NATIONAL BUREAU OF STANDARDS REPORT

DYNAMIC THERMAL PERFORMANCE OF AN EXPERIMENTAL MASONRY BUILDING

Report to
Department of Housing and Urban Development Washington, D. C.

U.S. DEPARTMENT OF COMMERCE NATIONAL BUREAU OF STANDARDS

NATIONAL BUREAU OF STANDARDS

The National Bureau of Standards ' was established by an act of Congress March 3, 1901. Today, in addition to serving as the Nation's central measurement laboratory, the Bureau is a principal focal point in the Federal Government for assuring maximum application of the physical and engineering sciences to the advancement of technology in industry and commerce. To this end the Bureau conducts research and provides central national services in four broad program areas. These are: (1) basic measurements and standards, (2) materials measurements and standards, (3) technological measurements and standards, and (4) transfer of technology.
The Bureau comprises the Institute for Basic Standards, the Institute for Materials Research, the Institute for Applied Technology, the Center for Radiation Research, the Center for Computer Sciences and Technology, and the Office for Information Programs.
THE INSTITUTE FOR BASIC STANDARDS provides the central basis within the United States of a complete and consistent system of physical measurement; coordinates that system with measurement systems of other nations; and furnishes essential services leading to accurate and uniform physical measurements throughout the Nation's scientific community, industry, and commerce. The Institute consists of an Office of Measurement Services and the following technical divisions:

Applied Mathematics-Electricity-Metrology-Mechanics-Heat-Atomic and Molecular Physics-Radio Physics --Radio Engineering "-Time and Frequency "-Astrophysics "-Cryogenics. ${ }^{2}$
THE INSTITUTE FOR MATERIALS RESEARCH conducts materials research leading to improved methods of measurement standards, and data on the properties of well-characterized materials needed by industry, commerce, educational institutions, and Government; develops, produces, and distributes standard reference materials; relates the physical and chemical properties of materials to their behavior and their interaction with their environments; and provides advisory and research services to other Government agencies. The Institute consists of an Office of Standard Reference Materials and the following divisions:

Analytical Chemistry-Polymers-Metallurgy-Inorganic Materials-Physical Chemistry.
THE INSTITUTE FOR APPLIED TECHNOLOGY provides technical services to promote the use of available technology and to facilitate technological innovation in industry and Government; cooperates with public and private organizations in the development of technological standards, and test methodologies; and provides advisory and research services for Federal, state, and local government agencies. The Institute consists of the following technical divisions and offices:

Engineering Standards-Weights and Measures - Invention and Innovation - Vehicle Systems Research-Product Evaluation-Building Research-Instrument Shops-Measurement Engineering-Electronic Technology-Technical Analysis.
THE CENTER FOR RADIATION RESEARCH engages in research, measurement, and application of radiation to the solution of Bureau mission problems and the problems of other agencies and institutions. The Center consists of the following divisions:

Reactor Radiation-Linac Radiation-Nuclear Radiation-Applied Radiation.
THE CENTER FOR COMPUTER SCIENCES AND TECHNOLOGY conducts research and provides technical services designed to aid Government agencies in the selection, acquisition, and effective use of automatic data processing equipment; and serves as the principal focus for the development of Federal standards for automatic data processing equipment, techniques, and computer languages. The Center consists of the following offices and divisions:

Information Processing Standards-Computer Information - Computer Services - Systems Development-Information Processing Technology.
THE OFFICE FOR INFORMATION PROGRAMS promotes optimum dissemination and accessibility of scientific information generated within NBS and other agencies of the Federal government: promotes the development of the National Standard Reference Data System and a system of information analysis centers dealing with the broader aspects of the National Measurement System, and provides appropriate services to ensure that the NBS staff has optimum accessibility to the scientific information of the world. The Office consists of the following organizational units:

Office of Standard Reference Data-Clearinghouse for Federal Scientific and Technical Information *-Office of Technical Information and Publications-Library-Office of Public Information-Office of International Relations.

[^0]
NATIONAL BUREAU OF STANDARDS REPORT
 NBS PROJECT
 NBS REPORT

4214136
September 1, 1971
4218383

DYNAMIC THERMAL PERFORMANCE OF AN EXPERIMENTAL MASONRY BUILDING

B. A. Peavy
F.J. Powell
D. M. Burch
Environmental Engineering Section
Building Research Division
Institute for Applied Technology
National Bureau of Standards
Washington, D. C. 20234

Report to
Department of Housing and Urban Development
Washington, D.C.

IMPORTANT NOTICE

NATIONAL BUREAU OF STA for use within the Government. E and review. For this reason, the whole or in part, is not authoriz Bureau of Standards, Washingtor the Report has been specitically .

Approved for public release by the director of the National Institute of Standards and Technology (NIST) on October 9, 2015
accounting documents intended ubjected to additionai evaluation listing of this Report, either in Office of the Director. Nationial the Government agency for which pies for :ts own use.

U.S. DEPARTMENT OF COMMERCE
 NATIONAL BUREAU OF STANDARDS

Table of Contents

Page
Executive Summary ii

1. Introduction 1
2. Prediction and Evaluation Analyses 5
3. Description of Building 8
4. Instrumentation and Transducers 10
5. Experimental Procedure 12
a. Floating Tests 13
b. Thermostated Tests 14
6. Results and Discussion 15
a. Floating Tests 21
b. Thermostated Tests 28
c. Heating Load Predictions 31
7. Conclusions 34
8. Acknowledgments 35
Figures 1 through 32 36
List of Figures 68
Appendix A - Air Infiltration Measurements on the NBS Prototype Building 1a
Appendix B - Noise Transmission Measurements of the NBS Prototype Building 1b
Appendix C - Computer Programs (NBSLD) to Obtain Heating and Cooling Loads and to Estimate Room Air Temperature Change Using Thermal Response Factors 1c
Appendix D - Computer Program Used in Evaluation for the Pro- totype Building 1d
Appendix E - Input and Output for the Response Factor Program 1e

The main thrust of this effort was centered around the actual dynamic, rather than static, thermal behavior and response of the fabric of an experimental masonry building. Presently, most thermal design procedures for a building involve the assumptions that steady-state temperatures exist indoors and outdoors and that the mass of the building can be neglected. This report describes the dynamic (non-steadystate) thermal behavior of an experimental building as it is affected by changing outdoor air temperatures.

A full-scale building was erected in a high-bay environmental chamber and the exterior surfaces were exposed to a diurnal temperature cycle. Several features of the building were changed during the experiment to note the effect on the thermal performance of the building. These features were: fenestration, amount and location of insulation and indoor mass. In all cases measured values of temperature and heat transfer were compared with the corresponding values predicted by a computer program called National Bureau of Standards Load Determination (NBSLD).

The experimental structure was a one room house which was 20^{\prime} long, 20^{\prime} wide, and 10^{\prime} high. The walls were made of solid concrete cinder aggregate blocks with fully bedded mortar joints. The floor consisted of two inch thick concrete placed over two inches of polystyrene board-type insulation. The roof was made from five reinforced pre-cast concrete slabs. When it was desired to simulate an indoor mass, 2600 pounds of concrete block were stacked on the floor. When insulation was used, 2 inch thick polystyrene board-type insulation was spot-glued to the inside or the outside surfaces of the building. This building was instrumented to obtain heat transfer data.

Two types of basic tests were performed. The first was a floating test in which no heat energy was added to or taken away from the interior of the building. For this test, the interior thermal environment of the building was allowed to respond to the outdoor air temperature cycle. For most of the tests the outdoor temperature was varied between 40 and 100 F each day. The second type of test was a thermostated test. For these tests the experimental building was exposed to the outdoor air temperature cycle, while the indoor air temperature was maintained within $\pm 1^{\circ} \mathrm{F}$ by controlling four electric fan heaters located on the floor of the experimental structure.

It was found that the combination of mass in the walls and roof facing the interior with insulation placed on the outside surfaces of the building was very effective in reducing and controlling the variation of the indoor air temperature. This desired effect was predicted by the computer program. For example, when the inside air temperature was not controlled and the building was floating in response to the outside air temperature cycle (about $60^{\circ} \mathrm{F}$ change) the indoor air temperature change over 24 hours was about $\pm 1^{\circ} \mathrm{F}$. In addition, comparing cases of no insulation, insulation inside, and insulation outside, the temperature differences from floor to ceiling on the walls and of the indoor air were lowest when the insulation was placed on the outside of the building.

The effect of an indoor mass on the thermal behavior of the experimental structure was small. For tests in which the variation of the inside temperature was small (such as the thermostated tests), the effect of an indoor mass was practically negligible.

The NBSLD computer program was experimentally validated for predicting the daily indoor air temperature profile as it is influenced by known outdoor temperature conditions and the effect of the mass and thermal resistance of this experimental building. Furthermore, when the inside air temperature was thermostated, this program predicted the peak and daily average heating loads and may therefore be used to size equipment needed to condition the interior of a building and to predict energy requirements. It was shown that steady-state methods of heating load calculation could result in oversizing heating equipment by 30% or more. The NBSLD dynamic method takes into account heat storage effects and therefore predicts the peak heating load more realistically. The maximum
difference between the computer calculated peak heating load and measured values was six percent and the average difference was 3.5 percent for the five tests.

1. Introduction

To provide a functional and habitable indoor environment for a building requires careful consideration of the properties and performance of the materials that cover the building frame together with careful design, specification and installation of its mechanical and electrical systems. The building materials and systems taken together are a major part of the cost of a new building and the fuel consumption also constitutes a substantial long-term expense in the operation of a building.

The indoor thermal environment of a building is influenced by the weather, by the thermal behavior of the walls, roof and floors, by heatproducing occupant-related activities, and especially by the mechanical, electrical and service systems that must function to provide control of the heating and cooling devices that serve to make living spaces habitable.

This study explores the actual dynamic or time-variable flow of heat into and out of the fabric of a building and the resulting temperature patterns of the indoor air and the structure itself. Present practices are based largely on steady-state assumptions and techniques. The actual performance is dynamic because of the changing patterns of weather and climate. Therefore, analysis and predictions of hourly, daily and seasonal system performance should be based on dynamic considerations. The theory and basic mathematics for the dynamics of such a system were first explained by Fourier, abcut 1820 , but the complexity of calculation and the time and expense involved has deterred architects and engineers from using such sophisticated procedures to design and evaluate buildings. Simplified steady-state approaches have been and are still used in com-
bination with engineering judgment.
Design calculations for the heating and cooling loads for buildings have been performed virtually by a multiplicity of arithmetic and algebraic computations. It was not practical to make an extensive type of design analysis and the loads were generally determined by employing simple equations using selected fixed winter and summer design temperatures. Experience has shown that systems designed on this basis are sometimes oversized and may not operate at full load and optimum efficiency.

With the advent of high speed electronic digital computers with a large memory bank, it is now possible to make a comprehensive design analysis which includes the dynamic performance of buildings as affected by diurnal and seasonal patterns of the weather and the time dependent interactions within the building itself. This approach allows an engineer to rapidly and inexpensively calculate: (a) energy requirements with consideration of operating costs, (b) heating and cooling load profiles for equipment design or selection and operation, (c) the information that will permit the design engineer to rapidly evaluate a large number of options in the design process, and (d) optimum efficiency of energy utilization which is becoming increasingly important as a national concern.

Computer programs usually contain approximations that require experimental validation before being adopted for wide-scale use. In addition, the performance data on building materials and elements, design weather data and boundary conditions at surfaces need better definition to assure accuracy of predicted results.

It is the objective of this study to produce a computer program suited to the variable temperature and heat flow regimes in most real situations and to compare results as predicted by this program with measurements made in the laboratory on full scale structures that are subjected to changing simulated weather patterns. Further, it was hypothesized that building walls, roofs and floors can be better designed to take advantage of thermal lags that occur due to the mass of the building and thereby allow a reduction of the installed capacity of mechanical equipment for heating and cooling while still maintaining performance satisfactory for human comfort and health. For example, it was hypothesized that if the masonry of a building is located on the indoor side of walls and roofs with thermal insulation on the outside the stability of indoor temperature changes should be improved with less gross energy expended for maintaining a selected indoor temperature level. Also, locating masonry on the inside of the walls with insulation on the outside provides other potential advantages such as: a reduction of cracking and spalling because the masonry remains unexposed to weather and at essentially a constant temperature and moisture content; the use of strong durable indoor surfaces should allow a reduction in the costs of maintenance and redecorating; a possible improvement in acoustic performance; and a greater resistance of the building to an interior fire, or its rapid spread. When compared with the usual construction of walls with masonry outside and insulation inside, the proposed inverted system with insulation outside has elicited considerable interest.

A concerted effort towards the experimental verification of computer calculation methods and the technical merits of the inverted system is needed. At the National Bureau of Standards the initial experimental phases in this regard included laboratory testing in a high-bay environmental chamber employing a prototype building where the time varying external environment could be controlled, reproduced and variations in important parameters could be studied.

This report presents a computer program for prediction of dynamic thermal and energy loads of buildings, the experimental results obtained from laboratory measurements made on a prototype building and the comparison of experimental results with those calculated by the computer program. In conjunction with the experimental phases involving the dynamic thermal performance of a prototype building, two other significant experiments were performed on the building. The first experiment was concerned with the air infiltration rate of the building. The method, procedure and results are contained in Appendix A of this report. The second experiment involved a series of noise transmission measurements made on the building. The method, procedure and results are contained in Appendix B of this report. Other observations included monitoring of the moisture content of the prototype building and the movement of the walls of the building under the influence of the changes in simulated outdoor air temperatures. The moisture content reached low equilibrium values early in the program and remained stable thereafter. Wall movement was little and about what would be expected using predictive engineering calculations. No surface or through-the-wall cracks in masonry were observed at any time in the program.

