistivity above 1600 K are also reported.

The high-speed technique is based on rapid resistive self-heating of the specimen from room temperature to its melting point. During an experiment, which lasts less than one second, the current through the specimen, the potential across the specimen, and the specimen temperature are measured as functions of time and recorded with a digital data acquisition system which has a full-scale signal resolution of one part in 8,000 and a time resolution of 0.4 ms . Temperature measurements are made with a high-speed photoelectric pyrometer [5]. Details regarding the construction and operation of the measurement system are given in an earlier publication [6].

Iron was chosen for this study because it has a high temperature phase transformation (approximately at 1675 K). A lower temperature
phase transformation in iron (approximately at 1185 K) could not be studied because of pyrometric limitations.

The experiment was conducted on an iron specimen of 99.9% purity. The specimen was a rod of the following nominal dimensions: length, 76 mm ; and diameter, 3.2 mm . The surface was polished to reduce radiation losses. The specimen was used for only one experiment, in which it was heated from room temperature to its melting point. It was not possible to conduct a series of experiments on the same specimen in the vicinity of the transformation point, because of the distortions in the specimen resulting from volume changes that accompany the phase transformations. Using the recorded data, surface radiance temperature was plotted as a function of time and electrical resistivity was obtained as a function of surface radiance temperature.

Figure 1 shows the heating curve for the specimen. The solid-solid phase transformation is clearly evident as a temperature arrest or plateau in the heating curve (the plateau on the left). There were 22 temperature measurements during the transformation which were averaged to give a surface radiance temperature at the transformation point of 1561 K . The standard deviation of the individual points from the average is 0.7 K . The heating rate just below the plateau was approximately $1300 \mathrm{~K} \mathrm{~s}^{-1}$.

The second plateau in Figure 1 (the plateau on the right) shows the melting of the iron specimen. The average surface radiance temperature at the melting point is 1667 K . The standard deviation from the average is 0.6 K .

The resistivity of the specimen was calculated using the relation $\rho=R A / L$ where R is the resistance, A the cross-sectional area, and L the length of the specimen between the potential probes. Dimensions were based on their room temperature values. The results for resistivity of iron are shown in Figure 2. The resistivity is clearly discontinuous at the transformation. During the transformation it increased by approximately 0.3\%.

The melting point data was used to compute an approximate value for the normal spectral emittance of iron at the melting point. Based on the Wien radiation equation, the relation between emittance and temperature is

$$
\begin{equation*}
\epsilon=\frac{1}{\exp \left[\frac{c_{2}}{\lambda}\left(\frac{1}{\bar{T}_{s}}-\frac{1}{\mathrm{~T}_{\mathrm{m}}}\right)\right]} \tag{1}
\end{equation*}
$$

where ε is the normal spectral emittance, T_{m} the melting point, T_{S} the surface radiance temperature at the melting point, c_{2} the second radiation constant ($1.4388 \times 10^{-2} \mathrm{~m} \mathrm{~K}$) and λ the effective waveleng th of the optical system. The measurements were made at 650 nm , which is the effective wavelength of the interference filter of the pyrometer. The bandwidth of the filter is 10 nm .

The generally accepted melting temperature of iron is 1810 K [7]. When this value and the observed surface radiance temperature at the melting point are substituted into Equation (1), the normal spectral emittance is computed to be 0.352. If it is assumed that this value can approximate the normal spectralemittance at the transformation
temperature, an approximate true temperature can be obtained for the transformation point. This method yields a transformation temperature of 1685 K which is 10 K higher than the accepted value. A higher value is to be expected in this approximation since the normal spectral emittance at the melting point would have a lower value than that at the transformation point. A normal spectral emittance of 0.38 is required to correct the observed surface radiance temperature at the transformation point to the accepted value.

Using the value of 0.352 for the normal spectral emittance, the resistivities at 1500 K and 1600 K (surface radiance temperatures) were associated with approximate true specimen temperatures (1614 K and 1731 K respectively). The resistivities thus obtained are higher than those of another investigator [8] by about 1.8% at 1614 K and 0.8% at 1731 K.

The preliminary results reported in this paper demonstrate the feasibility of studying solid-solid phase transformations in electrically conducting substances at high temperatures using the high-speed pulse heating technique. The major limitation of this preliminary work was that true specimen temperature could not be obtained directly. In future investigations tubular specimens with blackbody sighting holes will be used in order to obtain true temperature directly. Such studies will yield reliable measurements of the transformation and melting temperatures. It is also possible to obtain the energy of solid-solid phase transformation if the duration of the transformation is accuracely deternine?

References

1. Cezairliyan, A., M. S. Morse, H. A. Berman, and C. W. Beckett, High-speed (subsecond) measurement of heat capacity, electrical resistivity, and thermal radiation properties of molybdenum in the range 1900 to 2800 K , J. Res. Nat. Bur. Stand. (U.S.) 74A (Phys. and Chem.), 65 (1970).
2. Cezairliyan, A., M. S. Morse, and C. W. Beckett, Measurement of melting point and electrical resistivity (above 2840 K) of molybdenum by a pulse heating method, Rev. Int. Hautes Temper. et Refract. 7, 382 (1970).
3. Cezairliyan, A., Measurement of the variation of normal spectral emittance of tantalum during melting by a pulse heating method, High Temperatures - High Pressures 2, 501 (1970).
4. Cezairliyan, A., Measurement of melting point, normal spectral emittance (at melting point), and electrical resistivity (above 2650 K) of niobium by a pulse heating method, High TemperaturesHigh Pressures, to be published.
5. Foley, G. M., High-speed optical pyrometer, Rev. Sci. Instr. 4I, 827 (1970).
6. Cezairliyan, A., Design and operational characteristics of a highspeed (millisecond) system for the measurement of thermophysical properties at high temperatures, J. Res. Nat. Bur. Stand. (U.S.) 75C (Eng. and Instr.), 7 (1971).
7. Schofield, T. H., and A. E. Bacon, The melting point of titanium, J. Inst. Metals 82 , 167 (1953-1954).
8. Kollie, T. C., private communication.

Chapter 11

RATE CONSTANTS FOR THE REACTIONS

$$
(\mathrm{M})+\mathrm{NH}_{3} \xrightarrow[\mathrm{k}_{\mathrm{r}}]{\stackrel{\mathrm{k}_{\mathrm{d}}}{\longrightarrow}} \mathrm{NH}_{2} \cdot+\mathrm{H} \cdot+(\mathrm{M})
$$

W. Tsang

ABSTRACT

Data for the reactions $\mathrm{NH}_{3}+(\mathrm{M}) \underset{\mathrm{k}_{\mathrm{d}}}{\stackrel{\mathrm{k}_{\mathrm{d}}}{\leftrightarrows}} \mathrm{NH}_{2} \cdot+\mathrm{H} \cdot+$ (M) have been critically examined and tabulated. A best fit of the data appears to require active external rotations. Suggested rate constants of these reactions over the range $0-10^{2}$ atm and $200-4000^{\circ} \mathrm{K}$ are tabulated.

$$
\begin{aligned}
& +
\end{aligned}
$$

$$
\begin{aligned}
& \text { 乐 }
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{r}
\Delta H_{R}(300) \\
S_{R}(300)
\end{array}
\end{aligned}
$$

$$
\begin{gathered}
\text { DIRECT STUDIES } \\
\text { RESULTS }
\end{gathered}
$$

$\dot{-}$

b. \begin{tabular}{rl}
k_{r} \& $=12 \times 10^{10} \mathrm{l} / \mathrm{mol} \sec (1000 \mathrm{~mm})$

\& $=4.2 \times 10^{10} \mathrm{l} / \mathrm{mol} \mathrm{sec}(500 \mathrm{~mm})$

\& $=2.9 \times 10^{10} \mathrm{l} / \mathrm{mol} \mathrm{sec}(250 \mathrm{~mm})$

\quad

c. $\quad \Delta \mathrm{H}_{\mathrm{f}}\left(\mathrm{NH}_{2} \cdot\right)=45.5$ at $300^{\circ} \mathrm{K}$.
\end{tabular}

2. Comments on Experimental Data

Ia) The data analysis involve a best fit of the onccentration time traces with the integrated rate expression. Unfortunately no provision has been made for reaction endothermicity. This will be especially serious for the 8% runs and a decrease in temperature of several hundred degrees during the course of the reaction must be expected. This may account for the apparent $3 / 2 \frac{\text { th }}{}$ order dependence on NH_{3} concentration. Due to the possibility of large errors in reaction temperature, the uncertainty of these results may well be as much as a factor of ten.

Ib) Reactions are carried out at very high $\mathbb{N H}_{3}$ concentrations. Although initial rates are used, the published traces suggest that the first measurable point occurs no less than 100μ secs after the passage of the shock wave. Thus, considerable reaction must have occurred and as in Ia the true reaction temperature is probably much lower than calculated. This will be most serious at higher temperatures (large conversions). Estimated uncertainty is about an order of magnitude.

Ic) The use of the reflected shock may cause problems in defining reaction temperature. (2) An induction period is observed at lower temperatures ($2400^{\circ} \mathrm{K}$). Rates were determined from higher temperature experiments. The estimated uncertainty is about a factor of 5 .

Id) This should be the most reliable of the direct studies. Unfortunately the authors do not present sufficient data so as to permit a more detailed analysis. The estimated uncertainty is a factor of 3 .

IIa) This must be considered a rough estimate. The number is dependent not only on the correctness of the mechanism but also on a whole string of other rate constants whose values are uncertain.

IIb) This number may be a satisfactory upper limit, as in all such experiments the reliability is dependent on the postulated mechanism. In the present case it is assumed that equivalent amounts of NH_{2} and H radicals are formed and that subsequently the important processes are

$$
\begin{array}{ll}
\mathrm{NH}_{2} \cdot+\mathrm{NH}_{2} \cdot & \rightarrow \mathrm{H}_{2} \mathrm{H}_{4} \\
\mathrm{H} \cdot+\mathrm{H} \cdot+(\mathrm{M}) & \rightarrow \mathrm{H}_{2}+(\mathrm{M})
\end{array}
$$

and $\mathrm{NH}_{2}+\mathrm{H} \cdot+(\mathrm{M}) \rightarrow \mathrm{NH}_{3}+(\mathrm{M})$
Even after accepting the mechanism the reported number is dependent to a considerable extent on the rate constants for the other two processes. A particularly disturbing fact is the detection of NH radicals. Thus, the true mechanism may be more complex. Furthermore, each. NH radical suggests the presence of 2 additional H-atoms as well as serve as a sink for active specie.
3. Discussion

The data from Ia,b, c, d are plotted in Figure I. In view of the large estimated uncertainties, the agreement is very satisfactory. It appears that within the temperature range $2000-3000^{\circ} \mathrm{K}$, the bimolecular rate constant for NH_{3} decomposition in argon can be considered to be well established. Note that in plotting the data we have set the true bimolecular rate to be one-half the measured rate constant for NH_{3} disappearance since under the reaction conditions the processes
$(\mathrm{M})+\mathrm{NH}_{3} \xrightarrow{\mathrm{k}_{\mathrm{d}}} \mathrm{NH}_{2} \cdot+\mathrm{H} \cdot+(\mathrm{M})$
$\mathrm{H} \cdot+\mathrm{NH}_{3} \longrightarrow \mathrm{H}_{2}+\mathrm{NH}_{2}$.
must be concurrent. We have also converted the data of Ia so that it reflects a first order order dependence in ammonia and argon.

The problem that remains is to project these numbers into other temperature ranges. Note that the experimental activation energies are all lower than the bond energy. This is expected since with increasing temperature more internal degrees of freedom become activated. Thus, linear extrapolation of the standard Arrhenius plot will lead to gross errors. Our approach is to calculate the bimolecular rate constant on the basis of the expression

$$
k_{d}=\frac{\lambda z}{Q} \int_{\Delta E_{0}^{\circ}}^{\infty} \mathbb{N}(E) e^{-E / R T} d E^{(3)}
$$

where λ is the transmission coefficient and is usually set as 1 , although for the present purposes we will use it as a temperature independent adjustable parameter; Z collision numbers (for NH_{3} we use collision diameter $=4 \AA$) ; $\mathbb{N}(E)$, the density of vibrational and rotational states at energy $E ;$ Q, the partition function for the molecule, and ΔE_{0}°, the energy change for the reaction at $0^{\circ} \mathrm{K}$. In this approach the vibrations and external rotations are taken as fully coupled. This is contrary to the most common practice and indeed there are angular momentum constraints against complete coupling. The present approach is purely empirical in that for other similar systems ${ }^{(4)}$ agreement with regard to the shape of the $\log \mathrm{k}$ vs $1 / \mathrm{T}$ plots is improved using active external rotations. For $N(E)$ we use the Laplace Transform technique. A complete discussion of this and
other techniques for computing the density of states and the ranges of validity can be found in a recent review ${ }^{(5)}$.

The results of such a computation suing an argon efficiency of $.136^{(6)}$ and $\lambda=\sim .27$ (in order to obtain the best fit) can be seen in Figure I. For completeness we have also plotted the results of a computation using $\lambda=1$ and all external rotations inactive. These are the most commonly used assumptions and it can be seen that this reproduces the data with almost equal facility. On the other hand it has a somewhat stronger temperature dependence. However, with neither model can we reproduce the experimental activation energy exactly. It is suspected that this is an experimental artifact. Jacobs (Ia) has discussed the possibility of O_{2} impurities affecting the shock tube results while Takeyama et al (Ic) mentions the presence of an induction period at lower temperatures. All of these factors will tend to lower the experimental activation energy. In any case the discrepancies are all within the uncertainty limits. Note that these results are not sufficiently sensitive as to shed any light on the current controversy on the heat of formation of NH_{2} (IIc).

On this basis recommended bimolecular and termolecular rate constants, for ammonia dissociation and amino and H atom combination, respectively, in the temperature range $200-4000^{\circ} \mathrm{K}$ are summarized in Table I. The estimated uncertainty is about a factor of 5. Note that the numbers refer to NH_{3} as the third body. For other third bodies data from the dissociation of $\mathrm{NO}_{2} \mathrm{Cl}{ }^{(7)}$ and the isomerization of $\mathrm{CH}_{3} \mathrm{NC}^{(6)}$ are summarized in Table II.

The data for the bimolecular combination process are not directly related to the termolecular process since the former is dependent on
the structure of the transition state. It does permit an estimate to be made of the range of validity of the data in Table I. On the basis of RRKM calculations with external rotations inactive we are not able to reproduce either the rate constants or the pressure dependence derived by cordon and coworkers (IIb). With external rotations active (for both the transition state and normal molecule) a very satisfactory fit can be achieved. Details may be found in Tables III and IV. In view of our earlier analysis of the recombination results it is difficult to draw definitive conclusions with regard to this fit. Further experiments are needed. In any case it is clear that over most accessible temperature and pressure ranges the data in Table I are valid. At 1 atm or higher and at sufficiently low temperatures deviations can be expected and recourse must be made to the numbers of Table IV.

References

1. D. R. Stull and H. Prophet, JANAF Thermochemical Tables NSRDS-NBS 37, U. S. Government Printing Office, Washington, D. C. 20406
2. R. L. Belford and R. Strehlow, Ann. Ref. of Phys. Chem., pg. 247 Palo Alto, California 94306.
3. W. Forst, J. Phys. Chem. 76, 342 (1972).
4. W. Tsang, unpublished results.
5. W. Forst, Chemical Review 71, 339 (1971).
6. S. C. Chan, B. S. Rabinovitch, J. Bryant, L. D. Spicer, T. Fujimoto, Y. N. Iin, and S. D. Pavlou, J. Phys. Chem. 74, 3160 (1970).
7. H. S. Johnston, Gas Phase Reaction Rate Theory, pg. 295, Ronald Press, New York (1966).

Table I

Recommended Rate Constants for the Decomposition of NH_{3} and Combination of Amine and H Radicals. $\mathrm{NH}_{3}+\mathrm{NH}_{3} \underset{\mathrm{k}_{\mathrm{r}}}{\stackrel{\mathrm{k}_{\mathrm{d}}}{\leftrightarrows}} \mathrm{NH}_{2}+\mathrm{H} \cdot+\mathrm{NH}_{3}$

Temperature	Rate Constant Decomposition $\mathrm{L} / \text { mole-sec }\left(\mathrm{k}_{\mathrm{d}}\right)$	Rate Constant Combination $L^{2} / m o l e^{2} \sec \left(k_{r}\right)$
200	5.5×10^{-102}	1.1×10^{13}
300	1.5×10^{-62}	4.6×10^{12}
400	7.6×10^{-43}	3.3×10^{12}
500	4.8×10^{-31}	2.6×10^{12}
600	3.3×10^{-23}	2.2×10^{12}
700	1.3×10^{-17}	1.9×10^{12}
800	1.8×10^{-13}	1.6×10^{12}
900	3.1×10^{-10}	1.4×10^{12}
1000	1.1×10^{-7}	1.3×10^{12}
1200	7.5×10^{-4}	1.0×10^{12}
1400	3.7×10^{-1}	8.1×10^{11}
1600	$3.7 \times 10^{+1}$	6.6×10^{11}
1800	$1.2 \times 10^{+3}$	5.4×10^{11}
2000	2.0×10^{4}	4.5×10^{11}
2200	1.8×10^{5}	3.7×10^{11}
2400	1.1×10^{6}	3.1×10^{11}
2600	5.1×10^{6}	2.6×10^{11}
2800	1.8×10^{7}	2.2×10^{11}
3000	5.4×10^{7}	1.9×10^{11}
3200	1.4×10^{8}	1.6×10^{11}

Temperature
Rate Constant Decomposition

$$
\mathrm{L} / \text { mole-sec }\left(k_{d}\right)
$$

Rate Constant Combination $L^{2} / \operatorname{mole}^{2} \sec \left(k_{r}\right)$

3400
3600
3800
4000

$$
3.1 \times 10^{8}
$$

1.4×10^{11}
6.2×10^{8}
1.2×10^{11}
1.1×10^{9}
2.0×10^{9}
1.0×10^{11}
8.9×10^{10}

Table II: Third body efficiencies from (a) decomposition of $\mathrm{NO}_{2} \mathrm{Cl}^{7}$
(b) isomerization of $\mathrm{CH}_{3} \mathrm{NC}^{6}$

(a)			
He	.25	(b) He^{2}	.171
Ne	.18	Ne	.120
Ar	.21	Ar	.136
Kr	.21	Kr	.115
H_{2}	.34	D_{2}	.23
$\mathrm{~N}_{2}$.29	$\mathrm{~N}_{2}$.21
O_{2}	.26	SF_{6}	.42
CO_{2}	.39	H_{2}	.28
SF_{6}	.36	CD_{4}	.41
		CH_{4}	.44
		$\mathrm{C}_{2} \mathrm{H}_{6}$.56
		$\mathrm{C}_{2} \mathrm{H}_{4}$.43
	$\mathrm{C}_{3} \mathrm{H}_{6}$.60	

Table III: Data used in deriving results in Table IV
a) Transition state is assumed to have same geometrical structure as molecules.
b) Collision diameter is $4 \AA$.
c) Vibrational frequencies for the molecules are 3400(3), 1620(2), 960(1).
d) Vibrational frequencies for the transition states are 3200(2) 1500(1) 40(2)
e) All external rotations are active.
f) Transmission coefficient $=.27$.

Recommended rate constants for the unimolecular decomposition of ammonia and the bimolecular combination of amino and H radicals
$\mathrm{NH}_{3} \underset{\mathrm{k}(\mathrm{COM})}{\stackrel{\mathrm{k}(\mathrm{DEC})}{\curvearrowleft}} \mathrm{NH}_{2}+\mathrm{H}$.
(Table is on pages 166-168.)

TEMPERATURF IS $200 ~ K$
A．F．T．A－FACTOR IS $1.99578 E+14 \quad / S E C$
PFACTION THRFSHOLD IS 107090 －CALS
EKPEPIMENTAL A＝FACTOR IS 2．8O918E＋15／SEC（HIGH PRESSURE）
EXPERIMENTAL ACTIVATION ENERGY IS 108028．CALS
（HIGH PRESSURE）
HIGH PRESSURE RATE CONSTANT IS 2•1450 $4 E-1$ O3／SEC

PRFCSURF	$K(D E C)$	$\mathrm{K}(\mathrm{COM})$
（ MM，HG）	（／SEC）	（L／MOL－SEC）
10	4．26018E－105	8． $46398 E+9$
10%	3－5620 5E－104	7．07695E＋10
1090	1－37881E－103	2．73937E＋11
10090	？．010 $03 E-103$	$3.99425 E+11$
1月0日ac	2．12939E－103	$4 \cdot 23060 E+11$
1－Gの90のE＋6	$2 \cdot 14343 F-103$	$4 \cdot 25850 \mathrm{E}+11$

TEMPERATIPF IS $300 K$
$A \cdot R \cdot T \cdot A-F A C T O P$ IS $6.08735 E+14 / S E C$
REACTION THFESHOLD IS 107090．CALS
EXPERIMENTAL A－FACTOR IS $9.23941 E+15$／SEC（HIGH PRESSURE）
EXPERIMENTAL ACTIVATION ENERGY IS 108598．CALS
（HIGH PRFSSURE）
HIGH PRESSUPE RATE CONSTANT IS 6．38718E－64／SEC
PRESSURE
（MM HG）
10
100
1000
10000
100800
$1.00000 E+6$

$K(D E C)$	$K(C O M)$
$(/ S E C)$	$(L / M O L-S E C)$

$7.38998 E-66$	$2.31121 E+9$
$6 \cdot 44338 E-65$	$2.01762 E+10$
$2.97327 E-64$	$9.31021 E+10$
$5.33263 E-64$	$1.66981 E+11$
$6.26595 E-64$	$1.94327 E+11$
$6.36632 E-64$	$1.99349 E+11$

TEMPERATURE IS $\angle O Q K$
$A \cdot R \cdot T \cdot A-F A C T O P I S \quad 1 \cdot 34539 E+15$／SEC
PEACTION THPESHOLD IS $167690 \cdot$ CALS
EKPERIMENTAL $A-F A C T O F$ IS ？日 $1165 E+16$／SEC（HIGH PRESSURE）
EXPERIMENTAL ACTIVATION ENERGY IS 109127 CALS
（HIGH PRESSURE）
HIGH PRESSURE PATE CONSTANT IS $4 \cdot 41072 E-44 / S E C$

PRESSURE	K（DEC）	$\mathrm{K}(\mathrm{COM})$
（ MM HG）	（／SEC）	（L／MOL－SEC）
10	$2.81396 E-46$	1．20425E＋9
100	2． $52642 \mathrm{E}-45$	$1.08122 E+10$
1000	1．33267E－44	5． $70336 \mathrm{E}+10$
10 nog	$2 \cdot 97297 \mathrm{E}=44$	1－27232E＋11
$10 \square \mathrm{CO}$	$4.04467 \mathrm{E}-44$	1－73098E＋11
1－9E000E +6	4．359？4E－44	$1.86560 F+11$

TEMPERATLRE IS 5OC K
A.R.T• A-FACTOR IS 2.46131E+15 /SEC

REACTION THRESHOLD IS $107090 \cdot$ CALS
EXPFRIMENTAL A-FACTOR IS 3. $47 \angle 27 E+16$ /SEC(HIGH PRESSURE)
EXPERIMENTAL ACTIUATION ENERGY IS $109607 \cdot$ CALS
(HICH PRESSUPE)
HIGH PRESSURE FATE CONSTANT IS 4.R1509E-32 /SEC

PRESSURE	K (DEC)	K (COM)
(MiM HG)	(/SEC)	(L/MOL-SEC)
10	1. $41643 \mathrm{E}-34$	7.69059 $5+8$
100	1.29697E-33	7.04195F+9
1000	7.5738 $4 \mathrm{E}-33$	4.112265+16
10000	2.05044E-32	1-11330E+11
100000	3.332 76E-32	1.80954E+11
1-000005+6	3.89381E-3?	2.11416E+1

TEMPERATURE IS 60G K
A.P.T. A-FACTOR IS $3.97652 E+15$ /SEC

REACTION THRESHOLD IS $107090 \cdot$ CALS
EXPFRTMENTAL A-FACTOR IS 5.19783F+16 /SEC(HIGH PRESSURE)
EXPERIMENTAL ACTIUATION ENERGY IS $110041 \cdot$ GALS
(HIGH PRESSURE)
HIGH PRESSURE RATE CONSTANT IS 4•07327E-24 /SEC

PRESSURE
(MM HE)
10
100
1000
10000
100000
$1.00000 E+6$

K(DEC)
(/SEC)
8.20147E-27
7.61879E-26
4.812R9E-95
1.53136E-24
2.95495E-24
3.82241E-24
$\mathrm{K}(\mathrm{COM})$
(LMOL-SEC)
$5.39678 \mathrm{E}+8$
5.01336E+9
$3 \cdot 16648 \mathrm{E}+15$
1.00767E+11
$1.94444 \mathrm{E}+11$
2. $51525 \mathrm{E}+11$
fevperature is 700 K
A•R•T• A-FACTOR IS $5 \cdot 88693 E+15$ /SEC
REACTION THRESHOLD IS 107090 . CALS
EXPERIMENTAL A-FACTOR IS $7.07347 E+16$ /SEC(HIGH PRESSURE)
EXPFRIMENTAL OCTIVATION ENERGY IS $110434 \cdot$ CALS
(HIGH PRESSURE)
HIGH PRESSURE PATE CONSTANT IS ?.?4009E-18 /SEC

PRESSURE
(MM HG)
10
100
1000
10000
100000
$1.0000 \mathrm{E}+6$

K(DEC)
(/SEC)
2.68023F-21
2. $51724 \mathrm{E}-20$
1.69998E-19 ?.5?413E+10
$6 \cdot 14747 E-19 \quad 9 \cdot 17636 E+10$
$1 \cdot 38447 \mathrm{~F}-18 \quad 2 \cdot 06661 \mathrm{E}+11$
2.00257F-18 ?.98925E+11

TEMPERATURE IS 800 K
A.R.T. A-FACTOR IS 8.17218E+15 /SEC

REACTION THRESHOLD IS $167090 \cdot$ CALS
EXPERIMENTAL A-FACTOR IS 9. $21256 E+16$ /SEC(HIGH PEESSURE)
EXPERIMENTAL ACTIVATION ENERGY IS $11079 ?$ CALS
(HIGH PRESSURE)
HIGH PRESSURE RATE CONSTANT IS $4.67917 \mathrm{E}-14 /$ /SEC

PRESSURE	K (DEC)	K(COM)
(MN, HG)	(/SEC)	(L/MOL-SEC)
10	3.46098E-17	$3 \cdot \mathrm{C} 7434 \mathrm{E}+8$
100	3.27844E-16	$2.91220 \mathrm{E}+9$
1000	2.31374F-15	$2 \cdot 05527 \mathrm{E}+10$
1000\%	9.38916E-15	8-34027E+10
100000	2. $\triangle 2155 \mathrm{~F}-14$	$2 \cdot 15103 \mathrm{E}+11$
1.00000E+6	3.92345E-14	3.48515E+11

TEMPERATURE IS 900 K
A.R.T. $\triangle-F \triangle C T O R$ IS $1 \cdot 08018 E+16$ /SEC

REACTION THPESHOLD IS 107M90. CALS
EXPERIMENTAL A-FACTOR IS 1.09470 + 17 /SEC(HI GH PRESSURE)
EXPERIMENTAL AGTIVATION ENFPGY IS 111118• CALS
(HIGH PRESSURE)
HIGH PRESSUR- PATF CONSTAT IS 1.O9763F-10 /SEC

PRESSURE	K(DFC)	K(COM)
(MM HG)	$(1 S E C)$	$(L / M O L-S E C)$
10	$5.20131 E-14$	$2.42257 E+8$
100	$4.96080 E-13$	$2.31055 E+9$
1000	$3.64469 E-12$	$1.69755 E+10$
10000	$1.62095 E-11$	$7.54977 E+10$
100000	$4.7 ח 416 E-11$	$2.19101 E+11$
$1.00 C 00 E+6$	$8.51002 E-11$	$3.96364 \mathrm{~F}+11$

TEMPFRATURE IS $10 Q 0$
K
A•R.T. A-FACTOR IS 1.37397E+16 /SEC
REACTION THRESHOLD IS $107090 \cdot$ CALS
EXPERIMENTAL A-FACTOR IS $1.28277 E+17$ /SEC(HIGH PRESSURE)
EXPERIMENTAL ACTIVATION ENEPGY IS 111415 . CALS
(HIGH PRESSURE)
HIGH PRESSURE RATE CONSTANT IS 5.54934E-8 /SEC

PRESSURE
(MM HG)
10
100
1000
10000
100000
$1000000 E+6$
$\mathrm{K}(\mathrm{DEC}) \quad \mathrm{K}(\mathrm{COM})$
(/SEC)
1.73835E-11
1.66723E-10
1.26634E-9
6.03389E-9
1.95659E-8
$3.92909 E-8$
(L/MOL-SEC)
$1.94458 \mathrm{E}+8$
1.86501E+9
$1.41656 \mathrm{E}+1 \mathrm{C}$
$6.80562 E+10$
? $\cdot 18870 \mathrm{E}+11$
$4.39520 E+11$

Legend for Figure 1 (page 169)

Figure 1: Experimental and calculated rate constants for NH_{3} decomposition (in argon)

Experimental results -=--
(A) reference Ia
(B) reference Ib
(C) reference Ic
(D) reference Id

Calculated results ——
(E) no external rotations, , transmission coefficient $=1$
(F) all external rotations active $\beta 6$ transmission coefficient $=$.27 argon efficiency $=.136$

Chapter 12

RATE CONSTANTS FOR THE REACTIONS (M) $+\mathrm{N}_{2} \mathrm{H}_{4} \underset{\underset{\mathrm{~d}}{\stackrel{\mathrm{k}}{\leftrightarrows}}}{\stackrel{\mathrm{kr}^{\prime}}{\leftrightarrows}} 2 \mathrm{NH}_{2} \cdot+(\mathrm{M})$

W. Tsang

ABSTRACT

Data for the reactions $\mathrm{N}_{2} \mathrm{H}_{4}+(\mathrm{M}) \underset{\mathrm{kd}}{\stackrel{\mathrm{k}_{r}}{\leftrightarrows}} 2 \mathrm{NH}_{2} \cdot+\mathrm{M}$ have been tabulated and critically examined. These span the range 0.01-200 atm and 300-1600 K. A satisfactory correlation of the data has been made using RRKM unimolecular rate theory. The results are consistent with $\Delta \mathrm{H}_{\mathrm{f}}^{300}\left(\mathrm{NH}_{2} \cdot\right)=45.5 \pm 1.5 \mathrm{kcals} / \mathrm{mol}$. This is in marked contrast to the JANAF value of $40.1 \mathrm{kcals} / \mathrm{mol}$. On this basis suggested rate constants for these reactions over the range $10^{-5}-10^{2} \mathrm{~atm}$ and $200-3000^{\circ} \mathrm{K}$ are tabulated.

§

$$
\begin{aligned}
& \begin{array}{l}
\Delta H_{f}(300) \\
S \quad(300) \\
C_{p}(300) \\
C_{p}(700) \\
C_{p}(1000) \\
C_{p}(2000) \\
\Delta H_{R}(300) \\
\Delta S_{R}(300)
\end{array}
\end{aligned}
$$

[^12]R. W. Diesen, J. Chem.
Phys. 39, 2121 (1963). Reactions are carried out be-
hind reflected shock wave with
T. 0. F. mass spectrometer for in
situ determinationof reactants.
Temperature: $1200-2500^{\circ} \mathrm{K}$
Composition: 0.1 to $1 \% \mathrm{~N}_{2} \mathrm{H}_{4}$ in .04 to .25 atm Argon.

 Heating time: $1-4 \mathrm{msec}$.
 to 8.6 atm argon.

 pg. 353, The Combustion Institute, Pittsburgh, Pa. (1965).
\[

$$
\begin{aligned}
& \text { Reactions are carried out be- } \\
& \text { hind reflected shock wave. Rate } \\
& \text { of hydrazine pyrolysis followed } \\
& \text { by decrease of absorption at } \\
& 2300 \AA \text {. } \\
& \text { Temperature: } 1100-1600^{\circ} \mathrm{K} \\
& \text { Composition: } .03-5 \% \mathrm{~N}_{2} \mathrm{H}_{4} \text { in }
\end{aligned}
$$
\]

Reference
J. A. Kerr, R. C. Sekhar,
and A. R. Trotman-
Dickenson, J. Chem. Soc.,
3217 (1963).
\quad Method and Condition
Toluene carrier
Temperature: $887-1034^{\circ} \mathrm{K}$
Heating time: $\quad .5 \mathrm{sec}$.
Composition: $6-30 \mathrm{~mm}$ toluene

d. The rate expression for the unimolecu-
 T-

e.

Method and Condition	Reference
Reactions at low pressures are carried out behind incident	E. Meyer, H. A. Olscheusik, J. Troe, and H. Gg. Wagner,
shocks while those at high pres-	Eleventh Symposium on
ures are from reflected shocks	Combustion (International)
$\mathrm{N}_{2} \mathrm{H}_{4}$ concentration monitored by	345, The Combustion
absorption at $2300 \AA$.	Institute, Pittsburgh, Pa.
Temperature: $1110^{\circ} \mathrm{K}-1580^{\circ} \mathrm{K}$	(1967).
Composition: . $001 \%-.5 \% \mathrm{~N}_{2} \mathrm{H}_{4}$ in	
.2-300 atm argon.	

f. At low pressures the bimolecular rate
for hydrazine decomposition is
$\mathrm{k}_{\mathrm{d}}(0)=10^{15} \cdot 6 \exp (-41,000 / \mathrm{RT}) \mathrm{cc} / \mathrm{mol}-$
At high pressures $\left(1280-1580^{\circ} \mathrm{K}\right)$.

Results

[^13] Flame 2, 137, 149 (1958).
D. W. Setser and W. C.
Richardson, Can. J. Chem.
$47,2593(1969)$. ART calculation assuming tran-
sition state structure for hy-
drazine for ethane decomposition
are similar. Critical energy
for decomposition is taken to be
56.8 kcals.
 data and the fluid dynamic properties of the toluene carrier system.

It is assumed that combination S.W. Bensen, H. E. O'Neal, Kinetics Data on Gas Phase Unimolecular Reaction, pg. 34 NSRDS-NBS 21 U. S. Government Printing Office Washington, DC 20402 (1970). It is assumed that combination
rates of nitrogen and carbon rates of nitrogen and carbon
radicals are similar and that the extrapolated (to high pressures) rate constants of McHale et. al. (Id) are correct

Method and Condition	Reference
Electron impact study on the prod－	S．N．Foner and R．L．
ucts formed from an electrodeless	Hudson，J．Chem．Phys．29，
discharge in hydrazine in a fast	442 （1958）．

．
응
M．H．Hanes and E． J．Chem．Phys ．39， （1963）．

 function of time following $r f$

Pressure ． $425-.850 \mu \mathrm{NH}_{3}$
OT－S fđәวхә әлоqе se әues
unur）O T－S 7 đəつXə əлоqe se əures $\mathrm{Hg}) \mathrm{NH}_{3}$ Pulse radiolysis of NH_{3} with $2 M V$
 Кq pəmotiof əourxeəđdrsṭ $乙_{\text {HN }}$ よо measurement of decrease in absorp－ tion at 5976 A．

Very low pressure pyrolysis of benzyl amine．
h．Data is compatible with rate expres－ sion for benzyl amine decomposition of $\mathrm{K}_{\infty}\left(\phi \mathrm{CH}_{2} \mathrm{NH}_{2} \rightarrow \phi \mathrm{CH}_{2}{ }^{\cdot}+\mathrm{NH}_{2}{ }^{\circ}\right)=$ $10^{15 \cdot 2} \exp (-71,900 / R T) \mathrm{sec}^{-1}$ ．Thus $\Delta H_{f}(300)$ for $N H=47.2 \mathrm{kcal}$ ．Pre－ dicts $\mathrm{k}_{\mathrm{d}}(\infty)=10^{17.82} \exp (-74,000 / \mathrm{RT})$ sec^{-1} ．
d． $\mathrm{D}\left(\mathrm{NH}_{2}-\mathrm{H}\right)=106 \pm 3 \mathrm{kcals}$
$\Delta \mathrm{H}_{\mathrm{f}}(300)$ for $\mathrm{NH}_{2}=43 \pm 3$
Based^{2} on appearance potential of
NH_{2}^{+}from NH_{2} and NH_{3} ．
e． $\mathrm{k}_{\mathrm{r}}=2.33 \times 10^{12} \mathrm{cc} / \mathrm{mole} \mathrm{sec}$.
no pressure dependence．

$$
\begin{aligned}
& \text { f. } \mathrm{k}_{\mathrm{r}}=2.5 \times 10^{12} \mathrm{cc} / \mathrm{mole} \mathrm{sec} \\
& (\text { limiting high pressure result }) \\
& \text { g. } \mathrm{k}_{r}=6.2 \times 10^{13} \mathrm{cc} / \text { mole } \mathrm{sec}
\end{aligned}
$$

Results
i. $\mathrm{k}\left(\phi \mathrm{CH}_{2} \mathrm{NH}_{2} \rightarrow \phi \mathrm{CH}_{2} \cdot+\mathrm{NH}_{2} \cdot\right)=10^{13.0}$
12.8

2) Comments on Individual Studies

Ia. The main decomposition reaction is heterogeneous. Contributions from the homogeneous reaction are deduced from the presence of dibenzyl. Overall mechanism is assumed to be

$$
\begin{array}{lll}
3 \mathrm{~N}_{2} \mathrm{H}_{4} & \rightarrow \mathrm{~N}_{2}+4 \mathrm{NH}_{3} \\
2 \mathrm{~N}_{2} \mathrm{H}_{4} & \rightarrow \mathrm{H}_{2}+\mathbb{N}_{2}+2 \mathrm{NH}_{3} & \text { heterogeneous } \\
\mathrm{N}_{2} \mathrm{H}_{4} & \rightarrow 2 \mathrm{NH}_{2} \cdot & \\
\mathrm{NH}_{2}+\phi \mathrm{CH}_{3} & \rightarrow \mathrm{NH}_{3}+\phi \mathrm{CH}_{2} \cdot & \\
2 \phi \mathrm{CH}_{2} \cdot & \rightarrow\left(\phi \mathrm{CH}_{2} \cdot\right)_{2} &
\end{array}
$$

and is supported by stoichiometric checks. Rate constants are determined assuming heterogeneous and homogeneous processes proceed by lst order kinetics.

Although the measured rate constants are probably accurate to a factor of 2 or 3, it should be noted that practically every set of rate parameters determined by Szwarc (IIc) using this method has turned out to be much lower than the currently accepted number. The causes for such errors are unknown. Furthermore, the small size of the molecule and the low pressures and high temperatures all lead to the conclusion that the reaction is in the 2nd order region. Gilbert (IIa) has demonstrated that this is the case if the fluid dynamics of reactor is taken into account.

Thus, these results are strongly indicative of a $\mathbb{N}-\mathbb{N}$ bond energy far in excess of 60 kcals .

Ib. Similar experiments as in Ia, except that homogeneous contribution is determined from the production of ammonia, after taking into account the heterogeneous contribution. The mechanism of Szwarc (Ia) is assumed. The data treatment involves the subtraction of two large numbers. Uncertainties are at least as large as for (Ia). Rate constants and parameters are in excellent agreement with (Ia).

Ic. The use of this technique for quantitative work must be seriously questioned. Reaction conditions are very poorly defined. Rate constants for hydrazine disappearance are probably no better than order of magnitude estimates. Rate parameters are only compatible with extremely low $\mathbb{N}-\mathbb{N}$ bond energies.

Id. The experimental rate constants are based on the assumed mechanism.

$$
\begin{aligned}
& \mathrm{N}_{2} \mathrm{H}_{4} \stackrel{\mathrm{k}_{\mathrm{a}}}{\rightarrow} 2 \mathrm{NH}_{2} \\
& \mathrm{NH}_{2}+\mathrm{N}_{2} \mathrm{H}_{4} \rightarrow \mathrm{NH}_{3}+\mathrm{N}_{2} \mathrm{H}_{3} \cdot \\
& \mathrm{~N}_{2} \mathrm{H}_{3} \cdot+\mathrm{NH}_{2} \rightarrow \mathrm{NH}_{3}+\mathrm{N}_{2}+\mathrm{H}_{2}
\end{aligned}
$$

For steady state in $\mathrm{N}_{2} \mathrm{H}_{3} \cdot$ and NH_{2} concentrations

$$
\mathrm{d}\left(\mathrm{~N}_{2} \mathrm{H}_{4}\right) / \mathrm{dt}=-2 \mathrm{k}_{\mathrm{d}}\left(\mathrm{~N}_{2} \mathrm{H}_{4}\right)
$$

An important omission is the neglect of the reverse reaction $2 \mathrm{NH}_{2} \cdot \stackrel{\mathrm{k}_{r}}{\rightarrow}$ $\mathbb{N}_{2} \mathrm{H}_{4}$. All direct measurements (Ie,f,g) give very high values. If this reaction is of importance calculated rate constants and the activation energy will be smaller than the true values.

Considerable effort has been devoted to purification of the hydrazine. The authors claim that with hydrazine dried over CaH_{2}, a lower activation energy and slightly higher rate constants (at low temperatures)
can be obtained. Their sample has been dried over molecular sieve. Questions regarding the purity of the hydrazine used are fundamental to all the decomposition studies. Although rigorous purification is the most direct procedure, it is probably only in the toluene carrier studies and the shock tube experiments with extremely low concentrations of hydrazine that one can assume the relative unimportance of homogeneous catalytic effects.

Belford and Strehlow ${ }^{(2)}$ have questioned the used of the single pulse shock tube for quantitative kinetic studies. Ignoring mechanistic problems, (which may be very serious) the uncertainty in rate constants is probably no less than a factor of 3 .

Ie. Details of the hydrazine decomposition process are followed with time resolution of $\sim 1 \mu s e c$. The oscilloscopic traces show under varying conditions, induction periods and deviation from first order behavior. Thus the processes which are represented by the calculated first order rate constants are uncertain.

Induction periods occurred only in the low temperature runs 1100$1200^{\circ} \mathrm{K}$. They have been ignored in the data analysis. However, this is just at the high temperature end of the results of McHale et. al. (If) and calls into question their mechanism. Palmer ${ }^{(3)}$ maintains that they represent artifacts arising from non-ideal shock behavior.

Commercial liquid hydrazine is used without special attempts at purification. Hydrazine is absorbed on the shock tube walls. In order to maintain concentration a continuous flow system is used. The substitution of helium for argon as the inert diluent showed no striking
effects. This is also the case with added traces of oxygen.
The reported rate expressions are in excellent agreement with that of McHale et. al. (Id). The estimated uncertainty is probably a factor of 3 .

If. This represents a continuation of (Ie). Reactions are now carried out under more extreme conditions. Problems encountered earlier appear to have been surmounted through the proper choice of reaction variables. RRK theory is used to fit all the existing data. High pressure limiting rates are achieved at 200-300 atm.

It is claimed that the rate expression for the unimolecular high pressure decomposition of hydrazine is compatible with the recombination number of Bair (II,e,f). This is incorrect. See (IIb,c).

Uncertainty is probably a factor of 3.
IIb. From the subsequent discussion it can be seen that if these rate expressions are correct, all the measured numbers are in error.

IId.. Electron impact studies of this type are no longer considered satisfactory means of determining bond energies. (4) However, in the present case there may have been a fortuitous cancellation of errors.

IIe,f. The derivation of the necessary calibration factors depend on assumptions regarding the nature of the processes occurring during and after the rf discharge. Thus, large errors may be introduced. It should be noted that the reported number represents the rate of the 2 nd order disappearance of $\mathrm{NH}_{2} \cdot$. It must be regarded as a maximum rate for the recombination of amino radicals.

There also appears to be a discrepancy between these two studies. In (IIe) k_{r} is reported to be pressure independent in the sub mm Hg range. This is in contrast to the situation in (IIf) where high pressure behavior is not reached till 10 mm Hg pressure. The possibility that the number reported in (IIe) is due to the reaction $\mathrm{NH}_{2}+\mathrm{NH}_{2} \rightarrow \mathrm{NH}$ $+\mathrm{NH}_{3}$ would seem to be ruled out by the fact that the rate for this reaction as reported in (IIf) is $.46 \times 10^{12} \mathrm{cc} / \mathrm{mol} \mathrm{sec}$.

IIg. Similar comments as for (IIe,f). However, the initial excitation is orders of magnitude shorter. Furthermore, the radiolytic behavior of NH_{3} is probably better understood. On this basis Ausloos (5) suggests an uncertainty of no more than a factor of 2 for the rate of the 2nd order disappearance of NH_{2}.

IIh. Although the data are compatible with the published numbers, it is not clear that other sets of rate parameters may not produce equally satisfactory agreement.

II(i,j). See comments (Ia,b).
3) Discussion

The main discrepancy in the data is between the rate parameters for decomposition and the recombination rates. These are related by the equilibrium constant $K_{E}=k_{d} / k_{r}$. If it is assumed that the latter has little or no temperature dependence, then $A_{d} / A_{r} \sim A_{d} / k_{r} \sim \frac{e^{\Delta S / R}}{e R T}$ (where A is the temperature independent factor). Thus, for $k_{r} \sim 10^{13.8}$ $\mathrm{cc} / \mathrm{mol}-\mathrm{sec}$, at $300^{\circ} \mathrm{K}, \mathrm{A}_{\mathrm{d}}$ is approximately $10^{17} \mathrm{sec}^{-1}$. This is three or more orders of magnitude higher than any of the published numbers and is in accord with the surmises of Setser and Richardson (IIb) and

Benson and O'Neal (IIc). The possibility that the A-factor for recombination is in fact 3 orders of magnitude lower due to a negative activation of about 4 kcals can be ruled out since it implies a "tight" transition state. This is physically implausible and is also unrealixable since the lowest frequencies for hydrazine are 875, 780 , and 378 cm^{-1}. Thus, at $300^{\circ} \mathrm{K}$ it is not possible to raise these numbers so as to give the required temperature dependence. The remaining possibility is that the published rate parameters are in gross error, but that hopefully the rate constants are (within the estimated uncertain limit) correct. There is ample precedence in gas kinetics for such occurrences, since small errors in rate constants can result in catastrophically large mistakes in the rate parameters. Furthermore, the methods used in deriving the hydrazine decomposition data are well known for this sort of error.

The present approach to the problem of deriving k_{d} and k_{r} for any arbitrary reaction condition is to make RRKM calculations of the falloff behavior assuming an A-factor (and a transition state) consistent with the pulse radiolysis experiments (IIg) and with a variety of bond energies. This is dictated by the current controversy over the $\mathbb{N}-\mathbb{N}$ bond energy in hydrazine. Furthermore, the small size of hydrazine makes it probable that most, if not all, of the published data are in the fall-off region. The results of such calculations may be found in Figure I. The transition state model (I) involve the frequencies 3300 (4), 1300 (2), 1000 (2), 20 (3). It is assumed that the molecular structure remain unchanged. The collision diameter is assumed to be

5 A. With regard to third bodies the results of Rabinovitch and co(6) workers (6) are the best available. In the present analysis we have used $\mathrm{Ar}=.136$ and toluene $=\left(\mathbb{N}_{2} \mathrm{H}_{4}=T\right)$. The density of states of the activated molecule is calculated using the Laplace transform method. (7) to an energy where it gives comparable ($\sim 10 \%$ deviation) answers as the Laplace transform method. After which, the latter is used.

Except for the data of Diesen (Ic) which is derived from shock tube studies using in situ mass spectroscopic detection an unambiguous choice of an optimum bond energy can be made. With regard to the former, it is suspected that an important cause for the discrepancy is due to sampling from the cold boundary layer; thus, making the calculated temperatures meaningless. This data will not be considered further. From the other experiments, the best bond energies are 65, $64.5,64,65.5,67.5,64.5$, and 69 kcals . The mean value is 66 kcals. With this number all except the data of Diesen can be accomodated with a maximum deviation of a factor of 3 . This is within the estimated error limits. It should be noted that in no case is it possible to fit the data with $\Delta \mathrm{E}_{\mathrm{O}}^{\mathrm{O}}$ of 57 kcals. This itself is 1.5 kcals higher than the value that can be deduced from the JANAF Tables ${ }^{(1)}$ with $\Delta \mathrm{H}_{\mathrm{f}}^{300}\left(\mathrm{NH}_{2}\right)=40.1 \pm 3$ kcals. The present number gives $\Delta \mathrm{H}_{\mathrm{f}}^{300}\left(\mathrm{NH}_{2}\right)=$ 45.5 kcals with an estimated uncertainty of ± 1.5 kcals. That this analysis leads to a substantially different $\Delta \mathrm{H}_{\mathrm{f}}^{300}\left(\mathrm{NH}_{2}\right)$ should not be surprising. The older estimate was based on a more limited set of rate data (Ia and Ib). Both studies were at pressures far below the
high pressure limit. Their activation energies did not reflect the bond strength. Indeed, from Figure Ia and Ib it can be seen that the experimental and calculated temperature dependences are in good agreement. There remains important differences between the shock tube and calculated temperature dependences.

The calculated rates constants for the decomposition of hydrazine and the combination of amino radicals over a range of $10^{-2}-10^{5} \mathrm{~mm}$ $\mathrm{Hg}\left(\mathrm{N}_{2} \mathrm{H}_{4}\right)$ and $200-3000^{\circ} \mathrm{K}$ are summarized in Table I. With regard to other third bodies some of the results of Rabinovitch and coworkers can be found in Table II.

Although there is considerable arbitrariness in the definition of the transition state, it is generally agreed ${ }^{(8)}$ that for a given A-factor the fall-off characteristics will be relatively unchanged in spite of variations in the pattern of the assumed frequencies. In the current investigation this has been verified by carrying out fall-off calculations with (model II) 3330 (4), 1300 (2), 200 (3), 40 (2) and (model III); and $3300(4), 1300(2), 80(2), 60(3)$ complexes. They give numbers close to the desired A-factor and have rates of decomposition which are never more than a factor of 3 or those in Table I (usually less, especially at higher temperatures). Characteristic results can be seen in Figures IIa,b. It is also necessary to consider the consequences of error in the pulse radiolysis experiments. Accordingly, experiments have been carried out with a (model IV) 3300 (4), $1300(2), 1000(2), 40(3)$, complex. This gives an A-factor and recombination rate at $300^{\circ} \mathrm{K}$ of about a factor of 8 lower. Fitting
this data in the same manner as before we obtain the results in Figures III. This results in a best $\mathbb{N}-\mathbb{N}$ bond energy of about 64.5. The key points are: (a) This is still 9 kcals higher than the JANAF number and (b) for the decomposition studies there is probably a range of rate parameters which will fit the data. Thus, it is not surprising that Meyer, et. al., (If) should also be able to fit the existing decomposition data with their much lower rate parameters. It is only after the combination rates are considered (in essence extending the range of rate constants tremendously $k_{d}^{300}(1000 \mathrm{~mm}) \sim 10^{-32.5}$ $\sec ^{-1}$) that definite distinction can be made. Finally, it is gratifying to note that the data in Table I also demonstrate that the difference between the r-f discharge and pulse radiolytic determinations of amino radical recombinations is due to the latter being considerably further into the fall-off region. Indeed at 10 mm pressure $\left(\mathrm{NH}_{3}\right.$, efficiency $\sim .76^{6}$) the calculated number is 3.0×10^{12} $\mathrm{cc} / \mathrm{mol} \sec$ while the experimental number at this pressure is 2.5 x $10^{12} \mathrm{cc} / \mathrm{mol} \mathrm{sec}$.

References

l. D. R. Stull and H. Prophet, JANAF Thermochemical Tables NSRDS-NBS-37, U. S. Government Printing Office, Washington, DC 20402 2. R. L. Belford and R. Strehlow, Ann. Rev. of Phys. Chem., pg. 247, Palo Alto, California, 94306
3. H. Palmer, Tenth Combustion Symposium (International), pg. 364, The Combustion Institute, Pittsburgh, Pennsylvania (1965).
4. H. Rosenstock, personal communication.
5. P. Ausloos, personal communication.
6. S. C. Chan, B. S. Rabinovitch, J. Bryant, L. D. Spicer, T. Fujimoto,
Y. N. Len, and S. P. Pavlou, J. Phys. Chem. 74, 3160 (1970).
7. W. Forst, Chemical Review 71, 339 (1971).
8. W. Forst, J. Phys. Chem 76, 342 (1972).

Table I. Rate Constants for the reaction

$$
\mathrm{M}+\mathrm{N}_{2} \mathrm{H}_{4} \underset{\mathrm{k}(\mathrm{COM})}{\mathrm{k}(\mathrm{DEC})} 2 \mathrm{NH}_{2} \cdot+\mathrm{M}
$$

in the temperature range $200-3000^{\circ} \mathrm{K}$ and pressure range $.01-100,000 \mathrm{~mm} \mathrm{Hg}\left(\mathrm{N}_{2} \mathrm{H}_{4}\right)$.
(The table is on pages 188-195.)