In order to evaluate the dynamic, rather than steady-state thermal behavior and response of the fabric of a building as affected by diurnal and seasonal variations of weather and the time dependent interactions within the building, it was necessary to make a comprehensive mathematical analysis of the various heat transfer problems and translate the derived expressions into computer programs. It was found that the heat conduction portion of the overall problem could not be satisfied by purely rigorous mathematical solutions to the applicable partial differential equations because some of the boundary conditions at solid surfaces cannot be represented in a rigorous form in a reasonable manner. For these reasons, the Response Factor method was employed for those portions of the problem involving heat conduction, because it allows a time variation of boundary conditions and can readily be related to similar and other modes of heat flow, such as radiation and time varying changes in the nature of convection heat flow.

Basically, the Response Factor method predicts one-dimensional heat flow by utilizing the superposition principle in such a manner that the overall thermal response of a solid at a selected time is the sum of the responses caused by many individual temperatures or heat flux pulses during preceding time steps. Thereby, transient boundary conditions are simulated by a train of pulses. By summing up the fluxes or temperatures caused by each pulse, the total heat flux or temperature at a given time can be determined. The differential equations of heat conduction for multilayer systems of a building are solved in this method by employing matrix equations of the Laplace transforms. The matrix algebra, superposition principle, and inversion of the Laplace transforms are shown and discussed by Kusuda*/ Experience has shown that when this method is compared with a rigorous analytical solution under simplified conditins, the agreement is very good, except for the case where sudden changes or amplitude peaks of a weather cycle are encountered. This is probably due to the time steps employed and is not considered to be a serious drawback.
*/
Thermal Response Factors for Multi-layer Structures of Various Heat Conduction Systems, American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE) Transactions, 1969, pp. 246-271.

Appendix C contains the complete computer program, NBSLD, Computer Programs to Obtain Heating and Cooling Loads and to Estimate Room Air Temperature Change Using Thermal Response Factors. For the purpose of predicting performance in the experiment certain subroutines of NBSLD were not needed. Appendix D is the computer program as adapted from NBSLD for use in this report for comparing predicted results with experimentally measured results. Appendix E gives a sample set of input and a print-out of corresponding computer results as used with the program of Appendix D.

For this thermal analysis, the following assumptions were made:

1. The conduction heat transfer through all the components of the experimental structure was assumed to be one-dimensional.
2. A11 building materials were assumed to be homogeneous having constant physical and thermal properties over the operating temperature range of the tests.
3. For the tests considered in this report the heattransfer coefficients for the inside and outside surfaces of the experimental structure were assumed to be constant.
4. Heat and mass transfer of water in vapor or liquid form or the latent heats of condensation and evaporation were not considered in the analysis. For most tests, the dew point temperature of the outside air was maintained below that for any temperature occurring in daily cycle.
5. Infiltration of air from the outside to the inside and from the inside to the outside was considered to be a constant for a particular test. Two tests were performed for determining the air infiltration rates of the building, one with and the other without windows installed. The description and results for the air infiltration tests is in Appendix A.

3. Description of Building

The building was constructed in a high-bay environmental laboratory of approximately 70,000 cubic feet in volume. A photograph of the experimental structure located in the environmental chamber is shown in figure 1. In this laboratory the temperature and relative humidity can be controlled over the ranges -50 to $150{ }^{\circ} \mathrm{F}$ and 15 to 85 percent, respectively. Temperatures and relative humidities can be changed as a function of time using cam-operated controllers. The floor of the laboratory is undisturbed earth suitable for placing building foundations.

The outside plan dimensions of the building were $20^{\prime} \times 20^{\prime}$ with 10 foot high walls. The flat roof consisted of five 20^{\prime} long by 4^{\prime} wide and 4 inch thick steel reinforced concrete roof slabs as shown in figure 2. The walls were made of nominal $8^{\prime \prime}$ high by $8^{\prime \prime}$ wide and $16^{\prime \prime}$ long solid cinder aggregate concrete blocks joined with fully bedded mortar joints. The blocks were of a nominal 100 pound per cubic foot density. Eight concrete lintels were installed at appropriate locations; one above each of the seven windows that were $40^{\prime \prime}$ high and $32^{\prime \prime}$ wide and one above the solid wood door measuring $79^{\prime \prime}$ high x $32^{\prime \prime}$ wide x $2^{\prime \prime}$ thick. Window openings were filled with blocks for the first two tests (see figure 2). The blocks were removed and the windows installed for the remaining tests. The exposed glass area was about 8 percent of the exposed wall area or about 18 percent of the floor area. Figure 3 shows the configuration.

A detailed illustration of the floor and the footing supporting the walls is given in figure 4. Below the ground level, four inch thick polystyrene insulation was placed on the outside and a one inch thickness on the inside of the concrete blocks to a depth of 16 inches. Below the 16 inch depth a one inch thickness was placed on the outside of the footing. The floor was made of two inches of polystyrene insulation placed on the earth with a two inch thick concrete slab on top of the insulation. Considerable insulation was purposedly placed below grade to reduce the known long-term influence of heat flow to the earth from the building and to minimize the time necessary for experimental test.

Cracks at the roof-wall interface and between the roof slabs were caulked with a polysulfide sealant. When the windows were installed, all cracks including those at the glass-wood frame interface were also caulked with the same sealant. Windows were as shown in figure 4.

Commercial expanded polystyrene board-type insulation 2 inches thick, when used, was spot glued to either the inside or outside surfaces and all cracks were tape sealed. The identical insulation was used inside and outside. An internal mass consisted of 2600 pounds of solid concrete blocks stacked on the floor as shown in figure 3 was used to simulate the heat capacity effect of interior partitions, furniture, etc.
4. Instrumentation and Transducers

Temperatures were measured using 24 gage copper-constantan thermocouples. The dots on figure 5 indicate thermocouple locations. The five vertical planes A, B, C, D and E, as shown on the plan view of figure 6 , each contained the same thermocouple configuration given in figure 5, except for the indoor air thermocouples which were located only in the vertical plane B. Four thermocouples were placed in the air one foot from the outside surfaces. One of these was located at the center of the roof and the other three were located at the midheight of the three walls denoted by vertical planes B, D and E of figure 6.

Six heat flow meters were placed on inside surfaces, five of them in vertical plane B of figure 6. One was placed at the center of the floor and a second meter was placed on the floor at a distance two feet in from the wall. Two meters were placed on the ceiling opposite those on the floor. The fifth meter was placed on wall at mid-height. The sixth meter was placed mid-height on the wall of vertical plane D. The heat flow meters were circular disks 2.0 in. in diameter and 0.13 in. thick, made of tan polyvinylchloride filler material, each having an embedded spiral of helically-wound wire comprising a large number of thermojunctions in series (with internal resistance range of 135 to 170Ω) distributed over a circular area $15 / 8$ inches in diameter located centrally in the disk. Two wires attached in each meter acted as leads for the series thermopile of the meter. The meters were calibrated in an 8 in. guarded hot plate apparatus conforming with the requirements of Standard Method of Test ASTM C177.

All thermocouple and heat flow meter leads were connected to thermally isolated terminal strips at the center of the room from which copper leads went to a data acquisition system. The terminal strips were mounted on a one-quarter inch thick aluminum plate which in turn was surrounded by three inches of polyurethane insulation. All lead wires were surrounded by three inches of the same insulation for a distance of seven inches. This assembly is termed a zone box. Four additional thermocouple leads were connected to the terminal strips at ends of the zone box and their junctions were placed in an ice point reference external to the building. The readings from these four thermocouples gave the temperature of the zone box as a reference temperature for
the other thermocouple leads.
Copper leads from the zone box were connected to terminals of the data acquisition system which converted the analog signals to digital information which in turn was recorded on punched cards.

Electric power, when supplied, to the building was measured using a calibrated single-phase watthour meter equipped with an impulse generator. The impulse generator is a photo-electric device which counts the revolutions of the disk inside the wathour meter. A digital signal (number of revolutions of the disk) was fed into the data acquisition system which in turn recorded the digital signal on punched cards at selected time intervals。
5. Experimental Procedure

Figure 7 is a representative sample of the outside air temperature wave-form imposed on the structure for each 24-hour time period. The limits $40{ }^{\circ} \mathrm{F}$ to $100^{\circ} \mathrm{F}$ were selected for experimental convenience and because their average would be approximately a normal room temperature. The curve is the average of the four individual temperatures indicated by thermocouples in the air one foot from the exterior surface of the structure. The maximum difference in temperature between any of these four locations was always less than $4^{\circ} \mathrm{F}$. The outside dew point temperature was maintained constant at approximately $5{ }^{\circ} \mathrm{F}$ below the lowest temperature of a cycle. The temperature cycle of figure 7 was selected as a simulated sol-air temperature pattern as given in Table 25, page 490 of the "Handbook of Fundamentals", published by the American Society of Heating, Refrigerating and Air-Conditioning Engineers, 1967. Sol-
air temperatures were area averaged for orientations north, east, south, west and horizontal. The temperature variation as indicated on figure 7 was maintained for a period of from three to four days before a final set of data was taken. This conditioning period was deemed to be necessary and sufficient to eliminate transient heat flows thereby giving only those heat flows that would occur in a steady-periodic condition.

A complete set of data for each test consisted of recording the digital output from analog signals of 171 sensing elements (thermocouples, etc.) every 30 minutes for a 24 hour period. The recorded data on punched cards was fed into the computer programmed to process the data into temperatures, heat flows, etc. The converted data were then transferred to magnetic tape for use in analyses, and plotting as temperature and heat flow patterns.

The results from ten tests given in this report are derived from the five floating tests and five thermostated tests summarized in Tables 1 and 2 。
a. Floating Tests

Floating tests are defined as those tests where no heat energy was added or taken away from the interior air of the experimental structure by mechanical equipment. The temperature of the interior air was allowed to "float" or respond to changes in the outside air temperature. Five floating tests were conducted with variations in test conditions as shown in Table 1.

Test No.	Insulation	Windows	Internal Mass
1	None	None	None
2	None	None	Single Pane
3	Inside	Single Pane	Mass*
4	Outside	Single Pane	Mass*
5		Mass*	

b. Thermostated Tests

Thermostating tests are defined as those tests where heat energy was added to the interior air of the experimental structure by four electric heaters under thermostatic control. The variations in test conditions are shown in Table 2 along with the average inside air temperature maintained and its root mean square deviation.

Table 2

Thermostated Tests

Test No.	Insulation	Windows	Internal Mass	Inside Air Temp.
6	None	Single Pane	None	78.9 ± 1.2
7	Inside	Single Pane	Mass*	76.9 ± 0.8
8	Outside	Single Pane	Mass*	77.6 ± 0.6
9	Outside	Double Pane	Mass*	77.6 ± 0.6
10	Outside	Double Pane	Mass*	74.2 ± 0.8

The sensing element for thermostating was a thermocouple placed in the middle of the room at mid-height. It controlled the operation of four fan heaters placed as shown in figure 3 in an on-off type of control with a differential of approximately $\pm 2{ }^{\circ} \mathrm{F}$. Each drum-type fan heater, as shown in figure 8 , consisted of a 600 watt cone heater and a blower which takes air from the floor level passes it through the heater chamber and into the room through peripheral holes near the top of the drum. For test 10 , the daily temperature cycle for the outside air ranged from 10 to $70^{\circ} \mathrm{F}$, but the cycle was identical in shape to that given in figure 7.

6. Results and Discussion

The thermal and physical properties of the materials comprising the building which are necessary for use in the computer program are given in Table 3.

Table 3
Thermal and Physical Properties

	Thermal			
	Thickness in.	$\begin{aligned} & \text { Conductivity } \\ & \text { Btu } \mathrm{hr}^{-1} \mathrm{ft}^{-1} \mathrm{~F}^{-1} \end{aligned}$	$\begin{aligned} & \text { Density } \\ & \text { lbs ft } \end{aligned}$	Specific Heat Btu $1 b^{-1} \mathrm{~F}^{-1}$
Concrete Block	7.5	. 29	100	. 18
Roof Slab	4.	. 80	150	. 2
Polystyrene Insulation	2.	. 018	2.5	. 27
Concrete Floor	2.	. 80	150	. 2
Earth		. 5	120	. 2

Measurements of thermal conductivity, thickness and density were made on oven-dried samples of the concrete block and polystyrene insulation in accordance with the hot plate method given in ASTM C177. A11 other properties were obtained from available literature.

The coefficients of heat transfer at the inside and outside surfaces were the most difficult of the numerous parameters to define for this experimental work. Values given in literature are usually determined from steady-state conditions whereas the test conditions were dynamic and the coefficients vary with orientation of surfaces, direction of heat flow, temperature of surface and the air motion over the surface.

During one of the tests, an attempt was made to measure air velocities at inside and outside surfaces of the building with a vane anemometer. The air velocities were not sufficient to rotate the vanes indicating that the velocities were somewhat less than 50 fpm and that conditions at the surfaces could be considered as natural convection. Under natural convection conditions the convection component of the heat transfer coefficients is defined in literature as being proportional to the onethird power of the absolute temperature difference between a surface and the adjacent air if in the turbulent range. This relationship may apply to vertical surfaces, heated horizontal surfaces facing upward and cooled horizontal surfaces facing downward. For horizontal surfaces either heated facing downward or cooled facing upward, the adjacent air is considered to be in the laminar range and the convection component becomes very small and the radiation component of the heat transfer coefficient becomes dominant.