TEMPERATURE IS 200 K
$A \cdot R \cdot T$. A-FACTOR IS 1.60715E+15 /SEC
REACTION THRESHOLD IS 66000. CALS
EXPERIMENTAL A-FACTOR IS 5.19307E+16 /SEC(HIGH PRESSURE)
EXPERIMENTAL ACTIVATION ENERGY IS $67311 \cdot 4$ CALS
(HIGH PRESSURE)
HIGH PRESSURE RATE CONSTANT IS $1.31156 \mathrm{E}-57$ /SEC

PRESSURE (MM HG)	K(DEC) $(/ S E C)$	K(COM)
		(L/MOL-SEC)

TEMPERATURE IS 300 K
$A \cdot R \cdot T \cdot A-F A C T O R$ IS 6.49981E+15 /SEC
REACTION THRESHOLD IS 66000. CALS
EXPERIMENTAL A-FACTOR IS $1.68812 E+17$ /SEC(HIGH PRESSURE)
EXPERIMENTAL ACTIVATION ENERGY IS 67871.5 CALS
(HIGH PRESSURE)
HIGH PRESSURE RATE CONSTANT IS 5.67615E-33 /SEC

PRESSURE
K(DEC) K(COM)
(MM HG)
$\cdot 1$
1
10
100
1000
10000
100000
(/SEC) (LMOL-SEC)

$5 \cdot 82289 E-37$	$6 \cdot 98691 E+6$
$5 \cdot 40080 E-36$	$6 \cdot 48044 E+7$
$4 \cdot 39414 E-35$	$5 \cdot 27254 E+8$
$2.88105 E-34$	$3.45698 E+9$
$1.30728 E-33$	$1.56861 E+10$
$3.43774 E-33$	$4 \cdot 12495 E+16$
$5.12106 E-33$	$6.14478 E+10$
$5.60084 E-33$	$6.72046 E+10$

TEMPERATURE IS 400 K
A.R.T. A-FACTOR IS $1.60736 E+16$ /SEC

REACTION THRESHOLD IS 66000. CALS
EXPERIMENTAL A-FACTOR IS $3.09771 E+17$ /SEC(HIGH PRESSURE)
EXPERIMENTAL ACTIVATION ENERGY IS 68281.3 CALS
(HIGH PRESSURE)
HIGH PRESSURE RATE CONSTANT IS 1.45204E-20 /SEC

PRESSURE	K(DEC)	K(COM)
$(M M H G)$	$(/ S E C)$	(L/MBL-SEC)

081	5.50753E-25	$3 \cdot 389$ 46E+6
.1	5.22957E-24	$3.21839 E+7$
1	4.5089 AE-23	2.7749]E+8
10	3.30168E-22	2.03193E+9
100	1.80335E-21	1.10982E+10
1000	$6.11101 \mathrm{E}-21$	3.76085E+10
	1.14585E-20	7-05181E+10
100000	1.39558E-20	B.58874E10

TEMPERATURE IS 500 K
$A \cdot R \cdot T \cdot A-F A C T O R$ IS $3.02444 E+16$ /SEC
REACTION THRESHOLD IS 66000. CALS
EXPERIMENTAL A-FACTOR IS 4.35202E+17 /SEC(HIGH PRESSURE) EXPERIMENTAL ACTIVATION ENERGY IS 68578.8 CALS
(HIGH PRESSURE)
HIGH PRESSURE RATE CONSTANT IS 4.41914E-13 /SEC

PRESSURE (MM HG)	K(DEC) $(/ S E C)$	K(COM) $(L / M O L-S E C)$
.01		
.1	$7.37608 E-18$	$2.01819 E+6$
10	$7.09902 E-17$	$1.94238 E+7$
10	$6.33785 E-16$	$1.73412 E+8$
100	$4.97086 E-15$	$1.36009 E+9$
1000	$3.06602 E-14$	$8.38902 E+9$
10000	$1.24931 E-13$	$3.41826 E+10$
100000	$2.88194 E-13$	$7.88535 E+10$
	$4.03256 E-13$	$1.10336 E+11$

TEMPERATURE IS 600 K
$A \cdot R \cdot T \cdot A-F A C T O R$ IS $4.81273 E+16$ /SEC
REACTION THRESHOLD IS 66000. CALS
EXPERIMENTAL A-FACTOR IS $5.34254 E+17$ /SEC(HIGH PRESSURE)
EXPERIMENTAL ACTIVATION ENERGY IS 68799.2 CALS
(HIGH PRESSURE)
HIGH PRESSURE RATE CONSTANT IS 4.49747E-8 /SEC

PRESSURE	K(DEC)	K(COM)
$(M M H G)$	$(/ S E C)$	(L/MQL-SEC)

.01	$3.67623 E-13$	$1.30544 \mathrm{E}+6$
.1	$3.56885 \mathrm{E}-12$	$1.26730 \mathrm{E}+7$
10	$3.26056 \mathrm{E}-11$	$1.15783 \mathrm{E}+8$
10	$2.67928 \mathrm{E}-10$	$9.51415 \mathrm{E}+8$
100	$1.80011 \mathrm{E}-9$	$6.39221 \mathrm{E}+9$
1000	$8.42450 \mathrm{E}-9$	$2.99155 \mathrm{E}+10$
10000	$2.32159 \mathrm{E}-8$	$8.24400 \mathrm{E}+10$
100000	$3.77921 \mathrm{E}-8$	$1.34200 \mathrm{E}+11$

TEMPERATURE IS 700 K
$A \cdot P \cdot T \cdot A-F A C T O R$ IS $6.86275 E+16$ /SEC
REACTION THRESHOLD IS 66000. CALS
EXPERIMENTAL A-FACTOR IS $6.09422 E+17$ /SEC(HIGH PRESSURE)
EXPERIMENTAL ACTIVATION ENERGY IS 68966.9 CALS (HIGH PRESSURE)
HIGH PRESSURE RATE CONSTANT IS 1.73720E-4 /SEC

PRESSURE	K(DEC)	K(COM)
$(M M H G)$	$(/ S E C)$	$(L / M \emptyset L-S E C)$

.01	$7.48935 E-10$	880290.
-1	$7.31382 E-9$	$8.59658 E+6$
1	$6.79187 E-8$	$7.98309 E+7$
10	$5.77144 E-7$	$6.78369 E+8$
100	$4.13076 E-6$	$4.85525 E+9$
1000	$2.15215 E-5$	$2.52961 E+10$
10000	$6.89285 E-5$	$8.10178 E+10$
100000	$1.30392 E-4$	$1.53261 E+11$

TEMPERATURE IS 800 K
$A \cdot R \cdot T \cdot A-F A C T O R$ IS $9 \cdot 07513 E+16$ /SEC
REACTION THRESHOLD IS 66000. CALS
EXPERIMENTAL A-FACTOR IS 6.66103E+17 /SEC(HIGH PRESSURE)
EXPERIMENTAL ACTIVATION ENERGY IS 69098. CALS
(HIGH PRESSURE)
HIGH PRESSURE RATE CONSTANT IS 8.62552E-2 /SEC

PRESSURE	K(DEC)	K(COM)
(MM HG)	(/SEC)	(L/MOL-SEC)
001	$2.06872 E-7$	607487.
1	$2.02891 E-6$	$5.95795 E+6$
1	$1.90709 E-5$	$5.59997 E+7$
10	$1.66187 E-4$	$4.88015 E+8$
100	$1.24861 E-3$	$3.66659 E+9$
1000	$7.08451 E-3$	$2.08039 E+10$
10000	$2.57625 E-2$	$7.56524 E+10$
100000	$5.61664 E-2$	$1.64935 E+11$

TEMPERATURE IS 90ロ K
$A \cdot R \cdot T \cdot A-F A C T O R$ IS $1 \cdot 13707 E+17$ /SEC
REACTION THRESHOLD IS 66000. CALS
EXPERIMENTAL A-FACTOR IS 7.09164E+17 /SEC(HIGH PRESSURE)
EXPERIMENTAL ACTIVATION ENERGY IS 69202.8 CALS
(HIGH PRESSURE)
HIGH PRESSURE RATE CONSTANT IS 10.8685 /SEC

PRESSURE	K(DEC)	K(COM)
(MM HG)	$(/ S E C)$	$(L / M O L-S E C)$
.01	$1.51643 E-5$	$427226 \cdot$
11	$1.49203 E-4$	$4.20352 E+6$
1	$1.41543 E-3$	$3.98771 E+7$
10	$1.25789 E-2$	$3.54388 E+8$
100	$9.82048 E-2$	$2.76674 E+9$
1000	.597165	$1.68240 E+10$
10000	2.41877	$6.81444 E+10$
100000	6.00693	$1.69234 E+11$

TEMPERATURE IS $100 \square K$
$A \cdot R \cdot T \cdot A-F A C T O R$ IS $1.36906 E+17$ /SEC
REACTION TRRESHOLD IS 66000. CALS
EXPERIMENTAL A-FACTOR IS 7.42300E+17 /SEC(HIGH PRESSURE)
EXPERIMENTAL ACTIVATION ENERGY IS 69288.2 CALS
(HI GH PRESSURE)
HIGH PRESSURE RATE CONSTANT IS 523.32 /SEC

PRESSURE	K(DEC)	$K(C O M)$
$(M M H G)$	(/SEC)	(L/MOL-SEC)

.01	$4 \cdot 40113 E-4$	$304675 \cdot$
.1	$4.34108 E-3$	$3.00518 E+6$
1	$4.14839 E-2$	$2.87178 E+7$
10	.374468	$2.59231 E+8$
100	3.0156	$2.08759 E+9$
1000	19.4178	$1 \cdot 34422 E+10$
10000	86.2466	$5.97055 E+10$
100000	241.029	$1.66856 E+11$

PRESSURE	K(DEC)	K(COM)
(MM HG)	$(/ S E C)$	$(L / M O L-S E C)$
.01	$6.52903 E-3$	219866.
.1	$6.45261 E-2$	$2.17293 E+6$
1	.62026	$2.08874 E+7$
10	5.67056	$1.90957 E+8$
100	46.8467	$1.57757 E+9$
1000	316.495	$1.06580 \mathrm{E}+10$
10000	$1522 \cdot 03$	$5.12547 \mathrm{E}+10$
100000	4730.8	$1.59311 \mathrm{E}+11$

TEMPERATURE IS 1200 K
$A \cdot R \cdot T \cdot A-F A C T O R$ IS $1.82505 E+17$ /SEC
REACTION THRESHOLD IS 66000. CALS
EXPERIMENTAL A-FACTOR IS 7.88662E+17 /SEC(HIGH PRESSURE)
EXPERIMENTAL ACTIVATION ENERGY IS 69418.9 CALS
(HIGH PRESSURE)
HIGH PRESSURE RATE CONSTANT IS $176426 \cdot / S E C$

PRESSURE	K(DEC)	K(COM)
$(M M H E)$	$(/ S E C)$	$(L / M O L-S E C)$
.01	$5.86957 E-2$	160353.
.1	.581008	$1.58728 E+6$
1	5.61202	$1.53317 E+7$
10	51.8486	$1.41647 E+8$
100	437.592	$1.19547 E+9$
1000	3079.53	$8.41307 E+9$
10000	15867.9	$4.33501 E+10$
100000	54269.7	$1.48261 E+11$

TEMPERATURE IS 1300 K
$A \cdot R \cdot T \cdot A=F A C T O R$ IS $2 \cdot 04438 E+17$ /SEC
REACTION THRESHOLD IS 66000. CALS
EXPERIMENTAL A-FACTOR IS 8-05118E+17 /SEC(HIGH PRESSURE)
EXPERIMENTAL ACTIVATION ENERGY IS 69469.9 CALS (HIGH PRESSURE)
HIGH PRESSURE RATE CONSTANT IS $1.65981 E+6$ /SEC

$P R E S S U R E$	$K(D E C)$	$K(C O M)$
$(M M H G)$	$(/ S E C)$	$(L / M O L-S E C)$

.01	$\bullet 359759$	118100.
$\bullet 1$	3.56576	$1 \cdot 17055 \mathrm{E}+6$
1	34.581	$1 \cdot 13521 \mathrm{E}+7$
10	322.321	$1.05811 \mathrm{E}+8$
100	2770.02	$9.09332 \mathrm{E}+8$
1000	20189.5	$6.62772 \mathrm{E}+9$
10000	110507.	$3.62767 \mathrm{E}+10$
100000	411890	$1.35214 \mathrm{E}+11$

A•R•T•A-FACTOR IS 2.65501E+17 /SEC
REACTION THRESHOLD IS 66000. CALS
EXPERIMENTAL A-FACTOR IS $8.38676 E+17$ /SEC(HIGH PRESSURE)
EXPERIMENTAL ACTIVATION ENERGY IS 69585.9 CALS
(HIGH PRESSURE)
HIGH PRESSURE RATE CONSTANT IS 2.58840E+8 /SEC

PRESSURE	K(DEC)	K(COM)
(MM HG)	$(/ S E C)$	$(L / M O L-S E C)$
.01	17.3866	49876.4
.1	172.804	495720.
1	1690.67	$4.85000 E+6$
10	16068.9	$4.60965 E+7$
100	143819.	$4.12571 E+8$
1000	$1.13595 E+6$	$3.25866 E+9$
10000	$7.16848 E+6$	$2.85640 E+10$
100000	$3.29937 E+7$	$9.46482 E+10$


```
TEMPERA TURE IS 2000
A.R.T. A-FACTOR IS 3.35270E+17 /SEC
REACTION THRESHOLD IS 66000. CALS
EXPERIMENTAL A-FACTOR IS 8.63248E+17 /SEC(HIGH PRESSURE)
EXPERIMENTAL ACTIVATION ENERGY IS 69687.6 CALS
                                    (HI GH PRESSURE)
HIGH PRESSURE RATE CONSTANT IS 2.07285E+10 /SEC
\begin{tabular}{lll} 
PRESSURE & K(DEC) & K(COM) \\
(MM HG) & \((/ S E C)\) & \((L / M \theta L-S E C)\) \\
& & \\
.01 & 370.896 & 18264.4 \\
1 & 3694.33 & 1819240 \\
10 & 364060 & \(1.79278 E+6\) \\
10 & 351700 & \(1.73192 E+7\) \\
100 & \(3.25857 E+6\) & \(1.60465 E+8\) \\
1000 & \(2.76179 E+7\) & \(1.36002 E+9\) \\
10000 & \(1.98402 E+8\) & \(9.77016 E+9\) \\
100000 & \(1.11733 E+9\) & \(5.50220 E+10\)
\end{tabular}
TEMPERA TURE IS 2RDO K
A PR.T. A-FACTOR IS 3.65535E+17 /SEC
REACTION THRESHOLD IS 66000. CALS
EXPERIMENTAL A=FACTOR IS 8.71020E+17 /SEC(HIGH PRESSURE)
EXPERIMENTAL ACTIVATION ENERGY IS 69724.8 CALS
                                    (HIGH PRESSURE)
HIGH PRESSURE RATE CONSTANT IS 1.02200E+11 /SEC
\begin{tabular}{lll} 
PRESSURE & \(K(D E C)\) & \(K(C O M)\) \\
\((M M H G)\) & \((/ S E C)\) & \((L / M O L-S E C)\)
\end{tabular}
\begin{tabular}{lll}
.01 & 991.875 & \(11298 \cdot 7\) \\
.1 & 9886.78 & 112623. \\
1 & 97672.3 & \(1.11261 \mathrm{E}+6\) \\
10 & 948948 & \(1.08097 \mathrm{E}+7\) \\
100 & \(8.90057 \mathrm{E}+6\) & \(1.01388 \mathrm{E}+8\) \\
1000 & \(7.73845 \mathrm{E}+7\) & \(8.81505 \mathrm{E}+8\) \\
10000 & \(5.83280 \mathrm{E}+8\) & \(6.64428 \mathrm{E}+9\) \\
100000 & \(3.54823 \mathrm{E}+9\) & \(4.04187 \mathrm{E}+10\)
\end{tabular}
```

TEMPERATURE IS 2400 K
$A \cdot R \cdot T \cdot A-F A C T O R$ IS $3 \cdot 93087 E+17$ /SEC
REACTION THRESHOLD IS 66000. CALS
EXPERIMENTAL A-FACTOR IS 8.76991E+17 /SEC(HIGH PRESSURE)
EXPERIMENTAL ACTIVATION ENERGY IS 69755.9 CALS
(HIGH PRESSURE)
HIGH PRESSURE RATE CONSTANT IS $3.86485 E+11 /$ SEC

PRESSURE	K(DEC)	K(COM)
(MM HG)	(/SEC)	(L/MOL-SEC)
-11	2118.24	$7178 \cdot 27$
-1	21126.1	$71592 \cdot 1$
1	209124.	708677.
10	$2 \cdot 104114 E+6$	$6.91698 \mathrm{E}+6$
100	1.93367E +7	$6.55279 E+7$
1000	1.71684E+8	5.81802E+8
10000	1-34696E+9	4. $56458 \mathrm{E}+9$
100000	8-74690E+9	$2 \cdot 96414 E+10$

TEMPERATURE IS 2600
 K

A•R•T. A-FACTOR IS 4.18209E+17 /SEC
REACTION THRESHOLD IS 66000. CALS
EXPERIMENTAL A-FACTOR IS 8.81675E+17 /SEC(HIGH PRESSURE)
EXPERIMENTAL ACTIVATION ENERGY IS $69782 \cdot 2$ CALS
(HIGH PRESSURE)
HIGH PRESSURE RATE CONSTANT IS $1.19163 E+12$ /SEC

PRESSURE	K(DEC)	K(COM)
(MM HG)	$(/ S E C)$	$(L / M Q L-S E C)$
.01	3823.61	4675.03
.1	38151.9	46647.3
10	378271.	462502.
10	$3.70600 E+6$	$4.53122 E+6$
100	$3.53981 E+7$	$4.32804 E+7$
1000	$3.19813 E+8$	$3.91027 E+8$
10000	$2.59501 E+9$	$3.17285 E+9$
100000	$1.78143 E+10$	$2.17811 E+10$

TEMPERATURE IS 2800 K
A•R•T. A-FACTOR IS 4.41166E+17 /SEC
REACTION THRESHOLD IS 66000. CALS
EXPERIMENTAL A-FACTOR IS $8.85415 E+17$ /SEC(HIGH PRESSURE)
EXPERIMENTAL ACTIVATION ENERGY IS 69804.8 CALS (HIGH PRESSURE)
HIGH PRESSURE RATE CONSTANT IS 3.12925E+12 /SEC

PRESSURE
 (MM HG)

.01	6071.37	3115.29
.1	60662.2	31095.7
1	601661.	308719.
10	$5.91290 \mathrm{E}+6$	$3.03398 \mathrm{E}+6$
100	$5.68632 \mathrm{E}+7$	$2.91772 \mathrm{E}+7$
1000	$5.21277 \mathrm{E}+8$	$2.67474 \mathrm{E}+8$
10000	$4.35160 \mathrm{E}+9$	$2.23286 \mathrm{E}+9$
100000	$3.13239 \mathrm{E}+10$	$1.60727 \mathrm{E}+10$

$\mathrm{K}(\mathrm{DEC}) \quad \mathrm{K}(\mathrm{COM})$
(/SEC) (L/MOL-SEC)

TEMPERATURE IS 3000 K
A•R•T. A-FACTOR IS 4.62195E+17 /SEC
REACTION THRESHOLD IS 66000. CALS
EXPERIMENTAL A-FACTOR IS $8.88447 E+17$ /SEC(HIGH PRESSURE)
EXPERIMENTAL ACTIVATION ENERGY IS 69824.5 CALS
(HIGH PRESSURE)
HIGH PRESSURE RATE CONSTANT IS 7.22671E+12 /SEC

PRESSURE	K(DEC)	K(COM)
$(M M H G)$	$(/ S E C)$	(L/MQL-SEC)

.01	8727.06	2119.98
.1	87136.2	21167.2
1	866039.	210378.
10	$8.53302 \mathrm{E}+6$	$2.07284 \mathrm{E}+6$
100	$8.25267 \mathrm{E}+7$	$2.00474 \mathrm{E}+7$
1000	$7.65835 \mathrm{E}+8$	$1.86037 \mathrm{E}+8$
10000	$6.54878 \mathrm{E}+9$	$1.59083 \mathrm{E}+9$
100000	$4.90910 \mathrm{E}+10$	$1.19252 \mathrm{E}+10$

Table II. Collisional Efficiencies of Bath Gases*

1. $\mathrm{N}_{2} \mathrm{H}_{4}$
(1.00)
2. He
. 171
3. Ne
.120
4. Ar
.136
5. Kr
.115
6. D_{2}
.23
7. N_{2}
.21
8. $S F_{6}$
.42
9. H_{2}
.28
10. NH_{3}
.76
II. CD_{4}. 41
11. CH_{4}
.44
12. $\mathrm{C}_{2} \mathrm{H}_{6}$
.56
13. $\mathrm{C}_{2} \mathrm{H}_{4}$. 43
14. $\mathrm{C}_{3} \mathrm{H}_{6}$. 60
15. $\mathrm{C}_{3} \mathrm{H}_{8} .62$
16. $\mathrm{iC}_{4} \mathrm{H}^{10}$.73
17. $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{3}$. 80
*From results of ref. 6 on $\mathrm{CH}_{3} \mathrm{NC}$ isomerization.

Figure I. Comparison of calculated - and experimental - - rate constants for hydrazine decomposition at constant pressure. Transition state model (I) for hydrazine 3300, (4), 1300 (2), 1000 (2), 20 (3). Collision diameter 5A, Argon efficiency ${ }^{(6)}$. 136 , Toluene efficiency ${ }^{(6)}$. 8. The numbers are assumed bond energies in kcals.
(a) reference Ia (7 mm Hg toluene)
(b) reference $\mathrm{Ib} \quad(15 \mathrm{~mm} \mathrm{Hg}$ toluene).
(c) reference Ic (100 mm Hg argon)
(d) reference Id (3000 mm Hg argon)
(el) reference $\mathrm{Ie} \quad(2000 \mathrm{~mm} \mathrm{Hg}$ argon)
(e2) reference $\mathrm{Ie} \quad(5500 \mathrm{~mm} \mathrm{Hg}$ argon)
(fl) reference If (150 mm Hg argon)
(f2) reference If (200,000 mm Hg argon)

Figure II. Comparison of the results of RRKM calculations with varying frequency patterns for the transition state, but essentially invariant high pressure rate parameters ${ }^{\circ}$
a. $k(I) / k(I I) ; 300^{\circ} \mathrm{K} \quad k_{\infty}(I)=10^{17.2} \exp (-67,871 / R T)$

$$
\begin{aligned}
k_{\infty}(I I) & =10^{17.2} \exp (-68,397 / \mathrm{RT}) \\
900^{\circ} \mathrm{K} & k_{\infty}(I)=10^{17.8} \exp (-69,203 / \mathrm{RT}) \\
& k_{\infty}(I I)=10^{18.2} \exp (-70,659 / \mathrm{RT}) \\
1500^{\circ} \mathrm{K} & \mathrm{k}_{\infty}(\mathrm{I})=10^{17.9} \exp (-69,552 / \mathrm{RT}) \\
& k_{\infty}(I I)=10^{18.4} \exp (-71,279 / \mathrm{RT})
\end{aligned}
$$

b. $\mathrm{k}(\mathrm{I}) / \mathrm{k}($ III $) ; 300^{\circ} \mathrm{K} \mathrm{k}($ III $)=10^{17 \cdot 3} \exp (-68585 / \mathrm{RT})$

$$
\begin{array}{rl}
900^{\circ} \mathrm{K} & \mathrm{k}(\text { III })
\end{array}=10^{18.5} \exp (-70,893 / \mathrm{RT}) .
$$

Figure III: Comparison of calculated - and experimental - - rate constants for hydrazine decomposition at constant pressure. Transition state model (IV) for hydrazine 3300 (4), 1300 (2), 1000 (2), 40 (3). Collision diameter 5 A. Argon efficiency ${ }^{(6)}$. 136 Toluene efficiency ${ }^{(6)}$.8. The numbers are assumed bond energies in kcals.
(a) reference Ia (7 mm Hg toluene)
(b) reference Ib (15 mm Hg toluene)
(c) reference Ic (100 mm Hg argon)
(d) reference Id (3000 mm Hg argon)
(el) reference Ie (2000 mm Hg argon)
(e2) reference Ie (5500 mm Hg argon)
(fl) reference If (150 mm Hg argon)
(f2) reference If ($200,000 \mathrm{~mm} \mathrm{Hg}$ argon)

Figure 2

Figure 3

RATE CONSTANTS FOR THF REACTIONS $(M)+\mathrm{N}_{2} \mathrm{~F}_{4} \underset{\mathrm{k}_{\mathrm{d}}}{\stackrel{\mathrm{k}_{\mathrm{r}}}{\leftrightarrows}} 2 \mathrm{NF}_{2} \cdot+(\mathrm{M})$
W. Tsang

ABSTRACT

Data for the reactions $\mathrm{N}_{2} \mathrm{~F}_{4}+\mathrm{M} \underset{\underset{\mathrm{kd}}{\underset{\mathrm{r}}{\boldsymbol{r}}} \underset{2}{\stackrel{\mathrm{r}_{2}}{ }} 2 \mathrm{NF}_{2}}{ }$ + M have been critically examined and tabulated. A correlation of the data on the basis of RRKM calculations require a $N-N$ bond energy of $\Delta E_{0}^{\circ}=18.0 \mathrm{kcals}$. This is somewhat lower than the JANAF value of $\Delta \mathrm{E}_{\mathrm{o}}^{\circ}=20.8 \mathrm{kcals}$. Suggested rate constants for these reactions over the ranges $10^{-5}-10^{2} \mathrm{~atm}$ and $200-1800^{\circ} \mathrm{K}$ are tabulated.

1. Survey of Experimental Data
I. Direct Studies
Reference
Darwent,
$\stackrel{N}{\sim}$
$\begin{aligned} & \text { I. Brown and B. } \\ & \text { J. Chem. Phys., } \\ & (1965) \text {. }\end{aligned}$
$\begin{aligned} & \text { Shock tube at } 344-410^{\circ} \mathrm{K} \text { with } \\ & .6 \text { to } 6 \text { atm Ar or } \mathrm{N}_{2}\left(1 \% \mathrm{~N}_{2} \mathrm{~F}_{4}\right)\end{aligned}$
Spectrophotometric detection of
NF_{2} at $2602 \AA$ (4 A bandpass)
(incident shock).
I. Direct Studies (Continued)

$$
\begin{aligned}
& \quad \frac{\text { Reference }}{} \\
& \text { A. P. Modica and D. F. } \\
& \text { Hornig, J. Chem. Phys., } \\
& 1317,49 \text { (1968). }
\end{aligned}
$$

JANAF Thermochemical Tables NSRDS-NBS 37 , U. S. Government Printing Office,

Review and recalculation of existing data for the equilibrium $\mathrm{N}_{2} \mathrm{~F}_{4} \xrightarrow{\leftrightarrows} 2 \mathrm{NF}_{2} \cdot$ Method and Condition
*All data from Ref. IIa.

III. Comments:

Ia, b. The results are derived from very straight forward shock tube experiments. Since reactions are carried out behind incident shock waves, at low temperatures and for the most part dilute mixtures of $\mathrm{N}_{2} \mathrm{~F}_{4}$, mechanistic complications as well as non-ideal shock tube behavior are probably absent. Measured rates are probably reliable. Absolute uncertainties in rate constants should be less than a factor of 2 . A direct comparison of runs under similar condition can be found in Fig. I. Agreement is satisfactory.

There may be discrepancies in the reported pressure dependence. Modica and Hornig (Ib) publish data which indicate a linear dependence of unimolecular rate constant with pressure. This means that under these conditions (.58-2.7 atm) reaction is in the bimolecular region. Brown and Darwent (Ia) find at 6 atm N_{2} pressure they are close to the high pressure limit. These results are not compatible since this suggests an unacceptably sharp fall-off curve. The collisional efficiency of argon as reported by Modica and Hornig (Ib) is rather high. This may be an indication that they are not as far into the fall-off region as they believe.

There is a disagreement of about 2 kcals in activation energy for decomposition in the presence of argon. Although this may not be considered large at first sight note that the process in question has an extremely low activation energy. The percentage deviation is more of the order of 12%. This is fairly large even in the context of shock tube experiments. IIa. The numbers given here is based on the measured equilibrium constants and calculated entropies of reaction. The reported 2nd law
determinations give numbers of $19.8,21.7,19.3,19.8$, and 21.5 kcals (see ref. in IIa). The source of this discrepancy is unknown. Ordinarily, one would favor the 3rd law determination. It should be noted all the entropies are based on spectroscopic data. A direct measurement of the entropy of $N_{2} \mathrm{~F}_{4}$ will increase our confidence in the validity of the $3 r \bar{a}$ law determinations.
2. Discussion

The two studies are in substantial agreement with regard to measured rates of NF_{2} formation. The unimolecular rate constants have a pressure dependence but it would seem that the extent of this dependence is uncertain. The activation energy is also uncertain.

Assuming the correctness of the measured rate constants, a series of RRKM calculations will permit (in essence) a best two parameter fit of the data. The results of such calculations for a range of A-factors (details regarding transition state models and other parameters used in RRKM calculation can be found in Table I) and $\mathbb{N}-\mathbb{N}$ bond energies confirm the experimental observation that results are in the "fall-off" region. For reactions at 2 atmospheres argon comparisons between calculation and experiments can be found in Figures Ia,b,c. For each A-factor two rates have been determined. One involves the use of an argon efficiency of .5 as determined by Modica and Hornig (Ib) while the other uses .136 from the work of Rabinovitch and coworkers. (1) This should cover the possible range of argon efficiencies. The key factors to be noted are: 1) For $\Delta E_{0}^{O}=20.8$ kcals reaction is so far into the fall-off region such that
there is no transition state model which will fit the data; 2) with $\Delta E_{0}^{\circ}=$ 19.6 kcals, if one considers the uncertainty limits in the experiments (factor of 2) and calculation (factor of 3) then a tenuous fit may be possible; c) Finally for $\Delta E_{o}^{\circ}=18$ kcals one obtains a comfortable fit with A-factors which are commonly observed for other bond dissociation reactions. With this bond energy a transition state compatible with an A-factor of $10^{17.3} \mathrm{sec}^{-1}$ and an argon efficiency of .136 and N_{2} efficiency of .21 the accumulated data on the pressure dependence of the unimolecular rate constant and the results of shocks in \mathbb{N}_{2} at 2.5 atm can be accomodated. This can be seen in Figure IIa,b,c. In addition from the present results we can compute the apparent third body efficiencies of SF_{6}, He and A (since reaction is not completely in the bimolecular region) using the numbers given by Rabinovitch and coworkers. (I) The values are $\mathrm{k}_{\mathrm{d}}\left(\mathrm{SF}_{6}\right) / \mathrm{k}_{\mathrm{d}}(\mathrm{Ar})=1.6, \mathrm{k}_{\mathrm{d}}\left(\mathrm{N}_{2} \mathrm{~F}_{4}\right) / \mathrm{k}_{\mathrm{d}}(\mathrm{Ar})=3.5$, and $\mathrm{k}_{\mathrm{d}}(\mathrm{He}) / \mathrm{k}_{\mathrm{d}}(\mathrm{Ar})$ = l.0. These numbers are in reasonable accord with the values given by Modica and Hornig (Ib).

The $\mathbb{N}-\mathbb{N}$ bond energy that is recommended in the JANAF Tables (Ia) is 22.2 kcals $\left(298^{\circ} \mathrm{K}\right)$. This corresponds to $\Delta \mathrm{E}_{\mathrm{O}}^{\circ}=20.8 \mathrm{kcals}$. As we have noted it is not possible to fit the data on this basis. Thus if this number is correct than the only proper conclusion is that the experimental results are in error and the satisfactory fits that have been obtained with $\Delta E_{0}^{\circ}=18.0 \mathrm{kcals}$ mere coincidences. Although the former is always possible (for example, presence of NF_{2} producing impurities) the gross discrepancies make it unlikely. Furthermore, we are not convinced that $\mathbb{N}-\mathbb{N}$ bond energy has been settled. The value of $\Delta \mathbb{E}_{0}^{O}=18.0$
kcals corresponds to a $\Delta H_{298}=19.4 \mathrm{kcals}$ which is in agreement with the 2nd law determinations.

Pending the settlement of this question we summarize in Table II rate constants for $\mathbb{N}_{2} \mathrm{~F}_{4}$ decomposition and NF_{2} combination over the range $.01-100,000 \mathrm{~mm} \mathrm{Hg}\left(\mathrm{N}_{2} \mathrm{~F}_{4}\right)$ and $200-1800^{\circ} \mathrm{K}$ using $\Delta \mathrm{E}_{\mathrm{O}}^{\mathrm{O}}=18.0$ and a transition state which yields an A-factor of $210^{17.3} \mathrm{sec}^{-1}$. Assuming the correctness of the experimental data these numbers should have an uncertainty of about a factor of 3 . If the JANAF $\mathbb{N}-\mathbb{N}$ bond energy should be confirmed we summarize in Table III results with the same transition state and $\Delta \mathrm{E}_{\mathrm{O}}^{\circ}$ $=20.8$. These are however no better than order of magnitude estimates since there will no longer be any experimental tie-points. Finally, there is arso the possibility that this discrepancy is due to defects in the calculational procedure. Thus, if the high bond energy and the rate data should both proved to be correct, then the data in Table II may still be valid (it runs through the experimental numbers) but it will indicate that the computational technique is not sufficiently sensitive to this small change in bond energy. Obviously further experimental work should be carried out.

References

1. S. C. Chen, B. S. Rabinovitch, J. Bryant, L. D. Spicer, T. Fryimoto, Y. N. Lin, and S. P. Pavlou, J. Phys. Chem. 74, 3160 (1970).

TABLE I: Data Used in Fall-off Calculations.
a) Transition state is assumed to have some geometrical structure as molecule.
b) Collision diameter is $6 \AA$.
c) Vibrational frequencies for the molecule are 950(5), 740(1), 520(5), 120(1).
d) Vibrational frequencies for transition states are

1. $950(4), 570(2), 300(2), 60(3)$ giving $A^{4000}(\infty)=10^{15.7} \mathrm{sec}^{-1}$
2. $950(4), 570(2), 150(2), 30(3)$ giving $A_{\exp }^{400}(\infty)=10^{17.3} \mathrm{sec}^{-1}$
3. $950(4), 570(2), 50(2), 20(3)$ giving $A_{\exp }^{400}(\infty)=10^{18.7} \mathrm{sec}^{-1}$
4. $950(4), 570(2), \quad 10(5) \quad$ giving $A_{\exp }^{400}(\infty)=10^{21} \mathrm{sec}^{-1}$
e) Since fall-off behavior is independent of pattern of vibrational frequencies but is sensitive to exact value of $A(\infty)$, it is assumed that the above covers all possible transition state models within this range of A -factors.

TABLE II

 pressure range $.01-100,000 \mathrm{~mm} \mathrm{Hg}\left(\mathbb{N}_{2} \mathrm{~F}_{4}\right)$ and $200-1800^{\circ} \mathrm{K} . \mathrm{A}(\infty) \sim 10^{17.3}$ $\sec ^{-1} \quad \Delta E_{0}^{O}=18000$ cals. Note that $k(D E C) / k(C O M)=$ equilibrium constant with $\Delta E_{O}^{O}=18000$ cals .
(The table is on pages 212-215.)

TEMPERATURE IS 200 K
$A \cdot R \cdot T \cdot A-F A C T O R$ IS $6.88975 E+14$ /SEC
REACTION THRESHOLD IS 180 180 CALS
EXPERIMENTAL A-FACTOR IS $2.86886 E+16$ /SEC (HI GH PRESSURE)
EXPERIMENTAL ACTIVATION ENERGY IS $19462 \cdot 4$ CALS
(HIGH PRESSURE)
HIGH PRESSURE RATE CONSTANT IS 1.50580E-5 /SEC

PRESSURE	K(DEC)	K(COM)
(MM HG)	$(/ S E C)$	(L/MOL-SE
.01	$3.11337 E-10$	18764.6
.1	$3.07811 E-9$	185520.
1	$2.82798 E-8$	$1.78445 E+6$
10	$2.10627 E-7$	$1.26947 E+7$
100	$1.15621 E-6$	$6.96861 E+7$
1000	$4.24485 E-6$	$2.55841 E+8$
10000	$9.57262 E-6$	$5.76950 E+8$
$10 日 000$	$1.35960 E-5$	$8.19442 E+8$

TEMPERATURE IS 300 K
$A \cdot R \cdot T \cdot A=F A C T O R$ IS $3.08483 E+15$ /SEC
REACTION THRESHOLD IS 18000. CALS
EXPERIMENTAL A-FACTOR IS $9.99696 E+16$ /SEC (HIGH PRESSURE)
EXPERIMENTAL ACTIVATION ENERGY IS 20053.6 CALS
(HIGH PRESSURE)
HIGH PRESSURE RATE CONSTANT IS 241.142/SEC

PRESSURE	K(DEC)	$K(C O M)$
$(M M H G)$	$(/ S E C)$	$(L / M O L-S E C)$

.01	$7.72187 E-4$	4327.03
1	$7.67468 E-3$	43005.8
10	.073189	410122.
10	.612868	$3.43427 E+6$
100	4.19646	$2.35153 E+7$
1000	21.6034	$1.21057 E+8$
10000	74.8421	$4.19385 E+8$
100000	159.594	$8.94300 E+8$

TEMPERATURE IS 400 K
$A \cdot R \cdot T \cdot A-F A C T O R$ IS $8 \cdot 0552 I E+15$ /SEC
REACTION THRESHOLD IS 18080. CALS
EXPERIMENTAL A-FACTOR IS $1.81544 E+17$ /SEC (HIGH PRESSURE)
EXPERIMENTAL ACTIUATION ENERGY IS 20455.9 CALS
(HIGH PRESSURE)
HIGH PRESSURE RATE CONSTANT IS $1 \cdot 19085 E+6$ /SEC

$K(D E C)$
(/SEC)

- 181
- I

1
10
100
1000
10000
100000

K(CDM)
(L/MOL-SEC)
.850684
8.47479
82.2422
730.705
5630.92
35179.
161028.
481210.
.850684
8.47479
82.2422
730.705
5630.92
35179.
161028.
481210.
.850684
8.47479
82.2422
730.705
5630.92
35179.
161028.
481210.
.850684
8.47479
82.2422
730.705
5630.92
35179.
161028.
481210.
.850684
8.47479
82.2422
730.705
5630.92
35179.
161028.
481210.
.850684
8.47479
82.2422
730.705
5630.92
35179.
161028.
481210.
.850684
8.47479
82.2422
730.705
5630.92
35179.
161028.
481210.
.850684
8.47479
82.2422
730.705
5630.92
35179.
161028.
481210.
1582.37
15764.1

152980 。
1.35920E+6

1. $04742 E+7$
$6 \cdot 54370 E+7$
$2.99531 \mathrm{E}+8$
$8.95107 E+8$

TEMPERATURE IS 500 K
A•R•T• A-FACTOR IS 1.56054E+16 /SEC
REACTION THRESHOLD IS 18000. CALS
EXPERIMENTAL A-FACTOR IS 2•50174E+17 /SEC (HIGH PRESSURE)
EXPERIMENTAL ACTIVATION ENERGY IS 20736.3 CALS
(HIGH PRESSURE)
HIGH PRESSURE RATE CONSTANT IS $2 \cdot 13354 E+8$ /SEC
PRESSURE
K(DEC)
K(COM)
(MM HG)
(/SEC) (L/MOL-SEC)

.01	42.3612	677.796
.1	422.553	6761.01
110	4140.65	66252.
10	38097.7	609578.
100	315642.	$5.05039 \mathrm{E}+6$
1000	$2.23104 \mathrm{E}+6$	$3.56975 \mathrm{E}+7$
10000	$1.23392 \mathrm{E}+7$	$1.97432 \mathrm{E}+8$
100000	$4.76811 \mathrm{E}+7$	$7.62916 \mathrm{E}+8$

TEMPERATURE IS 600 K
A.R.T. A-FACTOR IS 2.52449E+16 /SEC

REACTION THRESHOLD IS 18000. CALS
EXPERIMENTAL A-FACTOR IS 3002202E+17 /SEC (HIGH PRESSURE)
EXPERIMENTAL ACTIVATION ENERGY IS 20939.3 CALS
(HIGH PRESSURE)
HIGH PRESSURE RATE CONSTANT IS $7.05820 \mathrm{E}+9$ /SEC

PRESSURE (MM HG)	K(DEC) $(/ S E C)$	K(CQM) (L/MOL-SE
.01	456.144	316.86
11	4553.52	3163.09
1	44888.9	311820
10	422463.	293463.
100	$3.67313 E+6$	$2.55154 E+6$
1000	$2.32531 E+7$	$1.96260 E+7$
10000	$1.78803 E+8$	$1.24205 E+8$
100000	$8.39921 E+8$	$5.83450 E+8$

TEMPERATURE IS 700 K
A•R•T• A-FACTOR IS 3.63523E +16 /SEC
REACTION THRESHOLD IS 18000 . CALS
EXPERIMENTAL A-FACTOR IS 3.40590E+17 /SEC (HIGH PRESSURE)
EXPERIMENTAL ACTIVATION ENERGY IS 21091.6 CALS
(HIGH PRESSURE)
HIGH PRESSURE RATE CONSTANT IS 8.77533E+10 /SEC

PRESSURE

K(DEC)
K(COM)
(MM HG)
(/SEC)
2094.26
20916.6
207014.
$1.97874 E+6$
1.77980E+7

1. $45475 \mathrm{E}+8$
$1.01713 \mathrm{E}+9$
2. $55428 \mathrm{E}+9$
(L/MOL-SEC)
158.513
1583.16
15668.8

149770 .
1.34712E+6
1.10110E+7
$7.69859 \mathrm{E}+7$
$4.20401 \mathrm{E}+8$

TEMPERATURE IS 800 K
A•R•T. A-FACTOR IS 4.83636E+16 /SEC
REACTION THRESHOLD IS 18000. CALS
EXPERIMENTAL $A-F A C T O R$ IS $3.68975 E+17$ /SEC (HIGH PRESSURE)
EXPERIMENTAL ACTIVATION ENERGY IS 21269.6 CALS
(HIGH PRESSURE)
HIGH PRESSURE RATE CONSTANT IS 5.88043E+11 /SEC

PRESSURE	K(DEC)	K(CQM)
$(M M H G)$	(/SEC)	(L/MOL-SEC)

.01	6225.65	90.982
.1	62200.1	908.997
110	617284.	9021.03
10	$5.96606 \mathrm{E}+6$	87188.4
100	$5.50076 \mathrm{E}+7$	803885.
1000	$4.70378 \mathrm{E}+8$	$6.87414 \mathrm{E}+6$
10000	$3.54745 \mathrm{E}+9$	$5.18426 \mathrm{E}+7$
100000	$2.17975 \mathrm{E}+10$	$3.18551 \mathrm{E}+8$

TEMPERATURE IS 1000 K
A.R.T. A-FACTOR IS 7.34293E+16 /SEC

REACTION THRESHOLD IS 18000. CALS
EXPERIMENTAL A-FACTOR IS $4.26437 E+17$ /SEC (HI GH PRESSURE)
EXPERIMENTAL ACTIVATION ENERGY IS 21379.4 CALS
(HIGH PRESSURE)
HIGH PRESSURE RATE CONSTANT IS 8.58582E+12 /SEC

PRESSURE	K (DEC)	K (COM)
(MM HG)	(/SEC)	(L/MOL-SEC)
- 01	19513.1	29.5697
i^{1}	$\begin{aligned} & 195034 . \\ & 1.94206 E+6 \end{aligned}$	$\begin{aligned} & 295 \cdot 55 \\ & 2942 \cdot 96 \end{aligned}$
10	1.90390E+7	$28851 \cdot 3$
100	$1.81362 E+8$	274832 。
1080	$1 \cdot 64803 E+9$	2.49740E+6
10000	1.37999E+10	2.09120E+7
100000	1.20376E+11	1-52108E+8

TEMPERATURE IS 1290 K
$A \cdot R \cdot T \cdot A-F A C T O R$ IS $9.81603 E+16$ /SEC
REACTION THRESHOLD IS 18000. CALS
EXPERIMENTAL A-FACTOR IS $4.28868 E+17$ /SEC (HI GH PRESSURE)
EXPERIMENTAL ACTIVATION ENERGY IS 21495.3 CALS
(HIGH PRESSURE)
HIGH PRESSURE RATE CONSTANT IS 5•19035E+13 /SEC

PRESSURE	K(DEC)	K(CQM)
$(M M H G)$	(/SEC)	(L/MOL-SEC)

.01	33218.4	11.4897
18	332091.	114.865
1	$3.31284 \mathrm{E}+6$	1145.86
10	$3.27418 \mathrm{E}+7$	11324.8
100	$3.17931 \mathrm{E}+8$	1099670
1000	$2.99684 \mathrm{E}+9$	$1.03655 \mathrm{E}+6$
10000	$2.67799 \mathrm{E}+10$	$9.26273 \mathrm{E}+6$
100000	$2.17216 \mathrm{E}+11$	$7.51312 \mathrm{E}+7$

TEMPERATURE IS 1490 K
$A \cdot R \cdot T \cdot A=F A C T O R$ IS $1 \cdot 21497 E+17$ /SEC
REACTION THRESHOLD IS 18000. CALS
EXPERIMENTAL A-FACTOR IS $4 \cdot 43168 E+17$ /SEC (HI GH PRESSURE)
EXPERIMENTAL ACTIVATION ENERGY IS 21579.2 CALS
(HIGH PRESSURE)
HIGH PRESSURE RATE CONSTANT IS $1.88769 E+14$ /SEC

PRESSURE	K(DEC)	K(COM)
$(M M H G)$	$(/ S E C)$	$(L / M O L-S E C)$

.01	41717.2
11	4171040
10	$4.16513 E+6$
10	$4.13592 E+7$
100	$4 \cdot 06213 E+8$
1000	$3.91520 E+9$
10000	$3.64351 E+10$
100000	$3.17073 E+11$

5.14461
51.4378
$513 \cdot 649$
5100.46
50094.8

482827 .
$4.49322 E+6$
3.91019E+7

TEMPERA TURE IS 1600 K
$A \cdot R \cdot T \cdot A-F A C T O R$ IS 1. $43042 E+17$ /SEC
REACTION THRESHOLD IS 18000 CALS
EXPERIMENTAL A-FACTOR IS 4.52778E+17 /SEC (HIGH PRESSURE)
EXPERIMENTAL ACTIVATION ENERGY IS 21642.6 CALS
(HIGH PRESSURE)
HIGH PRESSURE RATE CONSTANT IS 4.98781E+14 /SEC

PRESSURE	K(DEC)	K(CDM)
$(M M H G)$	$(/ S E C)$	$(L / M O L-S E C)$
.01	44139.4	2.55698
11	441351.	25.5674
1	$4.40977 E+6$	255.457
10	$4.39077 E+7$	2543.56
100	$4.34165 E+8$	25151.1
1000	$4.24118 E+9$	245690.
10000	$4 \cdot 04712 E+10$	$2 \cdot 34449 E+6$
100000	$3.68402 E+11$	$2 \cdot 13414 E+7$

TEMPERATURE IS 1800 K
$A \cdot R \cdot T \cdot A-F A C T O R$ IS $1.62728 E+17$ /SEC
REACTION THRESHOLD IS 18000. CALS
EXPERIMENTAL A-FACTOR IS 4.59519E+17 SEC (HIGH PRESSURE)
EXPERIMENTAL ACTIVATION ENERGY IS $21692 \cdot 2$ CALS
(HIGH PRESSURE)
HIGH PRESSURE RATE CONSTANT IS $1.06407 E+15$ /SEC

PRESSURE
(MM HG)

```
\bullet01
-1
I
10
1 0 0
10008
10000
100008"6
```

K(DEC)
K(CDM)
(L/MOL-SEC)

.01	41871	1.36661
11	4186860	13.6653
10	$4.18465 E+6$	136.581
10	$4.17321 E+7$	1362.08
100	$4.14306 E+8$	13522.4
1000	$4.08004 E+9$	$133167 \cdot$
10000.	$3.95404 E+10$	$1.29055 E+6$
$100000^{\prime 4}$	$3.70402 E+11$	$1.20894 E+7$

TABLE III

Abstract

$\mathrm{k}(\mathrm{DEC})$ Estimated rate constants for the reaction $\mathbb{N}_{2} \mathrm{~F}_{4} \underset{\mathrm{k}(\stackrel{\leftarrow}{\mathrm{COM}})}{\stackrel{+}{4}} \quad 2 \mathrm{NF}_{2}$. over the pressure range $.01-100,000 \mathrm{~mm} \mathrm{Hg}\left(\mathbb{N}_{2} \mathrm{~F}_{4}\right)$ and $200-1800^{\circ} \mathrm{K} . \mathrm{A}(\infty) \sim 10^{17.3}$ $\sec ^{-1} \quad \Delta E_{0}^{\circ}=20800$ cals. Note that $k(D E C) / k(C O M)=$ equilibrium constant with $\Delta E_{O}^{O}=20800$ cals.

(The table is on pages 217-220.)

TEMPERATURE IS 200 K
$A \cdot R \cdot T \cdot A-F A C T O R$ IS $6.88975 E+14$ /SEC
REACTION THRESHOLD IS 20800. CALS
EXPERIMENTAL A-FACTOR IS 2.86886E+16 /SEC (HIGH PRESSURE)
EXPERIMENTAL ACTIVATION ENERGY IS 22259.4 CALS
(HIGH PRESSURE)
HIGH PRESSURE RATE CONSTANT IS 1.31667E-8 /SEC

```
PRESSURE
(MM HG)
```

K (DEC)
(/SEC)
(/SEC)
8.29910E-13
8.05125E-12
$6 \cdot 81524 E-11$
4. 46225E-10
2.06155E-9
6. $13405 \mathrm{E}-9$
1.11596E-8

1. 37881 E-8
K(COM)

K(COM)
(L/MOL-SEC)

.01	$8 \cdot 29910 E-13$	685.715
.1	$8.05125 E-12$	6652.36
1	$6.81524 E=11$	$56311 \cdot 1$
10	$4 \cdot 46225 E-10$	$368694 \cdot$
100	$2.06155 E-9$	$1.70336 E+6$
1000	$6.13405 E-9$	$5.06827 E+6$
10000	$1.11596 E-8$	$9.22066 E+6$
100000	$1.37881 E-8$	$1.13925 E+7$

TEMPERATURE IS 300 K
$A \cdot R \cdot T \cdot A=F A C T O R$ IS $3.08483 E+15$ /SEC
REACTION THRESHOLD IS 20800. CALS
EXPERIMENTAL A-FACTOR IS $9.99696 E+16$ /SEC (HIGH PRESSURE)
EXPERIMENTAL ACTIVATION ENERGY IS 22850.7 CALS (HIGH PRESSURE)
HIGH PRESSURE RATE CONSTANT IS 2.20502 /SEC
PRESSURE
K(DEC)
K(COM)
(MM HG)
(/SEC)
(L/MOL-SEC)

.01	$2 \cdot 14135 E-5$	287.181
11	$2 \cdot 10600 E-4$	$2824 \cdot 4$
1	$1.91034 E-3$	25620.
10	$1.46796 E-2$	196871.
100	$8.89234 E-2$	$1.19257 E+6$
1000	.387585	$5.19799 E+6$
10000	1.09046	$1.462 .44 E+7$
100000	1.90563	$2.55568 E+7$

TEMPERATURE IS 400 K
A•R•T•A-FACTOR IS 8.05521E+15 /SEC
REACTION THRESHOLD IS 20800. CALS
EXPERIMENTAL A-FACTOR IS $1.81544 E+17$ /SEC (HIGH PRESSURE)
EXPERIMENTAL ACTIVATION ENERGY IS 23252.9 CALS
(HIGH PRESSURE)
HIGH PRESSURE RATE CONSTANT IS $35213.8 /$ SEC

PRESSURE	K (DEC)	K(COM)
(MM HG)	(/SEC)	(L/MOL-SEC)
-01	7.54666E-2	140.377
-1	-746834	1389.2
1	7.00635	$13032 \cdot 6$
10	58.5077	108831.
100	411.259	764988 .
1000	2251.75	4.18852E+6
10000	8609.94	1.60155E+7
100000	21008.3	3-90778E+7

```
TEMPERATURE IS 500 K
A.R.T. A-FACTOR IS 1.56054E+16 /SEC
REACTION THRESHOLD IS 20800. CALS
EXPERIMENTAL A-FACTOR IS 2.50174E+17 /SEC (HIGH PRESSURE)
EXPERIMENTAL ACTIVATION ENERGY IS 23533.4 CALS
                                    (HIGH PRESSURE)
HIGH PRESSURE RATE CONSTANT IS 1.27580E+7 /SEC
\begin{tabular}{lcc} 
PRESSURE & K(DEC) & K(COM) \\
(MM HG) & \((/ S E C)\) & \((L / M O L-S E\) \\
& & \\
.01 & 7.48175 & 70.9141 \\
11 & 74.2928 & 704.167 \\
1 & 710.571 & 6734.98 \\
10 & 6238.66 & 59131.8 \\
100 & 48115.7 & 456054. \\
1000 & 3057270 & \(2.89776 E+6\) \\
10000 & \(1.45135 E+6\) & \(1.37563 E+7\) \\
100000 & \(4.64923 E+6\) & \(4.40667 E+7\)
\end{tabular}
TEMPERATURE IS 600 K
A}\cdotR\cdotT\cdotA-FACTOR IS 2.52449E+16 /SEC
REACTION THRESHOLD IS 20800. CALS
EXPERIMENTAL A-FACTOR IS 3.02202E+17 /SEC (HIGH PRESSURE)
EXPERIMENTAL ACTIVATION ENERGY IS 23736.4 CALS
                                    (HIGH PRESSURE)
HIGH PRESSUKE RATE CONSTANT IS 6.74938E+8 /SEC
\begin{tabular}{lll}
\(P R E S S U R E\) & \(K(D E C)\) & \(K(C G M)\) \\
\((M M H G)\) & \((/ S E C)\) & \((L / M O L-S E C)\)
\end{tabular}
\begin{tabular}{lll}
.01 & 126.519 & 36.7215 \\
.1 & 1258.92 & 365.394 \\
1 & 12189.2 & 3537.85 \\
10 & 110610 & \(32104 \cdot\) \\
100 & 908277. & 263622. \\
1000 & \(6.40139 E+6\) & \(1.85797 E+6\) \\
10000 & \(3.55795 E+7\) & \(1.03267 E+7\) \\
100000 & \(1.41239 E+8\) & \(4.09938 E+7\)
\end{tabular}
TEMPERATURE IS 700 K
A.R.T. A FACTOR IS 3.63523E+16 /SEC
REACTION THRESHOLD IS 20800. CALS
EXPERIMENTAL A-FACTOR IS 3.4059\OmegaE+17 /SEC (HIGH PRESSURE)
EXPERIMENTAL ACTIVATION ENERGY IS 23888.7 CALS
                                    (HIGH PRESSURE)
HIGH PRESSURE RATE CONSTANT IS 1.17345E+10 /SEC
\begin{tabular}{lll} 
PRESSURE & K(DEC) & K(CGM) \\
(MM HG) & (/SEC) & (L/MOL-SEC)
\end{tabular}
\begin{tabular}{lll}
.01 & 795.5 & 19.606 \\
11 & 7926.27 & 195.351 \\
1 & 77381.6 & 1907.15 \\
10 & 7185750 & 17710.1 \\
100 & \(6.17027 E+6\) & 152073. \\
1000 & \(4.69000 E+7\) & \(1.15590 E+6\) \\
10000 & \(2.93501 E+8\) & \(7.23365 E+6\) \\
100000 & \(1.38001 E+9\) & \(3.40119 E+7\)
\end{tabular}
```

TEMPERATURE IS 800 K
$A \cdot R \cdot T \cdot A-F A C T O R$ IS $4.83636 E+16$ /SEC REACTION THRESHOLD IS 20800. CALS
EXPERIMENTAL A-FACTOR IS $3.68975 \mathrm{E}+17$ /SEC (HI GH PRESSURE)
EXPERIMENTAL ACTIVATION ENERGY IS 24006.7 CALS
(HIGH PRESSURE)
HIGH PRESSURE RATE CONSTANT IS $1.01120 \mathrm{E}+11$ /SEC

PRESSURE (MM HG)	K(DEC) $(/ S E C)$	K(COM) $(L / M O L-S E C$
001	2747.28	10.8436
11	27399.1	108.144
1	269055	1061.96
10	$2.54074 E+6$	10028.3
100	$2.25504 E+7$	89006.8
1000	$1.81445 E+8$	7161650
10000	$1.24427 E+9$	$4.91115 E+6$
100000	$6.69621 E+9$	$2.64300 E+7$

TEMPERATURE IS 1000 K
$A \cdot R \cdot T \cdot A-F A C T O R$ IS $7.34293 E+16$ /SEC
REACTION THRESHOLD IS 20800. CALS
EXPERIMENTAL A-FACTOR IS $4.06437 E+17$ /SEC (HIGH PRESSURE)
EXPERIMENTAL ACTIVATION ENERGY IS 24176.5 CALS
(HIGH PRESSURE)
HIGH PRESSURE RATE CONSTANT IS 2.09954E+12 /SEC

PRESSURE
(MM HG)

001	11780.6	3.71096
11	117625	37.0524
1	$1.16367 \mathrm{E}+6$	366.564
10	$1.12348 \mathrm{E}+7$	3539.01
100	$1.04259 \mathrm{E}+8$	32842.
1000	$9.07228 \mathrm{E}+8$	285782.
10000	$7.07979 \mathrm{E}+9$	$2.23017 \mathrm{E}+6$
100000	$4.64203 \mathrm{E}+10$	$1.46227 \mathrm{E}+7$

K(DEC)
K(CDM)
(L/MOL-SEC)
3.71096
37.0524
366.564
3539.01

32842 。
285782.
$2 \cdot 23017 \mathrm{E}+6$
1.46227E+7

TEMPERATURE IS 1200 K
A•R•T. A-FACTOR IS 9.81603E+16 /SEC
REACTION THRESHOLD IS 20800. CALS
EXPERIMENTAL A-FACTOR IS 4.28868E+17 /SEC (HIGH PRESSURE)
EXPERIMENTAL ACTIVATION ENERGY IS 24292.4 CALS
(HIGH PRESSURE)
HIGH PRESSURE RATE CONSTANT IS $1.60502 E+13$ /SEC

PRESSURE
K(DEC)
K(COM)
(/SEC) (L/MOL-SEC)

.01	24289.4	1.46671
.1	242673.	14.6537
10	$2.41099 \mathrm{E}+6$	145.587
10	$2.35862 \mathrm{E}+7$	1424.24
100	$2.24917 \mathrm{E}+8$	13581.5
1000	$2.05540 \mathrm{E}+9$	1241140
10000	$1.74321 \mathrm{E}+10$	$1.05263 \mathrm{E}+6$
100000	$1.30415 \mathrm{E}+11$	$7.87507 \mathrm{E}+6$

TEMPERATURE IS 1400 K
A•R.T. A-FACTOR IS 1.21497E+17 /SEC
REACTION THRESHOLD IS 20800. CALS
EXPERIMENTAL A-FACTOR IS 4. $43168 \mathrm{E}+17$ /SEC (HI GH PRESSURE)
EXPERIMENTAL ACTIVATION ENERGY IS 24376.3 CALS
(HIGH PRESSURE)
HIGH PRESSURE RATE CONSTANT IS 6.90291E+13 /SEC

PRESSURE (MM HG)	K(DEC) (/SEC)	$\mathrm{K}(\mathrm{CDM})$ (L/MOL-SEC)
0.81	34526.6	-656215
i^{1}	$\begin{aligned} & 345076 \theta \\ & 3.43696 E+6 \end{aligned}$	$\begin{aligned} & 6.55853 \\ & 65 \cdot 323 \end{aligned}$
$\begin{aligned} & 10 \\ & 100 \end{aligned}$	$\begin{aligned} & 3 \cdot 38952 E+7 \\ & 3 \cdot 28752 E+8 \end{aligned}$	$\begin{aligned} & 644.213 \\ & 6248 \cdot 27 \end{aligned}$
1000 10000	$\begin{aligned} & 3.09933 E+9 \\ & 2.77513 E+10 \end{aligned}$	$\begin{aligned} & 58905.9 \\ & 527442 . \end{aligned}$
100000	$2.26855 E+11$	4.31162E+6

TEMPERATURE IS 1600 K
$A \cdot R \cdot T \cdot A-F A C T O R$ IS 1.43042E+17 /SEC
REACTION THRESHOLD IS 20800. CALS
EXPERIMENTAL A-FACTOR IS 4. 52778E+17 /SEC (HI GH PRESSURE) EXPERIMENTAL ACTIVATION ENERGY IS $24439 \cdot 7$ CALS
(HIGH PRESSURE)
HIGH PRESSURE RATE CONSTANT IS 2.D6835E+14 /SEC

PRESSURE	K(DEC)	K(CDM) (MM HG)
	(/SEC)	
(L/MOL-SEC)		

TEMPERATURE IS 1800 K
$A \cdot R \cdot T \cdot A-F A C T O R$ IS 1.62728E+17 /SEC
REACTION THRESHOLD IS 20800. CALS
EXPERIMENTAL A-FACTOR IS 4.59519E+17 /SEC (HIGH PRESSURE)
EXPERIMENTAL ACTIVATION ENERGY IS $24489 \cdot 3$ CALS
(HIGH PRESSURE)
HIGH PRESSURE RATE CONSTANT IS $4.86586 \mathrm{E}+14$ /SEC

PRESSURE	K(DEC)	K(CDM)
(MM HG)	$(/ S E C)$	$(L / M O L-S E C)$
01	40230.6	1171377
11	402219	1.71339
1	$4.01563 E+6$	17.106
10	$3.99190 E+7$	170.049
100	$3.93880 E+8$	1677.87
1000	$3.83512 E+9$	16337.1
10000	$3.63915 E+10$	155022
100000	$3.28356 E+11$	$1.39875 E+6$

TABLE IV. Collisional Efficiencies of Bath Gases (I)

1. $\mathrm{N}_{2} \mathrm{~F}_{4}$ (1.00)2. He171
2. Ne 120
3. Ar 136
4. Kr 115
5. D_{2} 23
6. \mathbb{N}_{2} 21
7. SF_{6} 42
8. H_{2} 28
9. NH_{3} 76
10. CD_{4} 41
11. CH_{4} 44
12. $\mathrm{C}_{2} \mathrm{H}_{6}$ 56
13. $\mathrm{C}_{2} \mathrm{H}_{4}$ 43
14. $\mathrm{C}_{3} \mathrm{H}_{6}$ 60
15. $\mathrm{C}_{3} \mathrm{H}_{8}$ 62
16. $\mathrm{iC}_{4} \mathrm{H}_{10}$ 73
17. $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{3}$ 80

Captions for Figure 1 (page 223) and Figure 2 (page 224)

Figure I. Comparison of experimental -(Ref. Ia); +(Ref. Ib) and calculated - - and ---- rates of decomposition for various ΔE_{o}^{O} and $A_{d}(\infty)$. The upper of the two dotted lines refer to argon efficiency of .5 . The lower efficiency is .136 . Pressure $\sim .05$ mol/liter argon.
a) $\Delta E_{o}^{0}=20800$ cal.; $-A_{d}(\infty) \sim 10^{21} \mathrm{sec}^{-1}$ and $A_{\alpha}(\infty) \sim 10^{17.3} \mathrm{sec}^{-1}$.
b) $\Delta E_{0}^{O}=19600 \mathrm{cal}$; $-A_{d}(\infty) \sim 10^{18.7} \mathrm{sec}^{-1}$ and $-\ldots$ $A_{d}(\infty) \sim 10^{17.3}$.
c) $\Delta E_{o}^{\circ}=18000 \mathrm{cal} . ;-\quad-A_{d}(\infty) \sim 10^{17.3} \mathrm{sec}^{-1}$ and \ldots $A_{d}(\infty) \sim 10^{15.8} \mathrm{sec}^{-1}$.