From the above considerations, values for the coefficients of heat transfer at the various surfaces were selected and used in the computer program as constants for the time period of a test. The coefficients used for the inside surfaces at the ceiling, walls, and floor were 1.08 , 1.1 , and $1.08 \mathrm{Btu} \mathrm{hr} \mathrm{ft}^{-1} \mathrm{~F}^{-1}$, respectively. The heat transfer coefficient for the outside surfaces was selected to be $1.47 \mathrm{Btu} \mathrm{hr}{ }^{-1} \mathrm{ft}^{-2} \mathrm{~F}^{-1}$. In general these values are based on a value of 0.9 for the radiation component of heat transfer and time averaged temperature differences between surfaces and adjacent air of 1 F and 14 F for the inside and the outside, respectively. For test 10, where the outside temperature was considerably lower, the coefficient selected was $3 \mathrm{Btu} \mathrm{hr} \mathrm{ft}^{-1} \mathrm{~F}^{-1}$. Reasonable variations in these coefficients show a negligible effect on results from the computer program.

For the computer program, the heat capacity effects of the door and windows were assumed to be negligibly small and only the thermal resistance of these components was used. For the door and single and double pane windows the overall coefficients of heat transfer were calculated to be $0.25,0.45$, and $0.39 \mathrm{Btu} \mathrm{hr}^{-1} \mathrm{ft}^{-2} \mathrm{~F}^{-1}$, respectively, for the conditions of tests 1 through 9. For the double pane windows of test 10 the selected coefficient was 0.46 .

For heat flow to or from the floor, the underlying earth was considered to be a one-dimensional semi-infinite medium for the Response Factor program, and the average of temperatures measured at the one-foot depth in the earth was used as the earth temperature at a depth considerably removed from the floor. For the duration of the tests this was deemed an adequate assumption because the root mean square deviation of the earth temperatures at the one-foot level was less than $0.2{ }^{\circ} \mathrm{F}$ for all tests where the diurnal outside air temperature varied from 40 to $100{ }^{\circ} \mathrm{F}$ and less than $0.3^{\circ} \mathrm{F}$ for the 10 to $70^{\circ} \mathrm{F}$ cycle. For the 40 to $100{ }^{\circ} \mathrm{F}$ tests, the average temperature at the top of the footing (figure 5) was about . 5 F lower than the earth temperature at the one-foot level, and for the 10 to $70{ }^{\circ} \mathrm{F}$ test was about 2 F lower. This indicates that some of the heat is flowing from the earth underlying the floor toward the footing and was not accounted for in the one-dimensional heat transfer approach of the Response Factor program. The error due to this heat flow is believed to be very small in relation to other heat flows. A mathematical analysis was performed for the heat flow at the ground level in the wall section below ground level to the top of the footing (figure 4) using the temperature variations with time from thermostated test 6 . The computed heat flows showed that heat was flowing into and out of this section with time, but the magnitude of these heat flows was small in relation to other heat flows.

Air infiltration rates were determined by a tracer gas method using helium as the tracer gas. (See Appendix A.) For the building without and with windows, measured values were 0.06 and 0.38 air changes per hour, respectively. Since there was little air movement at the inside and outside surfaces, the thermal head (the difference in temperature between the inside and outside air) is the predominant driving force for air infiltration. The above values are considered maximum rates for air infiltration, because the tests were performed when the thermal head was the greatest. It would be expected that the air infiltration rate would te proportional to the thermal head. For this reason, average air infiltration rates were selected as being 2 cfm for tests with no windows and 10 cfm for test with windows. The tests of Appendix A were performed on the building without thermal insulation. Placing insulation on either the inside or outside surfaces would increase the resistance to air infiltration. For this reason, a rate of 5 cfm was used for tests with insulation.

Noise reduction measurements were made on the prototype building as given in Appendix B. The results for conditions of no windows, single pane windows only, single-pane windows with insulation inside and singlepane windows with insulation outside are shown in figure 2 of Appendix B. As indicated and expected the noise reduction was greatest without windows and some improvement is shown when insulation was applied. Comparison of noise reduction measurements for the tests with insulation on the inside and on the outside indicate that insulation on the inside had better characteristics because of the higher noise reduction values in the range from 500 to 2500 Hz . This range is considered to contain the most objectionable portion of the audible frequency spectrum.

As mentioned in the introduction an equilibrium moisture content of the block was rapidly achieved and the influence of moisture in these tests is considered to be negiigible. The moisture content of the block was monitored by observing the change of weight of a single oven dried concrete block placed in the environmental chamber and the test room throughout the tests. The equilibrium moisture content of the single block was 4% by weight. Similarly, vertical and horizontal thermal expansion of the concrete block wall attained an equilibrium range and was considered to be desirably low especially since no surface or through the wall cracks were visible.

a. Floating Tests

For the floating tests numbered 1 through 5, Table 1 , the measured and computer calculated inside air temperatures are plotted in figures 9 through 13, respectively, each with its measured outdoor air temperatures. The curve of measured indoor air temperature is the arithmetic average of the six indoor air thermocouples as shown in figure 5. The vertical distribution of temperature within the room will be treated later in this discussion. There was generally good agreement between the measured and predicted average inside air temperatures in all cases, although there is a trend for the predicted values to have slightly higher maximum values and lower minimum values during the 24 -hour cycle. This indicates that the mass of the building dampens temperature changes more than is accounted for in the predictive computer program. This may be due to several factors such as the theoretical model that was used in the computer programs neglects the additional thermal inertia introduced at the corners of the building and neglects slight changes in material physical properties during exposure as compared with measured dry values.

Comparing the indoor air temperature curves of figures 9 through 13 , it can be seen that placing insulation on inside and outside building surfaces had a marked influence on the inside air temperature profiles. Compare figure 12 with figure 11, and figure 13 with figure 11. The temperature deviations from the daily average inside air temperature for the building with windows are plotted in figure 14 for the cases of no insulation, insulation on the inside building surface, and insulation on the outside building surface (corresponding to figures 11,12 and 13). Adding insulation on the inside surface of the building reduced the peak to peak variations of the inside air temperature from about 10.5 to $5.5^{\circ} \mathrm{F}$. The effect of the insulation then was to damp out the cyclic fluctuations of inside air temperature with windows installed。 Furthermore, when insulation was placed on the outside surfaces, the peak to peak variation was reduced to about $2{ }^{\circ} \mathrm{F}$. This experimental finding is considered to be significant because no heat energy was purposedly added to or taken away from the indoor air during the tests and the performance results illustrate that considerable control of the indoor air temperature can be exercised by simply placing the mass of the walls and roof facing indoors with insulation facing the outdoors.

To investigate the effect of an interior mass on the inside air temperature for a floating test, a comparison was made between tests 1 and 2, (figures 9 and 10). Temperature deviations from the measured mean inside air temperature for these two tests are plotted in figure 15. It can be seen that for these cases with no insulation, the presence of an internal mass slightly damps the inside air temperature cycle. This effect was also predicted by the Response Factor program. For floating tests with either insulation on the inside or outside surfaces (figures 10 and 11), the effect of an internal mass is reduced to negligible proportions. This is because the heat absorption and rejection by the internal mass is very small when the cyclic fluctuations of the inside air temperature are sma11.

To examine the effect of windows on the inside air temperature, a comparison was made between tests numbered 1 and 3. The measured temperature deviations from the mean inside air temperature for these two tests are plotted in figure 16. From figure 16 it may be seen that for the two cases without insulation the effect of adding windows had little effect on the cyclic fluctuations of the inside air temperature. The percent glass to wall area was 8.4. For cases with insulation, one would expect the addition of windows would have a more pronounced effect on the cyclic fluctuations of the inside air temperature, since the heat flow through windows would be a larger percentage of the total heat flow. Direct experimental comparison is not possible because measurements were not made on the structure with insulation either inside or outside without windows. For practical purposes an improvement in the indoor temperature profile as shown in figure 13 by elimination of windows is considered to be negligible.

Figures 17 and 18 show the inside and outside wall surface temperature variations for test 1 ; no insulation, no windows and no internal mass. Each curve represents the average temperature of five thermocouples located at the same height above the floor and at the wall positions as shown in figure 6. From these graphs it can be seen that the inside and outside wall surface temperatures for this floating test differ from each other within a $2{ }^{\circ} \mathrm{F}$ band except for the average temperatures at the 0 and 10 foot levels. This suggests that the as sumption of one-dimensional heat transfer is valid over a major area of the wall surface, multi-dimensional effects being confined in a region near the junctures of the floor to wall and the roof to wall. Figures 17 and 18 also show by comparison the effect of thermal resistance and mass of the building, i.e., at the 10 foot level the outside surface changed in temperature by about $30^{\circ} \mathrm{F}$ while the inside surface at the same level changed by about $16^{\circ} \mathrm{F}$. Also, the highest and lowest temperatures on the outside surface occurred about 2 hours sooner than the inside surface. The use of thermal insulation resulted in a much more uniform inside wall temperature distribution. For instance, when insulation was placed on the outside surface of the building (floating test numbered 5) a maximum inside wall surface temperature fluctuation of $2.3^{\circ} \mathrm{F}$ occurred over the 24 -hour cycle at the juncture of the wall and the ceiling. In addition, at any instant the maximum floor to ceiling temperature difference along the inside wall surface was $1.8^{\circ} \mathrm{F}$.

Comparisons between the measured and calculated heat fluxes at the inside surfaces of major building components for floating test 1 are shown in figures (19) through (21) where negative values denote heat flow into the room. Measured heat fluxes shown for the floor, roof, and the wall were obtained using heat flow meters located at the center of the floor, the center of the roof, and at the midpoint of wall in plane B, respectively, (see figure 6). Since both the measured and calculated data contain many small fluctuations due to local variations of the inside air temperature, it was necessary to apply a harmonic analysis to each set of heat flux data, maintaining only the first eight terms to give the smoothed curves shown in the graphs. From figures 19 and 20 it can be seen that the agreement between the measured and calculated heat fluxes at the inside surface for floor and the roof was very good.

Figure 21 shows fairly large deviations for the smoothed measured wall heat flux from the calculated values. The same type of performance characteristic was obtained in other tests where the floor and ceiling also showed good agreement. The calculated heat flux values were completed assuming a constant film resistance for all heat flow conditions. From previous discussion concerning the film resistance, it will not be a constant, but will be a function of the heat flow conditions that promote air flow adjacent to the surfaces. Heat flow meters are very sensitive instruments and the signals from them can vary considerably when subjected to the turbulent air motion along a wall. Readings that were taken at one instant and at half-hour intervals would not be expected to give a true representation of average signal from the meters for the time period under consideration. For measuring heat flow at wall surfaces the signal from
the meters should have been recorded for finite time periods to give more representative values.

To study the processes which combine together to produce the thermal performance of the air inside a building, the profiles of the heat flux at the separate inside surfaces during the outside air temperature cycle were plotted. Figure 22 shows the variations of the heat flux at the inside surfaces of the roof, walls, floor and window for the case of no insulation (floating test 3). The heat flux profiles appearing in these graphs were calculated by the Response Factor computer program. Positive values signify heat flow in a direction from the inside to the outside. The net heat transfer to or from the indoor air at any instant of time is equal to the algebraic sum of the products of the heat fluxes at the surfaces and their respective areas plus the heat exchange resulting from air infiltration. For the floating tests this sum should be equal to zero. The heat flux at the inside surface is affected by the resistance to heat flow and the thermal heat capacity of the materials across which heat must flow to the surface as well as the dynamic conditions of the temperature of the outside and inside air. For this reason, heat is simultaneously flowing out of and into different surfaces of the room. The heat flow at the windows is in phase with the temperature potential created by the difference in the outside and inside air temperature because heat storage (mass) of the windows was negligible. The roof and walls are not in phase with this potential due to their appreciable heat storage capacity and their minimum values (maximum heat flows into the room) lag behind that for the windows by about 3 and 9 hours, respectively. The roof was approximately one-half the thickness of the walls, and a smaller delay time to reach a maximum or minimum was expected. Heat flow
into and out of the floor was approximately in phase with the inside air temperature cycle shown in figure 11. This was as expected because the ground temperature beneath the floor was relatively constant with time. A similar analysis of heat flow was performed for the case of insulation placed on the outside surfaces (floating test 5). Figure 23 shows the profiles of the heat flow at the inside surfaces for this test condition. With the peak outside air temperature at the fourteenth hour, the delay times for maximum heat flows into the room were 12 and 5 hours for the walls and roof, respectively. The effect of placing insulation on the outside surface was to increase the delay time (9 and 3 versus 12 and 5) and considerably reduce the amplitude of the heat flux profiles. Figure 24 is a plot of deviations of the inside air temperature from the instantaneous average of the six air thermocouple locations shown in figure 5 over a twenty-four hour period for the case of no insulation (floating test 3). As in all previous plots, the peak outside air temperature occurred at the fourteenth hour. Positive deviations signify that the air temperature at that location was higher than the average inside air temperature. On a daily average the air adjacent to the ceiling was about $2{ }^{\circ} \mathrm{F}$ warmer than the air layer next to the floor with the floor being as much as $3{ }^{\circ} \mathrm{F}$ warmer and $8.5^{\circ} \mathrm{F}$ colder than the ceiling during portions of the cycle. The portion of the cycle with the largest floor to ceiling temperature difference (about hour 18) shows a good example for a heated surface facing downward (ceiling) and a cooled surface facing upward (floor) where the air flows adjacent to the two surfaces were in the laminar range thus producing little mixing of air and large vertical temperature gradients. Conversely, the portion of the
cycle with the smaller temperature differences (about hour 5) shows an example for a cooled surface facing downward (ceiling) and a heated surface facing upward (floor) where the air flows adjacent to the surfaces were in the turbulent region producing mixing of air by natural convection and smaller vertical temperature gradients. One must conclude from figures 22 to 24 that the indoor convection pattern is continually changing, as well as surface coefficients of heat transfer. The same observations can be made from the plots of deviations from the average inside air temperatures given in figures 25 and 26 for insulation placed on the inside (test 4) and the outside (test 5) surfaces, respectively. In these two cases the vertical temperature gradients are considerably dampened due to the addition of insulation, and subsequent reductions in variations of the surface temperatures.

b. Thermostated Tests

For the thermostated tests the inside room air temperature was maintained within an approximate $2{ }^{\circ} \mathrm{F}$ band by controlling the heat input to the experimental structure. The room air temperature was obtained by averaging the six air temperatures (figure 5) at each time interval.