Figure II. a) Comparison of calculated (-) $A_{d}(\infty) \sim 10^{17.3} \Delta E_{o}^{0}=$ 18,000 cals \mathbb{N}_{2} efficiency $=.21$ and experimental (+) rates of decomposition of $\mathrm{N}_{2} \mathrm{~F}_{4}$ in N_{2} at $400^{\circ} \mathrm{K}$ (Ref. Ia).
b) Comparison of calculated (-) $A_{d}(\infty) \sim 10^{17.3} \Delta \mathrm{E}_{\mathrm{o}}^{0}=18000$ cals A efficiency $=.136$ and experimental $(+)$ rates of decomposition of $\mathrm{N}_{2} \mathrm{~F}_{4}$ in argon at $360^{\circ} \mathrm{K}$ (Ref. Ib).
c) Comparison of calculated $(---) A_{d}(\infty) \sim 10^{17.3} \Delta E_{o}^{0}=18000$ cals \mathbb{N}_{2} efficiency $=.21$ and experimental (-) rates of decomposition of $\mathrm{N}_{2} \mathrm{~F}_{4}$ at $.07 \mathrm{mols} /$ liter N_{2} as a function of temperature.

FIGURE 1

FIGURE II
CHETCOAL VTHEMJCS OF REACIIORS OR CHLORINE,
NITROGER ANJ OXYGEN WLUORIDES IN GAS PHASE:
A BIBIAOCMADHY … IC34 MHROUGI JUNE 1972
by Francis Uestley
Table of Contents
I(a). Resctions of Chlorine Fluorides
(b). Reviews
II(a). Reactions of Nitrogen Pluorides
(b). Reviews
III(a). Reactions of Oxygen Fluorides
(b). Reviews
IV. References

Introduction

This bibliofraphy lists research papers on the kinetics of cas phase reactions of the chlorine, nitrogen and oxygen fluorides, with emphasis on the processes occuring during their thermal decompositions.

The material is arranged by chemical reaction in three separate lists - chlorine fluorides, nitrogen fluorides, and oxygen fluorides. After each reaction are listed rererences to papers that either report rate data or discuss the mechanism of reaction. If it is the latter a note is appended to the reference citations. There are sixty reactions in the lists, based on work in 51 papers.

The references under each reaction list the author(s) and the sources, in the following form:

$$
\text { Author }(s) \quad \text { Source-Year-Volume-Page }
$$

Diesen, R. W.
JCPSA-1964-41-3256
Lin and Bauer
JACSA-1969-91-7737 Blauer, et al.

JPCIIA-1971-75-3939
Number of
Author (s)
1
2
3 or more

The sources are indicated by their AsmM CODEN abbreviation. A guide to these codes follows the introduction.

Wert TY is a list of references, alphabetically by mothon in which full citations are given for the bricf civations in the reaction listings in parts I-III.
ine wibliogiaphy is based on the files of the Chemical Kinetics Trformation Center and an examination of Chemical Aostracts 1034-2972. Most of the papers listed were pubiisher since 1962.

ACSRA Abstracts of Papers. American Chemical Society (Washington)

BBPCA Berichte Der Bunsengesellschaft Fuer Physikalische Chemie (Weinheim, Germany)
BOOKA BOOK
CHPLE Chemical Physics Letters (Amsterdam)
CHREA Chemical Reviews (Washington)
CMEAA Commissarial A L'Energie Atomique, France, Rapport (Gif-sur-yvette, France)
DABBB Dissertation Abstracts International B. The Sciences and Engineering
DIASA Dissertation Abstracts
JACSA Journal of the American Chemical Society (Washington)
JCPSA Journal of Chemical Physics (New York)
JPCHA Journal of Physical Chemistry (Washington/Ithaca, New York)
NSRDA United States National Bureau of Standards, National Standard Reference Data Series (Washington)
RCRVA Russian Chemical Reviews (London)
RJICA Russian Journal of Inorganic Chemistry (London)
XCCIA United States Department of Commerce, Clearinghouse for Scientific and Technical Information, A.D.
ZEELA Zeitschrirt Fuer Elektrochemie (Weinheim/Halle, Germany)
ZPCBA Zeitschrift Fuer Physikalische Chemie, Abteilung B. Chemie Der Elementarprozesse, Aufbau Der Materie (Leipzig)
ZPCFA Zeitschrift Fuer Physikalische Chemie (Frankfurt am Main)
12WSA Congreso Internacional De Quimica Pura Y Aplicada, 9 O Congress, Madrid, April, 1934
$\mathrm{CI}+\mathrm{CIF}+\mathrm{CI}_{2}+\mathrm{F}$
MeIntyre and Diesen
McIntyre and Diesen
YCCIA-1971-AD713938 (estimate)
JPCHA-1971-75-1765 (estimate)
$\mathrm{Cl}+\mathrm{F}+\mathrm{M} \rightarrow \mathrm{CIF}+\mathrm{M}$
Fletcher and Dahneke JACSA-1969-91-1603 (estinete)
$\mathrm{Cl} \div \mathrm{F}_{2} \rightarrow \mathrm{ClF}+\mathrm{F}$
San Roman and Schumacher ZPCFA-1970-71-153 (mechanism)
$\mathrm{Cl}_{2}+\mathrm{F} \rightarrow \mathrm{Cl}+\mathrm{ClF}$
McIntyre and Diesen JPCHA-1971-75-1765 (estimate)
$\mathrm{Cl}_{2}+\mathrm{F}_{2} \rightarrow \mathrm{ClF}+\mathrm{ClF}$ (overall)
Fletcher and Dahneke
JACSA-1969-91-1603
$\mathrm{ClF}+\mathrm{ClF}_{3} \rightarrow \mathrm{ClF}_{2}+\mathrm{ClF}_{2}$
Blauer, et al.
JPCHA-1969-73-2683 (mechanism)
$\mathrm{ClF}+\mathrm{F}+\mathrm{M} \rightarrow \mathrm{ClF}_{2}+\mathrm{M}$
San Roman and Schumacher ZPCEA-1970-71-153 (mechanism)
$C I F+h \nu \rightarrow C I+F$
San Roman and Schumacher 2PCFA-1970-71-153

```
ClF}+M->Cl+F+
```

Blauer, et al. JPCHA-1971-75-3939
McIntyre and Diesen XCCIA-1971-AD713938 (mechanism)
McIntyre and Diesen
JPCHA-1971-75-1765 (mechanism)
$\mathrm{ClF}_{2}+\mathrm{ClF}_{2} \rightarrow \mathrm{ClF}+\mathrm{ClF}_{3}$
San Roman and Schumacher ZPCFA-1970-71-153
$\mathrm{ClF}_{2}+\mathrm{F} \rightarrow \mathrm{ClF}+\mathrm{F}_{2}$
Blauer, et al.
XCCIA-1969-AD692493
Blauer, et al.
$\mathrm{CDF}_{2}+\mathrm{F}+\mathrm{M}+\mathrm{CH} \mathrm{B}_{3}+\mathrm{H}$
San Pomar and Schumacher zPCDf-1970-71-153
$\mathrm{ClF}_{2}+\mathrm{M} \rightarrow \mathrm{O}+\mathrm{M}+\mathrm{M}$
Blauer, éval. XCCIA-1969-AD692493
Blauer, et al.
TPCFA-1969-73-2683
$\mathrm{ClF}_{3} \rightarrow \mathrm{CIF}+\mathrm{F}_{2}$.
Bernstein and Katz JPCHA-1952-56-885
$\mathrm{ClF}_{3}+\mathrm{ClF}_{5}^{*}+\mathrm{ClF}_{4}+\mathrm{ClF}_{4}$
Krieger, et al.
2PCPA-1966-5I-240
$\mathrm{ClF}_{3}+\mathrm{P}+\mathrm{ClF}_{2}+\mathrm{F}_{2}$
Blauer, et al. JPCHA-1969-73-2683
$\mathrm{CIF}_{3}+\mathrm{M}+\mathrm{ClF}_{2}+\mathrm{F}+\mathrm{M}$
Blaues, et al. XCCIA-1969-AD692493
Blauer, et al. JPCHA-1969-73-2683
$\mathrm{CiF}_{4}+\mathrm{F} \rightarrow \mathrm{ClF}_{3}+\mathrm{F}_{2}$
Kriegers et al. ZPCFA-1966-51-240
$\mathrm{ClF}_{4}+\mathrm{F} \rightarrow \mathrm{ClF}_{5}^{*}$
Krieger, et al. ZPCFA-1966-51-240
$\mathrm{ClF}_{5}{ }^{*} \rightarrow \mathrm{ClF}_{4}+\mathrm{F}$
Krieger, et al. ZPCFA-1966-51-240
$\mathrm{ClF}_{5}+\mathrm{M} \rightarrow \mathrm{ClF}_{3}+\mathrm{F}_{2}+\mathrm{M}$ (overall)
Axworthy and Sullivan JPCHA-1970-74-949
Sullivan and Axworthy ACSRA-1968-155-J-25
$\mathrm{ClF}_{5}+\mathrm{M} \rightarrow \mathrm{ClF}_{4}+\mathrm{F}+\mathrm{M}$
$\begin{array}{ll}\text { Blauer, et al. } & \text { XCCIA-1969-AD692493 } \\ \text { Blauer, et al. } & \text { JPCHA-1970-74-1183 }\end{array}$
$\mathrm{ClF}_{5}^{*}+\mathrm{M} \rightarrow \mathrm{ClF}_{5}+\mathrm{M}$
Krieger, et al. ZPCPA-1966-51-240

II (a). BUACMIOUS OR NIMPOGTV FLUORIDIS
$N F^{*} \rightarrow \mathrm{NF}+\mathrm{hV}$
Clyne and White
$N F^{*}+\mathrm{M} \rightarrow \mathrm{NF}+\mathrm{M}$
Clyne and White
$\mathrm{NF}+\mathrm{NF} \rightarrow \mathrm{F}+\mathrm{F}+\mathrm{N}_{2}$
Diesen, R. W.
Diesen, R. W.
$\mathrm{NF}+\mathrm{NF}_{2} \rightarrow \mathrm{~F}_{2}+\mathrm{N}_{2} \mathrm{~F}$
Diesen, R. W.
$6 \mathrm{NF}_{2} \rightarrow 4 \mathrm{NH}_{3}+\mathrm{M}_{2}$
Cherednikov, et ai. $\mathrm{NF}_{2}+\mathrm{F}+\mathrm{M} \rightarrow \mathrm{NF}_{3}+\mathrm{M}$

Levy and Copeland
$\mathrm{NF}_{2}+\mathrm{F}_{2} \rightarrow \mathrm{~F}+\mathrm{NF}_{3}$
Diesen, R.W.
Levy and Copeland
Modica and Hornig
$4 N F_{2}+\mathrm{F}_{2} \mathrm{O} \rightarrow 3 \mathrm{NF}_{3}+\mathrm{NOF}$
Rubinstein, et. al.
$\mathrm{NF}_{2}+\mathrm{F}_{2} \mathrm{O} \rightarrow \mathrm{NF}_{3}+\mathrm{OH}$
Rubinstein, et al. $\mathrm{NF}_{2}+\mathrm{M} \rightarrow \mathrm{F}+\mathrm{NF}+\mathrm{M}$

Diesen, R. W. Diesen, R. W. Modica and Hornag

CHP1B- $2970-6-465$

CHP1, $-1970-6-465$

JCPSA-1964-41-3256
JCPSA-1966-45-759 (review)

JCPSA-j.966-45-759 (review)

RJICA-1969-14-154

JPCHA-1965-69-3700

JCPSA-1966-45-759 (review)
JPCHA-1965-69-3700
JCPSA-1966-45-760

ZPCFA-1964-43-51 (overal2)

ZPCFA-1964-43-51

JCPSA-1964-41-32.56
ЈСРSA-1966-45-759 (review)
JCPSA-1965-43-2739
$\mathrm{NF}_{3}+\mathrm{M}+\mathrm{F}+\mathrm{HF}_{2}+\mathrm{H}$
Diesen, R . H . JCPSA-i966-45-759 (review)
$\mathrm{NF}_{2}+\mathrm{H} \rightarrow \mathrm{NF}_{2} \because+\mathrm{M}$
Modica and Jornig
JCPSA-1966-45-760 (mechanism)
$\mathrm{NF}_{2}^{*}+\mathrm{INF}_{2}^{*}+\mathrm{F}_{2}+\mathrm{N}_{2} \mathrm{~F}_{2}^{*}$
Modica and Hornig
JCPSA-1966-45-760 (mechanism)
$\mathrm{NF}_{2}+\mathrm{N}_{2} \mathrm{~F} \rightarrow \mathrm{IF}_{3}+\mathrm{N}_{2}$
Diesen, R.W.
JCPSA-1966-45-759 (review)
$\mathrm{H}_{2} \mathrm{~F} 2: \mathrm{N}_{2} \mathrm{~F}_{2}+\mathrm{HV}$
Modica and Hornig
JCPSA-1966-45-760 (nechanism)
$3 \mathrm{~N}_{2} \mathrm{~F}_{4} \rightarrow \mathrm{HII}_{3}+\mathrm{N}_{2}$ (overall)
Cherednikov, et al.
RJICA-1969-14-454
$\mathrm{N}_{2} \mathrm{~F}_{4}+\mathrm{F} \rightarrow \mathrm{HF}_{2}+\mathrm{HF}_{3}$
Levy and Copeland JPCHA-1965-69-3700
$\mathrm{N}_{2} \mathrm{~F}_{4}+\mathrm{F}_{2}+\mathrm{NF}_{3}+\mathrm{NF}_{3}$ (overall)
Cherednikov and II'in RJICA-1968-13-1750
$2 \mathrm{~N}_{2} \mathrm{~F}_{4}+\mathrm{F}_{2} \mathrm{O} \rightarrow 3 \mathrm{NF}_{3}+\mathrm{NOF}$ (overall)
Pubinstein, et al. ZPCFA-1964-43-51
$\mathrm{N}_{2} \mathrm{~F}_{4}+\mathrm{M} \rightarrow \mathrm{NF}_{2}+\mathrm{HF}_{2}+\mathrm{M}$

Brown, L. II.
Brown and Darwent
Levy and Copeland
Modica, A. P.
ilodica and Hornig
Modica and Hornig

DIASA-1964-25-2774
JCPSA-1965-42-2158
JPCFA-1965-69-3700 (review)
DIASA-1064-24-4427
XCCI $\hat{R}_{2}-1963-A D 425108$
JCPSA-1968-49-629
II (b). REVIEWS

Kondratiev, V. W.

Troe and Wagner

BOOFA-1970-207 (IN, and NF 2 ; general tables) BUPCA-1967-71-337 (inifluoroaraino-free-radical)

$$
\begin{aligned}
& F+F_{2} O+F_{2}+O F \\
& \text { Gatti, et al. ZPCFA-1952-35-343 } \\
& \mathrm{F}+\mathrm{O}_{3}+1 / 2 \mathrm{~F}_{2}+3 / 2 \mathrm{O}_{2} \\
& \text { Staricco, et al. ZPCFA-1962-31-385 } \\
& \mathrm{F}+\mathrm{O}_{3} \rightarrow \mathrm{OF}+\mathrm{O}_{2} \\
& \text { Staricco, et al. } \\
& \text { ZPCFA-1962-31-385 } \\
& \mathrm{F}_{2}+\mathrm{O} \rightarrow \mathrm{~F}+\mathrm{OF} \\
& \text { Lin and Bauer } \\
& \mathrm{F}_{2}+\mathrm{OF} \rightarrow \mathrm{~F}+\mathrm{F}_{2} \mathrm{O} \\
& \text { Iin and Bauer } \\
& \text { JACSA-1969-91-7737 (review) } \\
& \text { Blauer and Solomon } \\
& \text { Henrici, et al. } \\
& \text { Lin and Bauer } \\
& \text { Solomon, et al. } \\
& \text { JPCHA-1968-72-2307 } \\
& \text { JCPSA-1970-52--5834 } \\
& \text { JACSA-1969-91-7737 } \\
& \text { JPCFIA-1968-72-2311 } \\
& \text { Asmus, T. W. } \\
& \text { Dauerman, et al. JPCHA-1967-71-3999 } \\
& \text { Dauerman, et al. JPCHA-1969-73-1621 } \\
& \text { Koblitz and Schumacher } \\
& \text { Lin and Bauer } \\
& \text { Schumacher, II.-J. } \\
& \text { Solomon, et al. } \\
& \text { Troe, et al. } \\
& \text { Wieder and Marcus } \\
& \mathrm{F}_{2} \mathrm{O}+4 \mathrm{NF}_{2} \rightarrow 3 \mathrm{HF}_{3}+\mathrm{NOF} \\
& \text { Rubinstejn, et al. } \\
& \text { DABBB-1971-31-4606 } \\
& \text { ZPCBA-1934-25-283 } \\
& \text { JACSA-1969-91~7737 } \\
& \text { 12WSA-1935-2-485 } \\
& \text { JPCHA-1968-72-2311 } \\
& \text { ZPCFA-1067-56-238 } \\
& \text { JCPSA-1962-37-1835 (calculation) } \\
& \text { 2PCFA-1964-43-51 (overal.1) }
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{F}_{2} \mathrm{C}+\mathrm{NF}_{2} \rightarrow \mathrm{NF}_{3}+\mathrm{OH} \\
& \text { Rubinstein, et al. ZPCPA-1964-43-5I } \\
& \mathrm{F}_{2} \mathrm{O}+2 \mathrm{~N}_{2} \mathrm{~F}_{4} \rightarrow 3 \mathrm{NF}_{3}+\mathrm{NOF} \text { (overall) } \\
& \text { Rubinstein, et al. 7PCFA-9964-43-51 } \\
& \mathrm{F}_{2} \mathrm{O}+\mathrm{O} \rightarrow \mathrm{OF}+\mathrm{OF} . \\
& \text { Lin and Bauer } \\
& \text { JACSA-1959-91-7737 (review) } \\
& \mathrm{F}_{2} \mathrm{O}_{2}+\mathrm{M} \rightarrow \mathrm{~F}_{2}+\mathrm{O}_{2}+\mathrm{M} \text { (overall) } \\
& \text { Benson and O'Neal } \\
& \text { Frisch and Schumacher } \\
& \text { Frisch and Schumacher } \\
& \text { Frisch and Schumacher } \\
& \text { Schumacher, H.-J. } \\
& \text { Schumacher and Frische } \\
& \mathrm{OF}+\mathrm{M} \rightarrow \mathrm{~F}+\mathrm{O}+\mathrm{M} \\
& \text { In and Bauer } \\
& O F+O F \rightarrow F+F+O_{2} \\
& \text { Lin and Bauer } \\
& O F+O F \rightarrow \mathrm{~F}_{2}+\mathrm{O}_{2} \\
& \text { Gatti, et al. } \\
& \mathrm{OF}+\mathrm{O}_{3} \rightarrow \mathrm{~F}+\mathrm{O}_{2}+\mathrm{O}_{2} \\
& \text { staricco, et al. } \\
& \text { IJSRDA-1970-21-5.59 (review) } \\
& \text { ZEFIA-1937-43-807 } \\
& \text { 7PCBA-1936-34-322 } \\
& \text { ZPCBA-1937-37-18 } \\
& \text { ZEEIAA-1941-47-673 (review) } \\
& \text { 7PCEA-1937-37-1 } \\
& \text { JACSA-1969-91-7737 (review) } \\
& \text { JACSA-1969-91-7737 } \\
& \text { ZPCFA-1962-35-343 (mechanism) } \\
& \text { ZPCFA-1962-31-385 (mechanism) }
\end{aligned}
$$

III (b) . REVIEWS

Nikitin and Rosolovskij RCRVA-1971-40-889 (Oxygen
Streng, A. G.
Troe and Vagrier

Fluorides)
CHPISA-1963-63-607 (Oxygen
Fluorides)
BBPCA-1967-71-937 (Oxygen Difiluoricle)

Asmus, Tr. Ho, "The Kinetics and Mechanism of the Parolysis of Oxyger Difiuoride and of the Reaction of Hydrogen with Oxyern Diflworide," Dissertation Abstr. Intern. B 31, 4606 (197.2)

Axworthy, A. E., and Sullivar, J. Mo, "Kinetias of the Gas Phase Pyrolysis of Chlorine Pentafluoride," J. Phys. Chem. 71, 949 (1970)

Benson, S. W., and OlNeal, H. E., "Kinetic Data on Gas Phase Uninclecular Reactions," Hatl. Std. Ref. Data Series JISRDS HBS 21, pg. 559 (1970)

Eernstein, R. B., and Katz, J. J., "Isotope Exchange Reactions of Fluorine with Halogen Pluorides," J. Phys. Chem. 56, 885 (1952)

Blauer, J. A., Mcirath, H. G., and Jaye, F. C., "The Thermal Dissociation of Chlorine Trifluoride behind Incident Shock Waves," J. Phys. Chen. 13, 2683 (1969)

Blauer, J. A., Mcliath, H. G., Jaye, Fo C., and Encleman, V. S., "Decomposition Kinetics of Chlorine Trifluoride and Chlorine Pentafluoride," Air Rocket Propul. Lab., Edwards AFB, Calif. AFRPL-TR-69-144; AD692493

Blauer, J. A., Mchath, H. G., Jaye, F. C., and Engleman, V. S., "The Kinetics of Dissociation of Chlorine Pentafluoride," J. Phys. Chem. 74, 1183 (1970)

Blauer, J.A., and Solomon, N. C., "The Thermal Dissociation of Oxygen Difluoride. I. Incident Shock Waves," J. Phys. Chem. 72, 2307 (1968)

Blauer, J. A., Solomon, W. C., and Engleman, V. S., "The Kinetics of Chlorine Fluoride at High Temperatures," J. Phys. Chern. 75, 3939 (1971)

Bougon, R., "Chlorine Pentarluoride," Commis. Energ. At. (Fr.), Rapp. 1970 CEA-R-3924; Chem. Abstr. 73:83318r (1970)

Brown, L. M., "Spectrophotometric Determination of the Rate
 Waves" Dissertation Abstr. 25, 2774 (1964)

Brown, i. M., and Darwent, B. deB., "Spectrophotometric Determination of the Rate of Dissociation of Teirarluoronydrazine Behind a Shock Wave," J. Chem. Phys. 42, 21.58 (1965)

Cherednikov, V. N., and II'in, E. K., "Rinetics of the Reaction of Tetrarluorohydrazine with Fluorine," Russ. J. Inorg. Chem. 13, 1750 (1968)

Cherednikov, V.N., Pereverzev, V. S., and Ryabov, V. P., "Kinetics of the Thermal Decomposition of Tetrafluorohydrazine," Russ. J. Inorg. Chem. 14, 454 (1969)

Clyne, M. A. A., and White, I. F., "Electronic Energy Transfer Processes in Fluorine-Containing Radicals: Singlet NF," Chem. Phys. Ltrs. 6,465 (1970)

Dauerman, L., Salser, G.E., and Tajina, Y. A., "The Thermal Decomposition of Oxygen Difluoride in a Flow System," J. Phys. Chenn. 71, 3999 (1967)

Dauerman, L., Salser, G. E., and Tajima, Y. A., "Comment on 'The Thermal Dissociation of Oxygen Difluoride. I. Incident Shock Waves, $" 1$ J. Phys. Chera. 73, 1621 (1969)

Diesen, R. W., "Observation and Kinetic Investigation of the NF and NF 2 Radicals," J.Chem. Phys. 4.I, 3256 (.1964)

Diesen, R. W., "Comment on NF_{2} Decomposition behind Shock Waves," J. Chem. Phys. 45, 759 (1966)

Fletcher, E. A., and Dahneke, B. E., "Kinetics of the Chlorine Fluoride Reaction," J. Am. Chem. Soc. 21, 1603 (1969)

Frisch, P., and Schumacher, H. J., "Das Thermische Verhalten des $\mathrm{F}_{2} \mathrm{O}_{2}$. Die Kinetik des Zerfalls und seine Beeinflussung Durch Fremdgase," 2. Elektrochem. 43, 807 (1937)

Frisch, P., and Schumacher, H.-J., "Der thermische Zerfall des Fluoroxyds $\mathrm{F}_{2} \mathrm{O}_{2}, "$ Z. Physik. Chem. B 34, 322 (1936)

Frisch, P., and Schumacher, H.-J., "Der Einfluss der Zusatzyase $\mathrm{O}_{2}, \mathrm{~F}_{2}, \mathrm{~F}_{2}$, Ar, $\mathrm{He}, \mathrm{CO}_{2}$, auf die Zerfallsgeschwindigkeit des $\mathrm{F}_{2} \mathrm{O}_{2}, " \mathrm{Z}$. Physik. Chem. 37, 18 (1937)

Gatti, R., Staricco, E., Sicre, J. E., and Schumacher, H.-J., "Der photochemische Zerfall des $\mathrm{F}_{2} \mathrm{O}, \mathrm{Z}$ Z. Physik. Chem. [NF] (Frankfurt) 35, 343 (1962)

Henrici. II., Lin, M. C., and Bauer, S. H., "peactions of $\mathrm{T}_{2} \mathrm{O}$ in Shock Waves. II. Kinetics and Mechanisns of the $\mathrm{F}_{2} \mathrm{O}$ CO Reaction," J. Chem. Phys. 52, 5834 (1970)

Koblitz, W., and Schumacher, H.-J., "Der chermische Zerfall res $\mathrm{F}_{2} \mathrm{O}$," Z. Physik. Chem. P 25, 283 (1934)

Kondratiev, V. N., "Konstanty Skorosti Gazof"aznykh Reaktsij Spravochnik," (Flandibook of Kinetic Constants of Gaseous Reactions) Izdatei'stvo "Nauka", Moscow (1970); also issued as "Rate Constants of Gas Phase Reactions," Reference Book, Ed. P. M. Fristrom, translated by I. J. Holtschlag, NSRDS CON-72-10014 (1972)

Kriceer, R. L., Gatti, R., and Schumacher, H.-J., "Die Kinetil: der photochemischen Bildung von Chlorpentafluorid, ClF_{5}, aus Chlortrifluorid und Fluor," Z. Physik. Chem. [NF] (Frankfurt) 51, 240 (1966)

Irevy, J. B., and Copeland, B. K. W., "The linetics of the Tetrafluorohydrazine-Fluorine Reaction," J. Phys. Chem. 69, 3700 (1965)

Lin, F. C., and Bauer, S. H., "Reactions of Oxygen Fluoride in Shock Waves. I. Kinetics and liechanism oi Oxygen Fluoride Decomposition," J. Am. Chem. Soc. 91, 7737 (1959)

MeIntyre, J. A., and Diesen, R. W., "Mass Spectral Stuìy of the Decomposition of Chlorine Fluoride Behind Shook Waves," Chen. Phys. Res. Lab., Dow Chem. CO., Midiland, Mich. AD713938

McIntyre, J. A., and Diesen, R. W., "Mass Spectral Study of the Decomposition of Chlorine Fluoride behind Shock Waves," J. Phys. Chem. 75, 1765 (1971)

Modica, A. P., "Kinetics of the Thermal Dissociation of $\mathrm{N}_{2} \mathrm{~F}_{4}$ in Shock Waves, Dissertation Abstr. 24, 4427 (1964)
Modica, A. P., and HorniEs, D. F., "Kinetics of the Thermal Dissociation of $\mathrm{N}_{2} \mathrm{~F}_{4}$ in Shock Vaves," Frick Chem. Lab., Princeton, H.J.; AD425108

Modica, A. P., and ForniE, D. F., "HF 2 Decomposition Behird Shock Haves," J. Chem. Phys. 43, 2739 (1965)

Modice, Λ. P., and Hornig, D. F., "Comment on NF 2 Decomposition behind shock Waves," J. Chem. Phys. 45, 760 (1966)
fiodica, A. P., and Hornig, D. F., "Kinetics of the Thermal Dissociation of $\mathrm{TH}_{2} \mathrm{~F}_{4}$ in Shock Waves," J. Chem. Phys. 40 , 629 (1968)

Nikitin, I. V., and Rosolovskii, V. Ya., "Oxyeen Fluorides and Dioxygenyl Compouncis," Russ. Chem. Rev. 40, 889 (1971)

Rubinstein, M., Sicre, J. E., and Schumacher, H. J., "Die Kinetik der themischen Reaktion zwischen Tetrafluornydrazin und Fluormonoxid," Z. Physik. Chem。 [NF] (FronkPurt) 43, 51 (1964)

San Roman, E.A., and Schumacher, H. J., "Die Kinetik der photochemischen Bildung von Chlortrifluorid im System Fluor-Chlomonofluorid," Z. Physik. Chem. [NF] (Frankrurt) 7I, 153 (1970)

Schumacher, H. J., "Die Kinetik Chemischer Gasreaktionen," Z. Elektrochem. 47, 673 (1941)

Schumacher, H.-J., "Der thermische Zerfall des Fluoroxyds Ein Beitrag zur Theorie monomolekularer Reaktioneri," Congr. Intern. Quim. Pura Apl., 9^{0}, ITadrid, April 1934, ? 2485 (1935)

Schumacher, H. $-\mathcal{J}$, and Frisch, P., "Die Kinetik des $\mathrm{F}_{2} \mathrm{O}_{2}$-Zerfalls," Z. Physik. Chem. 37, I (1937)

Solomon, W. C., Blauer, J. A., and Jaye, F. C., "The Thermal Dissociation of Oxygen Difluoride. II. Static Reactor," J. Phys. Chem. 72, 2311 (1968)

Staricco, E. H., Sicre, J. E., and Schumacher, H.-J., "Die photochemische Reaktion zwischen Fluor und Ozon," Z. Physik. Chem. [IF] (Frankfurt) 31, 385 (1962)

Streng, $A, G ., ~ " T h e ~ O x y g e n ~ F l u o r i d e s, " ~ C h e m . ~ R e v . ~ 63, ~$
1963$)$

Sullivan, J. Il., and Axworthy, A. E., "Kinetics of the Thermal Decomposition of Chlorinepentafluoride," Am. Chem. Soc., Abst. of Papers 155, J25 (1968)

Troe, J., and Wagner, H. Gg., "Unimolckulare Reaktionen in thernischen Systemen, "Ber. Bunsenges. Physik. Chen. 71, 937 (1967)

Troe, J., Wagner, H. Gg., and Weden, G. " Zum uninolekularen Zerpall von $\mathrm{F}_{2} \mathrm{O}, \mathrm{Z}$ Z. Physik. Chem. [HF] (Frankfurt) 56: 238 (.2967)

Wieder, G. M., and Marcus, R. A., "Dissociation and Isomerization of Vibrationally Excited Species. II. Uninolecular Reaction Rate Theory and Its Application," J. Chen. Phys. 37, 1835 (1962)

Wieder, G. IM., "Unimolecular Reaction Rate Theory and Applications," Dissertation Abstr. 22, 104 (1961)

Zupnik, T. F., Nilson, E. N., and Sarli, V. J., "Investigation of Honequilibrium Flow Effects in High Expansion Ratio Nozales," United Aircrart Corp., East Hartford, Connecticut, NASA-CR-54042; N64-31452

NEW IDEAL-GAS THERMOCHEMICAL TABLES

S. Abramowitz, G. T. Armstrong, C. W. Beckett, K. L. Churney, V. H. Dibeler, T. B. Douglas, J. T. Herron, R. F. Krause, Jr., K. E. McCulloh, M. L. Reilly, H. M. Rosenstock, and W. Tsang

Introduction

In the following pages of this report are collected together 31 new "JANAF-type" ideal-gas thermochemical tables recently generated in this program. The immediate purpose was to provide such tables for those gas species which are important in current chemical laser research, but for which present JANAF tables do not exist or are inconsistent with later, more accurate data. An updating literature survey (April to June, 1972) was carried out in an effort to base the new tables on as accurate and complete data as now exist. Even so, some of these tables are based on thermodynamic parameters which are not only of inferior accuracy but which may remain so for some time to come; whereas for several other gas species, tables of a higher order of accuracy could have been generated, but this has not been done because time was insufficient to review critically new data reported for them. Details may be found in the "JANAF-type" texts preceding the individual tables.

The tables and accompanying texts follow closely the format and conventions of the JANAF tables (JANAF Thermochemical Tables, 2nd Edition, NSRDS-NBS 37, June 1971, and subsequent looseleaf JANAF tables), which may be consulted for these details. Thus, for example, the temperature " 298 " in the tables really refers to 298.15 K ; the unit "gibbs" is 1 calorie per degree Kelvin; and the tables are in order of their alphabetical finding formulas, which appear in the upper-right-hand corners of the tables.

Certain differences from the JANAF tables need explanation. One major difference is the inclusion of tables for a number of chemical species containing deuterium (designated by D instead of by ${ }^{2} \mathrm{H}$) as well as the analogous species containing the "lighthydrogen" isotope (designated by H instead of by ${ }^{H}$). In this connection it is to be noted that the tables (but not the table texts) for the light=hydrogen species are equally applicable to the natural isotopic mixture (approximately $99.98 \% \mathrm{H}$ and $0.02 \% \mathrm{D}$), since the molar thermodynamic properties of the different pureisotope varieties differ by only a few percent at the temperatures here tabulated. For hydrogen-containing species the gram-formulamasses (GFW) and molecular constants given with these tables are to be understood as specific for the particular hydrogen isotope(s) in the chemical formula, but averaged (by adjustment of reported values when necessary) for the natural-isotopic mixture of the other elements such as chlorine, unless otherwise stated.

It is important to identify unambiguously the particular chemicalelement reference-state tables on which the computation of the present tables (last three columns) is based. For four elements these are the presently latest JANAF reference-state tables, which are not reproduced here: $C l_{2}, 0_{2}$, and N_{2} (each dated Sept. 30, 1965) and S (dated Dec. 31, 1965). But for the three remaining elements-fluorine, hydrogen (i.e., ${ }^{1} \mathrm{H}$), and deuterium--the reference-state tables used are not JANAF tables but those included here. (As explained in the table texts for H_{2} and D_{2}, these two tables are for the ortho-para "equilibrium" varieties at all temperatures; as tabulated, the values differ from those for the more commonly encountered "normal" varieties only at $0 \mathrm{~K}, 100 \mathrm{~K}$, and 200 K , but interpolation over 100-degree intervals below 298.15 K would be inaccurate anyhow.)

The practical approximations used in computing the ideal-gas thermodynamic functions from the available molecular constants follow, in general, those used for the JANAF tables. In particular, the functions for the diatomic species account for anharmonicity, stretching, and vibration-rotation interaction by the use of the same closedbracket approximation formulas, whereas the polyatomic-species functions
/Bre ${ }^{\text {Bed }}$ on the harmonic-oscillator rigid-rotor approximation. But, as in the JANAF tables, there are exceptions here too: the tables for $\mathrm{H}_{2}, \mathrm{HDO}, \mathrm{D}_{2} \mathrm{O}, \mathrm{H}_{2} \mathrm{~S}$, and NH_{3} were taken (with minor interpolation and extrapolation) directly from authors who used direct-summation methods, and these tables were used to adjust the tables for HD, $\mathrm{D}_{2}, \mathrm{D}_{2} \mathrm{~S}$, and ND_{3} to a somewhat comparable degree of refinement, as described in the respective table texts for the last four species. In certain other cases (see the tables for $\mathrm{OH}, \mathrm{OD}, \mathrm{SH}$, and SD) this refinement of the tables was not carried out for lack of time; the types of errors are indicated in the discussions of heat capacity and entropy.

For each of several molecules, substantially different molecular constants have been reported for the ground and some of the excited electronic states. In this case the partition function cannot be factored rigorously into electronic and molecular contributions, but a simple approximation was used which is satisfactorily accurate in many cases. Using respectively subscripts t, v, r, and e for translational, vibrational, rotational, and electronic, and superscripts $i=0$ and i for the ground and an excited electronic state, the total molecular partition function Q can be expressed exactly by

$$
\begin{equation*}
Q=Q_{t} Q_{V}{ }^{i=0} Q_{r}{ }^{i=0}\left[Q_{e}{ }^{i=0}+\Sigma_{i}\left(Q_{V}{ }^{i} Q_{r}{ }^{i} / Q_{V}{ }^{i=0} Q_{r}{ }^{i=0}\right) Q_{e}^{i}\right] . \tag{1}
\end{equation*}
$$

The parenthesized factor in Eq (1) was approximated as follows. For vibrational mode v we have in the harmonic approximation

$$
\begin{equation*}
Q_{v}{ }^{\mathbf{i}} \simeq \mathrm{kT} / \mathrm{hc} \omega^{\mathrm{i}} \tag{2}
\end{equation*}
$$

if $\left(\mathrm{kT} / \mathrm{hc} \mathrm{w}^{\mathrm{i}}\right) \gg 1$. Using Eq (2) and the usual rigid-rotor hightemperature expressions for $Q_{r}{ }^{i}$, it can be readily shown that for a linear molecule

$$
\begin{gather*}
\left(Q_{V}{ }^{i} Q_{r}{ }^{i} / Q_{V}{ }^{i=0} Q_{r}{ }^{i=0}\right) \sim\left(I^{i} / I^{i=0}\right) \prod_{V}\left(\omega_{V}^{i=0} / \omega_{V}^{i}\right)^{g}= \\
\left(B^{i=0} / B^{i}\right) \prod_{V}\left(\omega_{V}^{i=0} / \omega_{V}^{i}\right)^{g} \tag{3}
\end{gather*}
$$

and for a non-linear molecule

$$
\begin{align*}
& Q_{V}{ }^{i} Q_{r}{ }^{i} / Q_{V}{ }^{i=0} Q_{r}{ }^{i=0} \simeq\left(I_{A}{ }^{i} I_{B}{ }^{i} I_{C}{ }^{i} / I_{A}{ }^{i=0} I_{B}{ }^{i=0} I_{C}{ }^{i=0}\right)^{1 / 2} \prod_{V}\left(\omega_{V}{ }^{i=0} / \omega_{V}\right)^{i}{ }^{g}= \\
& \left.\left(B_{A}{ }^{i=0} B_{B}{ }^{i=0} B_{C}{ }^{i=0}\right) / B_{A}{ }^{i} B_{B}{ }^{i} B_{C}{ }^{i}\right)^{1 / 2} \prod_{V}\left(\omega_{V}{ }^{i=0} / \omega_{V}{ }^{i}\right)^{g}, \tag{4}
\end{align*}
$$

where the various moments of inertia are represented by I, and the degeneracy of vibrational state v by g. (The electronic degeneracies are included in Q_{e} as defined. The rigid-rotor harmonic-oscillator approximation is not used for the $Q_{v}{ }^{i=0}$ and $Q_{r}{ }^{i=0}$ outside the brackets in Eq (1) when the necessary molecular constants are available.)

The errors resulting from using Eq (3) or (4) may be illustrated by the contributions of the ν_{2} vibrational mode, the doublet ground state $\left(\omega=1497 \mathrm{~cm}^{-1}\right)$, and a doublet excited ($10249 \mathrm{~cm}^{-1}$) state $\left(\omega=633 \mathrm{~cm}^{-1}\right)$ of NH_{2}. These errors were calculated to be, at 6000 K (and in cal mole $e^{-1} \operatorname{deg} K^{-1}$): $C_{P}^{o},-0.018 ; S^{\circ},+0.068 ;-\left(G^{\circ}-H_{0}^{O}\right) / T,+$ 0.032. These errors are several times smaller than would result from the simpler approximation (commonly used) of taking $1497 \mathrm{~cm}^{-1}$ for both fundamentals. At lower temperatures the poorer approximation involved in Eq (2) is overshadowed by the exponentially decreasing value of the factor $Q_{e}{ }^{i}$ in Eq (1).

Several species of current interest in laser research may be listed together with the reasons why no ideal-gas thermochemical tables for them were generated at the present time: (a) $\mathrm{H}_{2} 0, F$ (atomic), and HC\& (no basis of improvement over the existing JANAF tables--however, for the first two of these, revisions of the JANAF discussions of the heats of formation seemed warranted, and these are given following the present 31 tables); (b) NCl, ClO, OF, $0 F_{2}$, $\mathrm{NF}, \mathrm{NF}_{2}$, and $\mathrm{N}_{2} \mathrm{~F}_{2}$ (cis and trans) (insufficient review of the heat-of-formation data) ; (c) $\mathrm{N}_{2} \mathrm{~F}_{4}$ (trans and gauche), $\mathrm{N}_{2} \mathrm{H}_{4}$, and $\mathrm{N}_{2} \mathrm{D}_{4}$ (unsatisfactory means available to account accurately for the contributions of restricted internal rotation--however, JANAF tables do exist for the first two) ; (d) raäicals such as $\mathrm{N}_{2} \mathrm{H}$, and peroxides such as $S 00$ (no data found).

Finally, it is appropriate to point out here some generalities with regard to six of the present "JANAF-type" table texts. In the first place, as stated in the discussions of the heats of formation of $H D, D F$, and $D C 1$, these three data reviews are to be regarded as incomplete because they omit analyses of experimental or theoretical work which was found too late to be considered. In the second place, three revisions over existing JANAF tables were made (thermodynamic functions of F_{2}, and the heats of formation of ClF and atomic F) which, it appears, may warrant the revision of existing JANAF tables for many other species which properly depend on them; however, these propagated consequences were not examined in detail.

$$
\mathrm{S}_{298.15}^{\circ}=46.04 \text { cal } \mathrm{K}_{\mathrm{mol}}^{-1}
$$

$$
\Delta H f_{298.15}^{\circ}=-22.31 \pm 0.05 \mathrm{kcal} \mathrm{~mol}^{-1}
$$

Electronic States and Molecular Constants

State	$\varepsilon_{2} \mathrm{~cm}^{-1}$	8	${ }^{\omega_{\mathrm{e}}, \mathrm{~cm}^{-1}}$	$\chi^{e^{\omega} e^{, c m}{ }^{-1}}$	$\mathrm{B}_{\mathrm{e}}, \mathrm{cm}{ }^{-1}$	$\alpha_{e^{\prime}, c ⿴}{ }^{-1}$	$\mathrm{r}_{\mathrm{e}}, \AA$
$\mathrm{X}^{1} \Sigma^{+}$	0	1	2144.0	26.90	5.4444	0.1121	1.2746
B^{1} II	75160	2	2199.0	[26.9]	5.1793	[0.1121]	
$V^{1} \Sigma^{+}$	76520	1	684.6	[26.9]	1.555	[0.1121]	243
$\mathrm{C}^{1} \pi$	77525	2	2114.1	[26.9]	4.9605	[0.1121]	

Heat of Formation (Provisional-evaluation incomplete)

The heat of fomation was calculated from the selected value of $\Delta \mathrm{Hf}_{298}^{\circ}$ of $\mathrm{HCl}(\mathrm{g})$ given by JANAF (1), the appropriate thermal functions (see $\mathrm{H}_{2}, \mathrm{D}_{2}, \mathrm{DCl}$ tables, and $\mathrm{HCl}(1)$) and zero point energies. The zero point energies of $H_{2}(g), D_{2}(g)$ are taken from Herzberg and Monfils (2). The zero point energies of $\mathrm{HCl}(\mathrm{g})$ and $\mathrm{DCl}(\mathrm{g})$, including the Dunham correction, were calculated from the molecular constants taken from Rosen (3).

Heat Capacity and Entropy

The vibrational and rotational constants at the respective electronic levels were taken from Rosen (3) and were adjusted to $\mathrm{Cl}^{35}=75.4 \%$ and $\mathrm{Cl}^{37}=24.6 \%$.

References

1. JANAF Thernochemical Tables, 2nd Edition, NSRDS-NBS 37, June, 1971 (U. S. Govt. Printing office, Washington, D. C., 20402).
2. G. Herzberg and A. Monfils, J. Molec. Spectroscopy 5, 482 (1960).
3. B. Rosen, Spectroscopic Data Relative to Diatomic Molecules (Pergamon Press, Oxford, 1970).

T, ${ }^{\circ} \mathrm{K}$	gibbs/mol			- kcal/mol		$\Delta \mathrm{Gr}$	$\log ^{\mathbf{K}} \mathbf{p}$
	Cp ${ }^{\circ}$	S°	$-\left(\mathrm{C}^{\circ}-\mathrm{H}^{\circ}{ }_{298}\right) / \mathrm{T}$	$\mathrm{H}^{\circ}-\mathrm{H}^{\circ}{ }^{298}$	ΔH°		
0	. 000	. 000	IVFIVITE	-2.070	-22.259	-22.259	INFIVITE
100	6.950	38.435	52.230	-1.379	-22.245	-22.484	49.140
200	5.961	43.259	46.676	-. 634	-22.265	-22.718	24.825
298	6.972	46.039	46.039	. 000	-22.310	-22.931	16.809
300	6.972	45.082	46.039	. 013	-22.311	-22.935	10.708
400	7.02b	48.094	46.313	. 712	-22.375	-23.134	12.640
500	7.147	49.674	46.833	1.421	-22.444	-23.315	16.191
600	7.316	50.992	47.419	2.144	-22.508	-23.484	ヒ. 554
700	7.501	52.134	42.013	2.984	-22.553	-23.642	7.381
800	$7.60{ }^{\text {d }}$	53.147	46.593	3.644	-22.607	-23.793	6.500
900	7.84 -	54.062	49.150	4.420	-22.544	-23.939	5.813
1000	7.979	54.897	49.684	5.213	-22.673	-24.082	5.263
1100	8.130	55.565	50.193	6.020	-22.696	-24.221	4.812
1200	8.244	56.378	50.679	6.938	-22.716	-24.359	4.436
1300	8.342	57.042	51.143	7.569	-22.730	-24.496	4.118
1400	4.429	57.663	51.587	8.506	-22.744	-24.631	3.845
1500	3.504	58.247	52.012	9.353	-22.755	-24.765	3.608
1500	3.570	58.798	52.419	10.207	-22.768	-24.999	3.401
1700	8.628	59.319	52.810	11.067	-22.779	-25.031	3.218
1800	8.680	59.814	53.185	11.932	-22.789	-25.164	5.055
1900	8.726	60.285	53.546	12.903	-22.799	-25.295	2.910
2000	8.703	50.733	53.895	13.577	-22.809	-25.426	2.778
2100	H.806	61.162	54.231	14.556	-22.921	-25.558	2.660
2200	H. $84{ }^{\text {i }}$	61.573	54.555	15.439	-22.832	-25.687	C.552
2300	B.87\%	61.955	54.869	16.324	-22.844	-25.816	2.453
2400	8.901	52.344	55.172	17.213	-22.857	-25.945	2.303
2500	8.925	62.708	55.467	18.104	-22.970	-26.073	2.279
2600	8.953	63.059	55.752	18.998	-22.896	-26.201	2.202
2700	8.970	53.307	56.029	19.995	-22.901	-26.328	2.131
2800	8.998	63.724	56.298	20.794	-22.918	-26.454	2.065
2900	9.019	64.040	56.560	21.674	-22.939	-26.581	2.003
3000	9.039	64.346	56.814	22.597	-22.958	-26.706	1.946
3100	9.1557	64.643	57.062	23.502	-22.982	-26.931	1. 892
3200	9.075	64.931	57.303	24.409	-23.003	-26.955	1.841
3300	9.092	65.211	57.530	25.317	-23.028	-27.079	1.793
3400	9.109	65.482	57.768	26.227	-23.053	-27.200	1.748
3500	9.124	65.745	57.992	27.139	-23.083	-27.323	1.706
3600	9.14 J	65.004	59.211	28.052	-23.111	-27.441	1.666
3700	9.154	66.254	54.425	28.967	-23.145	-27.562	1.628
3800	9.159	66.499	5e.ó35	29.383	-23.179	-27.683	1.592
3900	9.143	66.737	58.439	30.301	-23.216	-27.900	1.558
4000	$9.1 \geqslant 5$	56.970	59.040	31.719	-23.253	-27.914	1.525
4100	9.209	67.197	50.235	32.640	-23.292	-29.035	1.494
4200	9.222	67.419	59.429	33.561	-23.332	-28.149	1.405
4300	9.235	57.635	59.617	34.494	-23.372	-28.264	1.437
4400	9.247	67.849	59.801	35.408	-23.415	-28.374	1.409
4500	9.259	68.055	57.982	36.334	-23.462	-28.491	1.384
4600	9.271	68.260	50.160	37.260	-23.507	-22.600	1.359
4700	9.283	68.453	60.335	38.198	-23.553	-23.709	1.335
4800	9.294	68.555	60.506	39.117	-23.599	-28.917	1.312
4900	9.300	68.847	60.674	40.747	-23.648	-28.025	1.290
5000	9.317	59.035	66.840	40.778	-23.599	-29.035	1.269
5100	9.328	69.220	61.002	41.910	-23.750	-29.139	1.249
5200	9.339	59.401	61.162	42.843	-23.801	-29.245	1.229
5300	9.350	69.570	61.319	43.778	-23.953	-29.351	1.210
5400	9.304	69.754	61.474	44.713	-23.005	-29.452	1.192
ssuu	9.371	69.925	61.626	45.650	-23.959	-29.556	1.174
5600	9.301	70.095	61.775	46.597	-24.012		
5700	9.392	70.261	61.923	47.526	-24.067	-29.759	1.141
5800	9.402	70.424	52.003	48.466	-24.122	-29.856	1.125
b90u	9.412	70.595	52.211	49.406	-24.178	-29.957	1.110
6000	$9.4<3$	70.743	62.352	50.348	-24.234	-30.053	1.045

$$
\mathrm{S}_{298.15}^{0}=52.157 \text { cal } \mathrm{K}^{-1} \mathrm{~mol}^{-1}
$$

$$
\Delta \mathrm{Hf}_{298.15}^{\circ}=-12.02 \pm 0.1 \mathrm{kcal} \mathrm{~mol}^{-1}
$$

Electronic States and Molecular Constants

Heat of Formation

The selected value, $\Delta H f_{298}^{\circ}(C 1 F)=-12.0 \pm 0.1 \mathrm{kcal} \mathrm{mol}{ }^{-1}$, is based on spectroscopy. Three studies of the visible absorption bands of C1F, by A. L. Wahrhaftig, J. Chem. Phys. 10, 248 (1942), by H. Schmitz and H. J. Schumacher, Z. Naturforsch. 29, 359 (1947), and by W. Stricker, Deutsche Luft-und Raumfahrt Forschungsbericht 66-04 (1966) agree in indicating a band convergence limit at $21,514 \pm 10 \mathrm{~cm}^{-1}$. Assignment of this 1 imlt to $\mathrm{Cl}\left({ }^{2} \mathrm{P}_{1 / 2}\right)+\mathrm{F}\left({ }^{2} \mathrm{P}_{3 / 2}\right)$ is supported by the dissociative ionization threshold for C1F reported by V. H. Dibeler, J. A. Walker, and K. E. McCulloh, J. Chem. Phys. 53, 4414 (1970), whose ion-pair threshold, when reassigned to a hot band, corroborates this choice. From this assignmert it follows that $D_{0}^{\circ}(C 1 F)=58.98 \pm 0.02 \mathrm{kcal} \mathrm{mol}{ }^{-1}$.

Combining this value with $D_{0}^{0}\left(F_{2}\right)=36.7 \pm 0.2 \mathrm{kcal} \mathrm{mol}^{-1}$, reported by J. Berkowitz, W. A. Chupka, P. M. Guyon, J. H. Holloway, and R. Spohr, J. Chem. Phys. 54,5165 (1971), and with $D_{0}^{\circ}\left(\mathrm{Cl}_{2}\right)=57.177 \pm 0.006 \mathrm{kcal} \mathrm{mol}{ }^{-1}$, given by A. E. Douglas, C. K. Moller, and B. P. Stoicheff, Can. J. Phys. 41, 1174 (1963), one obtains $\Delta H f_{0}^{\circ}(C 1 F)=$ $-12.0 \pm 0.1 \mathrm{kcal} \mathrm{mol}^{-1}$.

Calorimetric values for $\Delta \mathrm{Hf}_{298}^{\circ}$, which brasket the selected value, are as follows: -11.6 kcal mol ${ }^{-1}$, E. Wicke, Nachr. Akad. Wiss. Göttingen Math-Phys. Klasse p. 89 (1946); -11.7 kcal mol ${ }^{-1}$, E. Wicke and H. Friz, Z. Elektrochem. 57, 9 (1953); -14.34 and -15.0 kcal mol ${ }^{-1}$, H. Schmitz and H. J. Schumacher, Z. Naturforsch 29 , 362 (1947); and $-14.4 \pm 0.8 \mathrm{kcal} \mathrm{mol}{ }^{-1}, \mathrm{R}$. L. Nuttall and G. T. Armstrong, NBS Report 10326, Chapter 1 , July 1 , 1970.

Heat Capacity and Entropy

The vibrational and rotational constants of the respective electronic levels were taken from B. Rosen, Spectroscopic Data Relative to Diatomic Molecules, Pergamon Press, Oxford, 1970, and were adjusted to $\mathrm{C} 1{ }^{35}=75.4 \%$ and $\mathrm{Cl}^{37}=24.6 \%$.

T, ${ }^{\circ} \mathbf{K}$	$C p^{\circ}$	gibbs/mol		_._kcal/mol		$\Delta \mathbf{G f}{ }^{\circ}$	$\log \mathbf{K p}$
		\mathbf{S}°	$--\left(\mathrm{G}^{\circ}-\mathrm{H}^{\circ} 298\right) / \mathrm{T}$	$\mathrm{H}^{\circ}-\mathrm{H}^{\circ}{ }^{\text {a }}$ 98	$\Delta H f^{\circ}$		
0	. 000	. 000	INFINITE	-2.133	-12.002	-12.002	INFINITE
100	6.901	44.303	58.685	-1.438	-12.002	-12.140	2b. 533
200	7.219	49.181	52.846	-. 733	-12.010	-12.276	13.415
293	7.723	52.156	52.156	. 000	-12.020	-12.405	9.093
300	7.732	52.204	52.157	. 014	-12.020	-12.407	9.039
400	8.160	54.491	52.465	. 810	-12.024	-12.536	0.849
500	8.459	56.345	53.002	1.642	-12.021	-12.663	b. 535
600	9.670	57.907	53.743	2.499	-12.013	-12.793	4.660
700	8.824	59.256	54.436	3.374	-12.001	-12.924	4.035
800	8.943	60.442	55.114	4.263	-11.996	-13.057	3.567
900	9.039	61.501	55.766	5.162	-11.968	-13.191	3.203
1000	9.120	62.459	56.389	6.070	-11.947	-13.329	2.913
1100	9.190	63.331	56.980	6.995	-11.922	-13.468	2.676
1200	9.254	64.133	57.543	7.908	-11.896	-13.610	2.479
1300	9.311	64.876	58.079	8.836	-11.965	-13.754	2.312
1400	9.365	65.569	58.590	9.770	-11.934	-13.901	2.170
1500	9.410	66.215	59.077	10.709	-11.799	-14.049	2.047
1600	9.405	66.825	59.542	11.653	-11.762	-14.200	1.940
1700	9.512	67.400	59.98?	12.672	-11.722	-14.353	1.845
1800	9.559	67.945	6 C .415	13.555	-11.680	-14.509	1.762
1900	9.640	68.464	60.825	14.514	-11.634	-14.667	1.687
2000	9.654	68.957	61.219	15.477	-11.587	-14.928	1.620
2100	9.701	69.430	61.599	16.444	-11.536	-14.092	1.560
2200	9.757	69.882	61.905	17.417	-11.482	-15.158	1.506
2300	9.814	70.317	62.319	18.396	-11.424	-15.326	1.456
2400	9.876	70.735	62.661	19.380	-11.363	-15.497	1.411
2500	9.945	71.141	62.992	20.372	-11.296	-15.671	1.370
2600	10.026	71.533	63.313	21.370	-11.224	-15.947	1.332
2700	10.117	71.913	63.625	22.378	-11.146	-16.027	1.297
2300	14.21m	72.292	63.927	23.394	-11.061	-16.208	1.265
2900	10.331	72.643	64.22 ?	24.4? 2	-10.966	-16.394	1.235
3000	10.450	72.995	64.508	25.461	-10.963	-16.583	1.208
3100	10.599	73.347	64.788	26.514	-10.748	-16.776	1.183
3200	10.755	73.679	65.060	27.591	-10.621	-16.972	1.159
3300	10.920	74.013	65.326	28.655	-10.479	-17.173	1.137
3400	11.112	74.342	65.587	29.767	-10.322	-17.378	1.117
3500	11.313	74.667	65.842	30.598	-10.148	-17.588	1.098
3500	11.529	74.989	66.091	32.030	-9.955	-17.903	1.081
3700	11.750	75.307	66.336	33.194	-9.742	-18.023	1.005
3400	12.000	75.624	66.576	34.392	-9.508	-18.251	1.050
3900	12.253	75.939	66.812	35.595	-9.251	-18.485	1.036
4000	12.517	75.253	67.044	36.833	-8.970	-18.725	1.023
4100	12.78:	76.565	67.273	38.099	-9.664	-18.072	1.011
4200	13.065	76.877	67.498	39.391	-8.3.32	-19.228	1.001
4300	13.351	77.157	67.719	40.712	-7.975	-19.492	. 991
4400	13.035	77.498	67.939	42.061	-7.590	-19.763	. 982
4500	13.920	77.807	68.154	43.440	-7.177	-20.044	.973
4600	14.213	78.117	6๕. 367	44.247	-6.737	-20.335	. 966
4100	14.490	78.425	68.578	46.292	-5.271	-20.635	. 960
4500	14.770	78.733	68.786	47.746	-5.777	-20.947	. 954
4900	15.044	79.1141	68.993	49.237	-5.258	-21.268	. 949
suou	15.313	79.348	69.197	50.755	-4.711	-21.602	. 944
5100	15.50is	79.653	60.399	52.299	-4.140	-21.943	. 940
b200	15.812	79.954	69.599	53.968	-3.545	-22.290	. 937
5300	16.044	80.261	67.797	55.451	-2.928	-22.665	. 935
5400	16.202	80.563	69.994	57.077	-2.289	-23.043	. 933
5500	16.407	90.864	70.189	58.713	-1.629	-23.432	. 931
5000	15.650	81.162	70.382	60.359	-. 951	-23.235	. 930
5700	15.831	81.459	70.574	62.714	-. 255	-24.252	. 930
5500	16.9 .30	81.753	70.764	63.735	. 457	-24.678	. 930
b900	17.154	82.044	7 7. 952	65.441	1.192	-25.118	. 930
g000	17.20 c	92.333	71.140	67.161	1.921	-25.570	. 931

$$
\mathrm{S}_{298.15}^{\circ}=42.923 \mathrm{cal} \mathrm{~K}_{\text {mol }}^{-1} \quad \Delta H f_{298.15}^{\circ}=-65.85 \pm 0.2 \mathrm{kcal} \mathrm{~mol}{ }^{-1}
$$

Electronic States and Molecular Constants

State	$\varepsilon, \mathrm{cm}^{-1}$	g	$\omega_{e, \mathrm{~cm}^{-1}}$	$X^{e^{\omega}} e^{, c m}{ }^{-1}$	$\mathrm{B}_{\mathrm{e}}, \mathrm{~cm}{ }^{-1}$	$\alpha_{e, \mathrm{~cm}^{-1}}$	$\mathrm{ra}^{\text {, }}$ A
$\mathrm{X}^{1} \Sigma^{+}$	0	1	2998.19	45.76	11.000	0.2907	0.9187
$\mathrm{V}^{1} \Sigma^{+}$	83755	1	839.4	8.90	2.121	0.00712	2.088

Heat of Formation

The heat of formation was calculated from $\Delta H f_{298}^{\circ}$ of $\operatorname{HF}(g),-65.14 \pm 0.2 \mathrm{kcal}$ mol ${ }^{-1}$, given in JANAF Thermochemical Tables 2nd Edition, NSRDS-NBS 37, June (1971), the appropriate thermal functions (see tables for H_{2}, D_{2}, DF and HF (JANAF loc. cit.)) and the estimated zero point energies. The energies for $H_{2}(g), D_{2}(g)$ are those given by G. Herzberg and A. Monfils, J. Molec. Spectroscopy 5, 482 (1960). The energies for $H F(g)$ and $D F(g)$ include the Dunham correction and were calculated from the data given by D. E. Mann, B. A. Thrush, D. R. Lide, Jr., J. J. Ball, and N. Acquista, J. Chem. Phys. 34, 420 (1961) and R. N. Spanbauer, K. N. Rao and L. H. Jones, J. Molec. Spectroscopy 16, 100 (1965).

Heat Capacity and Entropy

The vibrational and rotational constants of the respective electronic levels were taken from B. Rosen, Spectroscopic Data Relative to Diatomic Molecules, Pergamon Press, 0xford, 1970.

T，${ }^{\circ} \mathrm{K}$		$\begin{aligned} & \text { gibbs/mol } \\ & \mathbf{S}^{\circ} \quad-\left(\mathbf{G}^{\circ}-H^{\circ}{ }_{298}\right) / T \end{aligned}$		$\mathbf{H}^{\circ}-\mathbf{H}^{\circ} \text { ’as }$	$\begin{gathered} \text { kcal/mol- } \\ \Delta H f^{\circ} \end{gathered}$	$\Delta \mathrm{Gf}{ }^{\circ}$	$\underline{\log } \mathrm{K}_{\mathrm{p}}$
	CP ${ }^{\text { }}$						
0	． 000	.000	INFINITE	－2．065	－65．836	－65．836	INFINITE
100	5．939	35.319	49.112	－1．379	－65．927	－65．977	144.193
200	5.901	40.143	43.500	－． 593	－65． 1.34	－66．125	72.258
298	6.964	42.923	42.923	． 000	－65．850	－66．265	40.573
304	6.964	42.966	42.923	． 013	－65．851	－66．267	48.276
400	6.975	44.970	43.196	． 710	－65．897	－66．401	30.280
500	7.042	46.520	43.713	1.408	－65．941	－66．524	＜4．077
300	7.065	47.811	44.292	2.111	－66．005	－66．635	24.272
700	7.151	48.907	44.875	2.922	－66．075	－66．734	24.835
suO	7.281	49.870	45.440	3.544	－66．144	－66．823	18.255
9u0	7.413	50.735	45.981	4.279	－66．214	－66．704	10.246
1uU0	7．54	51.523	46.497	5.027	－66．281	－66．078	14.638
1100	7．681	52.249	46.987	5.798	－66．343	－67．043	13.320
1200	7.800	52.923	47.454	6.563	－66．403	－67．105	12.222
1300	7.926	53.552	47.899	7.349	－66．457	－67．161	11.291
1400	5.029	54.143	48.324	8.147	－66．509	－67．214	10.493
1500	8． 126	54.701	48．731	8.955	－66．558	－67．262	4.800
1500	9． 21 is	55.229	49.121	9.772	－66．606	－67．307	Y． 194
1700	8.295	55.729	49.495	10.597	－66．651	－67．350	0.658
1500	8.367	56.205	49.854	11.431	－66．693	－67．390	8.182
1900	8．433	56.659	50.201	12.2 .71	－66．735	－67．428	7.756
2000	8.493	57.093	50.535	13.117	－66．774	－67．462	7.372
2100	8.547	57.509	50.857	13.969	－66．815	－67．497	7.024
2200	8.597	57.909	51.108	14.326	－66．852	－57．527	0.708
2300	3.643	58.291	51.470	15.598	－66．889	－67．557	0.419
2400	8.685	58.659	51.7 oz	16.555	－56．926	－67．586	0.155
2500	8.724	59.015	52.045	17.425	－66．961	－67．613	b．911
2000	8.704	59.359	52.319	18.299	－66．998	－67．638	2.605
2700	8.793	59.689	52.586	19.177	－67．033	－67．662	3.477
2500	8.825	60.700	52．846	20.758	－67．069	－67．684	5.283
2900	$9.55+$	60.319	53.098	20.942	－67．106	－67．705	5.102
3000	8．3E1	60.620	53.344	21.329	-67.141	－67．725	4.934
3100	3.907	60．912	53.583	22.718	－67．179	－67．744	4.776
3200	3.932	61.195	53.817	23.610	－67．214	－67．76？	4.0628
3360	8．95s	61.470	54.044	24.505	－67．250	－67．780	4.489
3400	8.977	61.738	54.267	25.401	－67．286	－67．795	4.358
s500	R．940	61.998	54.484	26.300	－67．325	－67．209	4.234
5500	9．01s	62.252	54.695	27.201	－67．362	－67．522	4.117
3700	9.051	62.499	54.904	29.103	－67．403	－67．834	4.007
SHUO	Q．u5b	－2．741	55.107	29．008	－67．444	－67．845	3.942
3900	9.073	62.975	55.306	29． 314	－67．487	－67． 257	3.803
4000	9.090	63.206	55.500	30．R23	－67．529	-67.866	3.708
4100	$4.10{ }^{\text {a }}$	63．431	55.691	31.732	－67．572	－67．874	3.618
4200	9.122	63.550	55.978	32.644	－67．615	－67．879	3.532
4300	3.130	63.865	5ó．0ól	33.557	－67．659	－67．985	3.450
4400	＇3．15c	04.075	56.241	34.471	－67．705	－67．889	3.372
4500	9.167	64.281	50．417	35.387	-67.754	－67．995	5.297
4500	9.181	54.493	56.591	36.305	－67．402	－67．896	3.226
4700	9.195	64.690	5 5．761	37.274	－67．951	－67．898	3．157
4.900	9．2U3	64.874	55.928	38.144	－67．900	－67．890	3.091
4 yOH	9.222	65.1164	57.092	39.055	－67．952	－67．296	3.428
buuw	9.234	65.251	57.253	39.984	－63．007	－67． 297	c． 908
b100	9.247	65.434	57.412	40.912	－68．061	－67．393	2.909
らくuls	9.25%	65.613	57.564	41.837	－68．116	－67．884	2．853
5300	9.272	65.790	57．721	42.764	－68．173	－67．285	2．799
勺40u	ヲ．2ツ」	65.963	57.872	43.672	－68．730	－67．878	2.747
b50u	9.293	65.134	58.021	44．6？1	－68．289	－67．072	＜．097
35015	19．307	66.301	54.167	45.551	－68．349	－67．0．63	C．048
ら7U0	1．310	66.468	50.311	46.482	－683．410	－67．8bs	c．002
ち．5U0	4．32：	ób．629	54.453	47.414	－64．473	－67．34	2.550
byuu	3.341	65.7184	54.543	48．344	－68．5＊7	－67．833	2． 513
bu0u	9．351	66.945	5 H .731	49.382	－68．601	－67．920	2.470

$$
\begin{aligned}
& D_{0}^{\circ}=104.089 \pm 0.002 \mathrm{kcal} \mathrm{~mol}^{-1}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Ground State Configuration } 1_{\Sigma}{ }_{g}^{+} \\
& \begin{array}{lll}
\omega_{e}=3817.09 \mathrm{~cm}^{-1} & \omega_{e^{x}}=94.958 \mathrm{~cm}^{-1} & D_{e}=0.02614 \mathrm{~cm}^{-1} \\
\mathrm{~B}_{\mathrm{e}}=45.655 \mathrm{~cm}^{-1} & \alpha_{\mathrm{e}}=1.9927 \mathrm{~cm}^{-1} & r_{e}=0.7414 \AA
\end{array}
\end{aligned}
$$

Heat of Formation (Provisional-evaluation incomplete)
The heat of formation of $H D\left({ }^{1} H^{2} H\right.$) was calculated using zero point energies of H_{2}, D_{2} and HD using the Dunham formulation as given by G. Herzberg and A. Monfils (1). The value obtained is consistent with the D_{0}° values given by G. Herzberg (2) in a later publication. The estimated uncertainty is based on the uncertainties assigned to the zero point energies (1).

Heat Capacity and Entropy

The thermodynamic functions were generated similarly as those in the table for D_{2} ($q . v$.). To the current table for H_{2} (which is based on reference 3) was added to the table for $H D$ from reference 4, and the table for "equilibrium" H_{2} from reference 3 was subtracted.

References

1. G. Herzberg and A. Monfils, J. Mol. Spectroscopy 5, 482 (1960).
2. G. Herzberg, J. Mol. Spectroscopy 33, 147 (1970).
3. H. W. Woolley, R. B. Scott, and F. G. Brickwedde, J. Research Nat. Bur. Standards 41, 379 (1948).
4. L. Haar, A. S. Friedman, and C. W. Beckett, Nat. Bur. Standards Monograph 20, U. S. Government

Printing Office, Washington, D. C., 1961.
(IdEaL Gas) GFW = 3.0221

T, ${ }^{\circ} \mathrm{K}$	$\mathbf{C p}{ }^{\circ}$	$\begin{aligned} & \text { gibbs/mol } \\ & \mathrm{S}^{\circ} \\ & -\left(\mathbf{G}^{\circ}-\mathrm{H}^{\circ}{ }_{298}\right) / \mathrm{T} \end{aligned}$		$\mathbf{H}^{\circ}-\mathbf{H}^{\circ}{ }_{298}$	kcal/mol $\Delta H f^{\circ}$	$\Delta \mathrm{Gf}{ }^{\circ}$	$\log \mathbf{K p}$
0	. 000	. 000	INFINITE	-2.034	. 078	. 078	INFINITE
100	0.902	26.723	40.547	-1.382	. 042	.. 081	.175
200	6. 974	31.559	34.983	-. 585	. 065	-. 212	. 231
298	6.978	34.345	34.345	. 000	. 076	-.3b0	. 257
300	0.978	34.398	34.345	. 013	. 076	-. 353	. 257
400	0.985	35.395	34.619	. 710	. 078	-. 496	. 271
500	6.997	37.955	35.136	1.410	. 078	-. 640	. 279
600	7.024	39.232	35.714	2.111	. 076	-. 783	. 285
700	7.072	40.319	36.295	2.816	. 073	-. 926	. 289
300	7.150	41.258	36.860	3.525	. 069	-1.069	. 292
900	7.240	42.116	37.397	4.247	. 054	-1.211	. 294
1000	7.338	42.881	37.908	4.973	. 058	-1.352	. 296
1100	7.443	43.587	38.393	5.713	. 053	-1.493	. 297
1200	7.551	44.240	38.853	6.464	. 049	-1.633	. 297
1300	7.605	44.848	39.291	7.224	. 045	-1.773	. 298
1400	7.785	45.420	39.709	7.995	. 040	-1.913	. 298
1500	7.910	45.952	40.108	8.781	- 036	-2.052	. 299
1500	3.013	45.476	40.490	9.578	. 033	-2.192	. 299
1700	8.113	46.965	40.856	10.385	. 030	-2.330	. 300
1800	\%.206	47.431	41.208	11.201	. 027	-2.468	. 300
1900	8. 294	47.877	41.548	12.925	. 024	-2.60\%	. 300
2000	8.377	48.305	41.875	12.860	. 022	-2.746	- 300
$\angle 100$	H.455	48.716	42.191	13.702	. 020	-2.885	. 300
2200	8.529	49.111	42.497	14.551	. 019	-3.023	. 301
2300	6.599	49.491	42.793	15.475	. 017	-3.161	- 301
2400	8.604	49.859	43.080	16.270	. 016	-3.300	. 301
2500	8.727	50.213	43.358	17.138	- 015	-3.436	. 301
2600	U.785	50.557	43.629	18.015	. 014	-3.574	. 301
2700	8.841	50.890	43.891	18.897	. 013	-3.713	. 301
2800	8.892	51.212	44.147	19.782	. 012	-3.851	. 301
2900	8.939	51.525	44.396	20.674	. 012	-3.988	. 301
3000	8.983	51.829	44.638	21.573	. 011	-4.120	. 301
3100	9.030	52.123	44.875	22.459	.008	-4.264	. 301
3200	9.076	52.411	45.106	23.376	. 009	-4.402	. 301
3300	9.122	52.592	45.332	24.288	. 010	-4.542	. 301
3400	9.166	52.964	45.552	25.201	. 010	-4.677	. 301
3500	9.211	53.231	45.768	26.120	. 010	-4.817	. 300
3000	9.255	53.491	45.979	27.043	. 009	-4.953	. 300
3700	9.299	53.745	. 46.186	27.968	. 008	-5.09b	. 300
souv	9.342	53.994	45.388	28.903	.008	-5.233	. 300
3900	9.384	54.237	45.586	29.839	. 008	-5.370	. 300
4000	9.425	54.475	46.780	30.790	. 008	-5.508	. 300
4100	9.467	54.708	45.970	31.726	. 009	-5.644	- 3000
$+200$	9.507	54.937	47.157	32.676	. 010	-5.781	. 300
4300	7.547	55.161	47.34:	33.624	. 000	-5.920	. 300
4400	4.586	55.381	47.522	34.580	. 008	-6.060	. 301
4500	9.625	55.596	47.698	35.541	.008	-6.197	- 301
4500	9.603	55.809	47.872	36.510	. 009	-6.332	. 301
4700	9.7U0	56.017	48.044	37.473	. 010	-6.473	. 301
4800	9.736	56.222	48.212	38.448	. 012	-6.608	. 301
4900	9.772	56.423	48.377	39.425	.013	-6.745	. 301
5000	\%.808	58.620	48.540	40.400	.012	-6.884	. 301
b100	9.843	56.815	48.701	41.383	. 010	-7.021	. 301
b200	9.878	57.006	48.858	42.369	. 010	-7.160	. 301
¢ 300	9.913	57.195	49.014	43.358	.010	-7.291	. 301
b400	9.948	57.380	49.157	44.351	. 011	-7.43b	. 301
5500	7.981	57.563	49.318	45.347	. 011	-7.574	. 301
b600	10.015	57.743	49.467	46.346	. 011	-7.714	. 301
b700	10.048	57.920	49.613	47.349	. 012	-7.853	. 301
b४uo	10.081	58.096	49.759	48.356	. 012	-7.986	. 301
b900	10.113	58.268	49.901	49.365	.012	-8.12b	. 301
6000	10.144	53.438	50.042	50.378	.013	-8.264	. 301

Point Group C_{h}
$S_{298.15}^{0}=47.658 \mathrm{cal} \mathrm{deg}^{-1} \mathrm{~mol}^{-1}$
Ground Scate Quantum Weight $=1$

$\Delta \mathrm{Hf}_{298.15}^{\circ}=-58.645 \pm 0.015 \mathrm{kcal} \mathrm{mol}^{-1}$
Wibrational Levels and Multiplicities
ω, cm^{-1}

$1402.80(1)$
$3707.47(1)$

Bond Lengths and Angle:	$0-H$ Distance $=0.9584 \AA$
$0-D$ Distance $=0.9584 \AA$	

Product of Moments of Inertia: $\begin{aligned} & \mathrm{H}-0-\mathrm{D} \\ & \mathrm{I}_{\mathrm{A}} \mathrm{I}_{\mathrm{B}} \mathrm{I}_{\mathrm{C}}=15.827 \times 10^{-120} \mathrm{~g}^{3} \mathrm{~cm}{ }^{6}\end{aligned}$
Heat of Formation
Third and second law (where possible) analyses of the more recent determinations (1-5) of the experimental equilibrium constants, Keq, were made for the reactions: (A$) \mathrm{H}_{2} \mathrm{O}(\mathrm{g})+\mathrm{HD}(\mathrm{g})=\mathrm{HDO}(\mathrm{g})+\mathrm{H}_{2}(\mathrm{~g})$, ard $(\mathrm{B})=\mathrm{H}_{2} \mathrm{O}(\mathrm{g})+$ $\mathrm{D}_{2} \mathrm{O}(\mathrm{g})=2 \mathrm{HDO}(\mathrm{g})$. Spectroscopic values for the heats of react1on, $\Delta \mathrm{H}_{\mathrm{R} 298 \text {, of }(\mathrm{A}) \text { and (B) were based on the zero }}^{\circ}$ point energies of $\mathrm{H}_{2} \mathrm{O}, \mathrm{D}_{2} \mathrm{O}$, and HDO given by Hulston (6) and Wolfsberg (7) and H_{2}, HD given by Heraberg and Monfils (8). The earlier work on (A) cited by Kirshenbaum (9) is in poor agreement except for that of Herrick, Kirshenbaum, Brown and Herrick, Crist, Davis ($\Delta H_{R 298}^{\circ}=928 \pm 30,921$ cal; respectively). $\Delta H_{R}^{\circ} 298$ for the reaction (C) $\mathrm{H}_{2} \mathrm{O}(\ell)+\mathrm{D}_{2} \mathrm{O}(\ell)=2 \mathrm{HDO}(\ell)$ has been determined to be $-32 \pm 1 \mathrm{cal}$. ($10-12$) assuming ideal solutions (see (13)) and $\mathrm{Keq}(\mathrm{C}) ~ \sim 3.8$. (We calculate $\mathrm{Keq}(\mathrm{C})=3.76 \pm 0.04$ from $\mathrm{Keq}(\mathrm{B})=3.76 \pm 0.02, \mathrm{P}^{\circ}\left(\mathrm{H}_{2} 0\right) / \mathrm{P}^{\circ}\left(\mathrm{D}_{2} \mathrm{O}\right)=1.15 .1 \pm 0.006$ (14) at 298 K , and $\mathrm{P}^{\circ}\left(\mathrm{H}_{2} \mathrm{O}\right) / \mathrm{P}^{\circ}(\mathrm{HDO})=1.073 \pm 0.004$ (15) at 298 K .) $\Delta \mathrm{H}_{\mathrm{R}}^{\circ} 298$ of (B) was calculated from the difference in heats of vaporization at 298 K of $\mathrm{D}_{2} \mathrm{O}(\ell)-\mathrm{H}_{2} \mathrm{O}(\ell)=331 \pm 8 \mathrm{cal}$ (see $\mathrm{D}_{2} \mathrm{O}$ table), and $\mathrm{HDO}(\ell)-\mathrm{H}_{2} \mathrm{O}(\ell)=183 \pm 20$ cal. (14). Values selected for $\Delta H^{\circ} 298$ based on non-spectroscopic and spectroscopic work for (A) and (B), underlined in the table, were used to calculate values of $\Delta H f_{298}^{\circ}$ of $\mathrm{HDO}(\mathrm{g})-\mathrm{H}_{2} 0(\mathrm{~g})$ of $-845 \pm 6,-852 \pm 10$, -852 ± 12, and $-851 \pm 10 \mathrm{cal}$, respectively (see $\mathrm{D}_{2} \mathrm{O}$ and HD tables). An average value of -850 ± 10 cal was added to dHf ${ }_{298}^{\circ}$ of $\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$ to obtain $\Delta \mathrm{Hf}_{298}^{\circ} \mathrm{HDO}(\mathrm{g})$.

Reaction	Source	Temperature, K		Drift, e.u.	
A	Cerrai et al (1954)	324 - 1015	-915 ± 20	0.04 ± 0.10	$(-864 \pm 30,0.12 \pm 0.07)^{a}$
A	Suess (1949)	353-473	$\underline{-921 \pm 6}$	0.05 ± 0.05	$(-955 \pm 29,0.09 \pm 0.09)^{\text {a }}$
A	Huls ton (1969)	Spectroscopic	$\underline{-928 \pm 10}$		
A	Wolfsberg (1969)	Spectroscopic	-937 ± 10		
B	Pyper, Newbury, and Barton (1967)	$\begin{aligned} & 273.15 \\ & 297.95 \end{aligned}$	$\begin{aligned} & 56 \pm 11 \\ & 63 \pm 11 \end{aligned}$		$\begin{aligned} & (3.75 \pm 0.08)^{b} \\ & (3.74 \pm 0.04)^{b} \end{aligned}$
B	Friedman and Shiner (1966)	$\begin{aligned} & 273.15 \\ & 298.15 \\ & 358.15 \end{aligned}$	$\begin{array}{r} 58 \pm 3 \\ 60 \pm 3 \\ \hline 62 \pm 7 \end{array}$		$\begin{aligned} & (3.74 \pm 0.02)^{\mathrm{b}} \\ & (3.76 \pm 0.02)^{\mathrm{b}} \\ & (3.80 \pm 0.04)^{\mathrm{b}} \end{aligned}$
B	Kresge, Ch \ddagger ang(1968)	298.15	46 ± 5		$(3.85 \pm 0.03)^{\text {b }}$
B	Reaction C, see text	298.15	57 ± 22		
B	Hulston (1.969)	Spectroscopic	65 ± 10		
B	WoJ.fsberg (1969)	Spectroscopic	70 ± 10		
${ }^{a}$ Second at Capac	$\text { w: } \quad \mathrm{H}_{\mathrm{R} 298}^{\circ}, \quad \mathrm{S}_{298}^{\circ} \text { (obsv.-ca }$ and Entropy	$\text {); } \quad b_{\text {Keq }} \text { at }$	ature cited.		

The thermodynamic functions of this table are analogous to those in the JANAF table for $\mathrm{H}_{2} \mathrm{O}$ (g) (dated March 31 , 1961): both tables are taken from A. S. Friedman and I. Haar, J. Chem. Phys. 22, 2051 (1954). Friedman and Haar applied their non-rigid-rotor, anharmonic-oscillator treatment (with vibrational-rotational coupling terms and lowtemperature rotational corrections) to the infrared-spectra analyses of W. S. Benedict, N. Gailar, and E. K. Plyler, J. Chem. Phys. 21, 1301 (1953) and of W. S. Benedict, H. H. C1aasen and J. H.Shaw, J. Research Nat. Bur. Standards 49 , 91 (1952). In the present table for HDO, the values of C° of Friedman and Haar between 4000 and 5000 K were extrapolated 1inearly (except with a term in T^{-2}) from 5080 to 6000 K . $I_{e} A^{-4}=1.211 \times 10^{-40}$, $I_{e}{ }^{B}=3.060 \times 10^{-40}$ $I_{e}^{C}=4.271 \times 10^{-40} \mathrm{gm} \mathrm{cm}$ from Friedman and Haar

References

1. E. Cerrai, C. Marchetti, R. Renzoni, L. Roseo, M. Silvestri, and S. Villani, Chem. Eng. Prog. Symp Ser. 50 (11), 271 (1954).
2. H. Suess, 2. Naturforschung 4a, 328 (1949).
3. J. W. Pyper, R. S. Newbury, and G. W. Barton, Jr., J. Chem. Phys. 46, 2253 (1967).
4. L. Friedman and V. J. Shiner, Jr., J. Chem. Phys. 44, 4639 (1966).
5. A. J. Kresge and Y. Ch lang, J. Chem. Phys. 49, 1439 (1968).
6. J. R. Hulston, J. Chem. Phys. 50, 1483 (1969).
7. M. Wolfsberg, J. Chem. Phys. 50, 1484 (1969).
8. G. Herzberg and A. Monfils, J. Molec. Spectroscopy 5, 482 (1960).
9. \bar{I}. Kirshenbaum, Physical Properties and Analysis of Heavy Wacer (McGraw-Hill, N. Y., 1951).
10. E. Doehlemann, F. Lange, Z. Physik. Chem. 173A, 295 (1935).
11. V. P. Skripov, I. V. Povyshev, Russ. J. Phys. Chem. 36, (2), 162 (1962).
12. W. C. Duer, G. L. Bertrand, J. Chem. Phys. 53, 3020 (1970).
13. W. A. Van Hook, J, Phys. Chem. 72, 1234 (1968).
14. W. M. Jones, J. Chem. Phys. 48, 207 (1968) [see C. Liu, W. T. Lindsay, Jr., J. Chem. Eng. Data 15, 510 (1970)].
15. A. Narten, J. Chem. Phys. 41, 1318 (1964).
(Ideal Gas) $\quad G F W=19.021$

T, ${ }^{\circ} \mathrm{K}$	Cp ${ }^{\circ}$	gibbs/mol		$\mathbf{H}^{\circ}-\mathrm{H}^{\circ}{ }_{298}$	- kcal/mol $\Delta H \rho^{\circ}$	$\Delta \mathrm{Gf}$	$\log K_{p}$
		S°	$-\left(\mathrm{G}^{\circ}-H^{\circ}{ }_{298}\right) / \mathrm{T}$				
0	. 000	. 000	INFINITE	-2.372	-57.943	-57.943	INFINITE
100	7.959	38.940	54.769	-1.583	-58.188	-57.454	125.587
200	7.974	44.459	48.392	-. 787	-58.415	-56.650	61.904
298	8.075	47.658	47.658	. 000	-58.645	-55.735	40.855
300	8.078	47.707	47.658	. 015	-58.650	-55.717	40.590
400	8.311	50.061	47.977	. 834	-58.882	-54.704	29.889
500	8.615	51.947	48.588	1.679	-59.102	-53.634	23.444
600	8.951	53.547	49.285	2.558	-59.303	-52.522	19.131
700	9.302	54.953	49.996	3.470	-59.487	-51.377	16.041
800	9.657	56.218	50.696	4.418	-59.652	-50.207	13.716
900	10.008	57.376	51.375	5.401	-59.801	-49.017	11.903
1000	10.345	58.448	52.029	6.419	-59.930	-47.812	10.449
1100	10.665	59.450	52.659	7.470	-60.043	-46.594	9.257
1200	10.964	60.391	53.264	8.551	-60.141	-45.367	8.263
1300	11.240	61.279	53.847	9.662	-60.224	-44.133	7.419
1400	11.493	62.122	54.408	10.799	-60.296	-42.892	6.696
1500	11.724	62.922	54.949	11.960	-60.359	-41.646	6.068
1600	11.935	63.686	55.472	13.143	-60.415	-40.398	5.518
1700	12.126	64.415	55.977	14.346	-60.463	-39.145	5.032
1800	12.300	65.113	56.465	15.567	-60.505	-37.890	4.601
1900	12.458	65.783	56.938	16.805	-60.542	-36.633	4.214
2000	12.603	66.425	57.396	18.059	-60.573	-35.373	3.865
2100	12.734	67.044	57.841	19.325	-60.605	-34.113	3.550
2200	12.855	67.639	58.273	20.605	-60.631	-32.850	3.263
2300	12.965	68.213	58.693	21.896	-60.656	-31.587	3.001
2400	13.066	68.767	59.101	23.198	-60.680	-30.321	2.761
2500	13.160	69.302	59.498	24.509	-60.702	-29.058	2.540
2600	13.246	69.820	59.885	25.830	-60.725	-27.790	2.336
2700	13.325	70.321	60.263	27.158	-60.747	-26.524	2.147
2800	13.399	70.807	60.631	28.494	-60.769	-25.256	1.971
2900	13.468	71.279	60.990	29.838	-60.793	-23.985	1.808
3000	13.532	71.736	61.340	31.188	-60.816	-22.717	1.655
3100	13.592	72.181	61.683	32.545	-60.841	-21.446	1.512
3200	13.648	72.613	62.018	33.906	-60.865	-20.176	1.378
3300	13.701	73.034	62.345	35.274	-60.890	-18.904	1.252
3400	13.750	73.444	62.666	36.646	-60.916	-17.632	1.133
3500	13.797	73.843	62.979	38.024	-60.946	-16.358	1.021
3600	13.841	74.233	63.287	39.406	-60.975	-15.082	.916
3700	13.883	74.612	63.587	40.792	-61.010	-13.808	. 816
3800	13.922	74.983	63.883	42.182	-61.044	-12.532	. 721
3900	13.960	75.345	64.172	43.576	-61.082	-11.256	. 631
4000	13.996	75.699	64.456	44.973	-61.121	-9.979	. 545
4100	14.030	76.045	64.734	46.375	-61.161	-8.699	. 464
4200	14.062	76.383	65.007	47.780	-61.203	-7.418	. 386
4300	14.093	76.715	65.276	49.187	-61.246	-6.137	. 312
4400	14.123	77.039	65.540	50.598	-61.293	-4.855	. 241
4500	14.151	77.357	65.799	52.012	-61.344	-3.575	.174
4600	14.178	77.668	66.053	53.428	-61.395	-2.286	. 109
4700	14.204	77.973	66.307	54.833	-61.463	-1.016	. 047
4800	14.230	78.273	66.550	56.269	-61.501	. 288	-. 013
4900	14.254	78.567	66.792	57.693	-61.559	1.573	-. 070
5000	14.278	78.854	67.030	59.120	-61.620	2.860	-. 125
5100	14.300	79.137	67.265	60.549	-61.682	4.155	-. 178
5200	14.322	79.415	67.496	61.981	-61.745	5.443	-. 229
5300	14.344	79.688	67.724	63.414	-61.810	6.738	-. 278
5400	14.364	79.957	67.948	64.848	-61.879	8.029	-. 325
5500	14.385	80.220	68.168	66.287	-61.947	9.325	-. 371
5600	14.405	80.480	68.386	67.726	-62.018	10.620	-. 414
5700	14.424	80.735	68.600	69.167	-62.092	11.917	-. 457
5800	14.443	80.986	68.812	70.610	-62.168	13.217	-. 498
5900	14.461	81.233	69.020	72.056	-62.244	14.519	-. 538
6000	14.479	81.476	69.226	73.502	-62.323	15.820	-. 576

$$
S_{298.15}^{0}=44.723 \mathrm{cal} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}
$$

$$
\Delta H f_{298.15}^{\circ}=89.7 \pm 5 \mathrm{kcal} \mathrm{~mol}^{-1}
$$

Electronic States and Molecular Constants

Heat of Formation
$\Delta H f_{298}^{\circ}$ of $N D(g)$ minus $N H(g)$ was calculated from the JANAF thermal functions and the zero point energies of $\mathrm{H}_{2}(\mathrm{~g}), \mathrm{D}_{2}(\mathrm{~g})$ [given by G. Herzberg and A. Monfils, J. Molec. Spectroscopy 5, 482 (1960)], NH(g), and ND(g) [given by L. Haar, A. S. Friedman, and C. W. Beckett, NBS Monograph 20 (1961)]. $\Delta H f_{298}^{0}$ of ND(g) was calculated from this value and the JANAF selection for $\Delta H f_{298}^{\circ}$ of $\mathrm{NH}(\mathrm{g})$.

Heat Capacity and Entropy

The molecular constants which are given for NH in the JANAF Thermochemical Tables, 2nd Edition, D. R. Stull. and H. Prophet, Froject Directors, NSRDS-NBS 37, Washington, D. C., June 1971, were adjusted for the isotope effect.

T，${ }^{\circ} \mathrm{K}$	gibbs／mol			kcal／mol			$\log K_{p}$
	Cp ${ }^{\circ}$	\mathbf{S}°	－（ $\left.\mathrm{G}^{\circ}-\mathrm{H}^{\circ}{ }_{298}\right) / \mathrm{T}$	$\mathbf{H}^{\circ}-\mathrm{H}^{\circ} \mathbf{2 9 8}$	$\Delta H{ }^{\circ}$	$\Delta \mathbf{G f}^{\circ}$	
0	． 000	． 000	INFINITE	－2．057	89.693	99.693	INFINITE
100	6.959	37.119	50.914	－1．390	89．705	89．249	－195．053
200	6.902	41.942	45.360	－． 584	09.700	88.795	－97．030
298	6.909	44.723	44.723	． 000	89.700	BR． 250	－04．702
300	6.905	44.766	44.723	． 013	99．700	98． 342	－04．357
400	7.003	46.775	44.997	． 711	89．701	87.089	－48．020
bu0	7.080	48.345	45.515	1.415	89.703	87.436	－58．218
000	7．221	49.649	46.098	2.130	89.710	96．982	－31．083
700	7.345	50.774	46.688	2.950	89.719	86.526	－27．015
sue	7－5コ5	51.771	47.262	3.607	89.734	86．069	－23．513
yuu	7．71y	52.670	47.814	4.371	89.749	85.610	－20．789
1000	7．41＋	53.492	48.341	5.151	89.768	85.149	－18．609
1100	5.013	54.249	48.844	5.945	89.787	84.687	－10．826
1200	8.130	54.951	49.324	6.753	89.806	84．722	－15．339
1500	8.249	55.607	49.782	7.572	89．827	83.755	－14．081
1400	8.347	56.22 .2	50.221	8.402	89.845	83.287	－13．002
1500	H． 434	56.801	50.640	9.241	89.365	R2．819	－12．067
1000	4.512	57.348	51.04 .3	10.089	89．R83	82． 348	－11．248
1700	H． 581	57．866	51.429	10.943	89.999	81.377	－10．526
1800	9.644	58.359	51.800	11.905	89.916	81.404	－y．884
1900	5.700	58.827	52.158	12.572	89.932	80.031	－9．309
2000	5.751	59.275	52.503	13.545	89.949	80．458	－0．7ヶ2
2100	3.797	59.703	52.335	14.422	89.762	79.981	－5．324
2200	2．840	60.113	53.157	15.304	89.376	79.507	－7．898
23013	9．879	$\bigcirc 0.507$	53.498	16.190	89.990	79.030	－7．51u
2400	3.910	60.985	53.709	17.030	90.003	78.554	－7．153
2500	3.950	61.251	54.001	17.973	30.017	78．070	－u． 825
2，00	93.981	61.602	$54 \cdot 345$	19.870	90.027	77.599	－0． 523
C700	9.011	61.942	54.620	19．739	90.039	77.121	－0．242
csue	9.039	62.270	54.887	20.572	90.051	76.542	－5．982
29011	9.060	62.589	55.147	21.577	90.061	76.164	－5．740
su0u	7.091	52.895	55.400	22.485	90.071	75．684	－5．514
3100	9.115	63.194	55.647	23.395	90.080	75.903	－5．302
3200	9.135	63.494	55.887	24.308	90.091	74.723	－5．103
3500	9.160	63.765	56.122	25.223	90.100	74.742	－4．917
3400	4.162	64.039	56.351	26.140	90.112	73.763	－4．741
3500	4.202	64.305	5á． 574	27.059	90.119	73.281	－4．576
souv	9.226	64.565	55.793	27．980	90.127	72．f01	$-4.4<0$
3700	3.242	54.818	57.006	25.904	90.133	72.318	－4．272
3300	a．2．6u	65.755	57.215	29.327	90.139	71.936	－4．132
$3 \rightarrow 00$	9．27\％	65.305	57.419	30.756	90.144	71.355	－ 2.999
4000	$\rightarrow 290$	65.540	57.619	31.694	90.150	70.872	－3．872
4100	9.314	65.770	57.815	32.515	90.154	70.389	－3．752
4200	9．33i	65.995	58.007	33.547	90.159	69.709	－3．638
4300	7.347	66.215	52.195	34.491	90.165	69.427	－3．529
4400	9.304	66.430	$5 \mathrm{H}$.	35.417	90.167	68.745	－3．4＜5
4500	$9.38 u$	56.640	58.56 ？	36.354	90.167	68.46 u	－3．325
4500	4.330	66.347	5 ヶ． 740	37.293	90.170	67.981	－3．230
4700	9．4i1	67.049	59．914	38.233	90.172	67.497	－3．139
4800	$9.4<7$	67.247	ba．08f	39.175	90.174	67.018	－3．051
4900	9.442	67.442	59.254	40.119	90.174	66.533	－2．907
bueu	9.45%	67.633	59.420	41.053	90.171	66.051	－2．8d7
bluu	9.471	67.8320	50.533	42.010	90.170	65.567	－2．810
b200	9.450	68.10114	59.743	42.957	90.158	65.085	－2．735
b300	9.541	68.125	59．901	43.307	90.165	64.601	－2．064
b400	9.515	68.363	60．0ゝ6	44.95 H	90.163	64.120	－＜． 595
ら500	9．52\％	68.537	60.208	45．810	90.158	63.538	－2．529
bouo	4.543	68.709	50.359	46.763	90.154	63.156	－2．465
5700	9.557	68．8378	60.507	47.718	90.149	62.674	－6．403
boud	9.571	69.1145	60.652	48.675	90.143	62.193	－＜．343
b900	4．50！	69.208	60.736	49.633	90.137	61.709	－2． 200
GUUU	4.590	69.369	60.933	50.592	90． 130	61.228	－2．230

July 31， 1972

$$
\mathrm{S}_{298.15}^{\circ}=45.307 \mathrm{cal} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}{ }^{*}
$$

$$
\Delta \mathrm{Hf}_{0}^{\circ}=8.65_{9} \mathrm{kcal}_{\mathrm{mol}}-\mathrm{i}^{*}
$$

$$
\Delta \mathrm{Hf}_{298.5}^{\circ}=8.74_{8} \pm 0.29 \mathrm{kcal} \mathrm{~mol}^{-1}
$$

Electronic States and Molecular Constants

Heat of Formation

The heat of formation was calculated from the selected value for $\Delta H f_{298}^{\circ}$ of $\mathrm{OH}(\mathrm{g}),-9.27 \pm 0.3 \mathrm{kcal} \mathrm{mol}{ }^{-1}$ (see OH table), the appropriate thermal functions, and zero point energies of $H_{2}(g), D_{2}(g), O H(g)$, and $O D(g)$. The zero point energies of $H_{2}(g)$ and $D_{2}(g)$ were taken from G. Herzberg and A. Monfila, J. Molec. Spectroscopy 5, 482 (1960). The zero point energies of $0 H$ and $O D$ include the Dunham correction (see G. Herzberg and A. Monfils, loc. cit.). The molecular constants are those given by B. Rosen, Spectroscopic Data Relative to Diatomic Molecules (Pergamon Press, Oxford, 1970) with the exception of the coupling constants taken from G. Herzberg, Spectra of Diatomic Molecules, D. Van Nostrand Company, Inc., New York (1950) pp. 232, 561.

*Heat Capacity and Entropy

The vibrational and rotational constants of the respective electronic levels were taken from B. Rosen, Spectroscopic Data Relative to Diatomic Molecules, Pergamon Press, Oxford, 1970. Comparison of the results with those from a more exact treatment given by L. Haar, A. S. Friedman, and C. W. Beckett, NBS Monograph 20, May 29, 1961 (U. S. Govt. Printing Office, Washington, D. C., 20402) indicates errors in the tables above 400 K are negligible. Below this, they may be appreciable. In particular, it is recommended that $H_{0}^{\circ}-H_{298}^{\circ}, S_{298}^{\circ}$, and $C_{p}^{\circ} 298$ be taken as $-2.151 \mathrm{kcal}_{\mathrm{mol}}{ }^{-1}, 45.307 \mathrm{gibbs} \mathrm{mol}{ }^{-1}$, and $7.156 \mathrm{cal} \mathrm{deg}^{-1} \mathrm{~mol}{ }^{-1}$, respectively. These errors result from dealing with the ground state $\left(X_{i}^{2} \Pi_{i}\right)$ as two different electronic states separated by $139.7 \mathrm{~cm}^{-1}$.
$G F W=18,0135$

July 31, 1972
$\mathrm{S}_{298.15}^{\circ}=48.138 \mathrm{cal}^{-1} \mathrm{~K}^{-1} \mathrm{~mol}^{-1^{\neq}}$

Electronic States and Molecular Constants

State	$\varepsilon, \mathrm{cm}^{-1}$	8	$\omega_{e}, c m-1$	$x_{e^{\omega}} e^{, c m}$	$\mathrm{B}_{\mathrm{e}}, \mathrm{~cm}-1$	${\underline{\alpha} e^{,} \mathrm{cm}^{-1}}^{\underline{1}}$	$\mathrm{r}_{\mathrm{e}}, \AA^{\circ}$
$x^{2} \pi_{i}$	$\left\{\begin{array}{r}0 \\ 376.8\end{array}\right.$	$\left.\begin{array}{l}2 \\ 2\end{array}\right\}$	1930.4	23.44	4.949	0.101	1.345
$A^{2} \Sigma^{+}$	30769	2	1417	48.85	4.392	0.172	1.423
$\mathrm{B}^{2} \Sigma$	59566	2	1917.7	29.3	4.532	0.105	1.405
$\mathrm{C}^{2} \Delta$	63872	47					
$\mathrm{D}^{2} \triangle$	71205	4					
$\mathrm{E}^{2} \mathrm{~L}$	71328	2 \}	[1930.4]	[23.44]	[4.949]	[0.101]	
$\mathrm{F}^{2} \Delta$	76717	4					
$\mathrm{G}^{2} \Delta$	79320	4					
$\mathrm{H}^{2} \Delta$	80858	4)					
$\sigma=1$							

Heat of Formation

The heat of formation was calculated from the appropriate thermal functions (see tables for $H S, D S, H_{2}, D_{2}$), the selected value for $\Delta H f_{298}^{\circ}$ of $\mathrm{HS}(\mathrm{g})\left(33.3 \pm 1.2 \mathrm{kcal}\right.$ mol ${ }^{-1}$, see table for HS$)$, and the zero point energies of $\mathrm{H}_{2}(\mathrm{~g})(1), \mathrm{D}_{2}(\mathrm{~g})(1), \mathrm{HS}(\mathrm{g})(2)$, and $\mathrm{DS}(\mathrm{g})(2)$. The Dunham corrections were made in ref. (1) for $\mathrm{H}_{2}(\mathrm{~g})$ and $\mathrm{D}_{2}(\mathrm{~g})$. Spectroscopic constants tabulated in ref. (2) were used to calculate the zero point energies of $H S$ and DS including Dunham corrections.

'Heat Capacity and Entropy

The vibrational and rotational constants of the respective electronic levels were taken from B. Rosen, Spectroscopic Data Relative to Diatomic Molecules, Pergamon Press, 0xford, 1970. From an examination of the approximations in this calculation with more exact methods (see $\mathrm{SH}^{\text {tables) it is concluded that the errors are }}$ negligible above 400 K . Below this, they may be appreciable. In particular, it is recomended that $H_{0}^{\circ}-H_{298}^{\circ}$, S_{298}°, and $\mathrm{C}_{\mathrm{p} 298}^{\circ}$ be taken as $-2.171 \mathrm{kcal} \mathrm{mol}^{-1}, 48.138 \mathrm{gibbs}$ mol $^{-1}$, and $7.760 \mathrm{cal} \mathrm{deg}^{-1}$ mol ${ }^{-1}$, respectively.

References

1. G. Herzberg and A. Monfils, J. Molec. Spectroscopy 5, 482 (1960).
2. B. Rosen, "Spectroscopic Data Relative to Diatomic Molecules", Pergamon Press, New York (1970). For coupling constants, see L. Haar, A. S. Friedman, and C. W. Beckett, NBS Monograph 20, May 29, 1961 (U. S. Govt. Printing Office, Washington, D. C., 20402). For the cause of these errors, see the text (page 256) of the table for Deutero-hydroxyl (0 D).
(Ideal Gas)
$G F N=34.0781$

$\mathbf{T},{ }^{\circ} \mathrm{K}$	Cp°	gibbs $/ \mathrm{mol}$$\mathrm{S}^{\circ} \quad-\left(\mathrm{G}^{\circ}-\mathrm{H}^{\circ}{ }^{\circ}{ }^{\circ} \mathrm{m}\right) / \mathrm{T}$		$\boldsymbol{H}^{\circ}-\mathbf{H}^{\circ}{ }_{298}$	$\begin{gathered} -\mathrm{kcal} / \mathrm{mol} \\ \Delta H \mathrm{f}^{\circ} \end{gathered}$	$\Delta \mathrm{Gf}^{\circ}$	Log Kp
0	. 000	. 000	INFINITE	-2.221	32.956	32.956	INFINITE
100	7.214	39.776	55.032	-1.526	33.159	30.924	-07.367
200	7.815	45.007	48.844	-. 767	33.171	28.478	-31.119
298	7.772	48.129	48.129	. 000	33.100	26.187	-19.195
300	7.770	48.177	48.129	. 014	33.098	26.144	-19.046
400	7.669	50.396	48.433	. 786	32.422	23.967	-13.040
500	7.678	52.107	49.003	1.552	31.899	21.789	-9.524
600	7.770	53.514	49.641	2.324	31.462	19.809	-7.215
700	7.898	54.721	50.282	3.107	31.089	17.921	-5.595
800	8.034	55.784	50.905	3.904	17.699	14.795	-4.042
900	8.162	56.738	51.501	4.714	17.703	14.432	-3.505
1000	8.277	57.604	52.068	5.536	17.709	14.069	-3.075
1100	8. 378	58.398	52.608	6.369	17.718	13.703	-2.723
1200	8.467	59.131	53.122	7.211	17.728	13.338	-2.429
1300	8.544	59.812	53.610	8.061	17.740	12.973	-2.181
1400	8.611	60.447	54.076	8.919	17.751	12.605	-1.968
1500	8.670	61.043	54.521	9.783	17.762	12.236	-1.783
1600	8.722	61.605	54.946	10.653	17.772	11.868	-1.621
1700	8.768	62.135	55.354	11.528	17.781	11.499	-1.478
1800	8.810	62.637	55.745	12.406	17.789	11.128	-1.351
1900	8.847	63.114	56.120	13.289	17.797	10.759	-1.238
2000	8.881	63.569	56.481	14.176	17.806	10.389	-1.135
2100	8.911	64.003	56.829	15.065	17.810	10.015	-1.042
2200	8.940	64.418	57.165	15.958	17.816	9.647	-. 958
2300	8.966	64.816	57.489	16.853	17.821	9.274	-. 881
2400	8.990	65.198	57.802	17.751	17.124	8.003	-. 811
2500	9.013	65.566	5R. 105	18.651	17.829	8.532	-. 746
2600	9.035	65.920	58.399	19.554	17.830	8.160	-. 686
2700	9.055	66.261	58.684	20.458	17.833	7.787	-. 630
2800	9.074	66.591	58.961	21.365	17.834	7.414	-. 579
2900	9.093	66.910	59.229	22.273	17.833	7.043	-. 531
3000	9.110	67.218	59.490	23.183	17.832	6.672	-. 486
3100	9.127	67.517	59.745	24.095	17.830	6.299	-. 444
3200	9.143	67.807	59.992	25.009	17.830	5.926	-. 405
3300	9.159	68.089	60.233	25.924	17.828	5.552	-. 368
3400	9.174	68.362	60.468	26.840	17.826	5.184	-. 333
3500	9.189	68.629	60.698	27.758	17.820	4.809	-. 300
3600	9.204	68.888	60.922	28.678	17.818	4.439	-. 270
3700	9.218	69.140	61.140	29.599	17.809	4.067	-. 240
3800	9.232	69.386	61.354	30.522	17.803	3.695	-. 213
3900	9.246	69.626	61.563	31.446	17.794	3.322	-. 186
4000	9.260	69.860	61.768	32.371	17.786	2.955	-. 161
4100	9.275	70.089	61.968	33.297	17.777	2.582	-. 138
4200	9.287	70.313	62.164	34.225	17.767	2.213	-. 115
4300	9.300	70.531	62.356	35.155	17.758	1.842	-. 094
4400	9.313	70.745	62.544	36.085	17.746	1.473	-. 073
4500	9.327	70.955	62.729	37.017	17.731	1.103	-. 054
4600	9.340	71.160	62.910	37.951	17.719	. 734	-. 035
4700	9.354	71.361	63.087	38.896	17.707	. 364	-. 017
4800	9.367	71.558	63.262	39.822	17.694	-. 004	. 000
4900	9.381	71.751	63.433	40.759	17.679	-. 370	. 016
5000	9.395	71.941	63.601	41.698	17.660	-. 742	. 032
5100	9.409	72.127	63.767	42.638	17.644	-1.107	. 047
5200	9.423	72.310	63.929	43.580	17.627	-1.476	. 062
5300	9.437	72.490	64.089	44.523	17.610	-1.845	. 076
5400	9.452	72.666	64.246	45.467	17.592	-2.208	. 089
5500	9.466	72.840	64.401	46.413	17.573	-2.578	. 102
5600	9.481	73.010	64.553	47.360	17.554	-2.942	. 115
5700	9.496	73.178	64.703	48.309	17.534	-3.310	. 127
5800	9.511	73.344	64.851	49.259	17.514	-3.674	. 138
5900	9.526	73.506	64.996	50.211	17.494	-4.043	. 150
6000	9.542	73.667	65.139	51.165	17.474	-4.403	. 160

DEUTERIUM, DIATOMIC (D_{2} or ${ }^{2} \mathrm{H}_{2}$)

$$
\begin{aligned}
& D_{0}^{\circ}=105.070 \pm 0.002 \mathrm{kcal} \mathrm{~mol}^{-1} \\
& \text { Ground State Configuration }{ }^{1} \Sigma_{g}^{+} \\
& \omega_{e}=3118.46 \mathrm{~cm}^{-1} \quad \omega_{e_{e}}=64.10 \mathrm{~cm}^{-1} \\
& B_{e}=30.429 \mathrm{~cm}^{-1} \quad \alpha_{e}=1.0492 \mathrm{~cm}^{-1} \\
& \Delta H f_{298.15}^{\circ}=0 \\
& \mathrm{~S}_{298.15}^{0}=34.622 \pm 0.01 \mathrm{cal} \mathrm{deg}^{-1} \mathrm{~mol}^{-1} \\
& D_{e}=0.01159 \mathrm{~cm}^{-1} \\
& \sigma=2 \\
& r_{e}=0.7416 \AA
\end{aligned}
$$

Heat Capacity and Entropy
The thermodynamic functions were generated from the table of the current series for H_{2} ($q . v$.) by adding those for "equilibrium" D_{2} and subtracting those for "equilibrium" H_{2}, the added and subtracted tables being those from L. Haar, A. S. Friedman, and C. W. Beckett, Nat. Bur. Standards Monograph 20 (1961). (In using these tablea of Monograph 20, $\mathcal{C}_{\mathrm{p}}^{\circ}$ was extrapolated smoothly from 5000 to 6000 K by comparing with the harmonic oscillator-rigid rotor values.) This procedure is belleved to give a table approaching in accuracy the current table for H_{2}, which is based on the direct-sumation method of H. W. Woolley, R. B. Scott, and F. G. Brickwedde, J. Research Nat. Bur. Standards 4l, . 379 (1948). The tables of Monograph 20, while involving sumation at low temperaturea, approximated by closed expressions the high-temperature first-order contributions due to anharmonicity, rotation-vibration coupling, and rotational stretching. At 2000 K the values of Woolley et al. for $\mathrm{C}_{\mathrm{p}}^{0}$ and S° of D_{2} are 0.03% lower and $0.01 \% \mathrm{higher}$ respectively, than the present table. (Woolley et al. gave no values for D_{2} above 2000 K .) The value for D_{0}° is taken from G. Herzberg, J. Molec. Spectroscopy 33, 147 (1970).

(Ideal Gas, Reference State) GFN $=4.0282$

	giblbs/mol -			keal/mol			$\underline{L o g ~ K p}$
T, ${ }^{\circ} \mathrm{K}$	Cp ${ }^{\text {a }}$	\mathbf{S}°	$-\left(\mathrm{G}^{\circ}-\mathrm{H}^{\circ}{ }_{298}\right) / \mathrm{T}$	$\mathbf{H}^{\circ}-\mathrm{H}^{\circ}{ }^{298}$	$\Delta H{ }^{\circ}$	$\Delta \mathrm{Gf}$	
u	. 000	. 000	INFINITE	-2.048	. 000	. 000	. 000
100	$7.24{ }^{\text {a }}$	26.932	40.839	-1.391	. 000	. 000	. 000
200	6.980	31.836	35.260	-. 685	. 000	. 000	.000
298	0.978	34.622	34.622	. 000	. 000	. 000	. 000
300	6.978	34.665	34.622	. 013	. 000	. 000	.000
400	6.989	36.672	34.896	. 710	. 000	. 000	. 000
500	7.018	38.235	35.413	1.411	. 000	.000	. 000
600	7.079	39.519	35.992	2.116	. nOO	. 000	. 000
700	7.172	40.617	36.576	2.829	. 000	. 000	.000
800	7.297	41.582	37.143	3.551	.000	.000	. 000
900	7.429	42.450	37.686	4.288	. 000	. 000	.000
1000	7.501	43.239	38.202	5.037	. 000	. 000	. 000
1100	7.689	43.965	38.694	5.799	. 000	. 000	. 000
1200	7.813	44.641	39.161	6.576	. 000	. 000	. 000
1300	7.934	45.270	39.507	7.362	. 000	. 000	.000
1400	3.055	45.863	40.033	8.162	. 000	. 000	. 000
1500	8.178	46.423	40.441	8.973	.000	.000	. 000
1600	8.277	45.954	40.831	9.797	. 000	. 000	. 000
1700	8.367	47.459	41.206	10.630	. 000	. 000	. 000
1800	8.450	47.939	41.567	11.470	. 000	. 000	. 000
1900	と. 529	49.398	41.914	12.320	. 000	.000	. 000
2000	8.601	48.837	42.250	13.174	. 000	.000	. 000
2100	8.609	49.259	42.573	14.041	. 000	. 000	. 000
2200	8.732	49.664	42.887	14.909	- 0 ח	.000	. 000
2300	8.792	50.053	43.190	15.785	. 000	.000	. 000
2400	8.848	50.429	43.484	16.668	. 000	.000	. 000
2500	5.901	50.790	43.769	17.552	. 000	. 000	. 000
2600	8.951	51.141	44.046	18.447	. 000	. 000	. 000
2700	8.997	51.479	44.315	19.343	. 000	.000	. 000
2800	9.041	51.807	44.577	20.244	.000	. 000	. 000
2900	9.081	52.126	44.832	21.153	. 000	. 000	. 000
3000	9.117	52.434	45.080	22.062	. 000	. 000	. 000
3100	9.158	52.735	45.322	22.980	. 000	. 000	-000
3200	9.197	53.025	45.558	23.894	. 000	.000	. 000
3300	9.237	53.308	45.788	24.816	. 000	. 000	. 000
3400	9.276	53.584	46.014	25.738	. 000	.000	. 000
3500	7.316	53.854	46.234	26.670	. 000	.000	.000
3600	y. 355	54.117	46.450	27.601	. 000	. 000	.000
3700	9.393	54.374	46.660	28.542	. 000	. 000	. 000
3800	9.432	54.625	46.866	29.484	. 000	. 000	. 000
3900	9.470	54.871	47.068	30.432	. 000	. 000	. 000
4000	9.508	55.111	47.266	31.380	. 000	.000	. 000
4100	9. 545	55.346	47.460	32.333	. 000	. 000	. 000
4200	9.581	55.577	47.651	33.289	. 000	. 000	.000
4300	9.019	55.802	47.838	34.245	. 000	. 000	. 000
4400	9.655	56.024	48.022	35.209	. 000	.000	.000
4500	7.691	56.241	48.201	36.180	. 000	. 000	. 000
4600	9.725	56.455	48.379	37.150	. 000	. 000	. 000
4700	9.759	56.664	48.553	38.122	. 000	. 000	. 000
4800	9.794	56.870	48.725	39.096	. 000	. 000	.000
4900	9.827	57.072	48.893	40.077	. 000	. 000	. 000
5000	9.800	57.271	49.058	41.065	- 000	. 000	.000
5100	9.893	57.467	49.221	42.053	. 000	. 000	. 000
5200	9.927	57.659	49.381	43.044	. 000	. 000	. 000
5300	9.900	57.848	49.539	44.038	. 000	. 000	. 000
5400	$9 \cdot 9 \rightarrow 3$	58.035	49.695	45.035	- 000	. 000	. 000
bsoo	$10.0<5$	58.218	49.848	46.036	. 000	. 000	. 000
5600	10.056	59.399	49.999	47.039	. 000	. 000	. 000
5700	10.088	58.577	50.148	48.046	. 0 OO	. 000	.000
5800	14.120	58.753	50.295	49.057	- 000	. 000	. 000
5900	10.149	58.926	50.440	50.070	.000	. 000	. 000
b000	10.180	59.097	50.583	51.086	. 0 no	. 000	. 000

July 31, 1972

$$
\begin{aligned}
& \text { Point Group } C_{2 v} \\
& \mathrm{~S}_{298.15}^{\circ}=48.801 \text { gibbs mol }
\end{aligned}
$$

Electronic Level (quantum weight) and Vibrational Frequencies (Degeneracies)

$\varepsilon_{, ~ \mathrm{~cm}^{-1}}(\mathrm{~g})$				
0	(2)	$[2305](1)$	$1110(1)$	$[2367](1)$
10393	(2)	$[2305](1)$	$[500](1)$	$[2367](1)$

```
Bond Distance: \(N-D=1.024 \AA\)
Bond Angle: \(\quad \mathrm{D}-\mathrm{N}-\mathrm{D}=103.4^{\circ}\)
Products of Moments of Inertia: \(I_{A} I_{B} I_{C}=58.53 \times 10^{-120} \mathrm{~g}^{3} \mathrm{~cm}^{6}\)
```


Heat of Formation

Δf_{298}° of $\mathrm{ND}_{2}(\mathrm{~g})$ was calculated from the JANAF selection for $\Delta \mathrm{Hf}_{298}^{\circ}$ of $\mathrm{NH}_{2}(\mathrm{~g})$, the JANAF thermal functions and the zero point energies of $H_{2}(g), D_{2}(g), \mathrm{NH}_{2}(g)$, and $\mathrm{ND}_{2}(\mathrm{~g})$. The zero point energies of $\mathrm{H}_{2}(\mathrm{~g})$, $\mathrm{D}_{2}(\mathrm{~g})$ were those given by G. Herzberg and A. Monfils, J. Mol. Spectroscopy 5 , 482 (1960). The zero point energies of $\mathrm{NH}_{2}(\mathrm{~g}$) and $\mathrm{ND}_{2}(\mathrm{~g})$ were estimated from vibrational frequencies given by D. E. Milligan and M. E. Jacox, J. Chem. Phys. 43, 4487 (1965) who observed the infrared and visible spectrum of matrix isolated NH_{2} and ND_{2}.