Figures (27) through (31) are graphs for tests numbered 6 to 10 which compare the measured power supplied to the electric heaters and the heating load calculated by the Response Factor program over the 24-hour outdoor air temperature cycle as shown in each figure. The calculated load was computed by summing the net heat flows through each building component and heat flow due to air infiltration at each time interval. Areas used for computing heat flows were the arithmetic
averages of the inside and outside areas of each building component. Since both the measured and calculated heating load data contained many small fluctuations due to variations of the inside air temperature, it was necessary to apply a harmonic analysis to each set of heat load data. Only the first eight terms were maintained to give the smoothed curves shown in the graphs.

As shown on figures 27 through 31 the minimum measured and calculated heating load usually occurred later in the day than the peak outside air temperature (hour 14) because of the effect of the mass of the building and insulation retarding heat flow through building components. Comparing the cases without and with insulation, figure 27 with figures $28,29,30$ and 31 , it can be seen that the effect of placing insulation on either the inside or outside surfaces of the building was to substantially reduce the amount of heating needed to maintain a constant inside air temperature. Generally the correlation between computer prediction and the measured heating load profiles is reasonably good. There was less than a six percent difference between the maximum computed and measured heating loads for all cases. The average difference was 3.5 percent for the five tests.

For test 10 (figure 31) and test 9 (figure 30) the building was identical but for test 10 the outdoor temperature cycle was changed from 40-100 F to $10-70 \mathrm{~F}$ and the indoor air temperature was changed from 77.6 F to 73.8 F . The shape of the heating load profiles are similar but for test 9 the maximum and minimum loads were about 2600 and 500 $\mathrm{Btu} / \mathrm{hr}$, respectively, and for test 10 about 6300 and $3600 \mathrm{Btu} / \mathrm{hr}$, respectively. The maximum loads for both tests are lower than the values
that would be estimated on the basis of steady-state procedures as is discussed later in this paper in detail.

For the thermostated tests with insulation (tests 7 through 10), the measured heating loads lag the calculated heating loads over part of the 24 -hour cycle. Consistently, the phase lag occurred on the profiles in the time period between the maximum and minimum loads. Also, some phase lags occurred following the minimum loads. The reasons for these phase lags are not obvious because the phase lags varied from one test to the other and the lag is especially evident in test 9, figure 30 . It was found during analysis that the calculated heating load was influenced by whether the inside, outside or average area was used, lack of heat flow allowance for corners and the building foundation, variations of inside air temperature, and heat transfer coefficients at the inside and outside surfaces.

To illustrate the effect of windows on the thermal behavior of the experimental house, calculations were made using the Response Factor method for the cases of 7 single pane windows, 7 double pane windows, and no windows with insulation on the outside surfaces. The outside air temperature cycle used was $40-100 \mathrm{~F}$ and the inside air temperature was $77.6^{\circ} \mathrm{F}$. Figure 32 shows the computed heating load profiles for the above cases. The peak heating loads for single pane windows was 50% higher and occurred approximately two hours earlier than the case without windows. The peak heating load for double pane windows was 7% lower than single pane windows. Some validation by measurement of the latter can be seen by comparing the peak heating loads as shown in figures 29 and 30, about 4\% difference.

Steady-state methods are usually used for predicting maximum heatịng loads from which the size of heating equipment is selected. Sometimes this process results in oversizing of heating equipment. To illustrate and compare the steady-state procedure and the dynamic procedure as given by the computer programs in Appendices C and D, Table 4 was prepared.

The values listed in the column under Steady-State Method in Table 4 were calculated for the experimental structure as used in tests 6 through 10 , and for the outside air temperature cycles used during the tests. The steady-state maximum heat flow rate was calculated using the following formula:

$$
q=U_{F} A_{F}\left(T_{i}-T_{g}\right)+\left(T_{i}-T_{0}\right) \Sigma U_{n} A_{n}+1.08 V\left(T_{i}-T_{0}\right)
$$

where $\mathrm{q}=$ heating load, Btu hr^{-1}
$\mathrm{U}_{\mathrm{F}}=$ coefficient of transmission for the floor, Btu $\mathrm{hr}^{-1} \mathrm{ft}^{-2} \mathrm{~F}^{-1}$
$A_{F}=$ area of the floor, ft^{2}
$T_{i}=$ average inside air temperature,
$T_{g}=$ average ground temperature, F
$T_{o}=$ outdoor temperature, F
$U_{n}=$ coefficient of transmission for the nth surface, Btu $\mathrm{hr}^{-1}, \mathrm{ft}^{-2} \mathrm{~F}^{-1}$

$$
\begin{aligned}
& A_{n}=\text { area of the nth surface, } \mathrm{ft}^{2} \\
& \mathrm{~V}=\text { air infiltration rate, } \mathrm{cfm}
\end{aligned}
$$

The first term corresponds to the heat transferred through the floor. The second term is for heat transferred through the walls, windows and roof. The third term is heat transfer due to air infiltration. When the above equation was used to predict the maximum heating load the minimum outdoor temperature was used for T_{0}. When the above equation was used to calculate the daily average heating load, the daily mean outdoor temperature was used for T_{o}.

The peak and daily average heating loads as calculated using the steady-state and Response Factor methods are presented for comparison with measured values in Table 4.

The maximum heat flow rates as calculated by the steady-state method for the conditions during tests $6,7,8,9$, and 10 were $31,59,65,68$ and 30 percent, respectively, higher than the measured rates. The maximum heat flow rates as predicted by the Response Factor method were 6 percent or less of the rates measured during the tests. The above high percentages indicate that when steady-state maximum rates are used to size heating equipment without taking into account the heat capacity effects of the building considerable oversizing could result.

When comparing daily average heat flow rates between the steadystate method, the response factor method and measured values, Table 4 shows that all values are reasonably close to each other for a given test number (about 10% or less). This was expected because a minimum quantity of heat energy is necessary to maintain the indoor air temperature over a period of 24 hours.
Daily Average Heat Flow Rate, (Btu/hr)
0
0
0
0
0
む
む
 Response
Factor
Method
 Steady
State Method

Comparison of Maximum and Average Heating Loads
Maximum Heat Flow Rate, (Btu/hr)
Measured

Table 4
Heating Loads

7. Conclusions

The NBSLD computer program was experimentally validated for predicting the daily indoor air temperature as it is influenced by known outdoor temperature conditions and the mass and thermal resistance of the building. Furthermore, when the inside air temperature was thermostated, this program predicted the peak and daily average heating loads and may therefore be used to size equipment needed to condition the interior of a building and to predict energy requirements. It was shown that steady-state methods of heating load calculations could result in oversizing heating equipment by 30% or more. The NBSLD dynamic method takes into account heat storage effects and therefore predicts the peak heating load more realistically. The maximum percent difference between the computer calculated peak heating load and measured values was six percent, and the average difference was 3.5 percent for the five tests.

The combination of mass in the walls and roof facing the interior with insulation placed on the outer surfaces of the building was very effective in reducing and controlling the variation of the indoor air temperature. This desired effect was also predicted by the computer program. When the inside air temperature was not thermostated and the building floated in response the outside air temperature condition, placing insulation on the inside building surface reduced the variation of the inside air temperature from $101 / 2 \mathrm{~F}$ to $51 / 2 \mathrm{~F}$. Furthermore, when this insulation was placed on the outside surface of the building, the peak to peak variation in the inside air temperature was reduced to $2^{\circ} \mathrm{F}$. In addition, comparing cases of no insulation, insulation inside, and insulation outside, the tempera-
ture distribution from floor to ceiling on walls and in the indoor air was a minimum when insulation was placed on the outside of the building. The effect of an internal mass on the thermal behavior of the experimental structure was generally small. An internal mass may have a greater effect in a less massive building. On the other hand, windows had a significant effect on the computed thermal behavior of the experimental structure. For instance, the peak heating load for the experimental structure with windows and insulation was 50% higher than the same building without windows. Use of storm windows reduced the peak heating load by ' percent.
8. Acknowledgments

The authors wish to thank H. E. Robinson for his many ideas, conceptual approach and technical suggestions prior to and during the experimental phases of this investigation. Also appreciation is expressed to D. R. Showalter, J. D. Allen, J. M. Dungan and J. W. Grimes for their technical assistance in the installation of the instrumentation and day to day operation of the experiments. The very helpful suggestions and comments made during review of this paper by P. R. Achenbach are gratefully acknowledged.

Figure 2 The basic experimental structure

Figure 4 Floor, footing and window details

Figure 5 The experimental structure showing thermocouple locations

Figure 6 Plan view of thermocouple locations

(il)

(b)

Figure 8 (a) Fan heater
(b) Fan heater with top cover removed

Figure 9 Comparison between measured and calculated inside air temperatures for floating test 1

NO INSULATION,NO WINDOWS, INTERNAL MASS.

Figure 10 Comparison between measured and calculated inside air temperatures for floating test 2

Figure $11 \quad \begin{aligned} & \text { Comparison between measured and calculated } \\ & \text { inside air temperatures for floating test } 3\end{aligned}$

Figure 12
Comparison between measured and calculated inside air temperatures for floating test 4

Figure 13 Comparison between measured and calculated inside air temperatures for floating test 5

」－SNOI」甘I＾ヨO ヨyก」甘yヨdWヨ」

」－SNOIノ甘I＾ヨ0 ヨyก1甘yヨdWヨ」

Figure 16 Comparison of the inside air temperature deviations from daily average （test 3）and without windows（test 1）

Figure 17
Variations of inside wall surface temperatures for test 1

z $11-y H / \cap 1 g-x \cap 7 」 1 \forall \exists H$

$$
\text { 21f-yH/ } 119-x \Pi 171 甘 \exists H
$$

\square ROOF (LEFT SCALE)
OWALL (LEFT SCALE)
$\triangle F L O O R ~(L E F T ~ S C A L E) ~$

+ VIINDOW (RIGHT SCALE)

Computed variations of the heat flow rates at the inside surfaces of the roof, walls, floor, and the windows for the case of insulation placed on the outside surfaces of the building (test 5)
Figure 23

Figure 24
Deviations of the inside air temperature from instantaneous average of the six indoor air thermocouples for the case of no insulation (test 3)

Figure 25 Deviations of the inside air temperature from instantaneous average of the six indoor air thermocouples for the case of insulation placed on the outside surfaces of the building (test 5)

Figure 26 Deviations of the inside air temperature from daily average of the six indoor air thermocouples for the case of insulation placed on the inside surfaces of the building (test 4)
$コ-\exists y \cap \perp \forall y \exists d W \exists \perp$

コ－3yกVyヨdWヨ1

Figure 29 Comparison between the measured and calculated heating loads for test 8

УH／ח1g－O甘Oר ONII甘ヨH

$\pm-\exists y \cap \perp \forall \searrow \exists d W \exists \perp$

צH／ח18－O甘O7 ONII＇シヨH

Figure 32 Comparison of the heating load profiles for the cases of no windows,
single pane windows, and double pane windows for the same building

List of Figures

Figure 1	Experimental structure in environmental cha
Figure 2	The basic experimental structure
Figure 3	The experimental structure showing windows, internal
	mass, heaters, and insulation on the outside of the
	building
Figure 4	Floor, footing and window details
Figure 5	The experimental structure showing thermocouple locations
Figure 6	Plan view of thermocouple locations
Figure 7	Outside sol-air temperature cycle
Figure 8	(a) Fan heater (b) Fan heater with top cover removed
Figure 9	Comparison between measured and calculated inside air
	temperatures for floating test 1
Figure 10	Comparison between measured and calculated inside air
	temperatures for floating test 2
Figure 11	Comparison between measured and calculated inside air
	temperatures for floating test 3
Figure 12	Comparison between measured and calculated inside air
	temperatures for floating test 4
Figure 13	Comparison between measured and calculated inside air
	temperatures for floating test 5
Figure 14	Comparison of inside air temperature deviations from
	daily average inside air temperature for identical houses
	for cases of no insulation, insulation inside, and in-
	sulation outside

Figure 15

Figure 16
Comparison of the inside air temperature deviations from daily average inside air temperature for identical uninsulated houses with windows (test 3) and without windows (test 1)

Figure 17 Variations of inside wall surface temperatures for test 1
Figure 18 Variations of outside wall surface temperatures for test 1
Figure 19 Comparison between the measured and calculated heat fluxes at the inside surface of the floor for test 1

Figure 20 Comparison between the measured and calculated heat fluxes at the inside surface of the roof for test 1

Figure 21 Comparison between the measured and calculated heat fluxes at the inside surface of the wall for test 1

Figure 22 Computed variations of the heat flow rates at the inside surfaces of the roof, walls, floor, and the window for the case of no insulation (test 3)

Figure 23 Computed variations of the heat flow rates at the inside surfaces of the roof, walls, floor, and the windows for the case of insulation placed on the outside surfaces of the building (test 5)

Figure 24 Deviations of the inside air temperature from instantaneous average of the six indoor air thermocouples for the case of no insulation (test 3)

Figure 25 Deviations of the inside air temperature from instantaneous average of the six indoor air thermocouples for the case of insulation placed on the outside surfaces of the building (test 5)

Figure 26 Deviations of the inside air temperature from daily average of the six indoor air thermocouples for the case of insulation placed on the inside surfaces of the building (test 4)

Figure 27 Comparison between the measured and calculated heating loads for test 6

Figure 28 Comparison between the measured and calculated heating loads for test 7

Figure 29 Comparison between the measured and calculated heating loads for test 8

Figure 30 Comparison between the measured and calculated heating loads for test 9

Figure 31 Comparison between the measured and calculated heating loads for test 10

Figure 32 Comparison of the heating load profiles for the cases of no windows, single pane windows, and double pane windows for the same building

Appendix A

Air Infiltration Measurements on the NBS Prototype Building

Thomas K. Faison
Environmental Engineering Section Sensory Environment Branch Building Research Division Institute for Applied Technology National Bureau of Standards

1. Introduction

In the early stages of the project on thermal performance of the experimental structure, measurements were made to determine the magnitude of air exchange between the structure and the surrounding chamber during the process of cyclic temperature changes. Since wind forces were negligible during the testing period, the major driving force influencing the exchange of air was the thermal difference between the air inside of the structure and that of the surrounding air in the chamber.

2. Analysis and Instrumentation

The instrumentation used in the determination of the air exchange rates was developed at the National Bureau of Standards $\underline{I}^{\underline{1}}$, and the process of measurement was that of the tracer gas method using helium as the tracer gas.

The rate of change in concentration of a tracer gas caused by exchange or infiltration of outside air under a steady-state temperature difference is expressed by the formula:

$$
\begin{equation*}
-V(d c / d t)=K c \tag{1}
\end{equation*}
$$

[^1]```
where \(V=\) volume of enclosure
 \(c=\) concentration of tracer gas at time \(t\)
\(K=\) average volume of air infiltration per unit time for the
 time interval
t = time
```

When $c=c_{o}$ at time $=0$, the solution of Equation 1 is as follows:

$$
\begin{equation*}
c=c_{0} e^{-K t / V} \tag{2}
\end{equation*}
$$

or

$$
\begin{equation*}
\mathrm{Kt} / \mathrm{V}=\log _{\mathrm{e}}\left(\mathrm{c}_{\mathrm{o}} / \mathrm{c}\right) \tag{3}
\end{equation*}
$$

Equation 3 shows that the number of air changes occurring during time $t$ is equal to the natural logarithm of the ratio of the tracer gas concentrations at the beginning and at the end of the time interval.

## 3. Procedure and Results

Prior to the test, the apparatus was calibrated and brought into equilibrium with its surroundings, then helium, the tracer gas, was released into the room. As the helium was introduced it was mixed with the room air by means of a portable fan and the final mixture of air and helium contained about $1 / 2 \%$ of helium by volume.

Four helium sensing elements were distributed within the space. Each sensor was positioned 3 feet above floor level and 4 feet from an outside wall near each of the four corners. Air temperature measurements of the two spaces were recorded during the test.

Initially a test was made to determine the amount of air exchange through the structure with the surrounding environmental chamber prior to cutting openings for the glass windows. Later additional tests were made to determine the rate of air exchange when glass windows were introduced into the structure. The windows were of a fixed type and were caulked in place. The door was closed for all tests.

Measurements were made at the time of day when the air in the environmental chamber was lowest and unchanging, providing a maximum temperature difference and air exchange between the inside and outside. Measurements of air exchange were made when the tightly fitting weatherstripped door was normally closed and when all cracks around the door were taped.

For the building without windows the measured values of air exchange were 0.03 and 0.06 air changes per hour for the conditions of the taped and untaped door, respectively. These air exchange rates for the basic structure are very small. In fact, they are the smallest ever measured at NBS. They do provide a minimum value for comparison with other tests and show that heat gain or loss to the structure was almost solely by heat conduction and the influence of air leakage for the test without windows was practically negligible.

After the windows were installed, single glass only, additional measurements were made to determine the exchange rate under these conditions. The same procedure was followed and approximately the same temperature difference was observed. Under these conditions, but with the windows installed, the door not taped and no insulation on the walls, the measured value was 0.38 air changes per hour, a significant increase over the first tests having no window openings.

## Appendix B

Noise Transmission Measurements of the NBS Prototype Building

John S. Forrer
Applied Acoustics and Illumination Section Sensory Environment Branch Building Research Division Institute for Applied Technology National Bureau of Standards

## 1. Objectives of Tests

Measurements were made of the attenuation of outdoor noise provided by the prototype concrete block structure constructed in the NBS highbay environmental laboratory in order to establish the feasibility of noise reduction testing in such a space and to determine the sound transmission characteristics corresponding to four different conditions of the structure.

## 2. Building Variations Tested

The building construction during the first series of tests was a simple concrete block cubicle with a $20^{\prime} \times 20^{\prime}$ floor plan and a 10 ft high ceiling (outside dimensions). The walls were made of $8^{\prime \prime} \times 8^{\prime \prime} \times 16^{\prime \prime}$ solid concrete blocks. A concrete slab floor and a flat four-inch thick pre-cast concrete slab roof completed the enclosure. A two-inch thick solid wooden door (foam rubber gasketed) provided the only break in the otherwise solid shell of the structure.

The test structure configurations employed during the noise transmission tests were as follows:

1. Concrete shell with a single wooden door (described above).
2. Seven $32^{\prime \prime} \times 40^{\prime \prime} \times 3 / 32^{\prime \prime}$ single-pane windows installed as shown in Figure 1 (bottom of sills 40 in. above floor).
3. Two-inch thick rigid polystyrene thermal insulation applied to the inside walls and ceiling.
4. Insulation removed from inside the structure and similar material used to cover the outside walls and roof.

## 3. Test Procedures

Figure B-l shows the location of each of the five microphones of the receiving room array (inside the house) and the six microphones of the source room array (outside the house). The microphone systems employed one-inch pressure-type condenser microphone cartridges with attached preamplifiers. Each array was powered by a six-channel microphone energizer and multiplexer which scanned the microphone array at a rate of five channels per second. The multiplexer output was fed into a one-third octave band-pass filter set. The filtered signal was measured by means of a precision sound level meter or a graphic level recorder (see Table B-1).

Calibration of the measurement system was performed using a calibrated pistonphone--a precision sound source which produces a sound pressure level of $124 \pm .2 \mathrm{~dB}$ at a frequency of 250 Hz at the microphone diaphragm.

The signal for the noise transmission tests was provided by four speakers energized with pink random noise*. These speakers were located opposite the outside corners of the house as shown in Figure B-1. The noise reduction provided by the house at each test frequency was determined by subtracting the one-third octave band sound pressure leve1 measured in the receiving room from the corresponding level measured in the source room.

[^2]
## 4. Results

The curves plotted in Figure B-2 present the measured noise reduction provided by the house for each of the four variations in construction. As shown, the use of windows caused an average loss of sound isolation of about 10 db for frequencies above 200 Hz . The addition of thermal insulation either on the inside or the outside improved the acoustic performance but not enough to overcome the loss from windows.

Data was gathered at frequencies below 500 hertz but the short integration times used in the r.m.s. detection system, along with difficulties encountered in achieving a uniform sound field in the test space rendered the measurements inconclusive for frequencies below 500 hertz. Specifically, measurements of the sound distribution inside and around the house with the speakers energized revealed differences in the range of 4-12 db for frequencies below 200 Hz in the sound pressure levels measured at microphones in the same array in the receiving room and for frequencies below 500 Hz in the source room. Differences of this magnitude render a spatial average achieved by a five or six microphone array of little value.

Table B-1 Instrumentation for Noise Reduction Measurements*

1. Brüel and Kjaer Model 4220 Pistonphone
2. Brüel and Kjaer Model 4132 Pressure Microphone
3. Brưel and Kjaer Model 2619 FET Preamplifiers
4. Brüel and Kjaer Model 221 Microphone Energizer and Multiplexer
5. Brüel and Kjaer Model 1612 Band-pass Filter Set
6. Brüel and Kjaer Model 2204 Precision Sound Level Meter (used during design stages 1,2 , and 3 ).
7. Brüel and Kjaer Model 2305 Graphic Level Recorder (used during design stages 3 and 4).
8. Kudelski (Nagra III) tape recording of pink noise used as signal source in design stages 1,2 , and 3 .
9. Bruiel and Kjaer Model 1024 Sine Random Generator used as pink noise source in design stage 4.

Commercial instruments are identified in this report in order to adequately specify the experimental procedure. In no case does such identification imply recommendations or endorsement by the National Bureau of Standards, nor does it imply that the equipment identified is necessarily the best available for the purpose.

$X$ microphone (height given in inches)
[5] speaker
$\mathbb{N}$ concrete block stack 38 in. high

Figure B-1 Floor plan of NBS High-bay Environmental Laboratory and prototype concrete block building. Microphone and speaker positions used for the noise reduction tests are indicated.


Figure B-2 Noise reduction versus frequency for various construction modifications of the concrete block building in the High-bay Environmental Laboratory.

## Appendix C

Computer Programs (NBSLD) to Obtain Heating and Cooling Loads and to Estimate Room Air Temperature Change Using Thermal Response Factors

Tamami Kusuda<br>Environmental Engineering Section<br>Sensory Environment Branch<br>Building Research Division<br>Institute for Applied Technology<br>National Bureau of Standards

Computer Programs (NBSLD) to Obtain Heating and Cooling Loads and to Estimate Room Air Temperature Change Using Thermal Response Factors

## 1. Introduction

The NBS computer programs called NBSLD are a group of routines to permit the determination of heating and cooling loads of a room based upon a calculation methodology proposed by the American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE) Task Group on Energy Requirements.

For a given 24 -hour weather pattern the program calculates heat exchange due to solar and sky thermal radiation through windows, heat conduction through walls and roofs, heat convection due to air infiltration and internal heat generation. Heat exchange is computed for every hour and later converted into the room heating or cooling load in conjunction with weighting factors. Details of these calculation procedures and the theoretical background for the weighting factors' application are given here. They are available in the 1971 ASHRAE publication entitled "Procedures for Determining Heating and Cooling Loads for Computerized Calculation of Energy Requirements". This publication was prepared by the ASHRAE Task Group on Energy Requirements with the assistance of the National Bureau of Standards and the National Research Council of Canada.

The ASHRAE Task Group procedure incorporates what is considered to be the most up-to-date computation methodology for evaluating the dynamic aspects of building heat conduction by the response factor method. Since the algorithms employed in this procedure are new and rather complex, their use has been limited.

Presented in this report is the Fortran listing of the NBS program of the ASHRAE Task Group algorithms to illustrate the use of this modern and powerful technique on small computers.

All of the routines are, therefore, written in a close accordance with the ASHRAE Task Group algorithms and made into many subroutines, each of which could be used independently for other programs.

Attached are the Fortran listings of NBSLD. The program in the form of punched cards or on magnetic tape is available from the Environmental Engineering Section of NBS including assistance for its use, if desired. Figure 1 shows the logic network for NBSLD.

1. ABCD2, ABCDP2, DERVT, GPF, MULT, RESF, RESFX, RESPTK: These routines are parts of response factor calculation package and are needed for the accurate evaluation of thermal time lag, damping, heat storage in exterior facing surfaces as well as the internal furnishings.
2. DPF: Calculates dew point temperature when the partial vapor pressure is known.
3. GLASS: Calculates solar heat gain through glass when given the shading coefficient, orientation type of glass, type of fenestration.
4. OUTSID: This routine calculates the outside surface temperature and wall heat gain by taking into account solar heating, back radiation to the sky, convective heat loss to the ambient air and transient heat conduction.
5. PSY1: This is a simplified psychrometric routine that determines the thermodynamic properties of moist air when given dry-bulb temperature, wet-bulb temperature and barometric pressure.
6. PSY2: This is the same as PSY1 except that the dew point temperature is used instead of the wet-bulb temperature.
7. PVSF: This routine determines the saturated vapor pressure as a function of temperature.
8. SHG: This is the ASHRAE routine for calculating solar heat gain through glass.
9. SUN: Calculates basic sun data such as angles, cloud cover, direct and diffuse radiation needed for solar heat gain and solar heating of the building exterior surfaces.
10. TAR: Calculates transmission and absorption characteristics of glass.
11. WBF: Approximates the wet-bulb temperature when provided with the enthalpy of moist air and the barometric pressure.
12. WF: Determines the cooling load by multiplying the heat gain by the ASHRAE weighting factors. (This routine was not used in the version listed in this report because it incorporates the basic calculation used for deriving the weighting factors.)
13. RMTMP: Determines the room temperature as a balance of heat gains and cooling capacity of an air conditioning unit. Since this routine is not available in ASHRAE Task Group Algorithms, detail is given in the following pages.
14. SOLVP: Solves simultaneous linear algebraic equations needed in RMTMP.
15. WEATHE, WD, DECØDE: This package is a weather decoding program and was not included in this version because the weather input to this version is implicitly defined in the following section on input data.
16. CCM: This routine modifies the solar radiation for a cloudless sky by the instantaneous cloud cover. (This routine is not included in this version.)
17. FO: This routine calculates the outside surface heat transfer coefficients from the weather data. (This routine is not included in this version where the coefficients are considered to be input data.)

## operating <br> 岸廹 <br> DATA

DPF

UTSGN doI yxomzau ग!̣o'l I axns.i
2. RMTMP

Room Temperature Calculation Routine

Input: $N S=$ number of heat transfer surfaces in the room $(S(I), I=1, N S)=$ area of the heat transfer surfaces, $\mathrm{ft}^{2}$ $(M(I), I=1, N S)=$ number of response factor terms for each heat transfer surface
(IX(I), $I=1, N S)=$ index for the thermal storage effect for each heat transfer surface

$$
\operatorname{IX}(J)=1 \text { for thermal storage surface }
$$

$$
\operatorname{IX}(J)=0 \text { for non-thermal storage sur- }
$$ faces such as windows and door

(CR(I), I = $1, \mathrm{NS})=$ common ratio for the thermal response factor of each heat transfer surface $M(I)=1, C R(I)=0$ if $\operatorname{IX}(J)=0$ $((X(I, J), Y(I, J)$ for $I=1, N S), J=1, M(I))$ thermal response factors for each surface
$X(I, l), Y(I, 1)=$ overall thermal conductance of the non-thermal storage surface and all the other response factor terms should be treated as zero if $\operatorname{IX}(I)=0$.

Note: For the calculation of $X(I, J), Y(I, J)$, the surface heat transfer coefficients (both inside and outside) are not included.