Heat Capacity and Entropy
The bond distances and angles are from the electronic absorption spectrum (c.f. NH_{2}). The vibrational frequencies are from D. E. Milligan and M. E. Jacox, J. Chem. Phys. 43, 4487 (1965).

T, ${ }^{\circ} \mathbf{K}$	Cp ${ }^{\circ}$	gibbs/r S°	$-\overline{\left(\mathrm{G}^{\circ}-\mathrm{H}^{\circ} 298\right) / \mathrm{T}}$	$\mathrm{H}^{\circ}-\mathrm{H}^{\circ} 288$	$\begin{gathered} \text { kcal/mol } \\ \Delta H f^{\circ} \end{gathered}$	$\Delta \mathrm{Gf}{ }^{\circ}$	$\log \mathbf{K p}$
0	. 000	. 000	INFINITE	-2.3.85	44.999	44.999	INFINITE
100	7.949	40.057	55.959	-1.590	44.790	45.386	-99.192
200	7.992	45.573	49.544	-. 794	44.532	46.084	-50.358
298	8.227	48.801	48.801	. 000	44.300	45.896	-34.376
300	8.233	48.852	48.801	. 015	44.296	46.912	-34.175
400	8.619	51.271	49.128	. 857	44.092	47.816	-20.126
500	9.070	53.241	49.759	1.741	43.924	48.767	-21.316
600	9.549	54.937	50.484	2.672	43.793	49.748	-18.121
700	10.025	56.445	51.230	3.651	43.695	50.748	-15.844
800	10.472	57.814	51.969	4.676	43.627	51.761	-14.140
900	10.877	59.071	52.689	5.744	43.578	52.781	-12.817
1000	11.235	60.236	53.386	6.850	43.548	53.305	-11.7ち9
1100	11.546	61.321	54.059	7.989	43.532	54.833	-1U.894
1200	11.817	62.338	54.707	9.158	43.523	55.359	-10.173
1300	12.051	63.293	55.331	10.351	43.525	56.887	-9.564
1400	12.250	64.194	55.932	11.567	43.530	57.915	-9.041
1 bou	12.437	65.046	56.511	12. $8 \cap 2$	43.539	58.943	-8.588
1600	12.599	65.854	57.070	14.054	43.549	59.969	-8.191
1700	12.746	66.622	57.610	15.321	43.562	60.994	-7.841
1800	12.882	67.355	58.131	16.603	43.579	62.019	-7.530
1900	13.009	68.055	58.635	17.397	43.597	63.043	-7.252
2000	13.130	68.725	59.123	19.204	43.621	64.067	-7.001
2100	13.247	69.368	59.596	20.523	43.642	65.086	-0.774
2200	13.361	69.987	60.054	21.854	43.672	66.110	\rightarrow - 0.567
2300	13.473	70.584	60.499	23.195	43.703	67.128	-0.379
2400	13.582	71.159	60.931	24.548	43.737	68.146	-0.206
2500	13.690	71.715	61.351	25.912	43.779	69.163	-0.046
2600	13.790	72.255	61.760	27.296	43.820	70.177	-5.899
2700	13.900	72.778	62.159	28.671	43.869	71.190	-5.762
2800	14.003	73.285	62.547	30.066	43.923	72.201	-5.636
2900	14.103	73.778	62.926	31.471	43.978	73.211	-5.517
3000	14.201	74.258	63.296	32.396	44.042	74.218	-5.407
3100	14.290	74.725	63.657	34.311	44.106	75.221	-5.303
3200	14.387	75.181	64.010	35.745	44.192	76.224	-5.206
3300	14.476	75.625	64.355	37.189	44.258	77.222	-5.114
3400	14.560	76.058	64.693	38.640	44.343	78.222	-5.028
3500	14.641	76.481	65.024	40.101	44.425	79.216	-4.946
3600	14.718	76.895	65.348	41.569	44.515	80.212	-4.870
3700	14.790	77.299	65.666	43.044	44.602	81.199	-4.796
3500	14.858	77.694	65.977	44.526	44.595	82.186	-4.727
3900	14.922	78.081	66.282	46.015	44.788	83.171	-4.661
4000	14.98 C	78.460	66.582	47.511	44.896	84.153	-4.598
4100	15.037	78.830	66.876	49.012	44.985	85.133	-4.538
4200	15.083	79.193	67.165	50.518	45.085	86.114	-4.481
4300	15.134	79.549	67.449	52.029	45.190.	87.090	- +.426
4400	15.177	79.897	67.728	53.545	45.291°	88.064	-4.374
4500	15.215	80.239	68.002	55.064	45.3R8	89.030	-4.324
4600	1b. 2 bu	80.574	68.272	56.597	45.489	90.003	-4.276
4700	15.280	80.90 ?	68.537	58.114	45.592	90.969	-4.230
4800	15.300	81.224	68.798	59.643	45.694	91.938	-4.186
4900	15.331	51.540	69.055	61.175	45.792	92.897	-4.143
5000	15.352	81.850	69.308	62.709	45.885	93.1257	-4.102
5100	15.369	82.154	69.557	64.246	45.979	94.815	-4.063
b200	15.384	82.452	69.802	65.793	46.072	95.771	-4.025
5300	15.395	82.746	70.043	67.322	46.162	96.723	-3.988
5400	15.405	83.033	70.281	68.362	46.250	97.680	-3.953
bらUu	15.411	83.316	70.516	70.403	46.334	98.529	-3.919
5000	15.416	83.594	70.747	71.944	46.416	99.580	-3.886
5700	15.413	83.867	70.974	73.486	46.494	100.529	-3.854
5800	15.41 b	84.135	71.199	75.028	46.563	101.477	-3.824
5900	15.417	84.398	71.421	76.570	46.639	102.421	-3.794
6000	15.414	84.658	71.639	78.111	45.707	103.367	-3.765

```
Point Group \(C_{2 v}\)
\(\mathrm{S}^{\circ}{ }_{298.15}=53.616 \mathrm{gibbs} \mathrm{mol}{ }^{-1}\)
```

$\Delta H f_{298.15}^{\circ}=49.5 \pm 0.5{\mathrm{kcal} \mathrm{mol}^{-1}}^{-1}$

Ground State Quantum Weight $=1$
Vibrational Frequencies and Degeneracies

$\omega_{2} \mathrm{~cm}^{-1}$	$\omega_{2} \mathrm{~cm}^{-1}$ $[2300](1)$ $[1490](1)$ $[1058](1)$
$[1150](1)$	
750$](1)$	

Bond Distance: $\mathrm{N}-\mathrm{N}=[1.230] \AA \quad \mathrm{N}-\mathrm{H}=[1.014]^{\circ} \AA$
Bond Angle: $\mathrm{H}-\mathrm{N}-\mathrm{H}=\left[100^{\circ}\right] \quad \sigma=2$
Product of Moments of Inertia: $I_{A} I_{B} I_{G}=3.8165 \times 10^{-117} \mathrm{~g}^{3} \mathrm{~cm}{ }^{6}$

Heat of Formation

$\Delta H f_{298}^{\circ}$ of $\mathrm{N}_{2} \mathrm{D}_{2}(\mathrm{~g})$ was estimated from $\Delta 4 \mathrm{C}_{298}^{\circ}$ of $\mathrm{N}_{2} \mathrm{H}_{2}(\mathrm{~g}), 50.9 \pm 5 \mathrm{kcal}$ mol ${ }^{-1}$, given in JaNaF Thermochemical Tables, 2nd Edition, NSRDS-NBS-37, June (1971), the appropriate thermal functions (see tables for $N_{2} D_{2}, H_{2}, D_{2}$ and $\mathrm{N}_{2} \mathrm{H}_{2}$ (JANAF loc. cit.)) and the estimated zero point energies. The energies for $\mathrm{H}_{2}(\mathrm{~g})$, $\mathrm{D}_{2}(\mathrm{~g})$ are those given by G. Herzberg and A. Monfils, J. Molec. Spectroscopy 5, 482 (1960). The energies for $\mathrm{N}_{2} \mathrm{D}_{2}(\mathrm{~g})$ and $\mathrm{N}_{2} \mathrm{H}_{2}(\mathrm{~g})$ are taken to be one half the sum of the vibrational frequencies given above and for $\mathrm{N}_{2} \mathrm{H}_{2}$ (g) (JANAF, loc. cit.).

Heat Capacity and Entropy

The bond distances and angle were obtained from a quantum mechanical calculation by G. W. Wheland and P. S. K. Chen, J. Chem. Phys, 24, 67 (1956). The three principal moments of inertia are $I_{A}=0.6122, I_{B}=2.2094$, $I_{c}=2.8216 \times 10^{-39} \mathrm{~g} \mathrm{~cm}{ }^{2}$. The infrared spectrum of $N_{2} D_{2}(g)$ has been observed using matrix isolation techniques by K. Rosengren and G. Pimentel, J. Ghem. Phys. 43, 507 (1965). They have observed ω_{1} or $\omega_{4}=2400 \mathrm{~cm}{ }^{-1}, w_{2}=$ $1490 \mathrm{~cm}^{-1}$, and $w_{3}=1058 \mathrm{~cm}^{-1}$.

T, ${ }^{\circ} \mathrm{K}$	gibbs/mol			kcal/mol			$\log K p$
	Cp ${ }^{\circ}$	S°	$-\left(\mathrm{G}^{\circ}-\mathrm{H}^{\circ} 288\right) / \mathrm{T}$	$\mathbf{H}^{\circ}-\mathrm{H}^{\circ}{ }_{288}$	$\Delta H{ }^{\circ}$	$\triangle \mathrm{Gf}$	
0	. 000	. 000	INFINITE	-2.464	51.156	51.156	INF1NITE
100	7.954	44.544	61.231	-1.669	50.601	52.657	-115.082
200	9.310	50.125	54.433	-. 862	50.005	54.947	-6U.043
298	9.327	53.616	53.616	. 000	49.500	57.483	-42.136
3013	9.350	53.674	53.617	. 017	49.491	57.532	-41.912
400	10.632	56.538	53.998	1.016	49.095	60.277	-32.934
500	11.867	59.1045	54.702	2.142	48.918	63.106	-27.583
600	12.972	61.309	55.667	3.385	48.644	65.981	-24.034
700	13.930	63.382	56.623	4.731	48.549	68.878	-21.505
800	14.747	65.297	57.589	6.165	48.519	71.785	-19.611
gue	15.437	67.075	58.545	7.676	48.533	74.694	-18.138
1000	15.016	68.733	59.483	9.250	43.584	77.597	-10.959
1100	16.505	70.283	60.395	10.877	48.561	80.496	-15.993
1200	16.91+	71.737	61.280	12.548	48.754	83.385	-15.187
1300	17.250	73.105	52.138	14.258	48.867	86.256	-14.503
1400	17.552	74.395	62.967	15.999	48.987	99.139	-13.915
1500	17.802	75.615	63.770	17.767	49.115	92.003	-13.405
1500	18.015	76.770	64.547	19.558	49.246	94.858	-12.957
1700	18.196	77.868	65.299	21.369	49.381	97.704	-12.561
1300	18.357	78.913	66.026	23.196	49.519	100.542	-12.207
1900	18.495	79.900	66.731	25.1039	49.659	103.373	-11.891
2000	19.610	80.361	67.414	26.895	49.803	106.199	-11.605
2100	18.722	81.772	¢6. 6.075	28.752	49.041	109.012	-11.345
2200	18.815	82.545	68.718	30.6 .39	50.084	111.824	-11.109
2300	18.899	83.484	69.342	32.525	50.225	114.626	-11.892
2400	14.972	84.299	69.948	34.418	50.364	117.424	-10.693
2500	19.033	85.065	70.538	36.319	50.506	120.215	-10.509
2000	17.097	85.813	71.111	38.226	50.641	123.001	-10.339
2700	19.150	86.535	71.609	40.138	50.778	125.782	-10.181
2800	19.195	87.232	72.212	42.056	50.914	128.557	-10.034
2900	19.241	87.907	72.742	43.978	51.1045	131.329	-y. 897
3000	19.261	83.560	73.258	45.904	51.177	134.095	-9.769
3100	19.317	89.192	73.762	47.834	51.303	136.855	-9.648
5200	19.349	89.305	74.254	49.757	51.434	139.612	-9.535
3300	19.379	90.402	74.734	51.704	51.559	142.364	-9.428
3400	19.4197	90.981	75.204	53.643	51.686	145.118	-9.328
3500	19.432	91.544	75.603	$55.59,5$	51.804	147.0.61	-4.233
5000	19.455	92.092	76.111	57.529	51.923	150.507	-y. 143
3100	19.477	92.625	76.551	59.476	52.035	15.3.344	-9.058
3300	19.497	93.145	76.980	61.425	52.146	156.1080	-8.977
S900	19.515	93.551	77.461	63.375	52.252	158.214	-8.900
4000	19.532	94.145	77.814	65.328	52.359	161.543	-8.826
4100	19.548	94.528	78.218	67.282	52.461	164.270	-8.756
4200	19.563	95.100	78.615	69.237	52.560	166.999	-8.090
$+500$	19.577	95.550	79.003	71.194	52.561	169.724	-8.626
+400	19.590	96.010	74.385	73.153	52.754	172.446	-8.565
4500	19.602	96.451	79.759	75.112	52.839	175.160	-8.507
4600	17.615	96.842	80.127	77.073	52.927	177.383	-8.451
4700	19.684	97.304	80.488	79.035	53.013	180.597	-8.398
4300	19.634	97.717	80.842	80.798	53.096	183.310	-5.347
4900	19.643	98.122	81.191	$82.96 ?$	53.173	196.023	-0.297
5000	14.652	98.519	31.533	34.925	53.242	188.734	-8.2b0
5100	19.0́ol	98.908	81.870	96.972	53.312	191.441	-8.204
5200	19.669	99.290	82.202	88.859	53.379	194.150	-b. 160
5300	19.675	99.664	82.528	90.826	53.443	196.853	-8.117
$5+00$	10.685	100.032	82.948	92.794	53.504	199.561	-8.077
bouo	19.690	100.394	83.164	94.752	53.559	202.265	-8.037
勺600	19.695	100.748	83.475	95.732	53.514	204.968	-7.999
5700	19.702	101.097	83.751	98.702	53.564	207.672	-7.963
¢800	19.7U	101.440	84.083	170.672	53.709	210.374	-7.927
5900	19.71 s	101.777	84.380	102.543	53.752	2.13.072	-7.893
6000	19.71\%	102.108	84.672	104.615	53.792	215.773	-7.800

```
Point Group \(\quad C_{2 v}\)
\(\mathrm{S}_{298.15}^{\circ}=47.378 \mathrm{cal} \mathrm{deg}^{-1} \mathrm{~mol}^{-1}\)
```

$\Delta \mathrm{Hf}_{0}^{\circ}=-58.856 \mathrm{kcal} \mathrm{mol}{ }^{-1}$
$\Delta H f_{298.15}^{\circ}=-59.561 \pm 0.016 \mathrm{kcal} \mathrm{mol}^{-1}$
Ground State Quantum Weight $=1$
ω, cm^{-1}
2671.69 (1)
1178.33 (1)
2788.02 (1)

Bond Lengths and Ang1e: $0-D$ Distance $=0.958 \AA$
$\begin{aligned} \text { D-0-D Angle } & =104.45^{\circ} \\ \text { Product of Moments of Inertia: } I_{A} I_{B} I_{C} & =39.948 \times 10^{-120} \mathrm{~g}^{3} \mathrm{~cm}^{6}\end{aligned}$

Heat of Formation

Rossini, Knowlton, and Johnston (1) measured the ratio of the heats of formation of $\mathrm{D}_{2} 0(\ell)$. Recalculation of their results (using $\left\langle\mathrm{Hf}_{298}^{\circ}\right.$ of $\mathrm{H}_{2} \mathrm{O}(\ell)=-68.315 \pm 0.010 \mathrm{kcal} \mathrm{mol}^{-1}$, see $\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$ table) yields $\Delta \mathrm{Hf}_{298}^{\circ}$ of $\mathrm{D}_{2} \mathrm{O}(\ell)-$. $\mathrm{H}_{2} \mathrm{O}(\ell)=-2.1098 \pm 0.01492 \times \Delta \mathrm{Hf}_{298}^{\circ}\left[\mathrm{HDO}(\ell)-\mathrm{H}_{2} \mathrm{O}(\ell)\right] \pm .016 \mathrm{kcal} \mathrm{mol}^{-1}$. Using a value of 32 ± 30 cal. for the reaction $\mathrm{H}_{2} \mathrm{O}(\ell)+\mathrm{D}_{2} \mathrm{O}(\ell)=2 \mathrm{HDO}(\ell)$ (from (2); some justification that the uncertainty may be smaller is given by Van Hook (3), see also HDO tables) one obtains $\Delta \mathrm{Hf}_{298}^{\circ}\left[\mathrm{D}_{2} 0(\ell)-\mathrm{H}_{2} \mathrm{O}(\ell)\right]=-2.094 \pm 0.016 \mathrm{kcal}$ mol ${ }^{-1}$.

The difference between the heats of vaporization of $\mathrm{D}_{2} 0(\ell)$ and $\mathrm{H}_{2} 0(\ell)$ at 298 K were evaluated as follows. By direct calorimetry, Rossini, Knowlton, and Johnston (1) determined the ratio of the heats of vaporization of $H_{2} 0(\ell) / D_{2} O(\ell)$ at 298 K and zero pressure to be 0.969503 ± 0.00070; (2) Bartholomé and clusius (4) deternined the heat of vaporization of $D_{2} O(\ell)$ by direct calorimetry at $0^{\circ} \mathrm{C}$. Recalculation of their results using the energy equivalent of a Bunsen ice calorimeter given by (5) (compression correction assumed zero) and neglecting gas imperfection corrections yields $12.637 \pm 0.026 \mathrm{kcal} \mathrm{mol}^{-1}$. The heat of vaporization of $\mathrm{D}_{2} \mathrm{O}(\ell)$ at $25^{\circ} \mathrm{C}$ was calculated using the heat of fusion of $D_{2} O(\ell)$ selected by (6) and (7), the condensed phase heat capacity data of $D_{2} O(\ell)$ given by Long and Kemp (8) snd the gas phase thermal functions of Friedman and Haar (see next section); (3) The difference in heats of vaporization of $D_{2} O(\ell)$ and $D_{2} O(g)$ was derived by differentiating the formula given by Jones (9) (see (10) for a comparison with other measurements) for the ratio of the vapor pressures of $\mathrm{H}_{2} \mathrm{O}(\ell) / \mathrm{D}_{2} \mathrm{O}(\ell)$ as a function of temperature and assuming negligible corrections for gas imperfection corrections (see (11), however).

Selecting $0.331 \pm .008 \mathrm{kcal}$ mol ${ }^{-1}$ for the difference in the heats of vaporization, one obtains $-1.763 \pm 0.018 \mathrm{kcsl}$ mol ${ }^{-1}$ for $\Delta \mathrm{Hf}_{298}^{\circ}$ of $\mathrm{D}_{2} \mathrm{O}(\mathrm{g})-\mathrm{H}_{2} 0(\mathrm{~g})$. The "spectroscopic" value for this difference was calculated to be -1.768 ± 0.015 kcal mol ${ }^{-1}$ based on the zero point energies given by Hulston (13) for $H_{2} \mathrm{O}(\mathrm{g}), \mathrm{D}_{2} \mathrm{O}(\mathrm{g})$, Herzberg and Monfils (14) for $\mathrm{H}_{2}(\mathrm{~g}), \mathrm{D}_{2}(\mathrm{~g})$, and the appropriate thermal functions $\left(\mathrm{H}_{2} \mathrm{O}(\mathrm{g})(15)\right.$, see tables for $\mathrm{H}_{2}(\mathrm{~g}), \mathrm{D}_{2}(\mathrm{~g})$, $\mathrm{D}_{2} \mathrm{O}(\mathrm{g})$). To close the consistency check, the "spectroscopic" value of ΔH_{298}° of $\mathrm{D}_{2} \mathrm{O}(\mathrm{g})$ minus $\mathrm{HDO}(\mathrm{g})$ is $-0.916 \pm 0.0015 \mathrm{kcal}$ mol ${ }^{-1}$ and the "nonspectroscopic" value for this difference is (see HDO tables, reaction A) is $(-1.763 \pm 0.0018)+(0.846 \pm 0.006)=$ $-0.917 \pm 0.019 \mathrm{kcal} \mathrm{mol}^{-1} . \Delta \mathrm{Hf}_{298}^{\circ}$ of $\mathrm{D}_{2} \mathrm{O}(\mathrm{g})-\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$ and $\Delta \mathrm{Hf}_{298}^{\circ}$ of $\mathrm{H}_{2} \mathrm{O}(\mathrm{g})=-57.795 \pm 0.010 \mathrm{kcal} \mathrm{mol}{ }^{-1}$ (12). Heat Capacity and Entropy

The thermodynamic functions of this table are analogous to those in the JANAF table for $\mathrm{H}_{2} 0$ (g) (dated March 31 , 1961): both tables are taken from A. S. Friedman and L. Haar, J. Chem. Phys. 22, 2051 (1954). Friedman and Haar applied their non-rigid-rotor, anharmonic-oscillator treatment (with vibrational-rotational coupling terms and lowtemperature rotational corrections) to the infrared-spectra analyses of W. S. Benedict, N. Gailar, and E. K. Plyler, J. Chem. Phys. 21, 1301 (1953) and of W. S. Benedict, H. H. Claasen, and J. H. Shaw, J. Research Nat. Bur. Standards 49, 91 (1952). In the present table for $D_{2} 0$, the values of C_{p}° of Friedman and Haar between 4000 and 5000 K were extrapolated linearly (except with a term in T^{-2}) from 5000 to 6000 K .

References

1. F. D. Rossini, J. W. Knowlton, and H. L. Johnston, J. Res. Nat. Bur. Standards 24, 369 (1940).
2. W. C. Duer and G. L. Bertrand, J. Chem. Phys. 53, 3020 (1970).
3. W. A. Van Hook, J. Phys. Chem. 72, 1234 (1968).
4. E. Bartholome and K. Clusius, Zeit, Physik. Chem. B28, 167 (1935).
5. D. A. Ditmars and T. B. Douglas, J. Res. Nat. Bur. Standards 75A, 401 (1971).
6. I. Kirshenbaum, Physical Properties and Analysis of Heavy Water (McGraw-Hill, New York, 1951).
7. V. A. Kirillin, Editor, Heavy Water Thermophysical Properties (U. S. Dept. of Commerce, National Technical Information Service, Springfield, Va., TT70-50094, 1971).
8. E. A. Long and J. D. Kemp, J. Chem. Soc. 58, 1829 (1936).
9. W. M. Jones, J. Chem. Phys. 48, 207 (1968).
10. C. Liu and W. T. Lindsay, Jr., J. Chem. Eng. Data 15, 510 (1970).
11. G. S. Kell, G. F. Laurin, and E. Whalley, J. Chem. Phys. 49, 2839 (1968).
12. CODATA Task Group on Key Values for Thernodynamics, Final Set of Key Values for Thermodynamics-Part I (Bulletin No. 5) November 1971.
13. J. R. Hulston, J. Chem. Phys. 50, 1483 (1969) see also M. Wolfsberg, J. Chem. Phys. 50, 1484 (1969).
14. G. Herzberg and A. Monfils, J. Molec. Spectroscopy 5, 482 (1960).
(Ideal Gas)
$G F W=20.027$

T, ${ }^{\circ} \mathrm{K}$	gibbs/mol			-kcal/mol			$\log K_{p}$
	Cp ${ }^{\circ}$	S°	$-\left(\mathrm{G}^{\circ}-\mathrm{H}^{\circ} 298\right) / \mathrm{T}$	$\mathrm{H}^{\circ}-\mathrm{H}^{\circ} 298$	$\triangle H L^{\circ}$	$\Delta \mathrm{Gf}$	
0	. 000	. 000	INFINITE	-2.380	-58.856	-58.856	INFINITE
100	7.958	38.634	54.529	-1.590	-59.069	-58.169	127.129
200	7.994	44.156	48.119	-. 793	-59.326	-57.168	62.471
298	8.187	47.378	47.378	. 000	-59.561	-56.059	41.092
300	8.192	47.429	47.378	. 015	-59.565	-56.037	40.823
400	8.517	49.828	47.703	. 850	-59.783	-54.827	29.956
500	8.887	51.768	48.328	1.720	-59.979	$=53.565$	23.413
600	9.282	53.423	49.042	2.628	-60.154	-52.267	19.038
700	9.690	54.884	49.775	3.577	-60.307	-50.940	15.904
800	10.098	56.205	50.497	4.566	-60.439	-49.593	13.548
900	10.490	57.417	51.200	5.596	-60.553	-48.230	11.712
1000	10.856	58.542	51.878	6.664	-60.648	-46.855	10.240
1100	11.191	59.592	52.532	7.766	-60.727	-45.471	9.034
1200	11.494	60.580	53.162	8.901	-60.793	-44.082	8.028
1300	11.765	61.510	53.769	10.064	-60.845	-42.687	7.176
1400	12.006	62.391	54.354	11.253	-60.888	-41.289	6.445
1500	12.222	63.227	54.917	12.464	-60.923	-39.887	5.811
1600	12.413	64.022	55.462	13.696	-60.953	-38.485	5.257
1700	12.584	64.780	55.988	14.946	-60.977	-37.079	4.767
1800	12.737	65.504	56.497	16.213	-60.995	-35.673	4.331
1900	12.874	66.196	56.989	17.493	-61.012	-34.267	3.942
2000	12.997	66.860	57.466	18.787	-61.023	-32.858	3.591
2100	13.109	67.496	57.929	20.092	-61.037	-31.451	3.273
2200	13.210	68.108	58.377	21.408	-61.045	-30.039	2.984
2300	13.301	68.698	58.814	22.734	-61.053	-28.631	2.721
2400	13.385	69.266	59.237	24.068	-61.063	-27.220	2.479
2500	13.462	69.814	59.650	25.410	-61.069	-25.810	2.256
2600	13.533	70.343	60.051	26.760	-61.080	-24.399	2.051
2700	13.598	70.855	60.441	28.117	-61.088	-22.989	1.861
2800	13.658	71.351	60.822	29.480	-61.098	-21.576	1.684
2900	13.714	71.831	61.194	30.849	-61.112	-20.164	1.520
3000	13.766	72.297	61.556	32.222	-61.124	-18.753	1.366
3100	13.815	72.749	61.910	33.602	-61.140	-17.339	1.222
3200	13.860	73.188	62.255	34.986	-61.152	-15.927	1.088
3300	13.904	73.615	62.593	36.375	-61.168	-14.515	. 961
3400	13.944	74.031	62.923	37.766	-61.184	-13,099	. 842
3500	13.982	74.436	63.246	39.163	-61.206	-11.685	.730
3600	14.018	74.830	63.563	40.562	-61.227	-10.268	. 623
3700	14.052	75.235	63.893	41.967	-61.254	-8.929	. 527
3800	14.085	75.590	64.176	43.373	-61.283	-7.438	. 428
3900	14.116	75.956	64.473	44.783	-61.315	-6.023	. 338
4000	14.145	76.314	64.765	46.196	-61.346	-4.606	. 252
4100	14.173	76.664	65.051	47.611	-61.381	-3.188	.170
4200	14.200	77.005	65.332	49.030	-61.416	-1.766	. 092
4300	14.226	77.340	65.607	50.452	-61.451	-. 344	. 017
4400	14.251	77.667	65.878	51.875	-61.493	1.078	-. 054
4500	14.275	77.988	66.143	53.301	-61.540	2.496	-. 121
4600	14.298	78.302	66.404	54.731	-61.584	3.925	-. 186
4700	14.320	78.610	66.661	56.161	-61.631	5.348	-. 249
4800	14.341	78.911	66.912	57.594	-61.677	6.779	-. 309
4900	14.361	79.207	67.160	59.030	-61.729	8.202	-. 366
5000	14.381	79.498	67.404	60.467	-61.788	9.627	-. 421
5100	14.401	79.782	67.644	61.905	-61.846	11.059	-. 474
5200	14.420	80.062	67.880	63.347	-61.904	12.485	-. 525
5300	14.438	80.337	68.113	64.790	-61.965	13.916	-. 574
5400	14.455	80.507	68.342	66.234	-62.028	15.351	-. 621
5500	14.473	80.872	68.567	67.681	-62.093	16.783	-. 667
5600	14.490	81.134	68.789	69.129	-62.159	18.217	-. 711
5700	14.507	81.390	69.008	70.578	-62.229	19.651	-. 753
5800	14.523	81.643	69.224	72.030	-62.301	21.090	-. 795
5900	14,539	81.891	69.436	73.483	-62.374	22.528	-.834
6000	14.555	82.135	69.646	74.938	-62.448	23.970	-. 873

> Point Group $\mathrm{C}_{2 \mathrm{v}}$
> $\mathrm{S}_{298.15}^{\circ}=51.428$ cal $\mathrm{deg}^{-1} \mathrm{~mol}^{-1}$
$\Delta \mathrm{Hf}_{0}^{\circ}=-5.02 \pm 0.2 \mathrm{kcal} \mathrm{mol}^{-1}$
$\Delta \mathrm{Hf}_{298.15}^{\circ}=-5.71 \pm 0.2 \mathrm{kcal} \mathrm{mol}^{-1}$

Ground State Quantum Weight $=1$
Vibrational Frequencies and Degeneracies

ω, cm^{-1}
1896.38 (1)
855.45 (1)
$1999 \quad$ (1)

Bond Distance: $S-D=1.328 \AA \quad \sigma=2$
Bond Angle: $D-S-D=92.2^{\circ}$
Product of the Moments of Inertia: $I_{A} I_{B} I_{C}=6.016 \times 10^{-119} \mathrm{~g}^{3} \mathrm{~cm}{ }^{6}$

Heat of Formation

$\Delta \mathrm{Hf}_{298}^{\circ}$ of $\mathrm{D}_{2} \mathrm{~S}(\mathrm{~g})$ was determined by Kapustinskii and Kankovskii (1) to be $-5.69{ }_{2} \pm 0.06 \mathrm{kcal}$ mol ${ }^{-1}$ (recalculated) from the reaction: $\mathrm{D}_{2} \mathrm{~S}(\mathrm{~g})+3 / 2 \mathrm{O}_{2}(\mathrm{~g})=\mathrm{SO}_{2}(\mathrm{~g})+\mathrm{D}_{2} \mathrm{O}(\mathrm{l})+\mathrm{S}\left(\right.$ rhombic). The difference of $\Delta \mathrm{Hf}{ }_{298}^{\circ}$ of $\mathrm{D}_{2} \mathrm{~S}(\mathrm{~g}) \mathrm{minus} \mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})$ for their work was calculated using their results for ΔH_{298}° of $\mathrm{NH}_{3}(g),-4.92 \pm 0.08 \mathrm{kcal}$ mol ${ }^{-1}$ (recalculated) in the hope of eliminating possible systematic error due to uncertainty in the product formed.

The "spectroscopic" value of $\Delta \mathrm{Hf}_{298}^{\circ}$ of $\mathrm{D}_{2} \mathrm{~S}(\mathrm{~g})$ minus $\mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})$ was calculated from the appropriate thermal functions (see $\mathrm{H}_{2}, \mathrm{D}_{2}, \mathrm{H}_{2} \mathrm{~S}$) and the zero point energies of $\mathrm{H}_{2} \mathrm{~S}(\mathrm{~g}), \mathrm{D}_{2} \mathrm{~S}(\mathrm{~g})(2), \mathrm{D}_{2}(\mathrm{~g})$ (3), and $\mathrm{H}_{2}(\mathrm{~g})$ (3).

The equilibrium data of Grafe, Clusius, and Kruis (4) for the exchange reaction $H_{2}(g)+D_{2} S(g)=D_{2}(g)+H_{2} S(g)$ was analyzed by third and second law methods.

A weighted average of $-0.81 \pm 0.02 \mathrm{kcal}$ mol ${ }^{-1}$ was selected for $\Delta \mathrm{Hf}_{298}^{\circ}$ of $\mathrm{D}_{2} \mathrm{~S}(\mathrm{~g})$ minus $\mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})$ wss sdded to the selected value of $\Delta \mathrm{Hf}_{298}^{\circ}$ of $\mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})$ to determine $\Delta \mathrm{Hf}_{298}^{\circ}$ of $\mathrm{D}_{2} \mathrm{~S}(\mathrm{~g})$.

Source

Kapustinskii and Kankovskii (1) (1958)
Spectroscopic $(2,3)$
Grafe, Clusius, and Kruis (4) Third Law Second Law

$$
\begin{aligned}
& \frac{\Delta H f_{298}^{\circ} \text { of } \mathrm{D}_{2} \mathrm{~S}(\mathrm{~g})-\mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})\left(\mathrm{kcal} \mathrm{mo1}{ }^{-1}\right)}{-0.771 \pm 0.10} \\
& -0.810 \pm 0.01 \\
& -0.826 \pm 0.05 ; \text { drift } 0.0 \text { e.u. } \\
& -0.887 \pm 0.02 ; \Delta \mathrm{Sf}_{298}^{\circ} \text { (obsv.-calc.) }=+0.18 \pm 0.02 \text { e.u. }
\end{aligned}
$$

Heat Capacity and Entropy

The thermodynamic functions were estimated from those in the present table for $H_{2} S(g)$ ($q . v$.) by adding those for $\mathrm{D}_{2} \mathrm{~S}(\mathrm{~g})$ and subtracting those for $\mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})$, where both the added and subtracted functions were generated using the rigid-rotor harmonic oscillator approximation. In this calculation the molecular constants for $D_{2} S$ were taken from reference (2a).

References

1. A. F. Kapustinskii and R. T. Kankovskii, Zhur. Fiz. Khim. 32, 2810 (1958).

2a. R. E. Miller, G. E. Lero1, D. F. Meggers, J. Chem. Phys. 46, 2292 (1967);
2b. H. C. Allen and E. K. Plyler, J. Chem. Phys. 25, 1132 (1956).
3. G. Herzberg and A. Monfils, J. Mol. Spectroscopy 5, 482 (1960).
4. D. Grafe, K. Clusius, and A. Kruis, 2. Physik. Chem. B43, 1 (1939).

$\mathrm{T},{ }^{\circ} \mathrm{K}$	Cp°	$\begin{aligned} & \text { gibbs/mol } \\ & \mathrm{S}^{\circ}-\left(\mathrm{G}^{\circ}-\mathrm{H}^{\circ} 298\right) / \mathrm{T} \end{aligned}$		$\mathrm{H}^{\circ}-\mathrm{H}^{\circ} \mathrm{zes}$	$\begin{gathered} -\mathrm{kcal} / \mathrm{mol}- \\ \Delta H \mathrm{f}^{\circ} \end{gathered}$	$\Delta \mathrm{Gf}$	$\underline{L o g} \mathrm{~K}_{\mathrm{p}}$
0	． 000	． 000	INFINITE	－2．411	－5． 020	－5．020	1NFIN1TE
100	7.950	42.510	58.667	－1．516	－5．046	－6．307	13.784
200	8.110	48.050	52.130	－． 816	－5．345	－7．46s	8.150
298	8.547	51.428	51.428	． 000	－5．710	－8．445	6.191
300	8.555	51.481	51.429	－ 016	－5．717	－8．463	6.165
400	9.082	54.013	51.769	－898	－6．631	－9．298	5.080
500	9.642	56.100	52.433	1.834	－7．334	－9．883	4.320
600	10.199	57.908	53.197	2.826	－7．904	－10．337	3.765
700	10.716	59.519	53.988	3.872	－8．371	－10．682	3.335
800	11.173	60.981	54.772	4.967	－21．823	－12．251	3.347
900	11.509	62.321	55.537	6.105	－21．860	－11．052	2.084
1000	11.909	63.558	56.279	7.279	－21．R76	－9．851	2.153
1100	12.190	64.706	56.993	R．485	－21．875	－8．646	1．718
1200	12.440	65.778	57.681	9.717	－21．864	－7．446	1.356
1300	12.649	66.783	58.343	10.972	－21．940	－6．245	1.050
1400	12.828	67.726	58.979	12.246	－21．813	－5．046	． 788
1500	12.983	68.617	59.593	13.536	－21．782	－3．851	． 561
1600	13.118	69.459	60.183	14.842	－21．748	－2．656	． 363
1700	15.236	70.258	60.752	16.160	－21．712	－1．463	． 188
1800	13.342	71.018	61.302	17.489	－21．673	－． 275	． 033
1900	13.434	71.741	61.833	18.827	－21．635	． 913	－． 105
2000	15.520	72.433	62.345	20.175	－21．592	2.101	－． 230
2100	13.595	73.094	62.841	21.531	－21．555	3.281	－． 342
2200	13.603	73.728	63.322	2．2．894	－21．512	4.467	－． 444
2500	13.726	74.337	63.788	24.263	－21．472	5.645	－． 536
2400	15.785	74.922	64.239	25.639	－21．432	6.826	－． 622
2500	15.854	75.487	64.679	27．020	－21．38R	8.001	－． 699
2600	15.8 88	75.030	65.104	28.406	－21．351	9.176	－． 771
2700	13.954	76.555	65.518	29.798	－21．309	10.350	－． 833
2800	13.977	77.062	65.922	31.193	－21．270	11.520	－． 899
2900	14.017	77.553	66.315	32.593	－21．234	12.691	－． 950
3000	14.056	78.030	66.697	33.996	－21．196	13.861	－1．010
5100	14.093	78.491	67.070	35.404	－21．161	15.029	-1.060
3200	14.128	78.940	67.435	36.815	－21．121	16.192	-1.100
3500	14.100	79.375	67.790	38.229	－21．085	17.354	－1．149
3400	14.192	79.798	68.137	39.547	－21．046	18.525	－1．191
3500	14.223	80.210	68.476	41.068	－21．015	19.684	－1．229
3600	14.252	80.611	08．807	42.491	－20．980	20.850	－1．266
3700	14.280	81.001	69.131	43.919	－20．952	22.012	－1．300
3800	14.307	81.382	69.449	45.347	－20．024	23.171	－1．333
5900	14.354	81.755	69.760	46.78 J	－20．898	24.326	－1．363
4000	14.350	82． 118	70.064	43.214	－20．871	25.491	－1．393
4100	14.585	82.473	70.363	49.651	－20．846	26.645	－1．42i
4200	14.410	82.820	70.655	51．091	-20.82 ？	27.800	－1．447
4500	14.424	83.159	70.942	52.533	－20．796	28.965	－1．472
4400	14.457	83.491	71.224	53.978	－20．776	30.121	－1．490
4500	14.481	83． 816	71.499	55.425	－20．761	31.277	－1．519
4600	14.502	84.134	71.770	56.874	－20．743	32.430	－1．541
4700	14.5 ぐ4	84.447	72.037	58．3＞5	－20．725	33.591	－1．562
4800	14.547	84.753	72.299	59.779	－20．7n7	34.749	－1．582
4900	$1+.508$	85.053	72.556	61.235	－20．694	35.908	－1．602
buou	14.590	85.347	72.809	62.693	-20.687	37.050	－1．620
2100	14.009	85.636	73.057	64.153	－20．678	38.215	－1．033
5200	14.651	85.921	73.303	65.615	－20．67n	39.365	－1．654
2300	1＋．0́s	85.199	73.543	57.079	－20．563	40.518	－1．671
5400	14．6\％1	85.474	73.780	68.545	－20．658	41.675	－1．687
5500	14.691	85.743	74.014	70.013	－20．655	42.824	－1．702
5600	14.711	87．0n8	74.243	71.483	－20．653	43.985	－1．717
勺700	14.731	87.268	74.469	72.955	－20．653	45.138	－1．731
5000	14.747	87.525	74.692	74.429	－20．655	46.288	－1．744
5900	14.770	87.777	74.912	75.906	－20．656	47.440	－1．757
0000	$1+.7$ \％${ }^{\text {a }}$	AR． 025	75.128	77.383	－20．661	48.602	－1．770

July 31， 1972

Point Group $\mathrm{C}_{3 \mathrm{v}}$
$S_{298.15}^{\circ}=48.715 \mathrm{cal}_{\mathrm{deg}}{ }^{-1} \mathrm{~mol} \mathrm{~m}^{-1}$
Ground State Quantum Weight $=1$
$\Delta \mathrm{Hf}_{0}^{\circ}=-12.34 \mathrm{kcal}^{\mathrm{mol}}{ }^{-1}$
$\Delta H f_{298.15}^{\circ}=-14.00 \pm 0.1 \mathrm{kcal} \mathrm{mol}^{-1}$

Vibrational Levels and Multiplicities

ω, cm^{-1}
2495 (1)
793 (1)
2652 (2)
1225 (2)

Bond Length: $N-D=1.0124 \AA \quad$ Bond Angle: $106.67 \quad \sigma=3$
Product of the Moments of Inertia: $I_{A} I_{B} I_{C}=25.775 \times 10^{-119} \mathrm{~g}^{3} \mathrm{~cm}{ }^{6}$

Heat of Formation

A "spectroscopic" value for $\Delta H f_{298}^{\circ}$ of $\mathrm{ND}_{3}(g)$ minus $\mathrm{NH}_{3}(\mathrm{~g})$ of $-3.029 \pm 0.01 \mathrm{kcal}$ mol ${ }^{-1}$ was calculated from the appropriate thernal functions (see $\mathrm{H}_{2}, \mathrm{D}_{2}, \mathrm{NH}_{3}$) zero point energies o $\overline{\mathrm{F}} \mathrm{ND}_{3}\left(\mathrm{~g}\right.$) and $\mathrm{NH}_{3}(\mathrm{~g}$) [see J. L. Duncan, I. M. Mills, Spectrochim. Acta 20, 523 (1957) and W. S. Benedict, E. K. Plyier, Canad. J. Phys. 35, 1235 (1964)], and the zero point energies of $H_{2}(g)$ and $D_{2}(g)$ given by G. Herzberg and A. Monfils, J. Molec. Spectroscopy 5, 482 (1960).

Analysis of the equilibrium data of Schulz and Schaefer, Ber. Bunsenges. Physik. Chem. 70, 21 (1966) for $\mathrm{K}_{\mathrm{p}}^{\circ}$ (1 atm, $660-773 \mathrm{~K}$) for $\mathrm{N}_{2}(\mathrm{~g})+3 / 2 \mathrm{D}_{2}(\mathrm{~g})=\mathrm{ND}_{3}(\mathrm{~g})$ gave the following:

$\overline{1}_{\text {Assuming }} \Delta C_{p}^{0}=1.237-0.00608(T-700)$ cal. mol ${ }^{-1}$
Using the results from the same authors data for $\mathrm{NH}_{3}(\mathrm{~g})$ (see $\mathrm{NH}_{3}(\mathrm{~g})$. evaluation) one obtains values of $\mathrm{Hf}_{2}^{\circ}{ }_{2}$ of $\mathrm{ND}_{3}(\mathrm{~g})$ minus $\mathrm{NH}_{3}(\mathrm{~g})$ of $-2.93 \pm 0.14 \mathrm{kcal} \mathrm{mol}^{-1}$ (third law) and $-3.22 \pm 0.20 \mathrm{kcal} \mathrm{mol}^{-1}$ (second law). Both values agree with the "spectroscopic" value within combined uncertainty intervals.
$\underset{-1}{\text { A value of }-3.03 \pm 0.010 \mathrm{kcal} \mathrm{mol}}{ }^{-1}$ was added to the JANAF selection for $\Delta H f_{298}^{\circ}$ of $\mathrm{NH}_{3}(\mathrm{~g}),-10.97 \pm 0.10 \mathrm{kcal}$ mol ${ }^{-1}$, to obtain $\Delta H f_{298}^{\circ}$ of $\mathrm{ND}_{3}(\mathrm{~g})$.

Heat Capacity and Entropy

The thermodynamic functions were estimated from those in the present table for NH_{3} (g) (q.v.) by adding those for $\mathrm{ND}_{3}(\mathrm{~g})$ and subtracting those for $\mathrm{NH}_{3}(\mathrm{~g})$, where both the added and subtracted functions were generated using the rigid-rotor harmonic-oscillator approximation. In this calculation the molecular constants for ND_{3} were taken from J. L. Duncan, I. M. Mills, Spectrochim. Acta 20, 523 (1964) and W. S. Benedict, E. K. Plyler, Can. J. Phys. 35, 1235 (1957).
(Ideal Gas) GFW $=20,0490$

T, ${ }^{\circ} \mathrm{K}$	gibbs/mol			-keal/mol ___ _			
	Cp ${ }^{\circ}$	\mathbf{S}°	$-\left(\mathrm{G}^{\circ}-\mathrm{H}^{\circ} \mathbf{2 9 8}\right) / \mathrm{T}$	$\mathbf{H}^{\circ}-\mathrm{H}^{\circ}{ }_{298}$	$\Delta H{ }^{\circ}$	$\Delta \mathrm{Gf}{ }^{\circ}$	$\log K_{p}$
0	. 000	. 000	INFINITE	-2.446	-12.338	-12.338	INFINITE
100	7.958	39.695	56.253	-1.656	-12.880	-10.901	23.824
200	8.258	45.267	49.519	-. 850	-13.481	-8.685	9.490
298	9.136	48.715	48.715	. 000	-14.000	-6.217	4.557
300	9.155	48.771	48.715	. 017	-14.009	-6.169	4.494
400	10.259	51.555	49.087	. 987	-14.433	-3.488	1.906
500	11.323	53.961	49.826	2.067	-14.756	-. 713	. 312
600	12.302	56.113	50.697	3.249	-14.987	2.118	-. 771
700	13.195	58.077	51.613	4.525	-15.145	4.981	-1.555
800	14.003	59.893	52.536	5.885	-15.239	7.864	-2.148
900	14.723	61.585	53.449	7.322	-15.287	1.0.755	-2.612
1000	15.358	63.170	54.342	8.827	-15.293	13.650	-2.983
1100	15.912	64.660	55.213	10.391	-15.266	16.544	-3.287
1200	16.394	66.066	56.060	12.007	-15.216	19.432	-3.539
1300	16.813	67.395	56.881	13.668	-15.140	22.316	-3.752
1400	17.177	68.654	57.677	15.368	-15.050	25.194	-3.933
1500	17.495	69.851	58.449	17.102	-14.947	28.067	-4.089
1600	17.773	70.989	59.198	18.866	-14.837	30.929	-4.225
1700	18.016	72.074	59.924	20.655	-14.719	33.786	-4.344
1800	18.231	73.110	60.627	22.468	-14.591	36.635	-4.448
1900	18.420	74.100	61.311	24.301	-14.459	39.477	-4.541
2000	18.587	75.050	61.974	26.151	-14.319	42.315	-4.624
2100	18.735	75.960	62.619	28.017	-14.184	45.140	-4.698
2200	18.867	76.835	63.245	29.898	-14.039	47.965	-4.765
2300	18.984	77.676	63.854	31.790	-13.895	50.779	-4.825
2400	19.089	78.486	64.447	33.694	-13.751	53.589	-4.880
2500	19.182	79.267	65.024	35.608	-13.601	56.392	-4.930
2600	19.264	80.021	65.587	37.530	-13.460	59.188	-4.975
2700	19.337	80.750	66.135	39.460	-13.313	61.979	-5.017
2800	19.403	81.454	66.670	41.397	-13.168	64.767	-5.055
2900	19.459	82.136	67.191	43.340	-13.029	67.548	-5.091
3000	19.511	82.797	67.700	45.289	-12.886	70.324	-5.123
3100	19.555	83.437	68.198	47.242	-12.753	73.094	-5.153
3200	19.592	84.059	68.684	49.200	-12.611	75.860	-5.181
3300	19.626	84.662	69.159	51.161	-12.478	78.620	-5.207
3400	19.652	85.248	69.624	53.124	-12.342	81.382	-5.231
3500	19.676	85.818	70.078	55.091	-12.220	84.135	-5.254
3600	19.696	86.373	70.523	57.059	-12.095	86.891	-5.275
3700	19.709	86.913	70.959	59.030	-11.983	89.634	-5.294
3800	19.720	87.439	71.386	61.001	-11.873	92.378	-5.313
3900	19.726	87.951	71.804	62.974	-11.770	95.120	-5.330
4000	19.730	88.450	72.214	64.946	-11.668	97.858	-5.347
4100	19.730	88.938	72.616	66.919	-11.574	100.593	-5.362
4200	19.726	89.413	73.010	68.892	-11.485	103.332	-5.377
4300	19.721	89.877	73.397	70.864	-11.397	106.066	-5.391
4400	19.710	90.330	73.777	72.836	-11.323	108.797	-5.404
4500	19.699	90.773	74.150	74.806	-11.260	111.519	-5.416
4600	19.682	91.206	74.516	76.776	-11.197	114.254	-5.428
4700	19.664	91.629	74.875	78.743	-11.140	116.979	-5.440
4800	19.643	92.043	75.229	80.708	-11.089	119.712	-5.451
4900	19.618	92.448	75.576	82.671	-11.051	122.432	-5.461
5000	19.590	92.845	75.918	84.634	-11.023	125.151	-5.470
5100	19.555	93.232	76.254	86.590	-11.003	127.875	-5.480
5200	19.546	93.611	76.584	88.544	-10.989	130.597	-5.489
5300	19.538	93.984	76.909	90.499	-10.981	133.314	-5.497
5400	19.529	94.349	77.228	92.452	-10.978	136.043	-5.506
5500	19.522	94.707	77.543	94.405.	-10.982	138.702	-5.514
5600	19.514	95.059	77.853	96.357	-10.991	141.485	-5.522
5700	19.507	95.404	78.157	98.307	-11.008	144.208	-5.529
¢800	19.500	95.744	78.458	100.258	-11.030	146.932	-5.537
5900	19.494	96.077	78.753	102.208	-11.057	149.654	-5.544
6000	19.488	96.404	79.045	104.157	-11.090	152.381	-5.550

$$
\mathrm{S}_{298.15}^{0}=41.508 \mathrm{cal} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}
$$

$$
\begin{gathered}
\mathrm{GFW}=20.0064 \\
\Delta \mathrm{Hf}_{298.15}^{\circ}=-65.14 \pm 0.2 \mathrm{kcal} \mathrm{~mol}^{-1}
\end{gathered}
$$

Electronic States and Molecular Constants

State	$\varepsilon, \mathrm{cm}^{-1}$	g	$\omega_{\mathrm{e}, \mathrm{cm}}{ }^{-1}$	$X_{e^{\omega} e^{, c m i n}}$	$\mathrm{B}_{\mathrm{e}}, \mathrm{~cm}^{-1}$	$\alpha_{e, \mathrm{~cm}}{ }^{-1}$	$\underline{r_{e}, \AA}$
$\mathrm{X}^{1}{ }^{+}$	0	1	4138,73	90.05	20.9555	0.7958	0.9168
$\mathrm{V}_{\Sigma}{ }^{+}$	83275	1	1158.46	17.718	4.0263	0.0173	2.091

Heat of Formation
The heat of formation selected in JANAF Thermochemical Tables, 2nd Edition, June 1971 (U. S. Govt. Printing Office, Washington, D. C. 20402) was adopted.

Heat Capacity and Entropy
The vibrational and rotational constants of the respective electronic levels were taken from B. Rosen, Spectroscopic Data Relative to Diatomic Molecules, Pergamon Press, Oxford, 1970. These constants do not differ appreciably from those given in the JANAF (loc. cit.) tables. The values of $\Delta H f^{\circ}, \Delta \mathcal{G}^{\circ}$, and log Kp are appreciably different because of the new thermal functions for $\mathrm{F}_{2}(\mathrm{~g})$ (see $\mathrm{F}_{2}(\mathrm{~g})$ tables).
(Ideal Gas)
GFil $=20,0064$

T, ${ }^{\circ} \mathrm{K}$	Cp°	gibbs/mol$\mathbf{S}^{\circ} \quad-\left(G^{\circ}-H^{\circ}{ }^{\circ} 98\right) / T$		$\mathbf{H}^{\circ}-\mathbf{H}^{\circ}{ }_{288}$	_Kcal/mol $\Delta H{ }^{\circ}$		$\log K_{p}$
0	. Uuc	. 000	IVFINITE	-2.055	-65.129	-55.129	INFINITE
100	$6.96{ }^{\text {6 }}$	33.902	47.698	-1.380	-65.159	-55.312	142.739
200	0.962	38.727	42.144	-.683	-65.135	-65.475	71.547
298	5.964	41.509	41.508	. 000	-65.140	-65.642	48.117
300	6.964	41.551	41.508	. 013	-65.141	-65.645	47.822
400	5.907	43.554	41.781	. 709	-65.176	-55.808	35.956
S00	6.972	45.110	42.297	1.406	-65.230	-65.960	28.831
600	6.980	46.392	42.875	2. 104	-65.297	-65.101	24.077
700	7.015	47.461	43.455	2.904	-65.372	-66.228	20.677
300	7.003	48.400	44.015	3.508	-65.452	-66.345	18.125
900	7.129	49.236	44.550	4.217	-65.535	-66.452	10.137
1000	7.210	49.991	45.057	4.934	-65.617	-56.550	14.544
1100	7.303	50.682	45.537	5.660	-65.697	-65.638	15.240
1200	7.402	51.322	45.993	6.375	-65.775	-66.721	12.152
1300	7.504	51.919	46.426	7.140	-65.949	-66.797	11.230
1400	7.606	52.477	46.839	7.896	-65.020	-66.867	10.438
1500	7.705	53.007	47.232	8.561	-65.989	-66.932	9.752
1000	7.800	53.507	47.609	9.435	-65.056	-66.993	9.151
1700	7.991	53.983	47.970	10.221	-65.119	-67.049	8.620
1300	7.977	54.436	48.317	11.015	-66.179	-67.102	8.147
1900	8.058	54.869	48.650	11.816	-65.238	-67.152	7.724
2000	8.133	55.285	48.972	12.626	-65.294	-67.198	$7 \cdot 343$
2100	8.204	55.683	44.252	13.443	-66.348	-67. 242	0.998
2200	8.270	56.066	49.582	14.266	-65.401	-67.284	0.0584
2300	8.331	56.435	49.872	15.797	-66.451	-67.322	0. 397
2400	8.339	56.701	50.153	15.933	-66.501	-67.359	0.134
2500	3.442	57.135	50.425	16.774	-66.550	-67.396	5.892
2600	8.493	57.467	50.690	17.621	-65.597	-67.427	5.608
2700	8. 540	57.798	50.947	18.473	-66.644	-67.459	5.400
2800	8.584	58.100	51.197	19.329	-65.690	-67.489	5.208
2900	8.625	58.402	51.44π	20.189	-65.735	-67.514	5.088
su00	9.604	58.695	51.677	21.054	-66.780	-67.541	4.920
3100	3.741	58.979	51.903	21.972	-65.9? 5	-67.567	4.763
3200	8.735	59.256	52.133	22.794	-66.969	-57.591	4.616
3500	8.760	59.525	52.353	23.669	-66.914	-67.611	4.478
3400	8.799	59.783	52.56 A	24.547	-66.958	-67.633	4.347
3500	8.829	60.043	52.778	25.129	-67.002	-67.650	4.224
3600	9.357	60.292	52.983	26.313	-67.047	-67.569	4.108
3700	8.984	60.535	53.184	27.200	-67.093	-67.684	3.998
3300	3.91 u	60.773	53.351	29.090	-67.139	-67.700	3.894
3900	8.934	61.004	53.573	28.982	-67.185	-67.715	3.795
4000	8.958	61.231	53.762	29.877	-67.232	-67.728	0.700
4100	4.950	61.45 ?	53.947	30.774	-67.290	-67.739	S.011
4200	4.0Uく	61.669	54.128	31.573	-67.329	-67.749	3.525
4300	9.023	61.881	54.306	32.574	-67.378	-67.759	3.444
4400	9.043	62.089	54.430	33.477	-67.429	-67.769	3.300
4500	$\rightarrow \cdot 005$	02.292	54.652	34.383	-67.480	-67.775	3.292
4600	7.082	62.492	54.820	35.290	-67.532	-67.780	3.220
4700	9.100	62.637	54.985	36.199	-67.595	-67.785	3.152
4300	9.11 y	62.879	55.149	37.110	-67.639	-67.789	3.087
4900	9.135	63.067	55.307	38.022	-67.694	-67.792	3.024
5000	9.152	63.252	55.464	38.937	-67.749	-67.795	c. 963
5100	3.160	63.433	55.619	39.353	-67.306	-67.794	2.905
5200	7.184	63.511	55.771	40.777	-67.854	-67.793	2.849
5300	9.199	63.785	55.920	41.690	-67.922	-67.789	2.795
5400	9.215	63.959	56.0 ós	42.610	-67.983	-67.788	<. 744
5500	9.230	64.128	50.21.3	43.532	-68.044	-67.784	$<.693$
5600	9.244	64.29^{\prime}	56.356	44.1456	-68.105	-67.779	2.645
b/u0	9.258	64.458	56.496	45.321	-68.168	-67.772	2. 598
bsue	9.272	64.619	55.635	46.309	$-68.2 .33$	-67.760	<. 553
5900	9.236	64.778	56.77 ?	47.236	-63.298	-67.756	C. 510
60013	9.300	64.934	56.906	49.155	-68.363	-67.748	c. 408

July 31, 1972

$$
\begin{array}{ll}
\text { Ground State Configuration }{ }^{I_{\Sigma}+} & \Delta H f_{0}^{\circ}=0 \\
\mathrm{~S}_{298.15}^{\circ}=48.44 \text { gibbs mol } \\
-1 & \Delta H £_{298.15}^{\circ}=0
\end{array}
$$

Electronic States and Molecular Constants

$$
\begin{aligned}
& \text { State } \quad \varepsilon, \mathrm{cm}^{-1} \\
& i_{\Sigma}{ }^{+} \quad 0 \\
& \stackrel{g}{\omega_{e}, c m}{ }^{-1} \\
& 1 \quad 917.85 \\
& \frac{x_{e^{\omega}} e^{, c m}{ }^{-1}}{11.95} \\
& \frac{B_{e}, c m}{}{ }_{0.8892}^{0.0131} \\
& \frac{r_{e}, \AA}{1.40} \\
& \sigma=2
\end{aligned}
$$

Heat Capacity and Entropy

Molecular and spectroscopic constants were taken from G. Dilonardo and A. E. Douglas, J. Chem. Phys. 56, 5185 (1972).
（Ideal Gas，Reference State）GFH $=37.9968$

$\mathbf{T},{ }^{\circ} \mathrm{K}$	$C p^{\circ}$	gibls／mol		－ $\mathrm{kcal} / \mathrm{mol}$－＿			$\log K_{p}$
		S°	$-\left(\mathrm{G}^{\circ}-\mathrm{H}^{\circ} \mathrm{res}\right) / \mathrm{T}$	$\mathrm{H}^{\circ}-\mathrm{H}^{\circ} \mathbf{3 9 8}$	$\Delta \mathrm{Hf}$	$\Delta \mathrm{Gr}{ }^{\circ}$	
0	． 000	.000	I VFINITE	-2.109	． 000	． 000	． 000
100	6．955	40.594	54.838	－1．414	． 000	． 000	． 000
200	7.095	45.542	49.113	－． 714	． 000	.000	． 000
294	7.481	48.442	49.442	． 000	． 000	． 000	． 000
súu	7.489	48.489	49.442	． 014	． 000	． 000	.000
400	7.831	50.699	48.741	． 783	． 000	． 000	． 000
500	8.183	52.492	49.318	1.597	． 000	． 000	． 000
500	4.397	54.004	49.976	2.417	． 000	.000	.000
7u0	8.554	55.311	50.647	3.255	． 000	.000	． 000
300	9.670	56.461	51.30 .3	4.126	． 000	.000	.000
900	5．75y	b7．459	51.934	4.998	． 000	． 000	． 000
1400	4.827	58.414	52.537	5.978	． 000	． 000	． 000
1104	8.887	59.259	53.110	6.753	． 000	． 000	． 000
1200	4.935	50.034	53.655	7.655	． 000	.000	． 000
1300	8.975	60.751	54.174	8.550	． 000	． 000	． 000
1400	9.012	61.417	54.508	7.450	.000	． 000	． 000
15013	$\rightarrow 0.044$	62.040	55.139	10.352	－ 000	． 000	.000
1500	9.074	62.625	55.588	11.258	． 000	.000	． 000
1700	9.101	63.176	56.019	12.157	． 000	． 000	． 000
1500	9.126	63.697	56.431	13.078	.000	． 000	． 000
1900	9.149	54.191	50.825	13.992	． 000	． 000	.000
2000	7．17c	64.651	57.207	14.978	－ 000	． 000	.000
2100	9.193	65.109	57.572	15.827	.000	.000	.000
－ 2200	9．214	65.537	57.925	16.747	.000	.000	.000
2300	9.234	65.947	58.265	17.569	． 000	.000	． 000
2400	9.253	66.340	53.593	18.594	.000	.000	． 000
2らU0	9.272	66.719	58.910	19.570	． 000	.000	． 000
2500	9.290	67．082	59.218	20.448	． 000	． 000	． 000
2700	9.3 U3	57.433	50.516	21.378	－ 0 O 0	.000	． 000
2300	9.320	67.772	29．804	22．310	.000	.000	.000
2900	9.343	68.100	60.085	23.243	． 000	.000	． 000
su00	9．306	08.417	60.357	24.178	.000	． 000	． 000
3100	9.377	58.724	60.622	25.115	.000	.000	． 000
3200	9.394	69.022	60.880	26.054	.000	.000	． 000
3300	9.411	69.311	61.131	26.994	.000	． 000	.000
5400	9.427	59.59 ？	61.376	27.936	． 010	.000	． 000
3500	9.444	69.866	61.615	28．879	－000	． 000	． 000
3600	3.46 U	70.132	61.845	29．825	． 000	.000	． 000
5700	9．470	70.392	62.075	30.771	－ 0 ก0	． 000	． 000
5300	9.496	70.645	62.297	31.720	－ 000	.000	.000
Stu	7.508	70.891	б2．514	32.670	． 000	.000	.000
4000	3.524	71.132	62.727	33.021	． 000	． 000	.000
4100	9.54 J	71.368	52.935	34.575	.000	． 000	． 000
$+200$	9．5bo	71.598	53.138	35.529	． 000	． 000	． 000
4300	$9.57 i$	71.823	53.338	30.495	． 000	． 000	． 000
$4+00$	9.587	72.1243	63.533	37.444	.000	． 000	． 000
＋buu	9.503	72.259	63.725	38.403	． 000	． 000	.000
4500	9.61 ¢	72.470	53.912	39.354	.000	． 000	． 000
4700	3.634	72.577	64.097	$40 \cdot 327$	－ 000	． 000	． 000
4500	7.649	72.980	64.278	41.291	－ 0 O 0	． 000	． 000
4900	9．0．5	73.079	64.455	42.257	.000	． 000	． 000
buus	9.684	73.274	64.630	43.224	． 000	． 000	． 000
5100	9.635	73.465	64.801	44.193	.000	． 000	． 000
5200	9.711	73.655	04.969	45.163	． 000	． 000	． 000
5300	9.727	73.840	65.135	46.135	.000	． 000	． 000
3400	y． 74 c	74.022	65.298	47.103	－ 000	． 000	． 000
5000	9．757	74.201	65.458	49.024	－ 000	.000	． 000
5600	9.773	74.377	65.616	49.760	.000	.000	． 000
5700	$9.78{ }^{\text {9 }}$	74.550	65.771	50.038	． 000	． 000	.000
bsuo	9.903	74.720	65.924	51.013	． 000	.000	． 000
勺ヲロ0	9.819	74.389	65.074	51.994	.000	.000	.000
0000	3.854	75.053	66.223	52.981	.000	.000	.000

July 31， 1972
$\mathrm{S}_{298.15}^{\circ}=57.08 \pm 1 \mathrm{cal} \mathrm{K}^{-1} \mathrm{~mol}^{-1}$
Ground State Quantum Weight $=1$
$\Delta H f_{0}^{\circ}=-135.4 \pm 0.8 \mathrm{kcal} \mathrm{mol}^{-1}$
$\Delta H f_{298.15}^{\circ}=-136.87 \pm 0.8 \mathrm{kcal} \mathrm{mol}^{-1}$

Vibrational Frequencies and Degeneracies

Heat of Formation

The enthalpy of $2 \mathrm{HF}(\mathrm{g}) \rightarrow \mathrm{H}_{2} \mathrm{~F}_{2}(\mathrm{~g})$ was taken as the mean of the third law values which were obtained from the following equilibrium data. G. Briegleb and W. Strohmeier, Z. Elektrochem. 57, 668 (1953) measured the vapor density of associated $\mathrm{HF}(\mathrm{g})$ between 26 to $56^{\circ} \mathrm{C}$ and between 30 and 700 torr. E. U. Franck and F. Meyer, Z. Elektrochem. 63, 571 (1959) measured heat capacity between -20 and $100^{\circ} \mathrm{C}$ and between 100 and 700 torr. Their second law values differed by 1.2 kcal ; and using the molecular constants discussed below gave respectively mean third law values which differed by 0.34 kcal , a 0.14 kcal temperature trend for Briegleb and Strohmeter, and a 0.02 kcal temperature trend for Franck and Meyer. The $\Delta \mathrm{Hf}_{298.15}^{\circ}$ of $\mathrm{H}_{2} \mathrm{~F}_{2}(\mathrm{~g})$ was calculated by using $\Delta \mathrm{Hf}_{298.15}^{\circ}=-65.14 \mathrm{kcal}$ for $\mathrm{HF}(\mathrm{g})$.

Heat Capacity and Entropy

The product of the moments of inertia was calculated from $I_{A}, 1 / 2\left(I_{B}+I_{C}\right), F-F$ distance, and $F \cdots F-H$ angle which were given by T. R. Dyke, B. J. Howard, and W. Klemperer, J. Chem. Phys. 56, 2442 (1972). They also gave σ. Reliable experimental values of the vibrational frequencies of $\mathrm{H}_{2} \mathrm{~F}_{2}(\mathrm{~g})$ are not available. The estimated frequencies are similar to those used for the higher polymers which were obtained firm data on hF solid. The infrared absorption bands observed in the vapor (350 to $400 \mathrm{~cm}^{-1}, 700$ to $800 \mathrm{~cm}^{-1}$, and $1000-1200 \mathrm{~cm}^{-1}$ regions) are largely due to the higher polymers, such as the tetramer and hexamer. Calculated values (610,443 , and $144 \mathrm{~cm}^{-1}$) were obtained from force constants given in a paper on theory of molecular interactions of the HF polymers by J. E. Del Bene and J. A. Pople, J. Chem. Phys. 55, 2296 (1971). The potential energy surface computed for the dimer suggests very anharmonic low frequency motions for the external hydrogen (estimated at $600 \pm 200 \mathrm{~cm}^{-1}$) and for the hydrogen bond stretching mode.

T, ${ }^{\circ} \mathbf{K}$	gibbs/mol			$H^{\circ}-H^{\circ}{ }_{298}$	kcal/mol	$\Delta \mathrm{GF}$	$\operatorname{Log~Kp}$
	Cp ${ }^{\circ}$	\mathbf{S}°	$-\left(\mathrm{G}^{\circ}-\mathrm{H}^{\circ} 298\right) / \mathrm{T}$				
u	. 0 Uu	. 000	I JFINITE	-2.693	-135.420	-135.420	LINFINITE
1u0	4.287	46.942	65.702	-1.832	-136.031	-134.251	C 33.405
200	9.507	53.055	b9.020	-. 973	-136.496	-132.286	144.555
298	10.725	57.079	57.079	- 000	-136.970	-130.140	95.395
300	10.747	57.145	57.079	. 020	-136.877	-130.099	44.777
4011	11.879	60.396	57.515	1.153	-137.207	-127.787	09.820
sue	12.79's	63.150	58.373	2.388	-137.475	-125.401	54.812
Gu4	13.512	65.549	59.373	3.705	-137.688	-122.963	44.790
7013	14.090	67.576	60.410	5.086	-137.857	-120.497	37.621
suu	14.579	69.590	51.440	6.520	-137.990	-118.008	32.238
900	15.011	71.333	62.444	8.000	-138.094	-115.503	28.048
l UUU	15.404	72.935	63.414	9.521	-138.171	-112.990	24.694
1100	15.703	74.420	64.348	11.780	-138.223	-110.467	<1.949
120u	16.093	75.806	65.246	12.673	-138.256	-107.943	19.659
1300	16.390	77.106	66.10 ¢	14.297	-138.271	-105.416	17.722
1400	16.675	78.332	66.938	15.951	-138.271	-102.890	10.062
1500	16.920	79.491	67.737	17.63 .31	-138.259	-100.361	14.623
1500	17.155	80.591	68.506	19.335	-133.239	-97.937	13.364
1700	17.364	91.637	69.249	21.062	-139.209	-95.311	12.253
1800	17.535	82.635	69.964	22.807	-139.171	-92.789	11.206
$1 \ni$ U	17.724	93.599	70.656	24.571	-138.127	-90.269	$1 \cup .363$
2000	17.880	84.502	71.326	26.352	-138.077	-87.751	9.589
2100	18.424	85.379	71.974	28.147	-138.025	-85.237	8.871
z2Uu	18.14 s	86.219	72.603	29.955	-137.969	-82.724	8.218
2300	18.205	87.029	73.213	31.776	-137.909	-80.214	7.022
2400	13.371	97.808	73.405	33.605	-137.849	-77.707	7.076
cbuu	14.467	88.560	74.380	35.450	-137.788	-75.205	0.574
zjuu	18.550	89.285	74.939	37.301	-137.725	-72.701	5.111
2700	18.630	89.998	75.484	39.161	-137.652	-70.202	5.682
2800	18.710	90.667	76.014	41.029	-137.6n0	-67.706	5. 285
2900	1.3 .778	91.325	76.531	42.903	-137.536	-65.206	4.914
suud	19.840	91.952	77.054	44.794	-137.474	-62.715	4.509
5100	18.895	92.581	77.525	46.571	-137.412	-60.225	4.246
s2uu	18.951	93.182	78.006	48.553	-137.353	-57.736	3.943
3300	19.0Uu	93.766	78.475	50.461	-137.294	-55.249	3.659
3400	19.045	94.334	78.933	52.363	-137.237	-52.766	3.392
shou	19.087	94.885	79.381	54.259	-137.183	-50.278	3.140
3500	19.125	95.425	79.819	56.120	-137.131	-47.799	2.902
3700	19.152	95.949	$80.2+8$	58.795	-137.081	-45.314	2.677
3ヶ60	19.196	96.461	80.608	50.012	-137.0.35	-42.83b	2.464
5900	19.227	96.960	81.079	61.934	-136.991	-40.359	<. 262
4UU0	19.257	97.447	$81.48 ?$	63.858	-136.950	-37.981	2.070
4100	19.284	07.923	81.977	65.795	-135.913	-35.403	1.887
4200	19.310	98.389	82.265	57.715	-135.878	-32.027	1.713
43UU	13.334	98.342	82.645	69.547	-136.848	-30.454	1.548
4400	19.350	99.287	83.019	71.591	-135.921	-27.982	1.390
45u0	19.37%	99.722	83.385	73.518	-135.797	-25.508	1.239
4500	19.390	100.148	83.745	75.457	-136.775	-23.033	1.094
4700	19.417	100.566	84.098	77.337	-135.761	-20.561	. 936
4800	19.434	100.975	84.445	79.340	-136.747	-18.089	. 824
4900	19.451	101.376	54.787	81.294	-136.738	-15.617	. 697
bueo	19.407	101.769	85.123	93.231	-136.732	-13.15u	. 575
blue	19.48 c	102.154	85.453	85.179	-135.730	-10.675	. 457
b<u0	19.490	102.533	85.778	87.127	-136.731	-9.202	. 345
5300	19.509	102.904	86.097	99.077	-136.737	-5.728	.230
b400	19.5 cl	$103.26 a$	86.412	91.024	-136.743	-3.260	. 132
b50u	19.534	103.627	85.722	92.981	-136.761	-. 786	. Us1
bouo	17.545	103.979	87.027	94.935	-135.778	1.585	-. 006
5700	19.b.b	104.325	87.327	96.790	-136.799	4.100	-. 159
bsuo	19.567	104.566	87.623	98.846	-135.925	6.629	-. 250
bэu0	19.577	105.000	97.915	100.804	-135.853	9. 105	-. 337
suou	19.500	105.329	88.202	102.752	-135.985	11.577	-. 422

```
Point Group \(\mathrm{C}_{3}\)
\(\mathrm{S}_{298.15}^{\circ}=68.9 \mathrm{cal} \mathrm{K}^{-1} \mathrm{~mol}^{-1}\)
Ground State Quantum Weight \(=1\)
```

Vibrational Frequencies and Degeneracies
$\frac{\omega, \mathrm{cm}^{-1}}{[202](3)}$
$[962](3)$
$[552](3)$
$[3060](3)$

```
Bond Distance: [F-F = 2.5 A ]
Product of the Moments of Inertia: I I I I B I C = 2.238 < 10-114 g 3 cm 6
```


Heat of Formation

The enthalpy of $3 \mathrm{HF}(\mathrm{g}) \rightarrow \mathrm{H}_{3} \mathrm{~F}_{3}(\mathrm{~g})$ was taken as the mean of third law values which were determined from the equilibrium data of two investigations. Briegleb and Stohmeier (1) measured the vapor density of HF between 20 and $60^{\circ} \mathrm{C}$ and between 50 and 650 torr. Franck and Meyer (2) measured C_{p} between -20 and $100^{\circ} \mathrm{C}$ and between 100 and 700 torr. Each investigation evaluated K_{p} at $\underline{n}=2,3,4, \ldots$ for the reactions $n(H F) \rightarrow(H F){ }_{n}$ and reported second law values of ΔH and ΔS. At $\underline{n}=3$ their second law values differed by 2.7 kcal , which was taken as an estimate of error, while the third law values differed by 0.20 kcal . Using $\Delta \mathrm{H}_{298}^{\circ}=-14.69 \mathrm{kcal} \mathrm{mol}^{-1}$ and $\Delta \mathrm{Hf}_{298}^{\circ}(\mathrm{HF}, \mathrm{g})=$ $-65.14 \pm 0.2 \mathrm{kcal}^{\mathrm{mol}}{ }^{-1}$ gives the heat of formation of $\mathrm{H}_{3} \mathrm{~F}_{3}(\mathrm{~g})$.

Heat Capacity and Entropy

The molecular structure of $\mathrm{H}_{3} \mathrm{~F}_{3}$ was assumed as planar with the F-atoms forming the vertices of a regular triangle and with the H atoms also lying on the circumscribed circle. That rings are more stable than open chains was confirmed by Del Bene and Pople's (3) theoretical molecular-orbital studies on th polymers. The length of side ($F-F$ axis) was taken from Atoji and Lipscomb's (4) x-ray studies of solid $H F(F-F=2.49 \AA$) and agrees with $2.52 \AA$ which Janzen and Bartell (5) determined for HF gaseous polymers by electron diffraction. Vibrational frequencies were taken from Kittelberger and Hornig's (6) work on crystalline HF, Huong and Couzi (7) and Smith (8) have made spectral studies of the gas phase in the range from 350 to $4000 \mathrm{~cm} .^{-1}$

References

1. G. Briegleb and W. Strohmeier, Z. Elektrochem. 56, 668 (1953).
2. E. U. Franck and F. Meyer, Z. Elektrochem. 63, 571 (1959).
3. J. E. Del Bene and J. A. Pople, J. Chem. Phys. 55, 2296 (1971).
4. N. Atoji and W. N. Lipscomb, Acta Crysta, I, 173 (1954).
5. J. Janzen and L. S. Bartell, J. Chem. Phys. 50, 3611 (1969).
6. J. S. Kittelberger and D. F. Hornig, J. Chem, Phys. 46, 3099 (1967).
7. P. V. Huong and M. Couzi, J. Chim. Phys. 66, 1309 (1969).
8. D. F. Smith, J. Chem. Phys. 28, 1040 (1958) ; ibid 48, 1429 (1968).
（Ideal Gas）
$\mathrm{GFW}=60,019$

	gibbs／mol				－kcal／mol	－	
T，${ }^{\circ} \mathrm{K}$	Cp ${ }^{\circ}$	S°	$-\left(\mathrm{G}^{\circ}-\mathrm{H}^{\circ}{ }_{298}\right) / \mathrm{T}$	$\mathrm{H}^{\circ}-\mathrm{H}^{\circ}{ }_{288}$	$\Delta H f^{\circ}$	$\Delta \mathrm{Gf}$	$\operatorname{Log~Kp}$
u	．0ue	． 000	INFINITE	－3．854	－207．765	－207．765	INFINITE
100	11.164	53.298	82.875	－2．958	－204．986	－204．605	447.163
200	15.047	62.298	70.48 ？	－1．637	－209．691	－199．924	218.406
298	18.123	68.916	68.916	． 000	－210．110	－195．036	142.905
300	19.177	69.029	68.916	． 034	－210．117	－194．942	142.015
400	20.393	74.531	69.658	1.969	－210．376	－189．841	103.724
sou	21.951	79.306	71.127	4.090	-210.510	－184．690	00.728
oud	23.003	83.409	72.840	5.342	－210．553	－179．521	05.390
7 Uu	23.973	47．035	74.614	8．595	－210．525	－174．349	54.434
sul	24.755	90.285	75.373	11.132	－210．438	-169.187	46.220
900	$25.44 y$	93.245	78.086	13.543	-210.303	－164．038	39.834
1000	25．071	95.959	79.739	16.219	-210.124	-159.708	34.729
1100	26．627	98.470	81.330	18.855	－209．905	－153．795	30.556
1200	27.127	100.809	82.856	21.543	-203.655	－148．706	27．083
1300	27.571	102.998	84.323	24.278	－209．379	-143.637	24.148
1400	27.905	105.056	85.731	27.056	－209．082	－138．593	21.035
1suu	28.315	106.998	87.084	29.570	－208．770	-133.566	19.46 U
1suu	28．623	108.835	38.387	32.717	－208．449	－128．564	17.501
1700	28．899	110.570	89.642	35.594	-208.116	－123．580	13.887
1800	29.143	112.234	$90 \cdot 831$	38.496	－207．776	－118．617	14.402
1900	29.361	113.420	92.019	41.422	－207．430	－113．573	13.075
cuuv	29.554	115.331	93.147	44.357	－207．081	－108．747	11.803
2100	27.727	116.777	94.238	47.332	－206．731	-103.840	14.807
čuu	29.852	118.163	95.294	50.312	－2．05．379	－98．049	9.830
2300	30.021	119.495	96.318	53.308	－206．025	－94．073	8.939
2400	30.147	120.775	97.310	56.316	－205．674	－89．214	0.124
2suu	30.260	122．008	98.274	59.337	-205.375	－84．372	$7 \cdot 376$
c50u	311．302	123.197	99.209	62．368	－204．976	－79．538	－． 686
270u	50．455	124.345	100.110	65.409	－204．631	－74．721	0.1448
zsuu	30.539	125.454	101.004	68.453	－204．289	－69．917	5.457
c900	30.610	126.527	101.866	71.516	－203．947	－65．118	4.907
sulu	30.607	127.566	102.705	74.531	－203．611	－60．339	4.396
31019	30.751	128.573	103.524	77.553	-203.276	－55．571	5.918
3200	30.810	129.550	104.322	80.732	－202．947	－50．911	3.470
35011	36.465	130.499	105.101	83.215	－202．622	－46．062	3.051
3400	311.915	131.422	105.861	86.974	－202．301	－41．326	C．0．06
3500	30.901	132.318	106.605	89.978	－201．985	－36．590	2． 285
30011	31.004	133.191	107.331	93.036	-201.675	－31．873	1.935
37011	31.043	134.041	104．042	96.199	－201．370	－27．155	1.604
． 58011	31.030	134.870	108.737	97.305	－201．071	－22．450	1.291
5300	31.114	135.577	109.417	102.415	－200．778	－17．758	． 995
41100	31.140	136.455	110.084	105.528	－200．489	－13．067	． 714
4100	31.175	137.235	110.736	108．544	－200．208	-8.383	． 447
4200	31.204	137.9537	111.376	111.753	－199．932	－3．706	． 193
4300	31.250	134.721	112.004	114.985	－199．563	． 060	－． 049
4400	51.254	139.439	112.619	118.009	－199．399	5.520	－． 279
4500	31.271	140.142	113.223	121.135	－199．142	10.277	－． 499
4500	31．29\％	140.830	113.815	124.254	－198．890	14．031	－． 709
4700	51.310	141.503	114.398	127.375	－198．647	19.577	－． 910
4800	31.337	142.16 ？	114.909	130.525	－198．408	24.210	－1．103
4 ¢00	31.355	142.509	115.531	133.562	－198．176	28.852	－1．287
ヶリUu	31.372	143.442	116.083	136.799	－197．949	33.476	－1．463
blue	31．38：0	144.064	116.625	139．237	－197．730	38.107	－1．633
bこuu	31.403	144.673	117.159	143.075	－197．516	42.732	－1．796
د30U	31.417	145.277	117.604	146.217	－197．309	47.353	－1．953
5400	31.430	145.859	$11 \mathrm{H}$.	149.350	－197．109	51.202	－2．1U3
らちuU	31.443	146.435	118.708	152.593	－196．915	55.575	－2．248
bsun	31.465	147.00 .3	117.208	155．648	－195．726	61.181	－2．308
b7011	31.407	147.560	117.701	158．794	－196．544	65.787	－2．522
bsuu	31．47：	148.107	1211.186	161．941	－195．370	70.381	－c．ób2
byou	51.478	148.645	120.604	165．030	-196.201	74.984	－c．776
suou	51.43 y	149.174	121.135	168．239	－195．0．36	79.574	－ 2.898

Ground State Quantum Weight $=1$
Vibrational Frequencies and Degeneracies

$\frac{\omega_{2} \mathrm{~cm}^{-1}}{1032(1)}$
$642(1)$
$905(2)$
493 (2)
Bond Angle: $\mathrm{F}-\mathrm{N}-\mathrm{F}=102^{\circ} 9^{\prime}$
$\mathrm{I}_{\mathrm{A}} \mathrm{I}_{\mathrm{B}} \mathrm{I}_{\mathrm{C}}=8.8543 \times 10^{-115} \mathrm{~g}^{3} \mathrm{~cm} 6^{6}$

Heat of Formation

The adopted enthalpy of formation is the mean of values calculated from the reaction processes listed below. and welghted inversely as the squares of the standard deviations. Auxiliary enthalples of formation were taken from NBS TN 270-3, or from simultaneous adjustment of several interconnecting pieces of data leading to values tabulated in JANAF tables, 1968 and later. Also given below are the references, individual and averaged measured values of enthalpies of reaction and their uncertainties (2S), the value of enthalpy of formation calculated from each process and its uncertainty, and the weighted mean.

Reaction

A $\quad \mathrm{NF}_{3}(\mathrm{~g})+3 / 2 \mathrm{H}_{2}(\mathrm{~g})=3 \mathrm{HF}\left(\mathrm{aq}, 50 \mathrm{H}_{2} \mathrm{o}\right)+1 / 2 \mathrm{~N}_{2}(\mathrm{~g})$
(1) -196.3 ± 64; (2) -199.49 ± 0.22; (3) we derive -196.23 ± 0.77

B $\quad \mathrm{S}(\mathrm{c}, \mathrm{rh})+2 \mathrm{NF}_{3}(\mathrm{~g})=\mathrm{SF}_{6}(\mathrm{~g})+\mathrm{N}_{2}(\mathrm{~g})$
(4)

C $\quad \mathrm{NF}_{3}(\mathrm{~g})+01 / 2 \mathrm{~N}_{2}(\mathrm{~g})+3 / 2 \mathrm{~F}_{2}(\mathrm{~g})$
(5)

D $\quad 8 \mathrm{NF}_{3}(\mathrm{~g})+3 \mathrm{C}_{2} \mathrm{~N}_{2}(\mathrm{~g})=6 \mathrm{CF}_{4}(\mathrm{~g})+7 \mathrm{~N}_{2}(\mathrm{~g})$
(6)
$\mathrm{E} \quad \mathrm{B}(\mathrm{c})+\mathrm{NF}_{3}(\mathrm{~g})=\mathrm{BF}_{3}(\mathrm{~g})+1 / 2 \mathrm{~N}_{2}(\mathrm{~g})$
(7)
$\mathrm{F} \quad \mathrm{NF}_{3}(\mathrm{~g})+4 \mathrm{NH}_{3}(\mathrm{~g})=3 \mathrm{NH}_{4} \mathrm{~F}(\mathrm{c})+\mathrm{N}_{2}(\mathrm{~g})$

Weighted mean

-291.79 ± 0.24
31.44 ± 0.3
-31.44 ± 0.3
-1308.8 ± 1.3
-239.7 ± 1.2
-31.7 ± 1.6
-259.5 ± 1.0

-31.77 ± 0.33
-31.4 ± 4.4
$-29.0^{*} \pm 3.0$
-31.57 ± 0.27

References

1. G. T. Armstrong, S. Marantz, and C. F. Coyle, J. Am. Chem. Soc. 81, 3798 (1959).
2. G. C. Sinke, J. Chem. Eng. Data 10, 295-296 (1965).
3. A, N. Zercheninov, V. I. Chesnokov, and A. V. Parkratov, Zh. Fiz. Khito. 43, 390-393 (1969).
4. L. C. Walker, J. Phys. Chem. 71, 361-363 (1967).
5. G. C. Sinke, J. Phys. Chem. 71, 359-360 (1967).
6. L. C. Walker, Unpublished data, See NF_{3}, JANAF tables, June 30, 1968.
7. J. R. Ludwig and W. J. Cooper, J. Chem. Eng. Data 8, 76 (1963).

Heat Capacity and Entropy

The vibrational and rotational constants are taken from JANAF Thermochemical Tables, 2nd Edition, June, 1971 (U. S. Govt. Printing Office, Washington, D. C. 20402).

$\mathrm{T},{ }^{\circ} \mathrm{K}$	$\mathrm{Cp}^{\text {a }}$	gibbs/mol		$H^{\circ}-H^{\circ}{ }_{29}$	$\begin{gathered} \mathrm{kcal} / \mathrm{mol}- \\ \Delta H \mathrm{P}^{\circ} \end{gathered}$	$\Delta \mathrm{Gf}^{\circ}$	$\log K_{p}$
		S°	$-\left(\mathrm{G}^{\circ}-\mathrm{H}^{\circ} 298\right) / \mathrm{T}$				
0	. 000	. 000	1NFINITE	-2.930	-30.200	-30.200	1NFINITE
100	9.132	51.550	71.875	-2.032	-30.792	-27.934	61.050
200	10.211	57.729	63.374	-1.129	-31.287	-24.870	27.177
298	12.744	62.289	62.298	. 000	-31.570	-21.653	15.872
300	12.787	62.367	62.288	. 024	-31.574	-21.592	15.730
400	14.776	66.334	62.815	1.408	-31.692	-18.243	9.967
500	16.143	69.788	63.872	2.958	-31.699	-14.878	0.503
600	17.068	72.818	65.116	4.621	-31.637	-11.518	4.196
700	17.704	75.500	66.412	6.362	-31.532	-8.174	2.552
800	18.155	77.895	67.700	8.156	-31.401	-4.845	1.324
900	18.482	80.054	68.955	9.989	-31.256	-1.534	. 372
1000	18.727	82.014	70.164	11.850	-31.102	1.759	-. 384
1100	14.915	83.808	71.324	13.732	-30.941	5.040	-1.001
1200	19.058	85.460	72.434	15.631	-30.780	8.302	-1.512
1300	19.175	86.990	73.496	17.543	-30.617	11.553	-1.942
1400	19.265	88.415	74.511	19.465	- 30.455	14.788	-2.309
1500	19.341	89.746	75.483	21.395	-30.292	18.016	-2.625
1600	19.403	90.997	76.414	23.333	-30.132	21.232	-2.900
1700	19.455	92.175	77.307	25.276	-29.974	24.438	-3.142
1800	19.499	93.298	78.164	27.223	-29.317	27.634	-3.355
1900	19.530	94.343	78.988	29.175	-29.653	30.922	-3.545
2000	19.565	95.346	79.781	31.130	-29.511	34.002	-3.716
2100	19.596	96.302	80.545	33.089	-29.362	37.172	-3.809
2200	19.620	97.214	81.282	35.050	-29.214	40.337	-4.007
2300	19.641	98.086	81.994	37.013	-29.068	43.496	-4.133
2400	19.660	98.923	82.682	38.978	-28.926	46.646	-4.248
2500	19.676	99.726	83.348	40.945	-28.786	49.791	-4.353
2600	19.691	100.499	83.993	42.913	-28.648	52.932	-4.449
2700	19.704	101.241	84.618	44.883	-28.513	56.067	-4.538
2800	19.715	101.959	85.224	46.954	-28.380	59.197	-4.621
2900	19.726	102.650	85.813	49.826	-28.249	62.326	-4.697
3000	19.735	103.319	86.386	50.799	-28.121	65.447	-4.768
3100	19.744	103.966	86.943	52.773	-27.995	68.562	-4.834
3200	19.752	104.593	87.484	54.748	-27.873	71.674	-4.895
3300	19.753	105.201	88.012	56.723	-27.752	74.782	-4.9b3
3400	19.765	105.791	88.526	58.699	-27.634	77.987	-5.007
3500	19.771	106.364	89.028	60.676	-27.518	80.991	-5.0ヶ7
3600	19.777	106.921	89.51 ?	62.654	-27.406	84.087	-- 105
3700	19.782	107.463	89.995	64.632	-27.294	87. 188	-b. 150
3800	19.786	107.991	90.462	66.610	-27.187	90.280	-5.192
3900	19.791	108.505	90.91 .8	68.589	-27.082	93.366	-5.232
4000	19.795	109.006	91.364	70.568	-26.978	96.453	-5.270
4100	19.798	109.494	91.800	72.549	-26.879	99.541	-5.306
4200	19.802	109.972	92.227	74.528	-26.780	102.624	-5.340
4300	19.805	110.438	92.645	76.508	-26.685	105.703	-5.372
4400	19.808	110.893	93.055	78.489	-26.592	108.778	-5.403
4500	19.811	111.338	93.456	80.470	-26.501	111.857	-5.433
4600	19.813	111.774	93.849	82.451	-26.413	114.931	-5.460
4700	19.816	112.200	94.235	84.4 .32	-26.329	119.001	-5.487
4500	19.81 \%	112.617	94.614	86.414	-26.245	121.072	-5.513
4900	19.820	113.026	94.996	88.396	-26.165	124.137	-5.537
5000	19.822	113.426	95.350	90.379	-26.087	127.203	-5.560
5100	19.824	113.819	95.709	92.361	-26.012	130.766	-5.582
5200	19.82b	114.204	96.001	34.343	-25.939	133.337	-5.604
5300	19.828	114.581	96.407	96.326	-25.869	136.397	-5.624
b400	19.829	114.952	96.747	98.309	-25.802	139.457	-5.644
b500	19.831	115.316	97.081	100.292	-25.738	142.520	-5.663
3600	19.832	115.673	97.410	102.275	-25.675	145.579	-5.681
5700	19.834	116.024	97.733	104.258	-25.515	148.636	-5.699
3800	19.835	116.369	98.052	106.242	-25.558	151.689	-0.716
5700	17.836	116.708	98.365	108.225	-25.594	154.746	-5.732
6000	19.837	117.042	98.673	110.209	-25.451	157.801	-5.748

> Point Group C_{4}
> $\mathrm{~S}_{298.15}^{0}=83.4 \mathrm{cal} \mathrm{K}^{-1} \mathrm{~mol}$
> Ground State Quantum Weight $=1$

$$
\Delta i f_{0}^{\circ}=-280.0 \pm 5 \mathrm{kcal} \mathrm{~mol}^{-1}
$$

Vibrational Frequencies and Degeneracies

$\frac{\omega, \mathrm{cm}^{-1}}{[202](4)}$
$[53](2)$
$[962](4)$
$[552](4)$
$[3060](4)$

Bond Distance: $[F-F=2.5 \AA] \quad \quad 0=4$
Product of the Moments of Inertia: $I_{A} I_{B} I_{C}=1.7903 \times 10^{-113} \mathrm{~g}^{3} \mathrm{~cm}{ }^{5}$

Heat of Formation

The enthalpy of $4 \mathrm{HF}(\mathrm{g}) \rightarrow \mathrm{H}_{4} \mathrm{~F}_{4}(\mathrm{~g})$ was taken as the mean of third law values which were determined from the equilibrium data of two investigations. Briegleb and Strohmeier (1) measured the vapor density of the associated HF between 20 and $60^{\circ} \mathrm{C}$ and between 50 and 650 torr. Franck and Meyer (2) measured C_{p} between -20 and $100^{\circ} \mathrm{C}$ and between 100 and 700 torr. Each investigation evaluated K_{p} at $\underline{n}=2,3,4, \ldots$ for the reactions $n(H F) \rightarrow(H F){ }_{n}$ and reported second law values of ΔH and ΔS. At $\underline{n}=4$ their second law values differed by 4.2 kcal , which was taken as an estimate of error, while the calculated third law values differed by 1.5 kcal . Using $\Delta H_{298}^{\circ}=-22.38 \mathrm{kcal}$ mol ${ }^{-1}$ and $\Delta \mathrm{Hf}_{298}^{\circ}(\mathrm{HF}, \mathrm{g})=-65.14 \pm 0.2 \mathrm{kcal}$ mol ${ }^{-1}$ gives the heat of formation of $\mathrm{H}_{4} \mathrm{~F}_{4}(\mathrm{~g})$.

Heat Capacity and Entropy

The molecular structure of $\mathrm{H}_{4} \mathrm{~F}_{4}$ was assumed as planar with the F atoms forming the vertices of a regular tetragon and with the H atoms also lying in the circumscribed circle. That rings are more stable than open chains was confirmed by Del Bene and Pople's (3) theoretical molecular-orbital studies on HF polymers. The length of side
 $2.52 \AA$ which Janzen and Bartell (5) determined for the gaseous polymers by electron diffraction. The low F-berding frequency ($53 \mathrm{~cm}{ }^{-1}$) was taken from Boutin, Safford, and Brajovic's (6) work. The other vibrational frequencies were taken from Kittelberger and Hornig's (7) work on crystalline HF. Huong and Couzi (8) and Smith (9) have made spectral studies of the gas phase in the range from 350 to $4000 \mathrm{~cm}^{-1}$.

References

1. G, Briegleb and W. Strohmeier, Z. Elektrochem. 57, 668 (1953).
2. E. U. Franck and F. Meyer, Z. Elektrochem. 63, 571 (1959).
3. J. E. Del Bene and J. A. Pople, J. Chem. Phys. 55, 2296 (1971).
4. M. Atoji and W. N. Lipscomb, Acta Crysta. ㄱ, 173 (1954).
5. J. Janzen and L. S. Bartell, J. Chem. Phys. 50, 3611 (1969).
6. H. Boutin, G. J. Safford, and V. Brajovic, J. Chem. Phys. 39, 3135 (1963).
7. J. S. Kittelberger and D. F. Hornig, J. Chem. Phys. 46, 3099 (1967).
8. P. V. Huong and M. Couzi, J. Chim. Phys. 66, 1309 (1969).
9. D. F. Smith, J. Chem. Phys. 28, 1040 (1958); ibid, 48, 1429 (1968).
(Ideal Gas) GFI $=80.025$

T, ${ }^{\circ} \mathrm{K}$	Cp°	gibbs/mol		$\mathbf{H}^{\circ}-\mathrm{H}^{\circ}{ }_{298}$	kcal/mol $\Delta H f^{\circ}$	$\Delta G \rho^{\circ}$	$\underline{L o g K p}$
		\mathbf{S}°	$-\left(\mathrm{G}^{\circ}-\mathrm{H}^{\circ}{ }_{398}\right) / \mathrm{T}$				
0	. 000	. 000	INFINITE	-5.389	-280.063	-290.063	LNFINITE
100	15.024	61.249	103.154	-4.194	-281.692	-274.868	600.723
200	21.395	74.096	85.642	-2.309	-282.495	-267.692	2y<. 520
294	25.47%	83.436	83.436	- 000	-282.940	-260.321	190.820
300	25.540	83.594	83.436	. 047	-282.947	-260.181	189.542
400	28.504	91.373	.34.477	2.759	-283.161	-252.554	137.989
500	30.55\%	97.968	86.533	5.718	-293. 208	-244.894	$1 \cup 7.043$
0130	32.069	103.579	88.925	8.852	-283.134	-237.238	80.414
700	33.234	108.716	91.400	12.122	-282.964	-229.599	71.684
800	34.32m	113.230	93.851	15.503	-292.717	-221.992	OU. 645
900	35.25't	117.328	96.235	18.783	-282.405	-214.419	52.068
1000	36.064	121.085	98.535	22.551	-282.033	-206.887	45.215
1100	36.823	124.561	101.745	26.197	-291.609	-199.389	39.615
1200	37.495	127.794	102.860	29.914	-281.144	-191.937	34.956
1300	38.003	130.819	104.901	33.694	-280.542	-184.522	31.021
1400	38.611	133.661	106.855	37.5?9	-280.115	-177.150	27.654
1500	39.077	136.341	108.732	41.414	-279.566	-169.811	24.741
1000	39.490	138.877	110.53 R	45.34 ?	-279.006	-162.514	22.198
1700	39.857	141.282	112.276	49.310	-278.430	-155.248	19.958
1300	40.182	143.570	113.952	53.312	-277.944	-148.020	17.972
1900	40.47 c	145.750	115.568	57.345	-277.251	-140.823	16.198
2000	40.730	147.833	117.130	61.406	-276.652	-133.658	14.605
$\angle 100$	40.961	149.826	119.640	65.490	-276.0.54	-126.525	13.168
2200	41.167	151.736	120.101	69.597	-275.451	-119.418	11.803
250U	$41.3 b^{3}$	153.570	121.517	73.723	-274.847	-112.738	1U. 675
2400	41.52 l	155.334	122.889	77.867	-274.247	-105.286	9.588
2500	41.671	157.03?	124.221	82.027	-273.649	-98.264	0.590
2000	$41.8 \cup 7$	158.669	125.515	86.201	-273.051	-91.256	7.0.71
2700	41.931	160.249	126.772	90.339	-272.453	-84.276	0.822
2300	42.044	161.776	127.995	94.586	-271.870	-77.320	0.035
2300	$+2.145$	163.253	.129.186	98.796	-271.282	-70. 373	5.303
3000	42.240	164.684	130.345	103.015	-270.701	-63.459	4.623
3100	42.325	166.070	131.475	107.244	-270.122	-56.563	3.988
3200	42.400	167.415	132.57 R	111.480	-269.552	-49.683	3.393
3500	42.477	168.721	133.653	115.725	-268.985	-42.820	2.836
3400	42.544	169.990	134.703	119.976	-268.424	-35.081	$<.313$
3500	42.600	171.22'4	135.729	124.233	-267.871	-29.144	1.820
3500	42.605	172.425	136.732	128.497	-267.325	-22.336	1.356
3100	+2.710	173.595	137.712	132.766	-266.786	-15.531	. 917
3500	42.705	174.735	138.672	137.040	-266. 254	-8.747	. 503
STOU	$+2.811$	175.846	139.611	141.319	-265.731	-1.984	. 111
4000	$+2.853$	176.931	140.530	145.602	-265.214	4.775	-. 261
4100	+2.895	177.989	141.431	149.889	-264.707	11.521	-. 614
4200	42.950	179.023	142.314	154.190	-264.206	18.255	-.950
4300	+2.904	180.034	143.179	158.475	-263.715	24.970	-1.209
$4+00$	42.997	181.022	144.02R	162.773	-263.231	31.674	-1.573
4500	+5.021	181.989	144.361	167.074	-262.756	38.372	-1.864
4000	43.055	192.735	145.619	171.378	-262.288	45.063	- <. 141
+700	43.036	183.861	146.481	175.685	-251.831	51.739	-c.406
+ 400	+3.100	184.768	147.269	179.395	-261.379	58.405	-2.659
4900	43.131	185.057	148.044	154.307	-260.937	65.063	-<.902
5000	43.154	186.529	148.805	188.621	-260.503	71.702	-3.134
blue	43.17,	187.384	149.553	192.937	-260.079	78.349	-3.3ヶ7
5200	43.195	188.22?	150.238	197.256	-259.660	84.784	-3.572
5300	43.214	189.045	151.012	201.576	-259.252	91.612	-3.778
5400	$43.23<$	189.853	151.724	205.89\%	-258.953	99.221	-3.975
b500	43.249	190.547	152.424	210.223	-258.461	104.832	-4.166
5Su0	43.2ci	191.425	153.114	214.549	-253.077	111.433	-4.349
5700	$+3 . \mathrm{cou}$	192.192	153.793	218.375	-257.702	118.030	-4.526
nsou	43.240	192.945	154.451	223.205	-257.337	124.611	-4.695
วナ00	43.309	193.685	155.120	227.535	-256.979	131.199	-4.800
0000	+3.32\%	194.413	155.769	231.866	-256.628	137.770	-5.018

Point Group C_{5}

$$
\Delta H f_{0}^{\circ}=-352.6 \pm 6 \mathrm{kcal}^{\mathrm{mol}}-1
$$

$\mathrm{S}_{298.15}^{\circ}=97.6 \mathrm{cal} \mathrm{K}^{-1} \mathrm{~mol}^{-1}$
$\Delta H f_{298.15}^{\circ}=-356.0 \pm 6 \mathrm{kcal}_{\mathrm{mol}}{ }^{-1}$
Ground State Quantum Weight $=1$

Vibrational Frequencies and Degeneracies

$$
\begin{array}{r}
\omega_{2}, \mathrm{~cm}-1 \\
\hline[202](5) \\
{[53](4)} \\
{[962]} \\
{[552]} \tag{552}
\end{array}
$$

Bond Distance: $[F-F=2.5 \AA$]
Product of the Moments of Inertia: $I_{A} I_{B} I_{C}=1.0598 \times 10^{-112} \mathrm{~g}^{3} \mathrm{~cm}{ }^{6}$

Heat of Formation

The enthalpy of $5 \mathrm{HF}(\mathrm{g}) \rightarrow \mathrm{H}_{5} \mathrm{~F}_{5}(\mathrm{~g})$ was taken as the mean of third law values which were determined from the equilibrium data of two investigations. Briegleb and Strohmeier (1) measured the vapor density of the associated HF between 20 and $60^{\circ} \mathrm{C}$ and between 50 and 650 torr. Franck and Meyer (2) measured C_{p} between -20 and $100^{\circ} \mathrm{C}$ and between 100 and 700 torr. Each investigation evaluated K_{p} at $\underline{n}=2,3,4, \ldots$ for the reactions $n(H F) \rightarrow$ (HF) n and reported second law values of ΔH and ΔS. At $\underline{n}=5$ their second law values differed by 5.2 kcal, which was taken as an estimate of error, while the calculated third law values differed by 3.1 kcal . Using $\hat{H}_{298}^{\circ}=-30.35 \mathrm{kcal} \mathrm{mol} \mathrm{m}^{-1} \mathrm{and} \mathrm{Hff} 298(\mathrm{HF}, \mathrm{g})$ $=-65.14 \pm 0.2 \mathrm{kcal}$ mol ${ }^{-1}$ gives the heat of formation of $\mathrm{H}_{5} \mathrm{~F}_{5}(\mathrm{~g})$.

Heat Capacity and Entropy

The molecular structure of $\mathrm{H}_{5} \mathrm{~F}_{5}$ was assumed as planar with the F atoms forming the vertices of a regular pentagon and with the H atoms also lying on the circumscribed circle. That rings are more stable than open chains was confirmed by Del Bene and Pople's (3) theoretical molecular-orbital studies on HF polymers. The length of side ($\mathrm{F}-\mathrm{F}$ axis) was taken from Atoji and Lipscomb's (4) x-ray studies of solid $H F(F-F=2.49 \AA$) and agrees with the $2.52 \AA$ which Janzen and Bartell (5) determined for HF gaseous polymers by electron diffraction. The low F-bending frequency $\left(53 \mathrm{~cm}{ }^{-1}\right.$) was taken from Boutin, Safford, and Brajovic's (6) work. The other vibrational frequencies were taken from Kittelberger and Hornig's (7) work or crystalline HF. Huong and Couzi (8) and Smith (9) have made spectral studies of the gas phase in the range from 350 to $4000 \mathrm{~cm}^{-1}$.

References

1. G. Briegleb and W. Strohmeier, Z. Elektrochem. 57, 668 (1953).
2. E. U. Franck and F. Meyer, Z. Elektrochem. 63, 571 (1959).
3. J. E. Del Bene and J. A. Pople, J. Chem. Phys. 55, 2296 (1971).
4. M. Atoji and W. N. Lipscomb, Acta Crysta. 7, 173 (1954).
5. J. Janzen and L. S. Bartell, J. Chem. Phys. 50, 3611 (1969).
6. H. Boutin, G. J. Safford, and V. Brajovic, J. Chem. Phys. 39, 3135 (1963).
7. J, S. Kittelberger and D. F. Hornig, J. Chem. Phys. 46, 3099 (1967).
8. P. V. Huong and M. Couzi, J. Chim. Phys. 66, 1309 (1969).
9. D. F. Smith, J. Chem. Phys. 28, 1040 (1958); ibid, 48, 1429 (1968).
（Ideal Gas）$\quad G F W=100,032$

T，${ }^{\circ} \mathrm{K}$	gibbs／mol$\mathrm{S}^{\circ} \quad-\left(\mathrm{G}^{\circ}-H^{\circ} 298\right) / \mathrm{T}$			$\mathbf{H}^{\circ}-\mathrm{H}^{\circ}{ }_{398}$	$\begin{gathered} \mathrm{kcal} / \mathrm{mol} \\ \Delta H \rho^{\circ} \end{gathered}$		$\log ^{\prime \prime} \mathbf{p}$
0	． 000	． 010	I VFINITE	－6．924	－352．641	－352．641	INFINITE
100	20．853	68.836	123.129	－5．429	－ 354.677	－345．375	754.815
200	27.699	85.530	100.440	－2．982	－355．599	－335．667	300.800
298	32.820	97.592	97.592	． 000	－356．050	－325．778	236.802
300	$32.90<$	97.796	97.593	． 061	－356．057	－325．590	237.142
400	35.614	107.803	95.932	3.548	－356．227	－315．402	172.327
500	33.185	116.266	101.575	7.346	－356．187	-305.197	133.402
600	41.070	123.595	104.647	11.363	－ 355.995	－295．017	107.400
700	42.590	130.034	107.822	15.549	－355．684	－284．875	88.942
500	43.901	135.809	110.906	19.875	－355．275	－274．786	75.068
900	45.059	141.048	114.021	24.324	－354．786	－264．753	04.291
1000	46.097	145．850	116.908	28.883	－354．222	－254．783	55.683
1100	47.027	150.299	119.798	33.540	－353．593	－244．864	45.650
1200	47．859	154.417	122.512	38.295	－352．013	－235．011	42.801
1300	48.599	158.277	125.117	43.109	－352．186	－225．215	37.862
1400	49.256	161.903	127.616	48.002	－351．429	－215．479	33．638
1500	49.839	165.322	130.017	52.957	－350．643	－205．790	29.984
1600	20.350	168.555	132.325	57.968	－349．842	－196．163	2u． 795
1700	50.814	171.622	134.548	63.027	－349．023	－186．579	23.986
1900	b1．221	174.538	136.68 ？	68.129	－348．191	－177．049	21.497
1900	51．563	177.317	138.755	73.269	－347．351	－167．563	19.274
2000	51．90	179.972	140．750	78.444	－346．504	－158．122	17.279
2100	32.194	182.511	142.678	53.649	－345．656	－143．726	15.478
2200	32.452	184.945	144.545	88.852	－344．903	－139．368	13.845
2300	52.684	187.282	146.352	94.139	－343．949	－130．748	12.357
2400	22．893	189.529	148.105	99.41%	－343．100	－120．767	10.997
2500	53.082	191.692	149.805	104.717	－342．253	－111．527	9.750
2000	53.252	193.777	151.457	110.034	－341．406	-102.310	8.600
2700	33．407	195.790	153.06 ？	115.367	－340．566	－93．131	7.538
2506	53.540	197.735	154.623	120.715	－339．730	－83．985	b． 555
2900	b3．670	199.616	156.142	126.076	－ 338.897	－74．855	5.641
3000	53.794	201．439	157.621	131.449	－338．070	－65．769	4.791
3100	33.901	203.204	159.064	136.934	－337．248	－56．709	3.998
s200	34.000	204.917	160.470	142.229	－336．436	－47．672	3．256
3300	54.090	206.580	161.842	147.634	－335．629	－38．660	C． 260
3400	54.174	205．196	163.1 b2	153.047	－334．828	－29．680	1.908
3500	34．2ら1	209.767	164.490	158.469	－334．036	－20．706	1.293
5600	24．322	211.296	165.769	163.397	－333．255	－11．771	． 715
5700	54.386	212．786	167.020	169.333	－3．32．482	－2．442	． 168
3800	34.450	214.237	168.244	174.775	－331．718	6．057	－． 348
3900	34.507	215.652	169.441	180.223	－330．965	14.928	－． 837
4000	54．50u	217.033	170.614	185.676	-330.219	23.790	-1.300
4100	b4．607	218.381	171.762	191.134	－329．496	32.634	－1．740
4200	b4．655	219.697	172.888	196.593	－328．750	41.462	－＜．1b7
4300	b4．699	220.984	173.992	202.055	－328．047	50.262	－2．bら5
$4+00$	54.739	222.242	175.074	207.537	－327．343	59.047	－c．933
4500	54． 777	223.472	175.136	213.013	－326．549	67.822	－3．294
4000	34.813	224.677	177．178	218.493	－325．965	76.586	－3．659
4700	64．840	＜25．956	178．201	223．976	－325．294	85.330	－3．908
4800	54．87\％	227.1111	179.206	229.452	－324．531	94．056	－4．283
4300	54.900	228.143	130.193	234.951	－323．979	102.774	－4．584
b000	54.930	229.252	181.163	240.443	-323.337	111.465	－4．872
5100	$54.96<$	230.340	182.117	245.938	－322．707	120.163	－5．149
b20u	54.987	231.408	183.055	251.436	－322．084	128．845	－5．415
5300	55．011	232.455	193.977	256.935	－321．474	137.517	－0．671
5400	55.053	233.494	184.884	262.433	－320．277	146.161	－5．915
bら00	35.055	234.494	185.777	267．74．2	－320．288	154．908	－0．152
boue	55．075	235.486	136.655	273.449	－319．709	163.439	－0．378
b700	د）．094	236.461	187.521	278.957	－319．140	172.065	－0．597
5300	35．11c	237.419	188．373	284.468	－319．595	180.568	－0．808
5900	55.150	233.362	189.213	289.980	－318．038	189.279	－7．011
buou	55．14．0	239.298	＋190．1339	275.493	－ 317.499	197.860	－7．207

July 31， 1972

Point Group $\quad C_{6}$

$$
\Delta H f_{0}^{\circ}=-428.1 \pm 2 \mathrm{kcal} \mathrm{~mol}^{-1}
$$

$\mathrm{S}_{298.15}^{\circ}=111.4 \mathrm{cal}_{\mathrm{K}^{-1} \mathrm{~mol}^{-1}}$
$\Delta \mathrm{Hf}_{298.15}^{\circ}=-432.0 \pm 2 \mathrm{kcal} \mathrm{mol}^{-1}$
Ground State Quantum Weight $=1$
Vibrational Frequencies and Degeneracies
$\frac{\omega, \mathrm{cm}^{-1}}{[202](6)}$
$[53](6)$
$[962](6)$
$[552](6)$
$[3060](6)$

Bond Distance: $[F-F=2.5 \AA$]
$\sigma=6$
Product of the Moments of Inertia: $I_{A} I_{B} I_{C}=4.834 \times 10^{-112} \mathrm{~g}^{3} \mathrm{~cm}{ }^{6}$

Heat of Formation

The enthalpy of $6 \mathrm{HF}(\mathrm{g}) \rightarrow \mathrm{H}_{6} \mathrm{~F}_{6}(\mathrm{~g})$ was taken as the mean of third law values which were determined from the equilibrium data of two investigations. Briegleb and Strohmeier (1) measured the vapor density of the associated $H F$ between 20 and $60^{\circ} \mathrm{C}$ and between 50 and 650 torr. Franck and Meyer (2) measured C_{p} between -20 and $100^{\circ} \mathrm{C}$ and between 100 and 700 torr. Each investigation evaluated K_{p} at $\underline{n}=2,3,4, \ldots$ for the reactions $n(H F) \rightarrow(H F)$ and reported second law values of ΔH and ΔS. At $\underline{n}=6$ their second law values differed by 0.8 kcal, which was taken as an estimate of error, while the calculated third law values differed by 0.6 kcal . Using $\Delta \mathrm{H}_{298}^{\circ}=-41.20 \mathrm{kcal} \mathrm{mol}-1$ and $\Delta \mathrm{Hf}_{298}^{\circ}(\mathrm{HF}, \mathrm{g})=-65.14 \pm 0.2 \mathrm{kcal} \mathrm{mol}{ }^{-1}$ gives the heat of formation of $\mathrm{H}_{6} \mathrm{~F}_{6}(\mathrm{~g})$.

Heat Capacity and Entropy

The molecular structure of $\mathrm{H}_{6} \mathrm{~F}_{6}$ was assumed as planar with the F atoms forming the vertices of a regular hexagon and with the H atoms also lying on the circumscribed circle. That rings are more stable than open chains was confirmed by Del Bene and Pople's (3) theoretical molecular-orbital studies on HF polymers. The length of side (F-F axis) was taken from Atoji and Lipscomb's (4) x-ray studies of solid HF ($F-F=2.49 \AA$) and agrees with the $2.52 \AA$ which Janzen and Bartell (5) determined for HF gaseous polymers by electron diffraction. The low F-bending frequency ($53 \mathrm{~cm}^{-1}$) was taken from Boutin, Safford, and Brajovic's (6) work. The other vibrational frequencies were taken from Kittelberger and Hornig's (7) work on crystalline HF. Huong and Couzi (8) and Smith (9) have made spectral studies of the gas phase in the range from 350 to $4000 \mathrm{~cm}^{-1}$.

References

1. G. Briegleb and W. Strohmeier, Z. Elektrochem. 57, 668 (1953).
2. E. U. Franck and F. Meyer, Z. Elektrochem. 63, 571 (1959).
3. J. E. Del Bene and J. A. Pople, J. Chem. Phys. 55, 2296 (1971).
4. M. Atoji and W. N. Lipscomb, Acta Crysta. I, 173 (1954).
5. J. Janzen and L. S. Bartell, J. Chem. Phys. 50, 3611 (1969).
6. H. Boutin, G. J. Safford, and V. Brajovic, J. Chem. Phys . 39, 3135 (1963).
7. J. S. Kittelberger and D. F. Hornig, J. Chem. Phys. 46, 3099 (1967).
8. P. V. Huong and M. Couzi, J. Chim. Phys. 66, 1309 (1969).
9. D. F. Smith, J. Chem. Phys. 28, 1040 (1958); ibid, 48, 1429 (1968).