```
((T\emptyset(I,t-J) for I = 1,NS), J = l,M(I)) = outside surface tem-
 perature history, }\mp@subsup{}{}{\circ}\textrm{F
((TI(I,t-J) for I = l,NS), J = l,M(I)) = inside surface tem-
 perature history, }\mp@subsup{}{}{\circ}\textrm{F
TA = air temperature of the room
(H(I), I = 1,NS) = convection coefficient of the interior
 surface, '}\mp@subsup{}{}{\circ}\textrm{F
(F(I,K), I = l,NS), K = l,NS) = radiant heat exchange factors
 between surfaces I and K,
 where F(I,K) = 0 if I =
 K
(R(I,t), I = I,NS) = heat input per unit indoor surface at
 time t to the surface, such as solar
 heat or radiation heat from the lighting,
 equipment and occupants to the surface
(E(I), I = 1,NS) = emissivity of the surface
Q(I,t-1) = heat flow at the Ith surface at the previous time
 period or time = (t-1)\Delta, Btu/hr, ft
\Delta = time increment
t = time index for the elasped time t\Delta hours
CFML = outdoor air leakage, CFM
CFMV = ventilation air rate, CFM/ }\mp@subsup{}{}{\circ}\textrm{F}\mathrm{ (at time t ()
DB(t) = outdoor air temperature, ' }\mp@subsup{}{}{\circ}\textrm{F
```



QEQUP: convective component of internal heat from equipment, Btu/hr
$Q \emptyset C P S:$ convective component of internal sensible heat from occupants, Btu/hr

QLITE: convective component of heat from lights suspended in air, Btu/hr

1. Basic heat balance equation at the $I$ surface (at time $t \triangle$ )

$$
\begin{aligned}
Q(I, t) & =\sum_{J=1}^{M(I)}\{X(I, J) * T I(I, t-J+1)-Y(I, J) * T \emptyset(I, t-J+1)\} \\
& +C R(I) * Q(I, t-1) \\
& =H(I) *(T A(t)-T I(I, t))+\sum_{K=1}^{N s} G(I, K) *(T I(K, t) \\
& -T I(I, t))+R(I, t) \\
& \text { where } G(I, K)=4 * E(I) * F(I, K) *(T A+460)^{3} * 0.1714 E-8
\end{aligned}
$$

2. Total heat balance for the room air

$$
\begin{aligned}
& \sum_{I=1}^{N s} S(I) *(T I(I, t)-T A(t))+1.08 * C F M *(D B(t \\
& *(D B(t)-T A(t)) \\
& +1.08 * C F M V *(T V(t)-T A(t)) \\
& + \text { QEQUP }+ \text { QOCPS }+ \text { QLITE }=0
\end{aligned}
$$

3. Letting matrix elements

$$
\begin{aligned}
& \text { Ns } \\
& A(I, I)=X(I, 1)+H(I)+\sum_{K=1} G(I, K) \\
& A(I, K)=-G(I, K), A(K, I)=-G(K, I) \text {, for } I=I \text {, NS } \\
& A(I, N s+1)=-H(I) \\
& B(I)=\sum_{J=2}^{M(I)} X(I, J) * T I(I, t-J)+\sum_{J=1}^{M(I)} Y(I, J) * T \emptyset(I, t-J) \\
& -C R(I) * Q(I, t-1)+R(I, t) \\
& A\left(N_{s}+1, K\right)=S(K) * H(K) \text { for } K=1 \text {, } N s \\
& A\left(N_{s}+1, N s+1\right)=-1.08 *(C F M L+C F M V)-\sum_{K=1}^{N s} H(K) * S(K) \\
& B\left(\mathrm{~N}_{S}+1\right)=-Q E Q U P-Q \emptyset C P S-Q L I T E-1.08 *(C F M L * D B(t) \\
& + \text { CFMV * TV ( } \mathrm{t}) \text { ) }
\end{aligned}
$$

$T I(I, t)$ and TA can be obtained by solving the following Ns+1 simultaneous equations


Input data needed for the heating/cooling load calculation are listed on the following pages but not necessarily in the card reading sequence of the Fortran version listed in this report.

```
Building Number (BLDGNO)
Ceiling Height (HT)
Floor Area (AG)
Number of Floors (N\emptysetFLR)
Number of Occupants (QCU)
Winter Window Overall Heat Transfer Coefficient (UGW)
Ground Floor Heat Transfer Coefficient (UG)
Air Change Per Hour (AIRCHG)
Latitude (LȦT)
Longitude (L\emptysetNG)
Time Zone Number (TZN)
Month (M\emptysetNTH)
Day (DAY)
Elapsed Hour Since Midnight of January lst (ELAPS)
Electric Power to the Light Watts Per Square
 Foot of Floor (QLITY)
Electrical Power to Equipment, Watts Per Square
 Foot of Floor Area (QEQPX)
Ventilation Air Rate (CFMV)
Air Leakage Rate (CFML)
Maximum Temperature of the Design Day (DBMAX)
Daily Temperature Range of the Design Day (RANGE)
Design Indoor Temperature Condition (DBIN)
Design Outdoor Wet-Bulb Temperature (WBMAX)
Design Indoor Wet-Bulb Temperature (WBID)
Design Winter Outdoor Temperature (DBMWT)
Design Summer Ground Temperature (TG)
Design Winter Ground Temperature (TGW)
Total Number of Exterior Surfaces to be Considered
 for the Heat Gain Calculation (NEXP)
Index for the Room Temperature Calculation
Index for the Standard ASHRAE Task Group Calcula-
 tion in the Special and Detailed NBS Calculation
```

```
Repeat the following cards for NEXP times
Type of Heat Transfer Exposures (ITYPE)
1. Roofs
2. Walls
3. Windows
4. Doors
5. Floors
Type of Response Factors to be Used (IRF)
1. Heavy roof construction
2. Light weight roof
3. Heavy weight exterior walls
4. Light weight exterior walls
5. Heavy ceiling/floor
6. Light ceiling/floor
7. Heavy partition wall
8. Light partition wall
U Value of the Exposures (U)
Area of the Exposures (A)
Orientation of the Exposures (AZW)
 0. South facing
 90. West facing
180. North facing
-90. East facing
Radiant Heat Exchange Factors Among Exposure Surfaces
```

If the construction of roof, wall and floor is non-standard, the following information is needed in addition to the standard data indicated above.

## Roof, Wall, Floor Data

1 Time increment of the temperature data
2 Number of roof layers (NR)
3 Thermal resistance of the roof inside surface
4. $l, k, \rho, c$, and resistance of the lst layer counted from inside surface ... (NR-2) Cards

5 Thermal resistance outside surface of the roof
6 Description of the 1st layer of the roof

7 Description of the 2 nd layer of the roof
8 Description of the NRth layer of the roof

9 Number of wall layers (NW)

Thermal resistance of the outside surface layer
13 Description of the 1st layer of the wall layer (NF) index (if basement floor)

17 Thermal resistance of the inside surface $\ell$, $\ell, \rho, c$ and Res of the 1st layer of the floor counted from the inside surface
l, h, $\rho, \mathrm{c}$ and Res of the 2nd layer of the floor (NF-1) Cards

19 R, $\rho$, and $c$ of the earth ... if basement floor
20 Description of the lst layer
21 Description of the 2nd layer
22 Description of the NFth layer
RASE HEATING/CDOLING LOAT CALCULATION PROGRAM
C I E XXPOSURE NUMBER, $I=1,2$, -NEXP
ITYPE(1), EXPOSURE TYPE NUMBER
ROOF
2 EXPOSED WALLS
10OORS
5 GROUND HEAT TRANSFER SURFACES
6 FURNISHINGS, PARTITION WALLS, PARTY NALLS AND FLOOR/CEILINGS
7 OFEN SURFACE
EXPOSEU FLOOHS
EXPOSEO FLOOKS $\quad$ BAROMETRIC FRESSURE IN OF HG 121
120
FR BAROMETRIC FRESSURE IN OF HG 131
ITENP = TEMPERATURE RISE INDEX IUE
IHT(I) HEAI TRANSFEW INDFX
AVEHTG--AVERAGE HEAT GAII FOR SITE
TSITHT-TOTAL SITE HEAT GAINFOR 24 HOURS
15
7
IHT=-1 GLASS SURFACE(TRANSPARENT) IRC
IHT $\mathrm{H} T$ OPAQUE
190
$I H T=1$ OTHLRWISE $2 U 1$
I--HEAT FLOW THROUGH E゙ACH EXPUSURE $21[$
DSUM--SENSIBLE HEAT GAIN $22 C$
GTLAT--LATENT HEAT GAIN 230
TOTHT--TOTAL HEAT GAIN 240
QC--SENSIBLE COOLING LOAC
240
$2 b 0$
SITEQS-ENTIRE SITE SENSIBLE HEAT GAIN 2 GÜ
SITEQL-ENTIRE SITE LATENT HFAT GAIN 270
SITETH-EENTIRE SITE TOTAI HEAT GAIN 280
RLDMAX--ZUILDING MAX HEAT GAIN 290
QSUMT - -AVEKAGE HEAT GAIN 3010
SITELD--ENTIRE SITE COOLING LOAD
SITMAX - -SITE MAX HEAT GAIN
SITMAX=-SITE MAX HEAT GAIN 320
AVESIT=-5ITE AVERAGE HEAT GAIN 330
SNWINT--SITE HEAT LOSS 340
ILFII) RESPONSE FACTOR NIMAER APPLICARLE TO THE SURFACE $3 S O$
ABSP(I) SURFACE SOLAR HEAT COEFFICENT $36 T$
SHADE(I) SHADING COEFFICIENTS
370
U(I) EXPOSURE U VALUE
UT(I)-U VALUE WITHOUT EXTERNAL SURFACE RESISTANCE 3 TU
300
H(I) EXPOSUFE EXTERIOR SURFACE THERMAL CONDUCTANCE $4 I T$
A(I) EXPOSURE AREA
NAZ(I) NALL AZIMUTH ANGLF MEASURED CLOCKWISE FROM SOUTH
410
TG--GROUND TEMPERATURE FOR COOLING LOAD CALCULATION
430
$T V=V E N T I L A T I O N$ AIR TEMFERATUKE
$\| G=-G R O U N I ~ H E A T ~ T R A N S F E R ~ C O E F F I C I E N T ~$
$T V=V E N T I L A T I O N$ AIR TEMFERATUKE
UG-GGOUNO HEAT TRANSFER COEFFICIENT
$A G=-G R O U N D$ HEAT TRANSFER SURFACE( $\triangle O$ YVEN NO GROUND FLOOR)
TGR--NINTER GROUND TEMP
IABMWT--WINTER OUTDOOR TEMP
470
480
LAT = LATITUUE DEGREE
LONG $=$ LONGITUDE DEGREE $5[10$
490
TZN--TIME LONE NIMBER
500
MONTH-MMONTH OF YEAR 520
510

1) $A Y=-D A Y$
530
QLIIX-MAXIMUM LIGHTING LOAD IN WATT/FTZ
```
INCLUDING THE ROOM TEMPERATURE CHANGE PREDICTIONS
CHANGE PREDICTIONS
```20
c
    5151\(5!\)

        NINDONS
70
            SC
                91
16
170

3 ?
    !
rt. QPX--MAX EJUIP LOAD IN NATT/FT2
'TEXF--NUMBER OF EXTERIOK HEAT TRANSFER SURFACES
BLDGNO-- BUILDING NUMBER
HT--HUILDING OR NNELLING UNIT HEIGHT
! PSX--MAX UCCUPANT SENSIHLE LDAD BTU/HR,PERSON
JPLX——MAX UCCUPANT LATENT LOAD BTU/HR,PERSON
1)P--DEWPUINT TEMP, F
INCU--MAX NUMRER DF OCCUPANTS
ELAFS =UAYS ELAPSED SINCE JAN. 1
HGLAS--NINTER GLASS HEAT TRANSFER CDEFFICIENT
111--.--INMER GURFACE CONVECTIVE HEAT TRANSFER COEFFICIENT
HR INNER SUPFACE RADIATIVE HEAT TRANSFER COEFFICIENT
\(G, G G\) RADATION HEAT EXCHANGE SURFACES SHAPE FACTORS
\(x, Y, Z\) RESPONSE FACORS
THESE RESPONSE FACDRS SHOULD NUT INCLDE OUTSIDE SURFACE
THERMAL RESISTANCE IHEN ITEMP.EQ.O
THEY SHOUN NOT INCLUDE BC゙TH THE OUTSIDE AND INSIDE THERMAL
RFSISTANCES NHEN ITEMP•Eฬ•I
CFML AIK LEAKAGE
CFMV VEMIILATION
H A FRACTION OF LIGHTITG POWEK THAT GOES I:ITO FLOOR
i) RMAX DESIGN OUTDOOR DFY-BULD TEMPERATURE
KANGE IAILY RAHGE OF THE OUTDDOR TEMPERATURE
AAMAX DESIGN OUTDDOR NFT-BULB TEMPERATURE
\(\therefore\) ㄱID DESIGN INDOOH WET-BULH IEMPERATURE
i) RIN DESIGN INDOOR DRY-BULR TEMPRATURE
ITK INDEX TO CALCULATE ROOM IEMPERATUYE RISE WHEN NOT AIR CONF.IT
ITK=I NHEN NOT AIP CONDITIONED
ITEMP INIDEX TO USE ASHRAE WEIGHTING FACTUR
IF ITEMP = O ASHARE VEIGHTING FACTOR
COMMON /CC/ X(10,100),Y(10,100), Z(10,1DO),ITYPE(IU),IHT(IU),IRF(1U 1), AESP \((1 \cap), U(10), H(10), H 1(10), A(10), U T(10), T O S(10,48), T I S(10,48), G\) \(2(10,10), Y_{Y}(48), D B(24), Q L I T E(24), Q E Q U P(24), G O(P S(24), Q I(10), C R(1 U)\) 3,NR(10), NGLAS(10,24), ITHST
()IMFNSION XX(100,10),YY(100,10),ZZ(100,10),TNEW(24),TIX(24),T1(48) !, QOCUP (24), RTL(24), XDUM(100),YOUM(100), ZDUM(100),TUUM(100),QO(10)
REAL LG(8),LX(8),LIS(8), NG(8), UX(8),QIS(8),QG7(8), \(4 \times 2(8), G I S Z(8), S\)
IITEQS(24),SITEQL(24),SITITH(24),SITELD(24),TIF(10)
DIMFNSIDAS QLITX (24), QEQUX(24), QUESIN(10,24),QPEOPL (24), QUES(10)
OIMENSION GSUN(1D,24), QSKY(10,24),SHADE(10), AZW(10)
() IMFNSION NAMERU(6),VT!1O),DR(10),MR(10),QGX(10)
f)IMLNSION DANBS (24)/.26,.20,.15,.10,.05,.0,.03,.1,.19,.30,.43,.57, \(1.69, .80, .90, .96, .99,1.0, .97, .90, .75, .57, .43, .331\)
KEAL LAT,LUNG,MONTH, NDFLR
DIMENSIUH LTYPE(10),GG(IE,10)
COMMON/SOL/ LAT,LONG,TZN,NAZ,NT,CN,OST,LPYR,S(35)
READ (5,90U) QLITX
KFAD (5,9חU) QEQUX
FEAD (5,9DO) DOCUP
SIGMA \(=0.1714 E-8\)
\(H R=4 \cdot *(5.35 \cdot * 3) \cdot 51 G M A\)
i) 0790 I JKLMN = 1, 20
REAN \((5,910, E N D=800)\) NAMFBD
READ ( 5,8 gU) IROT, ISKIP
IF (NAMEHO(1).EQ.' •) GO TO 800
IF (ISKIP.NE.D) GO TO 30
\(0010 \quad I=1,10\)
\(0010 \mathrm{~J}=1,100\)
```