(Ideal Gas) GFW = 120,038

T, ${ }^{\circ} \mathrm{K}$	gibbs/mol			—_kcal/mol —__			$\log \mathbf{K p}$
	Cp ${ }^{\text {o }}$	\mathbf{S}°	$-\left(\mathrm{G}^{\circ}-\mathrm{H}^{\circ} 288\right) / \mathrm{T}$	$\mathrm{H}^{\circ}-\mathrm{H}^{\circ} 288$	$\Delta \mathrm{Hf}{ }^{\circ}$	$\Delta \mathrm{Gr}^{\circ}$	
0	. 000	. 000	Infinite	-8.459	-428.100	-428.100	INFINITE
100	25.74 L	76.123	142.774	-6.665	-430.542	-413.732	Y 15.137
200	34.005	96.665	114.937	-3.654	-431.563	-406.462	444.161
298	40.160	111.449	111.449	. 000	-432.040	-394.026	288.828
300	40.265	111.698	111.450	. 074	-432.047	-393.790	286.876
400	44.725	123.932	113.088	4.338	-432.172	-381.010	208.174
500	47.813	134.264	110.317	8.974	-432.045	-368.230	100.953
600	50.083	143.191	120.069	13.873	-431.736	-355.495	129.489
700	51.908	151.053	12.3 .945	18.976	-431.283	-342.821	107.033
800	53.474	158.088	127.780	24.246	-430.714	-330.221	90.212
900	54.864	164.469	131.508	29.665	-430.047	-317.697	77.147
1000	55.110	170.315	135.100	35.214	-429.292	-305.258	60.714
1100	$57.2<7$	175.716	138.550	40.882	-428.457	-292.889	58.192
1200	58.225	180.739	141.859	46.656	-427.561	-280.607	51.105
1300	59.113	185.435	145.032	52.524	-426.610	-268.398	45.122
1400	59.902	189.845	148.077	58.475	-425.621	-256.268	40.005
1500	60.601	194.003	151.002	64.501	-424.599	-244.201	35.580
1600	01.221	197.934	153.813	70.593	-423.559	-232.212	31.719
1700	.1.771	201.562	156.517	76.743	-422.497	-220.281	28.319
1500	62.260	205.207	159.127	32.945	-421.419	-208.418	25.305
1900	02.694	208.585	161.641	89.193	-420.331	-196.614	22.616
2000	63.081	211.811	164.070	95.482	-419.235	-184.867	cu. 201
2100	03.427	214.897	166.417	101.808	-418.138	-173.178	18.023
2200	03.737	217.855	168.689	108.166	-417.036	-161.539	10.047
2300	04.013	220.695	170.888	114.554	-415.931	-149.749	14.248
2400	04.267	223.425	173.021	120.969	-414.832	-138.409	12.604
2500	04.493	226.053	175.090	127.407	-413.737	-126.921	11.095
2600	64.698	228.586	177.099	133.867	-412.641	-115.465	9.706
2700	04.883	231.031	179.052	140.346	-411.553	-104.057	8.423
2800	65.052	233.394	180.950	146.843	-410.471	-92.591	7.235
2900	O5.206	235.680	182.798	153.356	-409.391	-81.348	0.131
3000	05.347	237.893	184.594	159.884	-408.320	-70.061	5.104
3100	05.476	240.039	186.352	166.425	-407.254	-58.807	4.146
3200	05.594	242.118	188.062	172.778	-405.200	-47.58.3	3.250
3300	65.703	244.138	189.731	179.543	-405.152	-36.391	2.410
3400	05.803	246.101	191.361	186.119	-404.111	-25.240	1.622
3500	05.890	248.010	192.95?	192.704	-403.082	-14.100	. 880
3600	05.981	249.868	194.567	199.298	-402.065	-3.008	. 183
3100	06.061	251.677	196.028	205.900	-401.058	8.074	-. 477
3800	of. 134	253.439	197.516	212.510	-400.061	19.119	-1.100
3900	06.203	255.158	198.972	219.127	-399.078	30.128	-1.688
4000	06.266	256.835	200.398	225.750	-398.104	41.124	-2.247
4100	05.320	258.472	201.794	232.380	-397.144	52.097	-2.777
4200	06.381	260.071	203.163	239.015	-396.194	63.047	-3.281
4300	06.433	261.634	204.504	245.656	-395.259	73.963	-5.759
4400	06.402	263.161	205.820	252.302	-394.334	84.259	-4.215
4500	06.527	264.656	207.111	258.952	-393.423	95.741	-4.650
4500	06.57u	266.119	208.378	265.607	-392.522	106.607	-5.065
4700	00.611	267.551	209.622	272.256	-391.638	117.448	-5.461
4800	60́.0́40	258.954	210.843	278.929	-390.762	128.269	-5.840
4900	06.684	270.328	212.043	295.596	-389.900	139.073	-0.203
buue	26.71b	¢ 71.0675	213.223	292.260	-389.050	149.846	-b. 550
5100	U6.74,	272.997	214.382	298.939	-388.215	160.626	-0.883
5200	06.780	274.294	215.521	305.616	-387.388	171.385	-7.203
5300	O6.803	275.566	210.642	312.295	-385.577	182.129	-7.510
3400	05.83	276.815	217.745	318.077	-385.781	192.840	-7.805
5500	06.8611	278.042	218.830	325.662	-384.994	203.552	-8.088
5600	-5.885	279.247	219.898	332.349	-384.220	214.244	-8.361
勺700	06.908	280.431	220.950	339.739	-383.453	224.928	-0.624
SHOU	46.929	281.594	221.986	345.731	-382.712	235.583	-8.877
houl	06.950	282.739	223.006	352.425	-381.976	246.246	-9.122
g.00u	00.97u	283.864	224.011	359.121	-381.250	256.879	-4.357

```
Point Group \(\mathrm{C}_{7}\)
\(\mathrm{S}_{298.15}^{\circ}=125.1 \mathrm{cal}^{-1} \mathrm{~mol}^{-1}\)
Ground State Quantum Weight \(=1\)
```

Vibrational Frequencies and Degeneracies
$\frac{w, \mathrm{~cm}^{-1}}{[202](7)}$
$[53](8)$
$[962](7)$
$[552](7)$
$[3060](7)$

```
Bond Distance: \([F-F=2.5 \AA] \quad 0=7\)
```

Product of the Moments of Inertia: $I_{A} I_{B} I_{C}=1.7977 \times 10^{-111} \mathrm{~g}^{3} \mathrm{~cm}{ }^{6}$

Heat of Formation

The enthalpy of $7 \mathrm{HF}(\mathrm{g})+\mathrm{H}_{7} \mathrm{~F}_{7}(\mathrm{~g})$ was taken as the mean of third law values which were determined from the equilibrium data of two investigations. Briegleb and Strohmeier (1) measured the vapor density of the associated HF between 20 and $60^{\circ} \mathrm{C}$ and between 50 and 650 torr. Franck and Meyer (2) measured C_{p} between -20 and $100^{\circ} \mathrm{C}$ and between 100 and 700 torr. Each investigation evaluated K_{p} at $\underline{n}=2,3,4, \ldots$ for the reactions $n(H F) \rightarrow(H F){ }_{n}$ and reported second law values of ΔH and ΔS. At $\underline{n}=7$ their second 1 aw values differed by 7.3 kcal , which was taken as an estimate of error, while the calculated third law values differed by 6.4 kcal . Using $H_{298}^{\circ}=-46.54 \mathrm{kcal}$ mol ${ }^{-1}$ and $\Delta \mathrm{Hf}_{298}^{\circ}(\mathrm{HF}, \mathrm{g})=-65.14 \pm 0.2 \mathrm{kcal} \mathrm{mol}{ }^{-1}$ gives the heat of formation of $\mathrm{H}_{7} \mathrm{~F}_{7}(\mathrm{~g})$.
Heat Capacity and Entropy
The molecular structure of $\mathrm{H}_{7} \mathrm{~F}_{7}$ was assumed as planar with the F atoms forming the vertices of a regular septemgon and the H atoms also lying on the circumscribed circle. That rings are more stable than open chains was confirmed by Del Bene and Pople's (3) theoretical molecular-orbital studies on HF polymers. The length of side ($F-F$ axis) was taken from Atoji and Lipscomb's (4) x-ray studies of solid $H F(F-F=2.49 \AA$) and agrees with the $2.52 \AA$ which Janzen and Bartell (5) determined for HF gaseous polymers by electron diffraction. The low F-bending frequency ($53 \mathrm{~cm}^{-1}$) was taken from Boutin, Safford, and Brajovic's (6) work. The other vibrational frequencies were taken from Kittelberger and Hornig's (7) work on crystalline HF. Huong and Couzi (8) and Smith (9) have made spectral studies of the gas phase in the range from 350 to $4000 \mathrm{~cm}^{-1}$.

References

1. G. Briegleb and W. Strohmeier, Z. Elektrochem. 57, 668 (1953).
2. E. U. Franck and F. Meyer, Z. Elektrochem. 63, 571 (1959).
3. J. E. Del Bene and J. A. Pople, J. Chem. Phys, 55, 2296 (1971).
4. M. Atoji and W. N. Lipscomb, Acta Crysta. 7, 173 (1954).
5. J. Janzen and L. S. Bartell, J. Chem. Phys. 50, 3611 (1969).
6. H. Boutin, G. J. Safford, and V. Brajovic, J. Chem. Phys. 39, 3135 (1963).
7. J. S. Kittelberger and D. F. Hornig, J. Chem. Phys. 46, 3099 (1967).
8. P. V. Huong and M. Couzi, J. Chim. Phys. 66, 1309 (1969).
9. D. F. Smith, J. Chem. Phys. 28, 1040 (1958); ibid, 48,1429 (1968).

Hydrogen Fluoride Cyclic Septener（ $\mathrm{H}_{7} \mathrm{~F}_{7}$ ）

$\mathbf{T},{ }^{\circ} \mathrm{K}$	gibls／mol			$\mathbf{H}^{\circ}-\mathbf{H}^{\circ}{ }_{298}$	kcal／mol－＿＿＿＿		$\log K \mathrm{p}$
	Cp°	S ${ }^{\text {d }}$	$-\left(\mathrm{G}^{\circ}-\mathrm{H}^{\circ} 298\right) / \mathrm{T}$		$\Delta H f^{\circ}$	$\Delta \mathrm{Gr}{ }^{\circ}$	
0	． 000	． 000	INFINITE	－9．903	－499．049	－498．046	INFINITE
100	311.601	83.190	16？．189	－7．901	－500．997	－496．555	1003.305
200	40.31 u	107.570	129.204	－4．327	－502．027	－471．701	515.451
296	$+7.512$	125.075	125.075	－0ワ0	－502．520	－456．694	334.706
300	47.627	125．370	125.076	． 088	－502．526	－456．410	352．495
400	52.830	139.831	127.013	5.127	－502． 508	－441．016	240.900
bull	26.440	152.032	130.828	10.602	－502．394	－425．638	100.046
600	29.09 j	152.567	135.260	16.394	－501．967	－410．320	149.401
700	－1．22u	171.940	139.837	22.403	－501．373	－395．095	123.354
900	－3．04 3	$18 \cup .137$	144.365	28.518	－500．642	－379．061	103.801
900	04.67 u	187．658	148.764	35.005	－499．799	－364．924	88.616
1 Uu）	06.123	194.549	153.002	41.546	－498．851	－349．993	70.491
1100	07.420	200.913	157.072	48.225	－497．311	－335．151	60.588
1200	$03.5 ४ \mathrm{u}$	206．831	160.975	55.02 .7	－496．7n0	－320．415	26． 356
1300	09.627	212.363	164.717	61.939	－495．524	－305．771	01.405
1400	10.547	217.557	168．308	58.748	－494．304	－291．224	45.462
1500	11.303	222.453	171．756	76.045	－493．045	－276．755	4 U． 323
1000	72.057	227．1392	175.071	93.218	－491．766	－262．382	35.840
1700	72.72 \％	231．47？	178.250	90.459	－490．461	－248．080	31.893
1500	13.238	235.645	191.333	97.761	－489．137	－233．862	c6．395
1300	73．800	239.622	184.297	105.117	－487．801	－219．716	2b． 273
2000	74.201	243.419	187.159	112.520	-486.456	－205．64u	22.471
2100	7． 7.661	247.052	189.925	119.957	－435．110	－191．535	19.944
2200	15．023	250．534	192.602	127.451	－483．758	－177．692	17.052
2300	75.347	253.976	195.194	134.970	－492．403	－153．808	13.565
2400	$75.64 i$	257.089	197.706	142.520	－481．055	－149．987	13.658
2500	75.904	260.193	200．144	150.097	－479．711	－136．229	11.909
2500	75.143	263.164	20？．511	157．599	－478．367	－122．509	14.298
2100	75.30 L	266．042	204．811	165.325	－477．031	－109．849	6.811
2300	15.551	258．423	207.047	172.971	－475．702	－95．24？	7.434
くЭ00	15．730	271.512	209.224	190.636	－474．375	－81．662	0.154
suou	75.951	274．117	211.344	188．318	－473．060	－68．149	4.965
3100	17.051	276.641	213.410	196.315	－471．750	－54．678	3.855
3200	77.109	279.089	215.424	$203.7 ? 7$	－470．454	－41．2．45	2.617
3300	77.316	251.455	217.397	211.453	－489．165	－27．851	1.844
3400	77.433	283.776	219.309	219.190	－467．985	－14．500	． 932
3500	77．541	286.022	221.183	226．939	－465．618	－1．176	． 073
300U	17.641	288．208	223.014	234.699	-465.365	12．090	－． 734
3700	17.733	290.337	224.805	242.457	－464．124	25.355	－1．498
3800	77.819	292.411	226．557	250.244	－462．895	38.568	－2．218
3900	77． BH 9	294.433	228.272	258．730	－461．692	51.738	－ 2.899
4000	17.973	296.477	229．951	265．824	－460．479	64.891	－3．545
4100	74．045	294.333	231.595	273.525	－459．293	79.015	－4．159
4200	74.107	300.214	233.206	291.432	－458．118	91．111	－4．741
4300	73．10	302.053	234.736	289．245	－456．961	104.160	-3.294
$4+00$	75.220	303．851	236．336	297.066	－455．2．16	117.196	－5．821
4500	18.278	305.609	237.955	304.891	－454．596	130.207	－0．324
＋60u	$73.3<3$	307.330	23才． 347	312.721	－453．569	143.200	－0．804
4700	7ヶ．37ヶ	309．015	240.812	320.556	－452．472	155．10́1	－7．261
430u	1ヶ．41？	310.666	242．25！	328．396	－451．393	169.1098	－7．099
$4 \rightarrow 00$	$7 \mathrm{H.400}$	312.293	243.663	336.240	－450．312	182．014	－0．118
5000	73.500	313.869	245.051	344.098	-449.254	194．091	－0．519
5100	14.537	315.423	246.416	351.940	－448．213	207.775	－6．904
5200	18．572	316.949	247.757	359.795	－447．193	220.534	－ 9.273
3500	78．505	318.446	249.077	367.554	－446．170	233.475	－y．623
5400	73.600	319.915	250.375	375．515	－445．175	245.275	－y． 907
bsou	74．6ne	321.358	251.653	383．381	－444．191	？ 59.775	－1U．295
Soud	79．694	322．775	252.910	391.250	-443.221	271.550	－1u．009
5700	75．721	324.159	254.143	399.120	－442．266	284.510	－10．913
5500	19.747	325.539	255.367	406.994	－441．330	297.346	－11．2U4
b900	74．771	326.885	256.558	414.970	－440．405	310.084	－11．480
6000	74．794	328.209	257．751	422.744	－439．492	322.787	－11．758

$$
\begin{array}{ll}
\mathrm{S}_{298.15}^{\circ}=43.3 \text { gibbs mol } \\
& \Delta \mathrm{Hf}_{0}^{\circ}=90 \pm 4 \mathrm{kcal} \mathrm{~mol}^{-1} \\
& \Delta \mathrm{Hf}_{298}^{\circ}=90 \pm 4 \mathrm{kcal} \mathrm{~mol}^{-1}
\end{array}
$$

Electronic States and Molecular Constants

Heat of Formation

The electron impact appearance potential of N_{2}^{+}from HN_{3}, determined by J. L. Franklin, V. H. Dibeler, R. M. Reese, and M. Krauss, J. Am. Chem. Soc. 80, 298 (1958) leads to a value $\Delta H f_{0}^{\circ}(N H, g)=81.7 \pm .5 \mathrm{kcal} \mathrm{mol}^{-1}$. R. I. Reed and W. Snedden, J. Chem. Soc. 4132 (1959) determined the electron impact appearance potential of NH^{+}from NH_{3}. This combined with the directly measured electron impact ionization potential of $\mathrm{NH}, 13.1 \mathrm{eV}$ gives $\Delta \mathrm{Hf}_{0}^{\circ}=82.9 \mathrm{kcal} \mathrm{mol}{ }^{-1}$. This value of the ionization potential of NH has also been obtained by S. N. Foner and R. L. Hudson, J. Chem. Phys. 45, 40 (1966). However, all of these electron impact experiments are subject to errors of several tenths of an electron volt or more.

More recently, K. E. Seal and A. G. Gaydon, Proc. Phys. Soc. 89, 459 (1966) measured the concentration of NH in reflected shock waves in nitrogen-hydrogen-krypton and ammonia-krypton mixtures. These led to $D(N H)=3.21 \pm$ 0.16 eV , corresponding to $\Delta H f_{0}^{\circ}(\mathrm{NH}, \mathrm{g})=90.13 \pm 3.7 \mathrm{kcal} \mathrm{mol}{ }^{-1}$. W. E. Kaskan and M. P. Nadler, J. Chem. Fhys. 56, 2220 (1972) determined $\mathrm{NH}, \mathrm{NH}_{3}$, and OH concentrations in a flat $\mathrm{NH}_{3}-\mathrm{D}_{2}-\mathrm{N}_{2}$ flame and concluded $\Delta H f_{0}^{\circ}(\mathrm{NH})=90 \pm 4$ kcal mol ${ }^{-1}$ - D. H. Stedman, J. Chem. Phys. 52, 3966 (1970) studied the NH emission spectrum obtained by collision of metastable rare gas atoms with HN_{3}. Taking the highest level of NH as observed in emission as a bound, he concluded that $\Delta \mathrm{Hf}_{0}^{\circ}(\mathrm{NH}, \mathrm{g})>80 \mathrm{kcal} \mathrm{mol}{ }^{-1}$. From analogous considerations on N_{2} emission observed by collision of metastable argon atoms with HN_{3} he concluded that $\Delta \mathrm{Hf}_{0}^{\circ}(\mathrm{NH}, \mathrm{g}) \leq 94 \mathrm{kcal}$ mol ${ }^{-1}$.

Quantum chemical calculation of the dissociation energy of small molecules is possible with estimated accuracies of 0.1 to 0.2 eV . A theoretical calculation of the dissociation energy, D_{3}, of $\mathrm{NH}\left(\mathrm{X}^{3} \mathrm{\Sigma}^{-}\right)$, applying the techniques of A. C. Wahl and G. Das, Advan. Quantum Chem. 5, 261 (1970), has been determined by W. Stevens (unpublished) to yield $\mathrm{D}_{\mathrm{e}}=3.4 \mathrm{eV}$. This result corroborates the results of Seal and Gaydon and would support $\Delta H f_{0}^{\circ}(\mathrm{NH})=90 \pm 4 \mathrm{kcal} \mathrm{mol}{ }^{-1}$. Theoretical calculations of this type can be used to distinguish between disparate experimental results that differ by mere than 0.2 ev.

Heat Capacity and Entropy

The vibrational and rotational constants are taken from the JANAF Thermochemical Tables, 2nd Edition, June 1971 (U. S. Govt. Printing Office, Washington, D. C. 20402).

T, ${ }^{\circ} \mathrm{K}$	$C p^{\circ}$	gibbs/mol$S^{\circ} \quad-\left(G^{\circ}-H^{\circ} 398\right) / T$		$H^{\circ}-H^{\circ} 208$	$\begin{gathered} \text { kcal/mol - } \\ \Delta H f^{\circ} \end{gathered}$	$\triangle \mathrm{Gf}^{\circ}$	$\log \mathbf{K p}$
0	. 000	. 000	INFIN1TE	-2.060	90.000	90.000	INFINITE
100	6.961	35.687	49.484	-1.380	89.975	89.518	-195.640
200	5.963	40.512	43.930	-. 684	90.001	89.050	-97.309
293	6.906	43.293	43.293	. 000	90.012	A8. 580	-64.931
300	5.966	43.335	43.293	. 013	90.012	9.9. 571	-64.524
400	6.973	45.341	43.566	. 710	90.013	88.090	-48.130
bue	6.994	46.899	44.083	1.40 A	90.010	87.509	-38.294
600	7.041	48.177	44.662	2.109	90.006	87.130	-31.737
700	7.119	49.268	45.244	2.917	49.999	86.651	-27.054
800	7.222	50.225	45.808	3.534	89.991	85.173	-23.541
900	7.345	51.083	46.347	4.262	89.984	85.696	-20.810
1000	7.471	51.863	46.860	5.003	89.978	85.220	-18.625
1100	7.601	52.581	47.348	5.756	89.975	84.744	-16.837
1200	7.727	53.249	47.812	6.523	89.974	84.269	-15.347
1300	7.847	53.871	48.255	7.302	89.975	83.793	-14.087
1400	7.960	54.457	48.677	8.092	89.978	83.317	-13.006
1500	4.064	55.010	49.081	8.893	89.982	82.842	-12.070
1500	8.161	55.533	49.463	9.705	89.996	82. 365	-11.251
1700	8.249	56.031	49.840	10.525	89.992	81.890	-10.528
1800	9.331	56.505	50.197	11.354	89.998	81.412	-9.885
1900	8.405	56.957	50.541	12.191	90.005	80.936	-9.310
2000	8.474	57.390	50.873	13.035	90.013	80.458	-8.792
2100	8.537	57.805	51.193	13.886	90.020	79.980	-8. 324
2200	8.596	59.204	51.503	14.742	90.028	79.502	-7.898
2300	8.650	58.587	51.802	15.605	90.036	79.023	-7.509
2400	B. 700	59.956	52.093	16.472	90.045	78.545	-7.152
2500	8.747	59.312	52.374	17.345	90.052	78.064	-6.824
2óu	8.791	59.656	52.648	18.222	90.061	77.585	-0.522
2700	8.832	59.989	52.914	19.103	90.069	77.105	-0.241
2900	8.870	60.311	53.172	19.988	90.077	76.624	-5.981
2900	8.906	60.622	53.424	20.877	90.096	76.145	-5.738
3ưu	9.941	60.925	53.669	21.769	90.093	75.663	-5.512
3100	8.973	61.219	53.908	22.565	90.102	75.181	-5.300
3200	9.004	61.504	54.140	23.554	90.110	74.700	-5.102
3300	9.033	61.782	54.368	24.465	90.117	74.219	-4.915
3400	9.001	62.052	54.590	25.370	90.126	73.737	-4.740
3500	9.088	62.315	54.807	26.278	90.133	73.255	-4. 274
3ouv	9.114	62.571	55.019	27.198	90.139	72.772	-4.413
3700	9.139	62.821	55.226	28.100	90.145	72.290	-4.270
1800	9.153	63.065	55.430	29.015	90.151	71.208	-4.150
3900	9.185	53.304	55.623	29.933	90.157	71.326	-3.997
4000	9.20v	63.535	55.823	30.953	90.162	70.842	-3.871
4100	9.230	63.76'4	56.014	31.774	90.166	70.359	-3.750
4200	9.251	63.987	56.201	32.699	90.170	69.877	-3.636
4300	9.271	64.205	56.385	33.625	90.173	69.393	-j. 527
4400	9.291	64.418	56.565	34.553	90.176	68.009	-3.423
4500	9.311	64.627	56.742	35.493	90.177	68.424	-3.323
4600	9.350	64.832	25.916	36.415	90.179	67.944	-3.228
4700	9.349	65.033	57.086	37.349	90.190	67.460	-3.137
4800	9.367	65.230	57.254	38.295	90.191	66.977	-3.ub0
4900	9.385	65.423	57.418	39.222	90.181	66.492	-2.906
bu00	$9.40<$	65.613	5 57.580	40.162	90.190	56.009	-2.885
5100	9.420	65.790	- 57.740	41.103	90.179	65.524	-c.808
5200	9.437	65.982	57.897	42.746	90.178	65.042	-2.754
b300	9.453	66.162	58.051	42.990	90.175	64.559	-2.662
5400	9.470	66.339	58.203	43.736	90.172	64.074	-2.593
5500	9.486	65.513	5 2. 352	44.234	90.168	63.593	-2.527
bobu	9.502	66.684	59.499	45.833	90.164	63.108	-2.403
5700	9.510	56.852	58.545	46.784	90.160	62.627	- <. 401
bsuo	9.515	67.018	54.787	47.737	90.154	62.144	-<.342
byou	9.549	67.181	$58.92 R$	48.691	90.149	61.650	-2.284
GUU0	9.504	67.342	59.067	49.547	90.142	61.170	-c. 228

July 31, 1972
$\Delta H f_{0}^{\circ}=9.26_{1} \mathrm{kcal} \operatorname{mol}-1 *$ $\Delta H f_{298.15}^{\circ}=9.31_{8} \pm 0.29 \mathrm{kcal} \mathrm{mole} \mathrm{e}^{-1}$

Electronic States and Molecular Constants

Heat of Formation
$\Delta \mathrm{Hf}_{0}^{\circ}(\mathrm{OH})$ was calculated from the relation $\Delta H f_{0}^{\circ}(\mathrm{OH})=1 / 2 \mathrm{D}_{0}^{\circ}\left(\mathrm{O}_{2}\right)+1 / 2 \mathrm{D}_{0}^{\circ}\left(\mathrm{H}_{2}\right)-\mathrm{D}_{0}^{\circ}(\mathrm{OH})$. The values employed were as follows: $\mathrm{D}_{0}^{\circ}\left(\mathrm{O}_{2}\right)=117.967 \pm 0.042 \mathrm{kcal} \mathrm{mol}{ }^{-1}$; and $\mathrm{D}_{0}^{\circ}\left(\mathrm{H}_{2}\right)=103.267^{2} \pm 0.003 \mathrm{kcal}$ mol ${ }^{-1}$ were taken from the CODATA (1) selection. $D_{0}^{\circ}(\mathrm{OH})$: Barrow (2) in a refinement of the work of Barrow and Downie (3) obtains a value of D_{0}° for $O H\left(X^{2} \Pi_{3} / 2\right)=O\left({ }^{3} \mathrm{P}_{2}\right)+H\left({ }^{2} S_{1 / 2}\right)$ of $35427 \mathrm{~cm}{ }^{-1}$ from an extrapolation of ΔG_{v} versus v; it was increased to $35450 \pm$ $100 \mathrm{~cm}^{-1}$ to account for the fact that $\Delta G_{v} y i e l d s$ slightly low values at high v. Fehlenbok (4) obtains a value of D_{e}° for $O H\left(B^{2} \Sigma^{+}\right)$of $1315 \mathrm{~cm}{ }^{-1}$ and $G(0)$ for this state of $441 \mathrm{~cm}{ }^{-1}$. Using $T_{e}\left(B^{2} \Sigma^{+}\right)$given by Rosen (5) and the zero point energy of Ho (including the Dunham correction, see Herzberg (6)) of $847.0 \mathrm{~cm}{ }^{-1}$, this yields $D_{0}^{\circ}(0 H)=$ $35451 \mathrm{~cm}^{-1}$ with an estimated uncertainty of $\pm 100 \mathrm{~cm}^{-1}$. A value of $\mathrm{D}_{0}^{\circ}(0 \mathrm{H})=35450 \pm 100 \mathrm{~cm}{ }^{-1}=101.355_{6}^{ \pm} 0.29$ kcal mol ${ }^{-1}$ was adopted. Combining the above values, one obtains $\Delta \mathrm{Hf}_{0}^{\circ}(\mathrm{OH})=9.261 \pm 0.29 \mathrm{kcal}$ mol ${ }^{-1}$ which is in good agreement with the last JANAF (7) selection.

A review of earlier work is given in references (7-9).

*Heat Capacity and Entropy

The vibrational and rotational constants of the respective electronic levels were taken from B. Rosen, Spectroscopic Data Relative to Diatomic Molecules, Pergamon Press, Oxford, 1970. Comparison of the results of these calculations with those of the more exact treatment given by L. Haar, A. S. Filedman and C. W. Beckett, NBS Monograph 20, May 29, 1961, (U. S. Govt. Printing Office, Washington, D. C. 20402) suggests the errors in the tables due to approximations in our calculations may be neglected above 400 K . Below this, they may be appreciable. It is recommended that $H_{0}^{\circ}-H_{298}^{\circ}, S_{298}^{\circ}$, and $\mathcal{C}_{p}^{\circ} 298$ be taken as -2.107 kcal mol ${ }^{-1}$, 43.890 gibbs mol ${ }^{-1}$, and $7.144 \mathrm{cal} \mathrm{deg}^{-1} \mathrm{~mol}{ }^{-1}$, respectively. For causes of errors, see the text (page 256) of the table for Deuterohydroxy 1 (0 D).
References

1. CODATA Task Group on Key Values for Thermodynamics, Final Set of Key Values for Thermodynamics - Part I, November 1971 (Bulletin No. 5) .
2. R. F. Barrow, Arkiv Fysik ll, 281 (1956).
3. R. F. Barrow and A. R. Downie, Proc. Phys. Soc. (London) A69, 178 (1956).
4. P. Felenbok, Ann. d'Astr. 26, 393 (1963).
5. B. Rosen, Spectroscopic Data Relative to Diatomic Molecules, (Pergamon Press, Oxford, 1970).
6. G. Herzberg and A. Monfils, J. Molec. Spectroscopy 5, 482 (1960).
7. JANAF Thermochemical Tables, 2nd Edition, NSRDS-NBS 37, June 1971 (U. S. Govt. Prinçing Office, Washington, D. C., 20402).
8. P. Gray, Trans. Farad. Soc. 55, 408 (1959).
9. R. Edse, Third Combustion Symposium (Williams and Wilkins Co., Baltimore, 1949) p. 611.
(Ideal Gas)
$\mathrm{GFW}=17,0074$

T, ${ }^{\circ} \mathrm{K}$	giblbs/mol			kcal/mol			$\underline{L o g} \mathbf{K p}$
	Cp ${ }^{\text {a }}$	S°	$-\left(\mathrm{G}^{\circ}-\mathrm{H}^{\circ}{ }_{298}\right) / \mathrm{T}$	$\mathrm{H}^{\circ}-\mathrm{H}^{\circ}{ }_{298}$	$\Delta H 0^{\circ}$	$\Delta \mathrm{Gf}$	
0	. 000	. 000	INFINITE	-2.192	9.175	9.175	INFINITE
100	7.798	35.725	50.398	-1.467	9.195	8.894	-19.439
200	7.356	40.985	44.541	-. 711	9.281	8.557	-y.351
298	7.167	43.880	43.880	. 000	9.318	8.193	-0.005
300	7.165	43.925	43.881	. 013	9.318	8.186	-5.963
400	7.087	45.974	44.160	. 725	9.328	7.906	-4.265
500	7.055	47.551	44.687	1.4 .32	7.320	7.426	-3.246
600	7.057	48.837	45.275	2.137	9.297	7.049	-2.568
700	7.090	49.927	45.863	2.1445	9.265	6.677	-2.085
suo	7.150	50.877	46.432	3.556	9.224	6.310	-1.724
900	7.233	51.724	46.974	4.275	9.180	5.948	-1.444
1000	7.332	52.491	47.489	5.003	9.136	5.592	-1.222
1100	7.439	53.195	47.975	5.742	9.092	5.239	-1.041
1200	7.547	53.847	48.437	6.491	9.050	4.991	-. 891
1300	7.659	54.455	48.877	7.252	9.010	4.546	-. 704
1400	7.760	55.027	49.296	8.023	8.972	4.204	-. 656
1500	7.867	55.566	49.696	8. 805	8.936	3.865	-. 563
1600	7.963	56.077	50.079	9.596	8.900	3.528	-. 482
1700	8.053	56.563	50.447	10.397	8.866	3.194	-. 411
1800	8.137	57.025	50.799	11.207	8.833	2.961	-. 347
1900	8.214	57.467	51.139	12.024	8.900	2.530	-. 291
2000	8. 286	57.891	51.466	12.949	8.767	2.200	-. 240
2100	8.353	58.296	51.782	13.691	8.735	1.873	-. 195
2200	8.415	58.686	52.087	14.520	8.701	1.547	-. 154
2300	5.472	59.062	52.382	15.354	8.668	1.222	-. 116
2400	8.520	59.424	52.668	16.214	8.634	. 901	-. 082
2500	8.570	59.773	52.945	17.069	8.597	. 577	-. 050
2600	\$. 622	60.110	53.214	17.929	8. 561	. 258	-. 022
2700	8. 665	60.436	53.476	18.794	8. 523	-. 060	. 005
2800	8.700	60.752	53.730	19.662	8.494	-. 378	.030
2900	8.744	61.058	53.977	20.535	8.443	-. 692	. 052
3000	8.780	61.355	54.219	21.411	8.401	-1.008	. 073
3100	8.814	61.644	54.453	22.291	8. 358	-1.321	.093
3200	8.846	61.924	54.682	23.174	8.313	-1.632	. 111
3300	8.877	62.197	54.906	24.060	8. 267	-1.942	.129
3400	8.905	62.462	55.124	24.947	8. 219	-2.252	.145
3500	8.933	62.721	$55.33 R$	25.341	8.169	-2.559	.160
3600	5.959	62.973	55.546	26.735	8.118	-2.864	.174
3700	8.985	63.21 A	55.750	27.633	8.065	-3.168	.187
3800	9.009	63.458	55.950	28.532	8.011	-3.470	.200
3900	9.032	63.693	56.14 b	29.434	7.955	-3.773	. 211
4000	9.055	63.922	56.337	30.339	7.998	-4.073	. 223
4100	9.070	64.146	56.525	31.245	7.839	-4.371	. 233
4200	9.097	64.365	56.709	32.154	7.779	-4.668	. 243
4300	9.113	64.579	56.889	33.755	7.717	-4.963	. 252
4400	9.133	64.789	57.005	33.978	7.654	-5.259	. 201
4500	9.157	64.994	57.240	34.892	7.599	-5.552	. 270
4600	9.170	65.195	57.411	35.809	7.524	-5.840	. 277
4700	9.195	65.393	57.579	36.728	7.456	-6.130	. 285
4800	9.213	65.587	57.744	37.648	7.399	-6.419	. 292
4900	9.231	65.777	57.906	38.570	7.320	-6.707	. 299
2000	9.249	65.764	59.065	39.494	7.250	-6.995	. 306
5100	9.267	66.147	59.222	40.420	7.179	-7.270	. 312
5200	9.254	66.327	5月.376	41.348	7.107	-7.561	. 318
5300	9.301	66.504	54.528	42.277	7.035	-7.839	. 323
5400	9.319	66.579	b8.677	43.2n8	6.961	-8.123	. 329
5500	9.330	66.850	54.824	44.141	6.888	-8.399	. 334
5600	9.352	67.019	58.969	45.075	6.913	-8.679	. 339
5700	9.369	67.184	50.111	45.711	6.738	-8.954	. 343
5801	9.386	67.347	59.252	46.949	6.662	-9.228	. 348
勺700	9.403	67.507	59.391	47.898	5.586	-9.501	. 352
GU00	7.420	67.665	50.527	45.929	6.510	-9.774	. 356

$$
\begin{aligned}
& \text { RIDE (SH) } \\
& \mathrm{S}_{298.15}^{\circ}=46.74 \mathrm{cal}^{-1} \mathrm{~mol} \\
& -1^{\ddagger}
\end{aligned} \quad \Delta \mathrm{Kf}_{298.15}^{\circ}=33.3 \pm 1.2 \mathrm{kcal} \mathrm{~mol}^{-1}
$$

Electronic States and Molecular Constants

State	E, cm ${ }^{-1}$	g	${ }_{\omega_{e}, \mathrm{~cm}}{ }^{-1}$	$\chi_{X_{e}{ }^{\omega} e^{, c m}{ }^{-1}}$	$\mathrm{B}_{\mathrm{e}, \mathrm{cm}}{ }^{-1}$	$\alpha_{e}, \mathrm{~cm}{ }^{-1}$	r_{e}, \AA
$\mathrm{x}^{2} \mathrm{II}_{i}$	$\left\{\begin{array}{c}0 \\ 377.01\end{array}\right.$	$\left.\begin{array}{l} 2 \\ 2 \end{array}\right\}$	2689.6	45.5	9.601	0.285	1.345
$\mathrm{A}^{2} \Sigma^{+}$	30663	2	1979.8	97.65	8.521	0.464	1.423
$B^{2} \Sigma$	59622	2	2670.6	56.8	8.785	0,259	1.428
$C^{2} \Delta$	[63900]	47					
$\mathrm{D}^{2} \Delta$	71195	4					
$\mathrm{E}^{2} \Sigma$	71318	2 \}	[2689.6]	[45.5]	[9.601]	[0.285]	
$\mathrm{F}^{2} \Delta$	76708	4					
$\mathrm{G}^{2} \Delta$	79343	4					
$\mathrm{H}^{2} \Delta$	80848	4 J					
$\sigma=1$							

Heat of Formation

The previous JANAF (1) selection for $\Delta \mathrm{Hf}_{298}^{\circ}$ of $\mathrm{HS}(\mathrm{g})$ was Mackle's (2) estimate of 34.6 ± 4 kcal which he derived from the average of three independent determinations, Of these, the uncertainty in the determination involving the calculation of $\Delta H f{ }_{298}^{\circ}$ of $\mathrm{HS}(\mathrm{g})$ from $\Delta \mathrm{Hf}_{298}^{\circ}$ of $\mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})$, the ionization potential of $\mathrm{HS}(\mathrm{g})$, and the appearance potential of $\mathrm{HS}^{+}(\mathrm{g})$ from $\mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})$ can be reduced. A summary of previous work on the ionization potential is given below. From the spectroscopic and photoionization work we arrive at a value of $\Delta \mathrm{Hf}_{0}^{\circ}$ for the reaction $\mathrm{H}_{2} \mathrm{~S}=\mathrm{HS}+\mathrm{H}$ of 89.02 ± 1.15 kcal mol ${ }^{-1}$. Using the appropriate thermal functions for each of the species (see tables for $H_{2} S$, HS, and H (1)) and the selected heats of formation of $\mathrm{H}_{2} \mathrm{~S}(\mathrm{~g}), \mathrm{H}(\mathrm{g})$ of $-4.90 \pm 0.2 \mathrm{kcal} \mathrm{mol}^{-1}$ (see $\mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})$ table) and 52.103 ± 0.001 kcal mol ${ }^{-1}(8)$, one obtains $-33.3 \pm 1.2 \mathrm{kcal} \mathrm{mol}^{-1}$ for $\Delta \mathrm{H}_{\mathrm{f}}^{\circ} \mathrm{C} 98$ of $\mathrm{HS}(\mathrm{g})$ versus Mackle's (2) value of $33.7 \pm 3 \mathrm{kcal}$ mol ${ }^{-1}$ for this determination. The new value is preferred because it is based on photoionization rather than electron impact studies.

Source	Method	Potential (EV)
$\mathrm{HS} \rightarrow \mathrm{HS}^{+} \mathrm{e}^{-}$:		
Morrow (3) (1966)	Rydberg Extrapolation	10.40 ± 0.03
Palmer and Lossing (4) (1962)	Electron Impact	10.5 ± 0.1
$\mathrm{H}_{2} \mathrm{~S} \rightarrow \mathrm{HS}^{+}+\mathrm{H}+\mathrm{e}^{-}$:		
Dibeler and Liston (5) (1968)	Photoionization	$14.27 \pm 0.04 *$
Dibeler and Rosenstock (6) (1963)	Electron Impact	14.43 ± 0.1
Palmer and Lossing (4) (1962)	Electron Impact	14.43 ± 0.1
Neuert and Clasen (7) (1952)	Electron Impact	15.2 ± 0.5

*The uncertainty given by the authors was doubled because the threshold value was not corrected to absolute zero.

References

1. D. R. Stull and H. Prophet, "JANAF Thermochemical Tables", 2nd Edition, NSRDS-NBS-37, CODEN-NSRDA (U. S. Supt. of Documents, U. S. Govt. Printing Office, Washington, D. C., 1971).
2. H. Mackle, Tetrahedron. 19, 1159 (1963).
3. B. A. Morrow, Canad. J. Phys. 44, 2447 (1966).
4. T. F. Palmer and F. P. Lossing, J. Am. Chem. Soc. 84, 4661 (1962).
5. V. H. Dibeler and S. K. Liston, J. Chem. Phys. 49, 482 (1968).
6. V. H. Dibeler and H. M. Rosenstock, J. Chem. Phys. 39, 3106 (1963).
7. H. Neuert and H. Clasen, Z. Naturforschung 79, 410 (1952).
8. CODATA Task Group on Key Values for Thermodynamics, final Set of Key Values for Thermodynamics - Part I, November, 1971.
${ }^{*}$ Heat Capacity and Entropy
Calculations were made as described in JANAF Thermochemical Tables, 2nd Edition, NSRDS-NBS 37, June, 1971
(U. S. Govt. Printing Office, Washington, D. C., 20402) but using the vibrational and rotational constants at the respective electronic levels taken from B. Rosen, Spectroscopic Data Relative to Diatomic Molecules, Pergamon Press, Oxford, 1970. Comparison of the results of the more exact treatment of L. Haar, A. S. Friedman, and C. W. Beckett, NBS Monograph 20, May 29, 1961 (U. S. Govt. Printing Office, Washington, D, C., 20402) with those given in the previous JANAF (loc. cit.) calculations (both used the same molecular constants for the ground state) suggests errors in our calculations are negligible above 400 K . Below this, they can be appreciable. In particular, it is recommended that $0.045 \mathrm{kcal} \mathrm{mol}{ }^{-1}, 0.012 \mathrm{gibbs} / \mathrm{mol}$, and $-0.028 \mathrm{cal} \mathrm{mol}^{-1} \mathrm{deg}^{-1} \mathrm{be}$ added to our values of $\mathrm{H}_{0}^{\circ}-\mathrm{H}_{298}^{\circ}$, S_{298}°, and C $\mathrm{C}_{\mathrm{p}}^{\circ} 298$.

T，${ }^{\circ} \mathrm{K}$	gibbs／mol			＿．．．．．．．．．．．cal／mol			$\underline{\log } \mathbb{K}_{p}$
	Cp ${ }^{\circ}$	S°	$-\left(\mathrm{G}^{\circ}-\mathrm{H}^{\circ} 288\right) / \mathrm{T}$	$\mathbf{H}^{\circ}-\mathrm{H}^{\circ} \mathbf{2 9 8}$	$\Delta H H^{\circ}$	$\Delta \mathrm{Gf}^{\circ}$	
0	．UuU	． 000	INFINITE	-2.215	33.149	33.149	INFINITE
100	7．21＋	38.378	53.629	－1．525	33.317	30.079	－67．703
200	7.815	43.610	47.443	－． 7607	33.361	23.515	－31．209
293	7.755	46.730	46.730	． 000	33.300	26.295	－19．275
300	7.752	45.779	45.730	． 714	33.298	25.252	－17．124
400	7.575	48.993	47.032	． 791	32.618	23.044	－13．082
500	7.477	50.662	47.596	1.533	32.093	21．837	－9．545
500	7.464	52.022	48.224	2.279	31．522	19.833	－7．224
700	7.517	53.176	4R．351	3.027	31.219	17.925	－3．596
500	7.511	54.186	49.456	3.794	17.798	14.782	－4．038
900	7.724	55.089	50.033	4.550	17.770	14.407	－3．499
1000	7.845	55.909	50.580	5.329	17.749	14．035	－3．067
1100	7．95．3	56.662	51.099	6． 119	17.733	13.563	-2.715
1200	B．05y	57.357	51.59 ？	6.970	17.723	13.295	－2．421
1300	8.170	58.009	52.061	7.732	17.719	12.927	－2．173
1400	5.263	58.619	52.50 R	9.554	17.716	12.558	－1．960
1500	9．346	59.191	32.934	9.384	17.715	12.189	－1．776
1000	8.422	59.732	53.342	10.223	17.717	11.921	－1．6́15
1700	8.491	60.244	53.733	11.0 亿9	17.720	11.452	－1．472
1500	9.553	60.732	54.109	11．9？1	17.724	11.083	－1．346
1900	8.6 UG	61.196	54.470	12．779	17.729	10.715	－1．233
2000	9.66 U	61.639	54.817	13.643	17.734	10.345	－1．130
2100	9.747	62．06？	55.152	14.511	17．739	9.975	－1．038
2200	4.750	62.469	55.475	15.394	17.743	9.606	－． 954
2300	9.790	62．95R	55.789	16.261	17.748	9.236	－． 878
2400	4.820	63.233	56.090	17.142	17.752	8.957	－． 807
2500	8.850	63.594	56.383	18.026	17.756	9.495	－． 743
2600	8.896	63.942	56.668	18.914	17.760	8． 125	－． 683
2700	8.925	64.278	56.943	19.904	17.763	7.754	－． 628
2500	3.9511	64.603	57.211	20.699	17.765	7.381	－． 576
2900	内．975	64.919	57.471	21.594	17.767	7.012	－． 528
su0u	9.001	65.222	57.725	22.473	17.758	6.541	－． 484
3100	9.024	65.519	57.971	23.394	17.770	6.270	－． 442
3200	9.047	65.805	53.212	24.298	17.770	5.899	－． 403
3300	9.065	66.093	59.446	25.204	17.770	5.527	－． 306
3400	9.089	65.355	58.675	26.112	17.770	5.157	－．332
3500	$9.14 y$	66.618	58.898	27．721	17.757	4.785	－． 299
． 3600	9．123	66.475	59.116	27.733	17．765	4.414	－． 268
3700	y．1＋7	67.125	59.329	28.447	17.761	4.045	－． 239
3300	9.160	67.370	59.537	29.753	17.757	3.674	－． 211
3900	9.1 ¢ट	67.608	59.741	30.590	17.751	3.302	－． 185
4000	9.200	67.1841	59.941	31.599	17.746	2.035	－． 100
4100	9.217	68.068	60.136	32.520	17.739	2.563	－． 137
4200	9.233	68.290	50.328	33.442	17.731	2． 194	－． 114
4300	7.2 .50	69.509	60.516	34.365	17.723	1.023	－． 093
4400	9.265	68.721	60.700	35.292	17.713	1.453	－． 072
4500	9．2ヶ゙く	68.929	60.830	36.220	17.703	1．084	－．053
4600	9．29．2	69.133	61.057	37．149	17.692	． 715	－． 034
4100	2.314	69.333	61.231	39.079	17.691	． 346	－． 010
4300	9．330	69.530	61.402	39.111	17.665	－． 025	． 001
4900	9.340	69.722	61.570	39.245	17.656	－． 389	.017
bu0u	$9.30{ }^{\text {c }}$	69.911	61.735	40.381	17.642	－． 761	.033
5104	9.370	70.097	61.897	41．0．19	17.527	－1．120	． 048
beou	$9.39+$	70.279	62.057	42.756	17.613	－1．494	．003
5300	9．411	70.453	62.213	43.636	17.598	－1．961	． 077
5400	9．4\％	70.634	62.309	44.633	17.582	－2． 228	． 090
bsuo	9.44 c	70.807	62.520	45.591	17.565	－2．595	． 143
2ó00	9．4by	70.977	62.609	46．5？7	17.549	－2．961	
5700	－ 0.47%	71.145	62.815	47.473	17.531	－3．328	． 128
3300	9．4y	71.310	62.901	48.422	17.513	－3．694	． 139
bэou	$9.50 y$	71.477	63.104	49.372	17.495	－4．062	－ 150
01100	$9.5 c i$	71.632	63.245	50.323	17.477	－4．424	． 161

```
\(\mathrm{D}_{0}^{\circ}=103.266 \pm 0.003 \mathrm{kcal} \mathrm{mol}^{-1}\)
Ground State Configuration \({ }^{1}{ }_{\Sigma}{ }_{g}^{+}\)
\(\omega_{\mathrm{e}}=4405.3 \mathrm{~cm}^{-1} \quad \omega_{e^{x}} e^{=125.325 \mathrm{~cm}^{-1}}\)
\(B_{e}=60.848 \mathrm{~cm}^{-1} \quad \alpha_{e}=3.0664 \mathrm{~cm}^{-1}\)
\[
\begin{aligned}
& \Delta H f_{298.15}^{\circ}=0 \\
& S_{298.15}^{\circ}=31.208 \pm 0.01 \mathrm{cal}^{\circ} \mathrm{deg}^{-1} \mathrm{mo1} 1^{-1} \\
& \mathrm{D}_{\mathrm{e}}=0.04644 \mathrm{~cm}^{-1} \quad \sigma=2 \\
& r_{e}=0.7417 \AA
\end{aligned}
\]
```


Heat Capacity and Entropy

Except for the changes at 100° and $200^{\circ} \mathrm{K}$ noted below, the table was taken from the JANAF table for H_{2} (dated March 31, 1961), whose thermodynamic functions follow very closely those calculated up to 5000 K by H . W. Woolley, R. B. Scott, and F. G. Brickwedde, J. Research Nat. Bur. Standards 41, 379 (1948), who used spectroscopic constants derived from an analysis of U.V. band spectra. (As in the JANAF table, a nuclear-spin entropy of Rln 4 was omitted at all temperatures, but the entropy due to the mixing of ortho and para hydrogen, which is a consequence of nuclear spin, is included.)

The JANAF table for H_{2} is for "normal" H_{2} (75% ortho and 25% para) except at $0^{\circ} \mathrm{K}$, where the values are for "equilibrium" H_{2} (100% para at that temperature). The present table eliminates that inconsistency since it applies to "equilibrium" H_{2} at all temperatures; the values at 100° and $200^{\circ} \mathrm{K}$, which differ substantially from those for normal H_{2} but are not suitable for interpolation anyhow, were taken from L. Haar, A. S. Friedman, and C. W. Beckett, Nat. Bur. Standards Monograph 20 (1961), but the thermodynamic functions of the two forms differ negligibly (by less than 0.01%) at 298.15 K and all higher temperatures.

A more practical consistent table for H_{2} might seem to be one for normal H_{2} at all temperatures, since this form of the gas is essentially the one always encountered except in its generation or catalytic ortho-para equilibration at low temperatures. However, $H_{298}^{\circ}-H_{0}^{\circ}$ is 0.156 kcal mol ${ }^{-1}$ less for the "normal" than for the "equilibrium" form, and it was considered undesirable to offer a reference table for H_{2} whose use would change the difference between $\Delta H f_{0}^{\circ}$ and $\Delta H f_{298.15}^{\circ}$ for all compounds containing hydrogen by corresponding amounts. "Equilibrium" H_{2} is the form which parallels the great majority of substances (those maintaining equilibrium among all rotational states).

The present reference-state table for H_{2} was used in generating all tables of the present series for compounds containing the isotope ${ }^{1} \mathrm{H}$.

The value of D_{0}° is taken from G. Herzberg, J. Molec. Spectroscopy 33, 147 (1970).
（Ideal Gas，Reference State）GFW $=2.016$

T，${ }^{\circ} \mathrm{K}$	$C p^{\circ}$	gibls／mol		$\mathbf{H}^{\circ}-\mathbf{H}^{\circ}{ }_{298}$	kcal／mol $\Delta H f^{\circ}$	$\Delta \mathbf{G f}{ }^{\circ}$	$\underline{L o g ~ K p}$
		S°	$-\left(\mathrm{G}^{\circ}-\mathrm{H}^{\circ}{ }_{283}\right) / \mathrm{T}$				
0	．Uu0	． 000	INFINITE	－2．024	． 000	． 000	． 000
100	6.728	24.049	37.118	－1．307	． 000	－cuo	.000
200	6.500	28．515	31.830	－． 563	－000	．OUu	． 000
298	6.893	31.208	31.208	． 000	． 000	． 0 U0	.000
300	6.894	31.251	31.209	． 013	． $0 \cap 0$	． 000	． 000
400	0.975	33.247	31.480	． 707	． 000	． 000	． 000
500	6.943	34.806	31.995	1.405	． 000	． 000	.000
600	7.009	36.082	32.572	2.106	． 000	． 000	． 000
700	7.036	37.165	33.154	2.308	． 000	． 000	． 000
800	7.1087	38.107	33.714	3.514	． 000	.000	.000
900	7.148	38.946	34.250	4.226	． 000	． 000	.000
1000	7.219	39.702	34.758	4.944	－ 000	． 000	.000
1100	7.300	40.394	35.239	5.670	－ 0 Oo	． 000	． 000
1200	7.390	41.033	35.696	6.404	． 000	． 000	． 000
1300	$7.4 \bigcirc 0$	41.628	36.130	7.148	． 000	． 000	． 000
1400	$7.0 \cup 0$	42.187	36.543	7.902	－ 0 OO	． 000	.000
1500	7.720	42.716	36.937	8.668	． 000	． 000	． 000
1000	7.823	43.217	37.313	9.446	． 000	． 000	． 000
1700	7.921	43.695	37.676	10.233	． 000	． 000	． 000
1800	8.016	44.150	38.022	11.030	． 000	． 000	． 000
1900	3.108	44.586	38.357	11.83 h	． 000	． 000	． 000
2000	6.195	45.004	38.679	12．651	－ 000	． 000	.000
2100	\％． 279	45.406	38.989	13.475	． 000	． 000	． 000
c200	8.358	45.793	39.290	14.307	.000	． 000	． 000
2300	3.434	46.166	39.581	15.146	． 000	． 000	． 000
2400	8.505	46.527	39.863	15.993	.000	.000	.000
CbUU	－． 575	46.375	40.136	16.948	． 000	． 000	． 000
2600	3.639	47.213	40.402	17.708	． 000	.000	． 000
$\angle 700$	8.700	47.540	40.660	18.575	.000	． 000	． 000
2500	ら．7ら7	47.857	40.911	19.448	.000	.000	． 000
2900	3.810	49.166	41.157	20.326	． 000	.000	． 000
3000	5．859	49.465	41.395	21.210	.000	． 000	． 000
3100	5.911	48.756	41.628	22.098	． 000	． 000	． 000
3200	0.902	49.040	41.855	22.992	． 000	． 000	.000
3300	9.012	49.317	42.077	23.891	． 070	． 000	.000
3400	9.001	49.586	42.294	24.794	.000	． 000	． 000
3500	$7 \cdot 110$	47.850	42.506	25.703	－ 000	． 000	． 000
soun	¢． 158	50.107	42.714	26.516	－00\％	． 000	． 000
3700	9.205	50.359	42.917	27.535	． 000	． 000	． 000
3800	y． 252	50.675	43.115	28.457	.000	． 000	． 000
syou	9． 297	50.846	43.311	29.385	． 000	． 000	． 000
＋000	7． 342	51.082	43.503	30.317	． 000	． 000	． 000
4100	9.386	51.313	43.690	31.253	－ 010	． 000	． 000
4200	9.429	51.540	43.875	32.194	． 000	． 000	． 000
4300	7.472	51.762	44.055	33.139	． 000	． 000	.000
4400	9.514	51.980	44.233	34.088	.000	． 000	． 000
4500	4．bs	52.134	44.407	35.042	－ 000	． 000	.000
4600	9．595	52.405	44.579	35.999	． 000	． 000	． 000
4700	$y .634$	52.612	44.748	36.961	.000	． 000	.000
4800	9.573	52.815	44.914	37.926	－ 000	． 000	． 000
$4 \rightarrow$ ¢	7．711	53.015	45.077	38.895	.000	． 000	.000
buOu	$\bigcirc \cdot 748$	53.211	45.237	39.868	． 070	． 000	． 000
5100	9．705	53.405	45.396	40.845	． 000	． 000	． 000
beuo	7．822	53.595	45.552	41.825	． 000	． 000	.000
5300	9.859	53.783	45.706	42.809	－ 000	． 000	.000
5400	9.895	53.967	45.856	43.797	． 000	． 000	． 000
らsuu	y．930	54.149	45.006	44.788	． 010	.000	． 000
boun	7.965	54.329	45.152	45.783	－ $0 \cap 0$	． 000	． 000
3700	16.000	54.505	46.299	46.781	.000	． 000	． 000
bsuo	10.034	54.679	46.441	47.783	． 000	． 000	． 000
b90u	1 U．Uの 7	54.851	46.582	48.788	． 000	． 000	． 000
GU00	1 U .100	55.020	46.721	49.796	． 000	． 000	． 000

$$
\begin{aligned}
& \text { Point Group } C_{2 v} \\
& S_{298.15}^{\circ}=46.51 \text { gibbs mol }
\end{aligned}
$$

Electronic Levels (Quantum Weight) and Vibrational Frequencies (Degeneracies)

$\begin{equation*} \varepsilon, \mathrm{cm}^{-1} \tag{g} \end{equation*}$	(g)	ω, c^{-1}			
0	(2)	3173 (1)	1497.2		3220 (1)
10249	(2)	3325 (1)	633	(1)	[3220] (1)

Bond Distance: $\mathrm{N}-\mathrm{N}=1.024 \AA \quad$ Bond Angle: $\mathrm{H}-\mathrm{N}-\mathrm{H}=103^{\circ} \quad 0=2$ Product of the Moments of Inertia: $I_{A} I_{B} I_{C}=8.742 \times 10^{-120} \mathrm{~g}^{3} \mathrm{~cm}{ }^{6}$

Heat of Formation
Direct kinetic studies [1-5] on the decomposition of hydrazine, $\mathrm{N}_{2} \mathrm{H}_{4}(\mathrm{~g}) \stackrel{\mathrm{k}_{\mathrm{d}}}{\stackrel{\text { of }}{ }} 2 \mathrm{NH}_{2}(\mathrm{~g})$, give activation energies which suggest $\Delta \mathrm{Hf}_{298}^{\circ}$ of $\mathrm{NH}_{2} \leq 40 \mathrm{kcal}$. The pre-exponential factor suggests ${ }_{k_{r}}^{k_{r}} 10^{7}-10^{8}$ 11ters/mol sec. This is exceptionally slow for a radical combination reaction [6] and is at variance with the most recent direct measurements of $\mathrm{k}_{\mathrm{r}}=10^{10.8} 1$ iters $/ \mathrm{mol} \sec \left(300 \mathrm{~K}, 1500 \mathrm{~mm} \mathrm{Hg}\right.$) [7] and $\mathrm{k}_{\mathrm{r}}=10^{9.4} 1$ iters $/ \mathrm{mol} \mathrm{sec}$ ($300 \mathrm{~K}, 10 \mathrm{~mm} \mathrm{Hg}$) [8]. A possible explanation for this discrepancy is that the hydrazine decomposition studies have been carried out in the energy dependent region [9,10]. This has been confirmed on the basis of RRKM calculations. With a $\Delta H f{ }_{298}^{\circ}$ equal to 40 kcal, it is not possible to simultaneously reproduce the measured forward (k_{d}) and backward (k_{r}) rates by orders of magnitude. With a value of $\Delta H f_{298}^{\circ}$ of 45.5 kcal , all of the rate data can be fitted to a factor of three. For higher values of $\Delta \mathrm{Hf}_{298}^{\circ}$, the discrepancy increases.