 X(1,J)=0. 1130
 Y(1,J)=U.
 7(1,J)=n.
 1)0 20 J=1,24
 う!TFOS(J)=0.
 SITENL(J)=0.
 SITFTH(J)=0.
 SITELD(J)=U.
 CONTINUE
 SQNINT=U.
 CALL RESFX (X,Y,Z,XX,YY,?Z,MR,OR,VT,10)
 TRITF(6,920)
 PH=29.92
 READ (S,G\capO) LAT,LONG,TZ,,MONTH,OAY,ELAPS,UG,UGLAS
 \thereforeNITF (6,850)
 AKITF (6,R4O) LAT,LONG,T/N,MONTH,DAY,ELAPS,UG,UGLAS
 READ (5,GOU) QLITY,QEGPX,CFMV,CFML
 ~RITE (6,960)
 |RITF (h,Я40) QLITY,QEQPy,CFMV,CFML
 READ (S,GID) DBMAX,RANGE,DRIN,WBMAX,WBID,DBMKT,TG,TGN,TV
 \thereforeRITF (6,970)
 ARITE (G,N4O) DBMAX,KANGT,DBIN,WBMAX,NBID,DBMWT,TG,TGN,TV
 CALL PSY! (OBMAX,WBMAX,P!,DP,PV, WOUT,HOUT,VOUT,KHOUT)
 CALL PSYI (OBIN,NBID,PB,OPID,PV,WID,HIND,VIN,RHIN)
 4.}V=WOU
 \thereforeIN=NIU
 *A=WOUT
 I I O=DRI汭
 READ (b,TOח) ROOMNO,HT,AG,NOFLR,QCU,AIRCHG
 IRITF (6,83n)
 RITE (6,940) ROOMNO,HT,NG,NOFLK,QCU,AIRCHG
 RFAD (S,&q0) NEXP,ITK,ITEMP,ITHST
 DO 110 1=1,NEXP.
 RFAD (5,G2U) ITYPE(|),IRF(I),U(I),A(I),AZW(I),DUM,SHADE(I),AHSP(I)
 REA!) (b,9DO) (G(1,J),J=1,NEXP)
 LTYPE(I)=1TYPE(I)
 IF (ITYFE(I),EQ.7) GO TO 110
 K=IRF(I)
 |F(Y(K,1).GT.1.) IRF(I)=10
 NR(1)=MR(K)
 UT(I)=VT(K)
 CR(I)=UR(K)
 IF (NR(I).GT.4R) NR(I)=4!
 IF (ITYPE(I),EQ.3) ABSP(I)=0.
 IF (ITYPE(I),EQ.5) ABSP(I)=0.
 IF (ITYPE(1),EQ.6) AHSP(1)=0.
 IHT(1)=1
 IF(1TYPE(1).EQ.3) IHT(1)=-1
 H(I)=4.08
 H1(I)=0.542
 IF (ITYPE(I).EQ.6) H(1)=ח.
 IF (ITYPE(1).EQ.5) HI(1)=0.162
 IF (U(1)) 40,40,50
 PU=1./UT(I)+1./HI(1)
 IF (ITYPE(I).NE.b) RU=RU+1./H(1)
 U(I)=1•/RU
 CONTINUE
 IF (X(K,2)) 110,60,110
    ```

IF（X（K，2））110，60，110
```

 IF (H(I)) 70,80,70
 R=1./U(I)-1./H(I)
 GO TO 90
 R=1./U(I)
 UT(I)=1./R
 IF (ITEMP.NE.O) UT(I)=1./(R-1./(HI(I)+0.9))
 IF (UT(I)) 100.100,110
 1\capत UT(I)=100.
110 CONTINUE
WRITE (6,1170)
DO 120 I=1,NEXP
AZW(1)=ALW(I)+IROT
IF (AZW(I).GT.180.) AZW(I)=AZN(I)-360.
NRITE (6,930) I,ITYPE(I),IHT(I),IRF(I),ABSP(I),U(I),H(I),A(I),AZWI 1840
11),SHAOE(I),UT(1)
12ח CONTINUE
NEXP1=NEXP-1
NEXP2 = NEXP-2
0O 160 I=1,NEXP
GSUM=0.
NFX=NEXP1
IF (I.EQ.NEXP) NEX=NEXP2
NEX=NEX+1
DO 130 J=1,NEX
IF(I.GT.J) G(I,J)=G(J,I)*A(J)/A(I)
130 GSUM=GSUM+G(1,J)
IF (GSUM-1.) 140,150,150
140 G(1,MEX)=1,-GSUM
GO TO 16U
150 G(I,MEX)=0.
160 CONTINUE
NRITE (6,1180)
MRITE (6,1190)
DO 170 I=1,NEXP
NRITE (6,1200) I,(G(I,J),J=1,NEXP)
17ח CONTINUE
DO 1RO I=1,NEXP
DO 180 J=1,NEXP
180 G(I,J)=HR*G(I,J)
1!=0
DO 200 I=1,NEXP
IF (ITYPE(1).EQ.7) GO TO 200
II=I I + I
ITYPE(II)=1TYPE(I)
IRF(II)=IRF(I)
U(II)=U(I)
A(II) =A(I)
AZW(II)=AZW(I)
SHADE(11)=SHADE(I)
ABSP(II)=ABSP(I)
NR(I|)=NR(I)
UT(III)=UT(I)
CR(II)=CR(I)
IHT(II)=IHT(I)
H(II)=H(I)
HI(II)=HI(I)
JJ=0
OO 190 J=1,NEXP

```
```

 IF (LTYPE(J).EQ.7) GO TO 190 2290
 J.J=JJ+1
 GG(III,JJ)=G(I,J)
 2חO CONTINUE 2330
VEXP=11
\#RITE (ヶ,1210)
23413
OO 210 I=1,NEXP
0\cap 210 J=1,NEXP
21\Gamma G(I,J)=GG(I,J)
\&RITE (6,1180)
ARITE (6,1190) 2430
DO 220 I=1,NEXP
27\pi *RITE (6,1200) 1,(G(I,J),J=1,NEXP)
NRITE (6,1170)
DO 230 I = 1,NEXP
73n NRITE (6,930) I,ITYPE(I),IHT(I),IRF(I),ABSP(I),U(I),H(I),A(I),AZN1 2450
11),SHADE(I),UT(1)
H=0.5
|RITF (6,940)
DO 240 I=1,24
240 DR(I)=(DBMAX-RANGE)+(RANGE*DBNBS(I))
SUM=п.
00 250 I=1,24
25ח SUM=SUM+DB(I)
OBM=SUM/24.
ARITE (6,950) (DH(1),I=1,24),DBM
OO 260 I=1,24
7b0 TIX(1)=T10
SUM=n.
\cupO 270 I=1,24
27ח SUM=SUM+TIX(I)
S7ח SUM=SUM+TIX(I)
NRITE (6,960)(TIX(I),I=1,24),TIM
ARITE (6,970) QLITX
ARITE (6,980) QEQUX 2640
ARITE (6,990) QOCUP
CFMWT=AG*HT/6ח**AIRCHG
CFML=0.5*CFMWT
CFM=CFML + CFMV
WLITO=WLITY*AG*3.413*NOFIR
QEQPO=QEQPX*AG*3.413*NOFIR
1)O 2RO J=1,24
QLITF(J)=QLITX(J)*QLITO 2720
QEQUP(J)=Q上QUX(J)*QEQPO
QLITF(J)=QLITX(J)*QLITO 2720
2740
GTL(J)=4840.*CFM*WOUT
28O CONTINUE 2750
00 290 I=1,9
w0(1)=0.
QI(I)=0.
290 TNEW(I)=0.
2780
2800
C DBM=TIM = RLFERENCE TEMPENATURE
DAM=TIM
S(1)=LAT
5(2)=LUNG
S(3)=TZN
S(4)=ELAPS
S(6)=1.
2290
$J, J J+1 \quad 2300$
$G G(I I, J J)=G(1, J) \quad 2310$

```
```

190 CONTINUE

```
190 CONTINUE
2320
2320
2354
2360
2370
2380
2390
2410
2420
2430
2440
2460
2470
2490
2490
2500
2510
2520
2530
    2540
2550
2560
2570
25:0
2590
27ח SUM=SUM+TIX(I)
    2610
640
2650
    CFML=O•S*CFMWT 2670
2680
2690
2700
O
2760
2770
880
2810
2820
2830
2840
2850
2860
```

```
    S(7)=0.2
        2870
    S(8)}=1.
    S(33)=1.
    NRITE (6,1227)
    1)O 350 I=1,NEXP
    IF (ITYPE(1).LT.5) GO TO 310
    0) 3\capO J=1,24
    WSUN(I,J)=U.
    (WGLAS(I,J)=0.
3nn VSKY(I,J)=0.
    GO TC 340
31! WAZ=AZW(1)
    S(9)=NAL
    5(10)=90.
    IF (1TYPE(1).E&P1) 5(10)=0.
    UO 330 J=1,24
    OSKY(I,J)=U.
    IF(ITYPE゙(I).EQ.1) QSKY(I,J)=20.
    | 1ME=J
    S(5)=TIME
    CALL SUN
    IF(S(25).GT.O.1 GO TO 320
    WSUN(!,J)=U.
    GGLAS (I,J)=0.
    GO TO 330
32ח QSUN(I,J)=S(25)*ABSP(1)
    GGLAS(1,J)=0
    IF (IHT(1)•GT.O) GO TO 3.30
    CALL GLASS (SHADE(1),1.,1•,NGLAS(1,N))
    CONTINUE
    ARITE (6,1000) 1
    NRITE (6,1U10) (QSUN(I,J),J=1,24)
    ARITE (b,1010) (QGLAS(I,J),J=1,24)
    UO 3ん0 J=1,24
    TI(J)=TIX(24-J+1)-TIM
    0!) 360 I =1,NEXP
3hn TOS(I,J)=DB(24-J+1)-DRM
    U0 370 J=25,48
    TI(J)=TI(J-2.4)
    7() 370 I=1,NEXP
    TOS(1,J)=TUS(1,J-24)
    IF (ITEMP.NE.O) GO TO 391
    1)O 380 L=1,8
    LG(L)=0.
    LX(L)=0.
    LIS(L)=0.
    QG(L)=0.
    S(L)=0.
    QIS(L)=0.
    CONTINUE
    DO 400 I=1,NEXP
    1)0 400 J=1,48
400 rIS(I,J)=0.
    TA=T!M
    DO 720 N=1,7
    IF (N.NE.7) GO TO 410
    QSUMT=O.
    RLDMAX=0.
```

$37 \cap \quad \operatorname{TOS}(1, J)=\operatorname{TUS}(1, J-24)$