Data on the thermal decomposition of benzylamine from toluene carrier studies [2,11] yield $\Delta H f_{298}^{\circ}=36 \mathrm{kcal}$. This technique, however, has consistently yielded erroneous rate parameters [12]. Using their very low pressure pyrolysis technique, Golden and coworkers [13] find ΔH_{298}° of NH_{2} equals 47.2 kca]. This is in reasonable agreement with the recommended value.

Heat Capacity and Entropy

The bond distance and angle from the electronic absorption spectrum (c.f. G. Herzberg, Electronic Spectra of Polyatomic Molecules, D. Van Nostrand Co., Inc., Princeton, N. J., 1966 for references and discussion). The vibrational frequencies for the ground electronic state were obtained from the matrix isolation studies by D. E. Milligan and M. E. Jacox, J. Chem. Phys. 43, 4487 (1956). The vibrational frequencles of the upper electronic level have been obtained from both the gas phase and matrix isolated electronic absorption spectra.

References

1. M. Szwarc, Proc. Roy. Soc. A198, 267 (1949).
2. J. A. Kerr, R. C. Sekhar, and A. F. Trotman-Dickenson, J. Chem. Soc. 3217 (1963).
3. E. T. McHale, B. E. Knox, and H. B. Palmer, Tenth Symposium on Combustion (International), p. 341 (The Combustion Institute, Pittsburgh, Pa., 1965).
4. K. W. Michel and H. Gg. Wagner, Tenth Symposium on Combustion (International) p. 353 (The Combustion Institute, Pittsburgh, Pa., 1965).
5. E. Meyer, H. A. Olscheusek, J. Troe, and H. Gg. Wagner Eleventh Symposium on Combustion (International) p. 345 (The Combustion Institute, Pittsburgh, Pa., 1967).
6. S. W. Benson and H. E. O'Neal, Kinetic Data on Gas Phase Unimolecular Reactions, p. 34, NSRDS-NBS 21, (U. S. Govt. Printing Office, Washington, D. C., 20402, 1970).
7. S. Gordon, W. Mulac, and P. Nangia, J. Phys. Chem. 75, 2087 (1971).
8. J. D. Saltzman and E. J. Bair, J. Chem. Phys. 41, 3564 (1964).
9. M. Gilbert, Combustion and Flame 2, 137, 149 (1958).
10. D. W. Setzer and W. C. Richardson, Canad. J. Chem. 47, 2593 (1969).
11. M. Szwarc, Proc. Roy. Soc. Al98, 285 (1949).
12. S. W. Benson, J. Chem. Education 42, 505 (1965).
13. D. M. Golden, R. K. Solly, N. A. Gac, and S. W. Benson, J. Am. Chem. Soc. 94, 363 (1972).

T, ${ }^{\circ} \mathrm{K}$	Cp°	gibls/mol		$\mathbf{H}^{\circ}-\mathbf{H}^{\circ}{ }_{298}$	$\begin{gathered} \text { kcal/mol } \\ \Delta H f^{\circ} \end{gathered}$	$\Delta \mathrm{Gf}$	$\log \mathrm{Kp}$
		\mathbf{S}°	$-\left(\mathrm{G}^{\circ}-\mathrm{H}^{\circ} 298\right) / \mathrm{T}$				
0	. 000	. 000	INFINITE	-2.373	46.187	46.187	INFINITE
100	7.949	37.815	53.597	-1.579	45.918	46.450	-1U1.517
200	7.954	43.325	47.241	-. 783	45.721	47.058	-51.423
295	8.024	46.510	46.510	. 000	45.500	47.761	-35.010
300	8.027	46.560	46.510	. 015	45.495	47.775	-34.804
400	4. 221	48.893	46.827	. 326	45.264	48.569	-20.537
500	8.493	50.756	47.433	1.662	45.049	49.421	-21.602
600	8.805	52.331	48.121	2.526	44.958	50.314	-18.327
700	9.143	53.714	48.823	3.424	44.689	51.237	-1b.997
su0	9.492	54.957	49.513	4.355	44.543	52.182	-14.255
900	9.842	56.096	50.182	5.322	44.418	53.145	-12.905
1000	10.181	57.150	50.827	6.323	44.315	54.120	-11.828
1100	10.503	58.136	51.447	7.359	44.229	55.105	-10.948
1200	10.802	59.063	52.044	8.423	44.160	56.097	-10.217
1300	11.079	59.939	52.619	9.517	44.105	57.094	-9.598
1400	11.333	60.769	53.170	10.639	44.051	58.095	-9.069
1 bue	11.500	61.559	53.704	11.793	44.026	59.099	-0.611
1600	11.781	62.312	54.218	12.751	43.997	60.104	-8.210
1700	11.981	63.033	54.716	14.139	43.977	61.113	-7.857
1800	12.107	63.723	55.197	15.346	43.963	62.120	-7.542
1900	12.344	64.385	55.663	16.572	43.956	63.130	-7.2.2
2000	12.511	65.023	56.115	17. ล15	43.955	64.139	-7.009
2100	12.672	65.637	56.554	19.074	43.959	65.148	-6.780
2200	12.826	66.230	56.981	20.349	43.969	66.157	-6.572
2300	12.975	66.904	57.395	21.639	43.985	67.165	-6.382
2400	13.120	67.359	57.799	22.944	44.009	68.174	-6.208
2500	13.201	67.897	58.192	24.253	44.034	69.177	-0.047
2000	15.397	68.420	58.576	25.596	44.069	70.184	-5.940
2700	13.527	68.923	58.950	26.942	44.109	71.188	-5.762
2900	13.656	69.423	59.315	28.301	44.154	72.188	-5.635
2300	13.782	69.904	59.672	29.673	44.207	73.191	-5.516
3000	13.901	70.373	60.021	31.058	44.265	74.188	-5.405
3100	14.010	70.831	60.362	32.454	44.330	75.183	-5.300
3200	14.120	71.279	0.695	33.851	44.399	76.173	-5.203
3300	14.231	71.714	61.024	35.279	44.473	77.171	-5.111
3400	14.331	72.140	61.344	36.707	44.553	78.159	-5.024
3500	14.426	72.557	61.659	38.145	44.636	79.147	-4.942
3600	14.516	72.965	61.907	39.592	44.723	80.132	-4.865
3700	14.600	73.364	62.270	41.049	44.913	81.115	-4.791
3800	14.679	73.754	62.567	42.512	44.907	32.095	-4.722
3900	14.752	74.136	62.859	43.783	45.003	83.073	-4.655
4000	14.821	74.511	63.145	45.462	45.100	94.047	-4.592
4100	14.864	74.979	63.427	46.947	45.200	95.019	-4.532
4200	14.942	75.237	63.704	48.439	45.301	95.991	-4.475
4300	14.993	75.589	63.976	49.935	45.402	86.057	-4.420
4400	15.044	75.934	64.244	51.437	45.504	87.921	-4.367
4500	15.088	76.273	64.508	52.944	45.606	88.882	-4.317
4500	15.127	76.605	64.767	54.455	45.709	89.947	-4.269
4700	15.162	76.931	65.022	55.969	45.308	90.905	-4.222
4800	15.194	77.250	65.274	57.497	45.909	91.761	-4.178
4 フuU	15.221	77.564	65.521	59.008	46.007	92.714	-4.135
boud	15.245	77.972	65.765	60.531	46.104	93.666	-4.094
5100	15.260	78.174	66.006	62.057	46.198	94.617	-4.055
b200	15.235	78.470	66.243	63.594	46.292	95.56b	-4.016
5300	15.297	78.762	66.476	65.113	46.382	96.514	-3.980
brue	15.307	79.048	66.706	66.544	46.469	97.455	-3.944
bsuu	15.316	79.329	66.933	68.175	45.554	99.401	-3.910
5500	15.324	79.605	67.157	69.707	46.635	99.341	-3.877
b 700	15.320	79.876	67.378	71.240	46.713	100.284	-3.845
bsuo	15.331	90.143	67.596	72.773	46.787	101.222	-3.814
b90u	15.331	80.405	67.810	74.306	46.357	102.160	-3.784
6000	15.329	90.662	68.02?	75.939	46.924	103.095	-3.755

Point Group $C_{2 v}$
$S_{298.15}^{0}=49.15 \mathrm{cal}^{\mathrm{deg}}{ }^{-1} \mathrm{~mol}{ }^{-1}$
$\Delta H f_{0}^{\circ}=-4.20 \pm 0.2 \mathrm{kcal} \mathrm{mol}^{-1}$

Ground State Quantum Weight $=1$
Vibrational Frequencies and Degeneracies

$$
\begin{aligned}
& \frac{\omega, \mathrm{cm}}{}-1 \\
& 2614.6(1) \\
& 1182.7 \text { (1) } \\
& 2627.5(1)
\end{aligned}
$$

Bond Distance: $\mathrm{S}-\mathrm{H}=1.328 \AA$
Bond Angle: $\mathrm{H}-\mathrm{S}-\mathrm{H}=92.2^{\circ}$
Product of the Moments of Inertia: $\mathrm{I}_{\mathrm{A}} \mathrm{I}_{\mathrm{B}} \mathrm{I}_{\mathrm{C}}=4.69 \times 10^{-119} \mathrm{~g}^{3} \mathrm{~cm} 6$

Heat of Formacion

The heats of formation of $\mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})$ determined by various workers including those reviewed in the previous JANAF analysis (1) were recalculated with the results shown below. No weight was given to the work performed prior to 1934 and less weight was given to the work of Kapustinskii and Kankovskii (7) because of the difficulty of establishing the state of the products.

Thomsen (2) (1882)
Thomsen (3) (1882)
Pollitzer (4) (1909)
Lewis and Randall (5) (1918)
Zeumer and Roth (6) (1934)
Kapustinskil and Kankovskii (7) (1958)
*Equations may not be balanced.

Reaction*	$\left.\frac{\Delta H f{ }_{298}}{\text { [from }}(1)\right]$	$\frac{(\text { kcal mol }}{}{ }^{-1} \text {) }$
$\mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})+\mathrm{HI}_{3}(\mathrm{aq})=3 \mathrm{HI}(\mathrm{aq})+\mathrm{S}(\mathrm{amph})$	----	-4.4, -5.1 if S (rhombic)
$\mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})=\mathrm{SO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{SO}_{4} \cdot \mathrm{H}_{2} \mathrm{O}$	----	-2.0
$\mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{C})=2 \mathrm{HI}(\mathrm{g})+\mathrm{S}(\mathrm{rh})$	----	-4.7, -4.0 if S (amph)
$3 \mathrm{~S}(\mathrm{liq})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})=\mathrm{SO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})$	----	-3.6 ± 0.2
$\mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})=\mathrm{SO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{SO}_{4} \cdot \mathrm{H}_{2} \mathrm{O}$	-4.80 ± 0.15	-4.89 ± 0.24
$\begin{aligned} \mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})+\frac{30}{2} 2(\mathrm{~g})= & \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \\ & +\mathrm{S}(\text { rhombic }) \end{aligned}$	-4.94士0.08	-4.92 ± 0.08

Heat Capacity and Entropy

The thermodynamic functions were taken from the JANAF table for $H_{2} \mathrm{~S}(\mathrm{~g})$ dated Dec. 31, 1965, which in turn were calculated by the rigid-rotor, harmonic-oscillator approximation below $298^{\circ} \mathrm{K}$. Gordon had calculated $\mathrm{C}_{\mathrm{p}}^{\circ}$ from 298° to 6000 K by a method which takes into account second-order corrections for vibrational anharmonicity, vibrationrotation interaction, and centrifugal stretching. The spectroscopic constants used were taken from H. C. Allen, E. K. Plyler, J. Chem. Phys. 24, 35 (1956), and H. C. Allen, E. K. Plyler, J. Chem. Phys. 25, 1132 (1956).

References

1. JANAF Thermochemical Tables, 2nd Edition, NSRDS-NBS 37, U. S. Supt. Documents, U. S. Govt. Printing 0ffice, Washington, D. C. 20402 (June, 1971).
2. J. Thomsen, Thermochemical Investigations Vol II, p. 60 (J. A. Barth, Leipzig, 1882).
3. J. Thomsen, Thermochemical Investigations Vol IV, p. 188 (J. A. Barth, Leipzig, 1882).
4. F. Pollitzer, Z. anorg. Chem. 64, 121 (1909).
5. G. N. Lewis and M. Randall, J. Am. Chem. Soc. 40, 362 (1918).
6. H. Zeumer and W. A. Roth, Z. Elektrochem. 40 [11], 777 (1934).
7. A. F. Kapustinskii and R. T. Kankovskii, Zhur. Fiz, Khim. 32, 2810 (1958).
(Ideal Gas)
GFN $=34.076$

T, ${ }^{\circ} \mathbf{K}$	$\mathbf{C p}^{\circ}$	gibbs/moi$\mathrm{S}^{\circ} \quad-\left(\mathrm{G}^{\circ}-\mathrm{H}^{\circ}{ }^{\circ}{ }^{2} 88\right) / \mathrm{T}$		$\mathbf{H}^{\circ}-\mathbf{H}^{\circ} \text { а9в }$	$\begin{gathered} -\mathrm{kcal} / \mathrm{mol} \\ \Delta H P^{\circ} \end{gathered}$	$\Delta \mathbf{G r}{ }^{\circ}$	$\log \mathrm{Kp}$
0	. 000	. 000	INFINITE	-2. 381	-4.204	-4.204	INFINITE
100	7.949	40.359	56.219	-1.586	-4.290	-5.624	12.292
200	7.978	45.872	49.827	-. 791	-4.532	-6.879	7.517
298	8.172	49.151	49.151	. 000	-4.900	-7.975	5.845
300	8.176	49.202	49.152	. 015	-4.908	-7.994	5.823
400	8.504	51.597	49.474	- 849	-5.867	-8.937	4.883
500	8.889	53.536	50.100	1.718	-6.635	-9.616	4.203
600	9.306	55.193	50.813	2.628	-7.282	-10.149	3.697
700	9.737	56.660	51.546	3.580	-7.832	-10.558	3.296
800	10.162	57.988	52.269	4.575	-21.368	-12.182	3.328
900	10.567	59.209	52.973	5.612	-21.481	-11.027	2.678
1000	10.943	60.342	53.655	6.687	-21.565	-9.861	2.155
1100	11.261	61.401	54.311	7.799	-21.62?	-8.688	1.726
1200	11.584	62.396	54.943	8.943	-21.656	-7.509	1.368
1300	11.853	63.334	55.553	10.115	-21.673	-6.329	1.064
1400	12.092	64.221	56.141	11.312	-21.677	-5.149	. 804
1500	12.303	65.063	56.708	12.532	-21.671	-3.969	. 578
1600	12.491	65.863	57.255	13.772	-21.657	-2.790	.381
1700	12.653	66.625	57.784	15.030	-21.635	-1.609	. 207
1800	12.808	67.353	58.296	16.303	-21.609	-. 434	. 053
1900	12.941	68.049	58.791	17.590	-21.578	. 743	-. 085
2000	13.063	68.716	59.270	18.891	-21.543	1.917	-. 209
2100	13.171	69.356	59.736	20.203	-21.507	3.088	-. 321
2200	13.270	69.971	60.187	21.525	-21.469	4.260	-. 423
2300	13.360	70.563	60.626	22.856	-21.430	5.427	-. 516
2400	13.444	71.133	61.051	24.197	-21.389	6.597	-. 601
2500	13.520	71.684	61.466	25.545	-21.349	7.759	-. 678
2600	13.590	72.215	61.869	26.900	-21.308	8.925	-. 750
2700	13.655	72.729	62.261	28.263	-21.266	10.086	-. 816
2800	13.715	73.227	62.644	29.631	-21.226	11.243	-. 878
2900	13.771	73.709	63.018	31.005	-21.185	12.406	-. 935
3000	13.824	74.177	63.382	$32 \cdot 385$	-21.145	13.562	-. 988
3100	13.874	74.631	63.737	33.770	-21.103	14.718	-1.038
3200	13.921	75.073	54.085	35.160	-21.064	15.870	-1.084
3300	13.965	75.502	54.425	36.554	-21.025	17.024	-1.127
3400	14.007	75.919	64.756	37.953	-20.986	18.179	-1.169
3500	14.047	76.326	65.081	39.356	-20.950	19.328	-1.207
3600	14.085	76.722	65.399	40.762	-20.914	20.479	-1.243
3700	14.122	77.108	65.710	42.173	-20.881	21.632	-1.278
3800	14.156	77.485	66.015	43.586	-20.848	22.780	-1.310
3900	14.190	77.854	66.315	45.004	-20.817	23.924	-1.341
4000	14.223	78.213	66.607	46.424	-20.788	25.076	-1.370
4100	14.254	75.565	66.895	47.848	-20.759	26.219	-1.398
4200	14.285	78.909	67.177	49.275	-20.733	27.365	-1.424
4300	14.314	79.245	67.453	50.705	-20.700	28.510	-1.449
4400	14.343	79.575	67.725	52.138	-20.685	29.651	-1.473
4500	14.371	79.897	67.992	53.574	-20.664	30.798	-1.496
4600	14.397	80.213	68.254	55.012	-20.644	31.943	-1.518
4700	14.423	80.523	68.512	56.453	-20.626	33.086	-1.538
¢,300	14.450	80.827	68.765	57.897	-20.609	34.220	-1.558
7900	14.475	81.125	69.014	59.343	-20.594	35.374	-1.578
3000	14.500	81.418	69.260	60.792	-20.581	36.509	-1.596
5100	14.523	81.705	69.500	62.243	-20.570	37.657	-1.614
b200	14.548	81.988	69.739	63.597	-20.559	38.794	-1.630
5300	14.571	82.265	69.972	65.153	-20.550	39.939	-1.647
5400	14.594	82.538	70.203	66.611	-20.544	41.075	-1.662
S500	14.616	82.305	70.429	68.071	-20.539	42.210	-1.678
3600	14.639	83.069	70.652	69.534	-20.536	43.300	-1.692
5700	14.0301	83.328	70.872	70.999	-20.534	44.503	-1.706
5800	14.682	83.584	71.090	72.466	-20.534	45.638	-1.720
5900	14.705	83.835	71.303	73.936	-20.534	46.779	-1.733
6000	14.725	84.082	71.514	75.407	-20.537	47.923	-1.746

July 31, 1972

Heat of Formation

Second and third law analyses of the equilibrium constant data for the reaction $\mathrm{N}_{2}(\mathrm{~g})+3 / 2 \mathrm{H}_{2}(\mathrm{~g})=\mathrm{NH}_{3}(\mathrm{~g})$ cited in the previous JANAF evaluation (1) plus the more recent work of Schulz and Schaefer (6) was made using the revised thermal functions for $\mathrm{NH}_{3}(\mathrm{~g})$ (see below). All of the previously cited work in reaction calorimetry plus the early work of Berthelot (7,8) and Thomsen (9) were reevaluated. No significant differences in the third law calculations of the equilibrium data or in the corrections to the flow calorimetry data of Haber and Tamaru (12) and Wittig and Schmatz (13) were found. Thus, the 0.1 kcal discrepancy between the results of the equilibrium and reaction calorimetry measurements remains unresolved.The previous JANAF selection (1) for $\Delta \mathrm{Hf}_{298.15}^{\circ}$ of $\mathrm{NH}_{3}(\mathrm{~g}$) was adopted. A recent evaluation (14) which includes new indirect calorimetry measurements (unpublished) further confirms this selection.

Source	Method	$\begin{aligned} & \Delta \mathrm{Hf}_{298}^{\mathrm{b}} \\ & \left(\mathrm{kcal}^{-1} \mathrm{~mol}\right. \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Drift } \\ & \text { (e.u.) } \end{aligned}$	$\begin{aligned} & \Delta H F_{298}^{\circ} \\ & \text { (kcal mol } \end{aligned}$	$\begin{aligned} & \Delta S_{298}^{\circ} \text { (obsv cialc.) } \\ & \quad(\mathrm{e} . \mathrm{u} .) \\ & \hline \end{aligned}$
Larson, Dodge [2]	$\mathrm{K}_{\mathrm{p}}^{\circ}[4]$ from $\mathrm{K}_{\mathrm{p}}(10-1,000 \mathrm{~atm}, 600-800 \mathrm{~K})$	-10.88	-. $07 \pm .05$	-10.70 ± 0.11	$+0.24 \pm 0.15^{1}$
Haber, Tamaru, Ponnaz [3] (1915)	$\mathrm{K}_{\mathrm{p}}^{\circ}[4]$ from $\mathrm{K}_{\mathrm{p}}(30 \mathrm{~atm}, 800-1200 \mathrm{~K}$)	-10.86	. $0 \pm .05$	-10.88 ± 0.15	-0.02 ± 0.15^{2}
Haber, Mashke[5] (1915)	K_{p} (1 atm, 900-1400K)	-10.85	-. $26 \pm .08$	$-10.62 \pm .22$	0.20 ± 0.19^{3}
Schulz, Schaefer [6] (1966)	$K_{p}(1 \mathrm{~atm}, 567-673 \mathrm{~K})$	-10.87	(. 0 to -.3)	$-10.78 \pm .20$	4.4 ± 0.3^{4}
Berthelot [7] (1880)	Indirect; Reaction of Br (aq) and NH (aq)	-11.4			
Berthelot [8] (1880)	Indirect; Reaction of 0 (g) with NH (g)	-12.1			
Thomsen [9] (1882)	Indirect; Reaction of $0(\mathrm{~g})$ with NH (g)	-11.9			
Becker and Roth [10] (1934)	Indirect; Heat of combustion oxalates, etc.	$-11.00_{2} \pm 0.15$			
Haber, Tamaru, 0 eholm [11] (1915)	Flow calorimetry at 298 K	-11.10 ± 0.05			
$\begin{aligned} & \text { Haber, Tamaru [12] } \\ & \text { (1915) } \end{aligned}$	Flow calorimetry ($739-932 \mathrm{~K}$)	-10.97 ± 0.008			
Wittig, Schmatz [13] (1959)	Flow calorimetry at 823K	-10.99 ± 0.05			
*Second law analysis, ca (2) $-1.236+0.00404$ (T-	calculations made assuming ΔC cal mol 1000), (3) $-0.855+0.00305\left(\mathrm{~T}^{\mathrm{R}} 1100\right)$, (4)	$\begin{aligned} & -1 \text { is given by } \\ & -3.287+0.00651 \end{aligned}$	$\begin{aligned} & \text { (1) }-2.672+0 \\ & (T-600) . \end{aligned}$	$.00591(\mathrm{~T}-700)$	

Heat Capacity and Entropy

The thermodynamic functions differ from those of the JANAF table of Sept. 30, 1965, in being taken directly from the later and more complete work of L. Haar, J. Research Nat. Bur. Standards 72A, 207 (1968). Haar treated in detail the contribution of the highly anharmonic out-of-plane vibrational mode, including its large coupling with rotation and its coupling with the other vibrational modes. Haar's values of C_{p}° pass through a shallow maximum between 4000 and 500 K , and were extrapolated from 5000 to 6000 K by assuming a constant value (19.300 cal deg ${ }^{-1}$ mol ${ }^{-1}$). A summary of Haar's estimated uncertainties and of the differences of the JANAF table from the present table (in cal deg ${ }^{-1}$ mol ${ }^{-1}$)
is as follows:

Uncertainties (Haar, loc.cit.)

$\mathrm{T},{ }^{\circ} \mathrm{K}$
1000
3000
5000

$\frac{C_{p}^{\circ}}{\frac{p .006}{}}$| 0.10 |
| :--- |
| 0.6 |

$\frac{S^{\circ}}{0.006}$
0.06
0.4

JANAF table - this table

$\frac{\mathrm{C}^{\circ} \mathrm{P}}{}$	$\frac{\mathrm{S}^{\circ}}{-0.034}$
-0.033	
+.142	-.122
+1.775	+.265

It may be noted that these tables for NH_{3} assume equilibrium among all rotational states. Separation of NH_{3} into ortho and para forms has not so far been observed.

References

1. JANAF Thermochemical Tables, 2nd Edition (July 1970).
2. A. T. Larson and R. L. Dodge, J. Am. Chem. Soc. 45, 2918 (1923).
3. F. Haber, S. Tamaru, and Ch. Ponnaz, A. Elektrochem. 21, 89 (1915).
4. C. C. Stephenson and H. O. McMahan, J. Am. Chem. Soc. 61, 437 (1939).
. F. Haber and A. Maschke, Z. Elektrochem. 21, 128 (1915).
5. G. Schulz and H. Schaefer, Ber. Bunsenges. Physik. Chem. 70, 21 (1966).
6. M. Berthelot, Compt. Rend. 89, 877 (1879); Ann. Chim. Phys. [8] 20, $24 \overline{7}$ (1880).
7. M. Berthelot, Ann. Chim. Phys. [5] 20, 244 (1880).
8. J. Thomsen, Thermochemical Investigations Vol. II, p. 68 (Johann A. Barth, Leipzig, 1882).
9. G. Becker and W. A. Roth, Z. Elektrochem. 40, 836 (1934).
10. F. Haber and S. Tamaru, Oeholm. Z. Elektrochem. 21, 206 (1915).
11. F. Haber and S. Tamaru, Z. Elektrochem. 21, 191 (1915).
12. F. E. Wittig and W. Schmatz, Z. Elektrochem. 63,

475 (1959).

14. Private communication, W. H. Evans, U. S. Nat. Bur. Standards, July (1972); evaluation of ICSU-CODATA Task Group on Key Values for Thermodynamics, June (1972).

Amonia (NHH3)
$G F W=17.0307$

T, ${ }^{\circ} \mathrm{K}$	Cp°	gibbs/mol		$\mathbf{H}^{\circ}-\mathbf{H}^{\circ}{ }_{298}$	$\begin{gathered} \text { Kcal/mol } \\ \Delta H f^{\circ} \end{gathered}$	$\Delta \mathbf{G f}^{\text {P }}$	$\log \mathrm{Kp}$
		S°	$-\left(\mathrm{G}^{\circ}-\mathrm{H}^{\circ} 298\right) / \mathrm{T}$				
0	. 000	. 000	INFINITE	-2.401	-9.299	-9.299	INFINITE
100	7.955	37.220	53.321	-1.610	-9.930	-8.136	17.782
200	8.068	42.753	46.809	-. 811	-10.445	-6.142	6.712
298	8.521	46.047	46.047	. 000	-10.970	-3.919	2.873
300	8.533	46.100	46.048	. 016	-10.980	-3.875	2.823
400	9.253	48.650	46.390	. 904	-11.482	-1.430	. 781
500	10.049	50.800	47.062	1.869	-11.917	1.134	-. 496
600	10.825	52.701	47.846	2.913	-12.279	3.780	-1.377
700	11.557	54.425	48.665	4.032	-12.576	6.481	-2.024
800	12.245	56.014	49.486	5.223	-12.816	9.220	-2.519
900	12.894	57.494	50.294	6.480	-13.006	11.987	-2.911
1000	1こ. 501	58.884	51.084	7.800	-13.150	14.772	-3.228
1100	14.068	60.198	51.854	9.179	-13.254	17.570	-3.491
1200	14.591	61.445	52.601	10.612	-13.323	20.376	-3.711
1300	15.071	62.632	53.328	12.096	-13.361	23.185	-3.898
1400	15.510	63.765	54.033	13.625	-13.373	25.997	-4.058
1500	15.909	64.849	54.718	15.196	-13.365	28.810	-4.198
1600	16.271	65.888	55.384	16.805	-13.341	31.619	-4.319
1700	16.599	66.884	56.032	18.449	-13.299	34.430	-4.426
1800	16.896	67.841	56.661	20.124	-13.244	37.234	-4.521
1900	17.165	68.762	57.274	21.828	-13.176	40.038	-4.605
2000	17.407	69.649	57.871	23.556	-13.099	42.837	-4.681
2100	17.627	70.504	58.452	25.308	-13.014	45.631	-4.749
2200	17.825	71.328	59.019	27.081	-12.922	48.422	-4.810
2300	18.004	72.125	59.571	28.873	-12.824	51.208	-4.866
2400	18.166	72.894	60.111	30.681	-12.721	53.992	-4.917
2500	18.314	73.639	60.637	32.505	-12.617	56.765	-4.962
2600	18.445	74.360	61.151	34.343	-12.508	59.541	-5.005
2700	18.564	75.058	61.653	36.194	-12.397	62.309	-5.044
2800	18.673	75.735	62.144	38.056	-12.285	65.072	-5.079
2900	18.769	76.392	62.624	39.928	-12.171	67.837	-5.112
3000	18.858	77.030	63.094	41.810	-12.058	70.591	-5.143
3100	18.936	77.650	63.553	43.699	-11.943	73.343	-5.171
3200	19.005	78.252	64.003	45.596	-11.831	76.093	-5.197
3300	19.069	78.838	64.444	47.500	-11.721	78.841	-5.221
3400	19.122	79.408	64.876	49.410	-11.611	81.581	-5.244
3500	19.172	79.963	65.299	51.324	-11.506	84.322	-5.265
3600	19.216	80.504	65.714	53.244	-11.403	87.058	-5.285
3700	19.252	81.031	66.121	55.167	-11.305	89.793	-5.304
3800	19.283	81.545	66.520	57.094	-11.209	92.524	-5.321
3900	19.309	82.046	66.912	59.024	-11.119	95.254	-5.338
4000	19.331	82.535	67.296	60.956	-11.034	97.979	-5.353
4100	19.349	83.013	67.674	62.890	-10.954	100.703	-5.368
4200	19.361	83.479	68.044	64.825	-10.880	103.428	-5.382
4300	19.371	83.935	68.409	66.762	-10.811	106.146	-5.395
4400	19.375	84.380	68.767	68.699	-10.748	108.863	-5.407
4500	19.377	84.816	69.119	70.637	-10.693	111.579	-5.419
4600	19.373	85.241	69.464	72.574	-10.642	114.301	-5.431
4700	19.367	85.658	69.804	74.512	-10.600	117.017	-5.441
4800	19.357	86.066	70.139	76.447	-10.565	119.731	- 5.452
4900	19.343	86.465	70.468	78.382	-10.536	122.445	-5.461
5000	19.325	86.856	70.793	80.318	-10.513	125.153	-5.470
5100	19.300	87.238	71.111	82.248	-10.503	127.869	-5.480
5200	19.300	87.613	71.425	84.178	-10.497	130.582	-5.488
5300	19.300	87.981	71.734	86.108	-10.498	133.297	-5.497
5400	19.300	88.341	72.038	88.038	-10.505	136.005	-5.504
5500	19.300	88.696	72.338	89.968	-10.517	138.722	-5.512
5600	19.300	89.043	72.633	91.898	-10.536	141.431	-5.520
5700	19.300	89.385	72.924	93.828	-10.560	144.150	-5.527
5800	19.300	89.721	73.211	95.758	-10.590	146.862	-5.534
5900	17.300	90.051	73.493	97.688	-10.624	149.578	-5.541
6000	19.300	90.375	73.772	99.618	-10.664	152.291	-5.547

$$
\mathrm{S}_{298.15}^{\circ}=53.019 \text { cal } \mathrm{K}^{-1} \mathrm{~mol}^{-1}
$$

$$
\Delta \mathrm{Hf}_{298.15}^{\circ}=1.2 \pm 0.3 \mathrm{kcal} \mathrm{mc} 1^{-1}
$$

Electronic States and Molecular Constants

State	$\underline{\varepsilon, \mathrm{cm}}{ }^{-1}$	g	$\underbrace{\omega_{e}, c m^{-1}}$	$\chi_{\mathrm{x}^{\omega} \mathrm{e}, \mathrm{cm}}$	$\mathrm{B}_{\mathrm{e}}, \mathrm{~cm}^{-1}$	$\alpha_{e}, c m-1$	$\underline{r_{e}, \AA}$
$\mathrm{X}^{3} \Sigma^{-}$	0	3	1148.19	6.12	0.72082	0.00574	1.4811
$\mathrm{a}^{1} \triangle$	6350	2	[1148.19]	[6.12]	0.7119	[0.00574]	1.494
$\mathrm{b}^{1} \Sigma^{+}$	10510	1	1067.66	7.8	0.70261	0.00635	1.5005
$\mathrm{A}^{3} \mathrm{I}_{0}$	38292	6	415.2	1.6	0.6067	0.0194	
$\mathrm{A}^{3} \Pi_{1}$	38455	6	413.3	1.6	0.6107	0.0194	1.6094
$\mathrm{A}^{3} \mathrm{I}_{2}$	38616	6	412.7	1.7	0.6164	0.0204	
$B^{3} \Sigma^{-}$	41629	3	630.4	4.8	0.502	0.0062	1.775
$\mathrm{C}^{3} \mathrm{II}$	42200	6	170	[0]	[0.5]	[0]	2.2

Heat of Formation

The selection for $\Delta H f_{0}^{\circ}$ of $S O(g) 1.2 \pm 0.3 \mathrm{kcal} \mathrm{mol}{ }^{-1}$, was derived from one of the two independent means, pointed out by Okabe, J. Chem. Phys. 56, 3378 (1972), that employs principally spectroscopic data: $\Delta H f_{0}^{\circ}(S O)=1 / 2 D_{0}^{\circ}\left(S_{2}\right)+1 / 2 D_{0}^{\circ}\left(\mathrm{O}_{2}\right)-\mathrm{D}_{0}^{\circ}(\mathrm{SO})+1 / 2 \Delta H f_{0}^{\circ}\left(\mathrm{S}_{2}\right)$. The data employed are as follows. Ricks and Barrow, Can. J. Phys. 47, 2423 (1969) give $D_{0}^{\circ}\left(S_{2}\right)=100.69 \pm 0.01 \mathrm{kcal} \mathrm{mol}^{-1}$. Brix and Herzberg, Can. J. Phys. 32, 110 (1954), give $\mathrm{D}_{0}^{\circ}\left(\mathrm{O}_{2}\right)=117.97 \pm 0.046 \mathrm{kcal} \mathrm{mol}{ }^{-1}$. On the basis of analysis of spectroscopic data to 1964, JANAF (Thermochemical Tables, 2nd Edition, NSRDS-NBS 37) gives $D_{0}^{\circ}(S 0)=123.5 \pm 0.3$ (?) kcal mol ${ }^{-1}$. NBS Tech. Note $270-3$ gives $\Delta H f_{0}^{\circ}\left(S_{2}\right)=30.65 \pm 0.2 \mathrm{kcal} \mathrm{mol}{ }^{-1}$. Assuming the dissociation products of So are $\mathrm{S}\left({ }^{1} \mathrm{D}_{2}\right)$ and $\mathrm{O}\left({ }^{3} \mathrm{P}\right)$, R . Colin, Can. J. Phys. 47, 979 (1969) concludes $D_{0}^{\circ}(S O)=123.56 \pm 0.23 \mathrm{kcal}$ mole ${ }^{-1}$. A systematic error of 0.65 kcal is incurred if the assumption is wrong. Support for this assumption is as follows: 1) Okabe, J. Am. Chem. Soc. 93, 7095 (1971) concludes that $\mathrm{D}_{0}^{\circ}(0 \mathrm{~S}-0)=130.06 \pm 0.5 \mathrm{kcal}$ mol ${ }^{-1}$ assuming the predissociation of SO_{2} is to ground state products. Using $\Delta H f_{0}^{\circ}\left(\mathrm{SO}_{2}=-70.336 \mathrm{kcal} \mathrm{mol}{ }^{-1}\right.$ from NBS-NSRDS TN $270-3$ and the relation: $\triangle H f_{0}^{\circ}(S 0)=D_{0}^{\circ}(0 S-0)-$
 of $\mathrm{SO}, 217.00 \pm 0.7 \mathrm{kcal} \mathrm{mol}^{-1}$, (see Okabe, J. Chem. Phys. 56, 3378 (1972)) corresponds to the minimum energy for the reaction: $\mathrm{OSCl}_{2}=\operatorname{SO}\left(\mathrm{A}^{3} \Pi_{0}\right)+2 \mathrm{Cl}\left({ }^{3} \mathrm{P}_{3} / 2\right)$ and using $108.43 \mathrm{kcal} \mathrm{mol}{ }^{-1}$ for the difference in energy between the
 This is based on $\Delta H f_{0}^{\circ}\left(\mathrm{OSCl}_{2}\right)=-50.07 \mathrm{kcal} \mathrm{mol}{ }^{-1}\left(\mathrm{NSRDS}-\mathrm{NBS} \mathrm{TN} \mathrm{270-3)}\right.$ and $\mathrm{D}_{0}^{\circ}\left(\mathrm{Cl}_{2}\right)=57.177 \pm 0.005 \mathrm{kcal} \mathrm{mol}{ }^{-1}$ given by Douglas, Moller, and Stoicheff, Can. J. Phys. 4l, 1174 (1963); 3) Re-examination of the photoionization-yield curves of SO_{2}^{+}and SO^{+}obtained by Dibeler and Liston, J. Chem. Phys. 49, 482 (1968), suggests that their reported threshold for $\mathrm{SO} \rightarrow \mathrm{SO}^{+}+0+\mathrm{e}^{-}$should be increased from $15.81 \pm 0.02 \mathrm{eV}$ to 16.00 eV . Using the latter and the ionization energy of $S 0$ given by jonathan et al, Chem. Phys. Letters 9, 217 (1971) of $10.34 \pm 0.02 \mathrm{eV}$ and the relation: $\Delta H f_{0}^{\circ}(S O)=D_{0}^{\circ}(\mathrm{SS}-0)-1 / 2 \mathrm{D}_{0}^{\circ}\left(\mathrm{O}_{2}\right)+\Delta H f_{0}^{\circ}\left(\mathrm{SO}_{2}\right)$, one obtains $\Delta H f_{0}^{\circ}(\mathrm{SO})=1.20 \pm 0.5 \mathrm{kcal} \mathrm{mol}{ }^{-1}$.

Heat Capacity and Entropy

The vibrational and rotational constants of the respective electronic levels were taken from B. Rosen, Spectroscopic Data Relative to Diatomic Molecules, Pergamon Press, Oxford, 1970.
(Ideal GAs) $\quad G F W=48.0634$

T, ${ }^{\circ} \mathrm{K}$	gibls $/ \mathrm{mol}$ [$\mathrm{kcal} / \mathrm{mol}$ -			$\log \mathrm{Kp}$
	Cp ${ }^{\circ}$	S°	$-\left(\mathrm{G}^{\circ}-\mathrm{H}^{\circ} 298\right) / \mathrm{T}$	$\mathrm{H}^{\circ}-\mathrm{H}^{\circ}{ }^{\text {2 }}$ 8	$\Delta H{ }^{\circ}$	$\Delta \mathrm{Gf}{ }^{\circ}$	
0	. 000	. 000	INFIN1TE	-2.087	1.203	1.203	1NFIN1TE
100	5.950́	45.364	59.288	-1.392	1.387	-.783	1.711
200	6.995	50.192	53.670	-. 696	1.343	-2.949	3.223
298	7.212	53.019	53.019	. 000	1.200	-5.027	3.685
300	7.217	53.064	53.019	. 013	1.197	-5.060	3.690
400	7.543	55.184	53.306	. 751	. 480	-7.106	3.882
500	7.845	56.901	53.859	1.521	-. 053	-8.039	3.907
600	9.087	58.35 .3	54.490	2.318	-. 491	-10.674	3.888
700	8.272	59.615	55.134	3.137	-. 861	-12.317	3.846
300	8.414	60.729	55.765	3.971	-14.251	-15.199	4.152
900	8.520	61.727	56.373	4.318	-14.249	-15. 317	3.720
1000	8.617	62.630	56.954	5.676	-14.246	-15.435	3.373
1100	8.695	53.455	57.508	6.541	-14.243	-15.556	3.091
1200	8.765	64.214	58.036	7.414	-14.238	-15.675	2.855
1300	8.830	64.919	58.538	8.294	-14.231	-15.794	2.655
1400	8.894	65.575	59.018	9.180	-14.224	-15.715	2.484
1500	8.950	66.191	59.476	10.073	-14.215	-16.037	$<.337$
1600	9.017	66.771	59.914	10.772	-14.203	-16.158	2.207
1700	9.078	67.319	50.333	11.976	-14.189	-16.281	2.093
1800	9.139	67.840	60.736	12.787	-14.172	-16.405	1.992
1900	9.199	68.336	61.123	13.704	-14.152	-16.528	1.901
2000	9.253	68.809	61.495	14.627	-14.131	-16.655	1.820
2100	9.315	69.262	61.855	15.556	-14.106	-16.782	1.747
2200	9.371	69.697	62.201	16.490	-14.080	-16.009	1.680
2300	9.423	70.115	62.536	17.430	-14.051	-17.039	1.619
2400	9.477	70.517	62.801	18.375	-14.020	-17.168	1. 563
2500	9.525	70.905	63.175	19.325	-13.987	-17.301	1.512
2500	9.573	71.279	63.479	20.290	-13.952	-17.434	1.465
2700	9.618	71.641	63.775	21.240	-13.915	-17.569	1.422
2800	9.659	71.992	64.062	22.203	-13.878	-17.707	1.382
2900	9.699	72.332	64.341	23.171	-13.839	-17.943	1. 345
3000	9.735	72.661	64.613	24.143	-13.800	-17.980	1.310
3100	9.769	72.991	64.878	25.118	-13.758	-18.121	1.277
3200	9.801	73.291	65.136	26.097	-13.718	-18.263	1.247
3500	9.850	73.593	65.388	27.078	-13.675	-18.407	1.219
5400	9.857	73.887	65.634	28.0063	-13.633	-18.549	1.192
3500	Y.862	74.173	65.873	29.050	-13.591	-18.697	1.168
3600	9.905	74.452	66.108	30.039	-13.548	-18.842	1.144
3700	9.920	74.724	66.337	31.031	-13.506	-18.989	1.122
3800	9.945	74.989	66.561	32.024	-13.463	-19.138	1.101
3900	9.963	75.247	66.781	33.020	-13.421	-19.290	1.081
4000	9.951	75.500	66.996	34.017	-13.379	-19.438	1.062
4100	9.997	75.745	67.205	35.715	-13.336	-19.590	1.044
4200	10.012	75.987	67.412	36.016	-13.294	-19.743	1.027
4300	11.024	76.223	67.614	37.015	-13.252	-19.097	1.011
$4+00$	10.043	76.454	67.813	38.022	-13.211	-20.053	. 996
4500	10.056	76.580	68.007	39.027	-13.170	-20.207	. 981
4óu	10.074	76.901	68.195	40.033	-13.128	-20.364	. 967
4700	10.094	77.118	68.386	41.041	-13.085	-20.523	. 954
4800	10.107	77.330	68.570	42.051	-13.043	-20.682	. 942
4900	10.125	77.537	68.751	43.063	-13.000	-20.840	. 930
sous	10.145	77.744	58.929	44.076	-12.957	-21.004	. 918
5100	10.100	77.945	69.103	45.092	-12.913	-21.162	. 907
5200	10.192	78.143	69.275	46.110	-12.867	-21.325	. 896
5300	10.213	78.337	69.444	47.131	-12.819	-21.487	. 886
540u	10.240	78.529	69.611	48.154	-12.770	-21.552	. 876
ちらUU	$110 \cdot 213$	78.717	69.775	49.180	-12.719	-21.316	. 807
5.000	11).31c	78.902	69.936	50.209	-12.666	-21.982	. 858
5700	111.350	79.085	70.095	51.242	-12.610	-22.151	. 849
5300	10.390	79.265	70.252	52.279	-12.551	-22.310	. 841
5900	10.430	79.443	70.406	53.321	-12.497	-22.489	. 833
0000	10.485	79.619	70.558	54.365	-12.421	-22.654	. 825

Ground State Configuration ${ }^{2} \mathrm{P}_{3} / 2$
 $S_{298.15}^{\circ}=37.917$ gibbs mol ${ }^{-1}$

$\Delta H f_{0}^{\circ}=18.34 \pm 0.12 \mathrm{kcal}_{\mathrm{mol}}{ }^{-1}$
$\Delta H f_{298.15}^{\circ}=18.84 \pm 0.12 \mathrm{kcal} \mathrm{mol}^{-1}$

Electronic Levels and Quantum Weight

Same as ref. (1)

Heat of Formation

A review of earlier work is given in ref. (1); a value of $37.72 \pm 0.80 \mathrm{kcal}$ mol ${ }^{-1}$ for the F_{2} dissociation energy, D_{0}°, was selected. A review of later work, which follows, suggests the uncertainty in D_{0}° of F_{2} can be significantly reduced.

From a third law analysis of the equilibrium data of Doesher (2) and Wise (3) for the reaction $\mathrm{F}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{~F}(\mathrm{~g})$, Stamper and Barrow (4) obtained $D_{0}^{\circ}\left(F_{2}\right)=\underline{36.71} \pm 0.13 \mathrm{kcal} \mathrm{mol}^{-1}$. A more realistic uncertainty based on tbe analysis of ref. (1) is $\pm 0.80 \mathrm{kcal} \mathrm{mol}^{-1}$.

The dissociation energy of F_{2} may be derived from the relation; $\mathrm{D}_{0}^{\circ}\left(\mathrm{F}_{2}\right)=2 \mathrm{D}_{0}^{0}(\mathrm{HF})+2 \Delta H f_{0}^{\circ}(\mathrm{HF})-\mathrm{D}_{0}^{\circ}\left(\mathrm{H}_{2}\right)$. The following values were employed. $D_{0}^{\circ}(\mathrm{HF})$: Dilonardo and Douglas (5) report $D_{0}^{\circ}(\mathrm{HF})=135.33 \pm 0.17 \mathrm{kcal} \mathrm{mol}-1 \mathrm{irom}$ new measurements on the emission spectrum of HF . This confirms and refines the value of $135.13 \pm 0.23 \mathrm{kcal} \mathrm{mol}$ given by Johns and Barrow (6). Berkowitz et al (7) obtained $D_{0}^{\circ}(H F)=134.79 \pm 0.23 \mathrm{kcal} \mathrm{mol}{ }^{-1}$ from dissociative photoionization, DI, of HF and explain the low results, $132.37 \pm 0.69 \mathrm{kcal} \mathrm{mol}{ }^{-1}$, of Dibeler et al (8), who performed similar DI experiments, as due to the latter's failure to take into account the rotational excitation of the molecules undergoing ionization. $\Delta H f_{0}^{\circ}(H F):$ The value selected in ref. (1), $-65.13 \pm 0.2 \mathrm{kcal} \mathrm{mol}^{-1}$, was adopted. This avoids possible circularity if the value in ref. (9) were used. (The latter is partly based on $D_{0}^{\circ}(\mathrm{HF})$ and $D_{0}^{\circ}\left(\mathrm{F}_{2}\right)$.) $\mathrm{D}_{0}^{\circ}\left(\mathrm{H}_{2}\right): 103.263 \pm 0.003 \mathrm{kcal}$ mol ${ }^{-1}$ was taken from Herzberg (10). Combining these values one obtaius $D_{0}^{\circ}\left(F_{2}\right)=\underline{37.14} \pm 0.6 \mathrm{kcal} \mathrm{mol}{ }^{-1}$.

Berkowitz et al (7) obtained $19.01 \pm 0.01 \mathrm{eV}$ for the DI threshold of $\mathrm{F}_{2}\left(\mathrm{~F}_{2} \rightarrow \mathrm{~F}^{+}+\mathrm{F}+\mathrm{e}^{-}\right.$). Contribution to the F^{+} yield due to ion-pair formation and the effects of rotationally excited molecules were taken into account. Dibeler et al (8), who did not make such corrections, reported the low value $18.76 \pm 0.03 \mathrm{eV}$. Subtracting the ionization potential for F, 17.422 eV , given by Moore (11) from the former threshold, Berkowitz et al obtain $D_{0}^{\circ}\left(F_{2}\right)=\underline{36.67 \pm 0.23} \mathrm{kcal} \mathrm{mol}{ }^{-1}$.

Chupka and Berkowitz (12) have shown by kinetic energy measurements on positive ions formed by photoproduction of ion pairs $\left(\mathrm{H}^{+}+\mathrm{F}^{-}\right.$from HF and $\mathrm{F}^{+}+\mathrm{F}^{-}$from F_{2}) tbat tbe results are consistent with the DI thresholds of Berkowitz et al (7) if $\mathrm{EA}(\mathrm{F})=3.400 \pm 0.002 \mathrm{eV}$. This is the electron affinity reported by Popp (13) and agrees with the value, $3.398 \pm 0.002 \mathrm{eV}$, determined by Milstein and Berry (14). The ion pair threshold, 15.49 eV , reported by Dibeler et al (8), for F_{2} agrees with that of Berkowitz et al (7) if it is reassigned to ion-pair formation from vibrationally excited molecules $\left(F_{2}, v^{\prime \prime}=1\right)$ and yields $D_{0}^{\circ}(F)=36.43 \pm 0.69 \mathrm{kcal}^{2} \mathrm{~mol}^{-1}$.

The value of $D_{0}^{\circ}\left(F_{2}\right)=36.67 \pm 0.23 \mathrm{kcal} \mathrm{mol}{ }^{-1}$ from the measurements of Berkowitz et al (7) on the DI of F_{2} was adopted. The remaining values of $D_{0}^{\circ}\left(F_{2}\right)$ agree with this value within their stated uncertainties.

Heat Capacity and Entropy

Same as ref. (1).

References

1. JANAF Thermochemical Tables, 2nd Edition, NSRDS-NBS 37, June 1971 (U. S. Govt. Printing Office, Washington, D. C. 20402).
2. R. N. Doesher, J. Chem. Phys. 20, 330 (1952).
3. H. Wise, J. Phys. Chem. 58, 389 (1954).
4. J. G. Stamper and R, F. Barrow, Trans. Faraday Soc. 54, 1592 (1958).
5. G. DiLonardo and A. E. Douglas, J. Chem. Phys . 56, 5185 (1972).
6. J. W. C. Johns and R. F. Barrow, Proc. Roy. Soc. (London) A251, 504 (1959).
7. J. Berkowitz, W. A. Chupka, P. M. Guyon, J. H. Holloway, and R. Spohr, J. Chem. Phys. 54, 5165 (1971).
8. V. H. Dibeler, J. A. Walker and K. E. McCulloh, J. Chem. Phys. 51, 4230 (1969).
9. D. D. Wagman, W. H. Evans, V. B. Parker, I. Halow, S. M. Bailey, and R. H. Schumm, NBS Technical Note 270-3, January 1968 (U. S. Govt. Printing Office, Washington, D. C. 20402).
10. G. Herzberg, Phys. Rev. Lett. 23, 1081 (1969).
11. C. E. Moore, NSRDS-NBS 34 (1970) (U. S. Govt. Printing 0ffice, Washington, D. C. 20402).
12. W. A. Chupka and J. Berkowitz, J. Chem. Phys. 54, 5126 (1971).
13. H. P. Popp, Z. Naturforsch. 22a, 254 (1967).
14. R. Milstein and R. S. Berry, J. Chem. Phys. 55, 4146 (1971).

$$
\begin{aligned}
& \text { Point Group } \mathrm{C}_{2 \mathrm{v}} \\
& \mathrm{~S}_{298.15}^{\circ}=45.106 \text { gibbs mol }
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{GFW}=18.0154 \\
& \Delta H f_{0}^{\circ}=-57.100 \mathrm{kcal} \text { mol } \\
& \Delta \mathrm{Hf}_{298.15}^{\circ}=-57.795 \pm 0.010 \mathrm{kcal} \mathrm{~mol}^{-1}
\end{aligned}
$$

Vibrational Levels and Multiplicities

same as ref. (1)

Heat of Formation

The CODATA selection (2) was adopted. Rossini $(3,4)$ determined the heat of formation of $\mathrm{H}_{2} \mathrm{O}(l)$ by direct calorimetry to be $-285,781 \pm 41$ int. J mol ${ }^{-1}$ (1 int. $\mathrm{J}=1.00017 \mathrm{~J}$, GFW ($\mathrm{H}_{2} \mathrm{O}$) $=18.0156$) correcting to GFW ($\mathrm{H}_{2} 0$) $=$ 18.0154 and adding a correction for imperfect gases (see (5), -3.6 int. $\mathrm{J} \mathrm{mol}^{-1}$) yields $\Delta \mathrm{Hf} \mathrm{O}_{298}$ for $\mathrm{H}_{2} \mathrm{O}(\mathrm{l})=$ $-68.315 \pm 0.010 \mathrm{kcal} \mathrm{mol}^{-1}$. The later and less precise work of King and Armstrong (6) (an auxiliary measurement) which gave $\Delta H f_{298}^{\circ}$ of $H_{2} \mathrm{O}(\ell)=-68.32 \pm 0.08 \mathrm{kcal} \mathrm{mol}^{-1}$ is in good agreement. Work before 1931 is critically reviewed by Rossini (3). The heat of vaporization of $\mathrm{H}_{2} \mathrm{O}(\ell)$ at 298 K corrected to zero pressure was taken from Keenan et al (7); $\Delta H_{\mathrm{v} 298}^{\circ}$ of $\mathrm{H}_{2} \mathrm{O}(\ell)=10.520 \pm 0.001 \mathrm{kcal} \mathrm{mol}{ }^{-1}$. This value is in good agreement with the (recalculated) value determined by Rossini (5) from the work of Osborne, Stimson, and Ginnings (8) of $10.519 \pm 0.003 \mathrm{kcal}$ mol ${ }^{-1}$.

Heat Capacity and Entropy

Same as ref. (1).

References

1. JANAF Thermochemical Tables, 2nd Edition, NSRDS-NBS 37, June, 1971 (U. S. Govt. Printing Office, Washington, D. D., 20402).
2. CODATA Task Group on Key Values for Thermodynamics, Final Set of Key Values for Thermodynamics - Part I, November 1971 (CODATA Bulletin No. 5).
3. F. D. Rossini, J. Res. Nat1. Bur. Standards 6, 1 (1931).
4. F. D. Rossini, J. Res. Natl. Bur. of Standards 7, 329 (1931).
5. F. D. Rossini, J. Res. Nat1. Bur. of Standards 22, 407 (1939).
6. R. C. King and G. T. Armstrong, J. Res. Nat1. Bur. of Standards 72A, 113 (1968).
7. J. H. Keenan, F. G. Keyes, P. G. Hill, J. G. Moore, Steam Tables, Thermodynamic Properties of Water Including Vapor, Liquid, and Solid Phases - English Units (John Wiley and Sons, New York, 1969).
8. N. S. Osborne, H. F. Stimson, and D. C. Ginnings, J. Res. Nat1. Bur. of Standards 23, 197 (1939).

4 DESCRIPTIVENOTES (Type of report and inclusive dates)
Scientific Interim
5. AUTHOR(S) (First name, middla initial, last name)

THOMAS B DOUGLAS CHARLES W BECKETT

10. DISTRIBUTION STATEMENT

Distribution of this document is unlimited
11. SUPPLEMENTARY NOTES

TECH, OTHER
2. SPONSORING MILITARYACTIVITY

AF Office of Scientific Research (AFSC) 1400 Wilson Boulevard
Arlington, Virginia 22209
13. ABSTRACTThe standard heat of formation of $\mathrm{MoF}_{6}(\mathcal{L})$ was determined accurately by solution calorimetry. Transpiration measurements on $\mathrm{MoF}_{5}(\ell)$ covered $70^{\circ}, 90^{\circ}$, and $110^{\circ} \mathrm{C}$. A direct vapor-pressure method was developed and accurately tested. Infrared and Raman spectroscopy led to a complete vibrational assignment for the MoF_{5} molecule. Two drop-type apparati measured the heat capacity of $\mathrm{Mo}_{2} \mathrm{C}, 273^{\circ}-1475^{\circ} \mathrm{K}$. The subsecondduration pulse-heating technique measured the specific heat, electrical resistivity, ard hemispherical total emittance of $90 \mathrm{Ta}-10 \mathrm{~W}\left(1500^{\circ}-3200^{\circ} \mathrm{K}\right)$ and $99 \mathrm{Nb}-1 \mathrm{Zr}\left(1500^{\circ}-2700^{\circ} \mathrm{K}\right)$; deviations from additivity were investigated. Pulse techniques measured the melting points of W and Nb (with 15 and 10 K uncertainties, respectively) and their electrical resistivities above their melting points. The feasibility of pulse-heating techniques was demonstrated for measuring heats of fusion (using Nb) and solid-solid transformatis (using Fe). After critical data examination, suggested thermal rate constants were tabulated for the dissociation and recombination of molecular $\mathrm{NH}_{3}, \mathrm{~N}_{2} \mathrm{H}_{4}$, and $\mathrm{N}_{2} \mathrm{~F}_{4}$ (10^{-5} to 100 atm , and $200^{\circ} \mathrm{K}$, up to $4000^{\circ}, 3000^{\circ}$, and $1800^{\circ} \mathrm{K}$ respective 1 y) ; these results revised the heat of formation of $\mathrm{NH}_{2}(\mathrm{~g})$ and the $\mathrm{N}-\mathrm{N}$ bond energy by 5 and 3 kcal/mol respectively. A bibliography on the chemical kinetics of 60 gas-phase reactions of fluorides of Cl, N, and 0 covers 1934-1972. After a critical review and correlation, new ideal-gas thermochemical tables and texts (in the JANAF-Tables format) were given for 31 simple gas species (many containing deuterium or fluorine) of current interest in chemical laser research. (U)

[^0]: *Preliminary experiments.

[^1]: 1
 Numbers in brackets refer to literature references at the end of this chapter.

[^2]: $\mathrm{a}_{\text {Figures }}$ in brackets indicate 1 iterature references listed at the end of this chapter.

[^3]: ${ }^{c}$ OMNITAB programming of a UNIVAC-1108 computer used.

[^4]: *This work was supported in part by the Directorate of Aeromechanics and Energetics of the U. S. Air Force Office of Scientific Research.

[^5]: *This work was supported in part by the Directorate of Aeromechanics and Energetics of the U. S. Air Force Office of Scientific Research.

[^6]: ${ }^{1}$ Figures in brackets indicate the literature references at the end of this paper.

[^7]: 2 Imprecision refers to the standard deviation of an individual point as computed from the difference between measured value and that from the smooth function obtained by the least squares method.

[^8]: * This work was supported in part by the Directorate of Aeromechanics and Energetics of the U. S. Air Force Office of Scientific Research.

[^9]: *This work was supported in part by the Directorate of Aeromechanics and Energetics of the U. S. Air Force Office of Scientific Research.

[^10]: *This work was supported in part by the Directorate of Aeromechanics and Energetics of the U. S. Air Force Office of Scientific Research.

[^11]: *This work was supported in part by the Directorate of Aeromechanics and Energetics of the U. S. Air Force Office of Scientific Research.

[^12]: 1) Survey of Experimental Data
[^13]: II. Indirect Studies