```
4IN CONTINUE
    UO 720 NK=1,24
    DO440 I=1,NEXP
    i)0 420 NTT=2,48
4ว!: TOY(NTT)=TUS(I,NTT-1)
    00 430 NTT=2,48
43% TOS(1,NTT)=TOY(NTT)
440 CONTINUE
    IF (ITEMP.NE.O) GO TO 49N
    TA=TIX(NK)
    110 450 L=2.8
    QGZ(L)=QG(L-1)
    Q\timesZ(1.)=Q\times(L-1)
    SISZ(L)=QIS(L-I)
450 CONTINUE
    0\cap 460 L=2,8
    1)G(L)=QGZ(L)
    *)(L)=@XZ(L)
    QIS(L)=QISL(L)
46\pi CONTINUE
    O\cap 47ח NTT=2,48
470 TOY(NTT)=Tl(NTT-1)
    00 4RO NTT=2,48
4BO TI(NTT)=TOY(NTT)
    SUMQG=O.
49# CONTINUE
    DO 540 I=1,NEXP
    k=IRF(I)
    00 500 J=1,48
    XDUM(J)=X(K,J)
    Y\capUM(J)=Y(K,J)
    ZDUM(J)=Z(K,J)
    TDUM(J)=TOS(1,J)
    IF (ITYPE(I).EQ&b) TDUM(J)=TIS(I,J)
    IF (ITYPE(I).EQ.5) TDUM(J)=TG-TIM
    IF (ITEMP.NE.O) TI(J)=TIS(I,J)
    IF (TUUM(J).GT.100..OK.TI(J).GT.100.) GO TO 7b0
    810
    IF (TDUM(J).LT.-100..OR.Tl(J).LT.-100.) GO TO 760
    CONTINUE
    Ux=U(I)
    IF (H(1)) b20,520,510
S!ri RX=1./U(1)-1./H(I)
    Ux=1./RX
3870
5>
    CONTINUE
3800
    CALL OUTSID (XDUM,YOUM,ZRUM,CR(I),UX,H(I),DB(NK),TIM,QO(I),QI,1),1`
    ISUN(I,NK),QSKY(I,NK),TDUN,TI,TNEWD,TA,ITEMP)
    nO 530 J=1,48
53n TOS(1,J)=TUUM(J)
    TNEW(I)=TNEWO+TIM
3930
54
    CONTINUE
    QOCPS(NK)=QOCUP(NK)*10.*(100.-TA)*QCU
    OOCPL=10.*(TA-60.)*QOCUP(NK)*QCU
    IF (TA-100.) 560,550,550
550 QOCPS(NK)=0.
    (.OCPL=4OO.*OCUP(NK)*QCU
    GO TO 580
56n IF (TA-60.) 570,580,580
570
    QOCPS(NK)=4OO.QOCUP(NK):QCU
```

```
    \OCPL=O. 4030
SR\cap \PEOPL(NK)=QOCPL
    SUML=QTL(NK)-4840.*CFM*NIN+QDCPL
    \TLATx=SUML
    \SUM INSTANTANEOUS HEAT GAIN
    SUMQG INSTANTANEOIS SOLAF HEAT GAIA:
    QI CONDUCTION HEAT TRANSFER
    ivSUM=1•O& (FML*(TA-DA(NK))+1.08*CFMV*(TA-TV)-QLITE(NK)-QEQUP(AMK)-N
    1O(PS(NK)
    OO 590 I=1,NEXP
L9% |5!JM=QSUM+A(I)*(VI(I)-DG|AS(I,NK))
    IF (N.NE.5) GO TO 650
    IF (NK.NE.1) GO TO 6OD
    :RITF (6,1U2O) NAMEBD
GON CONTINUE
    \R1TE (6,1030) NK,(TNEW(1),!=1,9),DB(NK)
    IF (1TEMP) 720,720,65U
6I! IF (NK.NF.1) GO TO 620
    Y\ITE (6,1U4D) NAMERD
G2O C̈ONTINUE
    TOTHT=QL+QTLAT
    *RITE (6,1U5U)NK,(Q1(1),I=1,9),QSUM,QTLAT,WL,TOTHT
    006.301=1,NEXP
    QNESIN(I,NK)=QI(1)*A(1)
A3T CONTINUE
    SITEQS(NK)=SITEQS(NK) +QSIMM
    SITEQL(NK)=5ITEQL(NK)+QTLAT
    SITETH(NK)=SITETH(NK) + TOTHT
    SITELD(NK)=SITELD(NK)+QL
    IF (DL•GT.BLDMAX) GOTO&4n
    HI.DMAX=QL
    IOTHTX=TOTHT
    IMAX=NK
i4^\mp@code{IF (N.EQ.7) QSUMT=QSUMT + TOTHT}
    G\cap TO 720
    !) 6RO I=1,NEXP
    [O 6KO NTT=2,48
bhח: TOY(NTT)=TIS(1,NTT-1)
    D\cap 670 NTT=2,48
67ח TISII,NTT)=TOY(NTT)
GBO CONTINUE
    IV=DR(NK)
    CALL RMTMP (NEXP,NK,TV,CFML,CFMV,R,TIM,TA,TIF,QL,ITK)
    IF (TA\bulletGT.TIM) GO TO 690
    OPI=OPID
    NBIN=WBID
    HIN=HINO
    NIN=V:ID
    GO TO 700
    CONTINUE
    NOCPL=QOCPL/106O.
    *I=14.5*CFML*NA+4.5*CFMV*WV+QOCPL)/(4.5*CFML+4.5*CFMV)
    HVI=PB*NI/(D.622+WI)
    UPI=OPF(PVI)
    CALL PSY2 (TA,DPI,PG,WBIN!,PVI,WIN,HIN,VIN,RHIN)
4560
450
    CONTINUE
    IF (N.L.T.G) GO TO 720
    IF (N.EQ.7) GO TO 610
4030
```

($\mathrm{SPEOPL}(N K)=Q O C P L$
SUML = QTL(NK)-484U. * CFM* IN + QDCPL
ンTLATx=SUML
Sum instavtaneous heat gain

IOCPS(NK)
OO $590 \quad 1=1$, NEXP
597 WSUM = QSUM + A(I)* (QI(I)-QG|AS(I,NK))
IF (N.NE.5) GO TO 650
IF (NK.NE.1) GO TO 6OD
:RITF (6,1U20) NAMEBD
GIT CONTINUE
. K ITE (6,1030) NK, (TNEW(1), $1=1,9)$, DB(NK)
IF (ITEMP) $720,720,650$
610 IF (NK.NF..1) GO TO 620
VRITE (6,1040) NAMEBD
CONTINUE
$T \cap T H T=Q L+Q T L A T$
サRITE (6,1U50) NK, (QI(1), I=1,9), QSUM,QTLAT, (XL,TOTHT
DO K30 $1=1$, NEXP
(0) SiN(1, NK)=Q1(1)*A1!)

SITEQS(NK) = SITEQS(NK) + QSIM
$5 \ T E Q L(N K)=5 I T E Q L(N K)+Q T L A T$
SITETH(NK) = SITETH(NK) + TOTHT
SITELD(NK)=SITELD(NK) + QL
(4 ?
IOTHTX = TOTHT
I $M A X=N K$
IF (N.EQ.7) QSUMT =QSUMT + TOTHT
Gn TO 720
0) 0 KRO $1=1$,NEXP
[0 6 6O NTT $=2,48$
DO 670 NTT=2,48

68O CONTINUE
1V=DR(NK)
4430

CALL RMTMP (NEXP, NK, TV, CFML, CFMV,R,TIM,TA,TIF,QL,ITK)
IF (TA•GT.TIM) GO TO 690
MBIN=NBID
$H I N=H I N O$
$\cdots I N=V I D$
GO 10700
691 CONTINUE
OOCPL $=$ QOCPL/1060.
*I $I=14.5 * C F M L * N A+4 \cdot 5 * C F M V * W V+Q O C P L) /(4 \cdot 5 * C F M L+4 \cdot 5 * C F M V)$
$622+W 1)$
(ALL PSY2 (TA, DPI,PG,WBIN,PVI,WIN,HIN,VIN,RHIN)
CONTINUE

IF (N.EQ.7) GO TO b10
4040
4050
4060
4070
4050
4090
41110
4110
4120
41.31

4140
4150
4160
4170
4180
4190
4200
4210
4220
4230
4240
4250
4260
4270
4280
4290
43130
4310
4320
4330
4340
4350
43 kO
4370
4380
4390
4400
4410
4420
4440
4450
4460
4470
4480
4490
4500
4510
4520
4530
4540
4550
4560
4570
700
IF (N.L.T.G) GO TO 720
4590
46010

```
    IF (NK.NE.1) GO TO 710 4610
    NRITE (6,IUGO) NAMERD
710
70
    CONTINUE
    ()SUMT=QSUMT/24.
    &&INT=1.O&*CFMWT*(TIM-DB.WT)+UG*(TIM-TGW)*AG
    ~.:INT=1.O&*CFMWT*(TIM-DG*NT)
    120 740 I=1,NEXP
    If (IHT(1).LT,O) U(I)=UGLAS
    IF (ITYPE(1).NE.5) GO TO 730
    Q*INT=WWINT+UG*A(I)*(TIM-TGN)
    GO TO 140
    IF (ITYPE(1).FQ.6) GO TO 740
    IF (ITYPE(1),EQQ.7) GO TO 740
    (AAINT=QNINT+A(I)*U(I)*(TIM-DRMNT)
    CONTINUE
    SQNINT=SQNINT+QNINT
    NRITE (6,1140) WWINT,TOTMTX,QSUMT
    IF (ITK.HE.O) GO TO 74O
    DO 750 I=1,NEXP
    NGX(1)=QGLAS(I,IMAX)*A(I)
    CDES(I)=QOESIN(I,IMAX)
    CFM=CFML + CFMV
    CALL OUTPUT (DBMAX,WBMAX,DAIN,WBID,WOUT,WIN,QGX,CFM,WLITE(IMAX),WO
    ICPS(IMAX),QPEOPL(IMAX),(NTES,AZW,ITYPE,NEXP,NAMEBD)
    GO TO 790
76ח :RITE (6,1080) N
    ARITE (6,1090)
    00 77ח J=1,48
    &RITE (6,1110) J,(TOS(1,J),I=1,10)
    ARITE (6,10RO) N
    RRITE (6,1100)
    D0 780 J=1,48
    ARITE (6,1110) J,(TIS(1,N),I=1,10)
    CONTINUE
    CONTINUE
    MITE (6,1120)
    #RITE (6,1130)
    SITMAX=0.
    TSAVE=0.
    TSITHT=O.
    OO 810 I=1,24
    SQLLD=SITEQL(1)+SITELD(1)
    TSITHT=TSIIHT+SITETH(I)
    IF (SITETH(I).LT.SITMAX) SITMAX=SITETH(I)
    IF (SQLLD.LT•TSAVEI TSAVF=SQLLU
    *VITE (6,1150) I,SITEQS(I),SITEQL(I),SITETH(1),SITELD(I),SQLLD
    CONTINUE
    AVEHTG=TSITHT/24.
    ARITE (6,1160) S&NINT,SITMAX,AVEHTG,TSAVE
    NRITE (6,1120)
    STOP
    FORMAT (1H1)
```



```
    FORMAT (10F10.1)
    FORMAT (7X'LAT',GX'LONG',7X,TZN,,5X'MONTH',7X'DAY',5X,ELAPS',8X,UG
```

4610
4620
4630
4640
4650
4660
4670
4680
4690
4700
4710
4720
4730
4740
4750
4760
4770
4780
4790
4800
4810
4820
4830
4840
4850
4860
4870
4880
4890
49100
4910
4920
4930
4940
4950
4960
4970
4980
4990
5000
5010
5020
$5 \mathrm{O}_{3} 0$
5040
5050
5060
5070
5080
5090
5100
5110
5120
5130
5140
5150
5160
5170
5180

```
1..5X.UGLAS')
5190
    FORMAT (5X'QLITY•,5X'QEQFX0,6X'CFMV',6X'CFML')
```



```
    FORMAT (1717)
    FORMAT (1017)
    FOKMAT (1OF7.O)
    FOKMAT (6A6)
    FORMAT (21/,6F7.0)
    FORMAT (13,3110,8F1O.2)
    FORMAT ('1 ENVIQONMENTAI DATA')
    FORMAT (DOH TEMP./12F10.2/12F10.2/'DMEAN VALUE=OF1D.31
    FORMAT (.丁TI./12F10.2/12F10.2/'OMEAN VALUE=OF10.3)
    FORMAT ('OWLITE'/(12FIU.3))
    FORMAT (DDQEQUP'/(12F10.3))
    FORMAT (OWOCUP\cdot/(12F10.3))
    FORMAT (110.F10.0)
    FORMAT (24F5.O)
        FORMAT (IHI2DXPEXPOSURE GURFACE TEMPERATURE, DEGREES F FOR 'RAG//
```



```
    2•(9)•7X'CB')
        FORMAT (11U.1MF10.2)
        FOKMAT /IHI 3OXGAG///7X'TIMEPI4XPEXPOSURE HEAT FLUX / 4OX' HEAT GA!N
        IS '3X' SENSIRLE LOAD'IX' TOTAL LOAD'/3OX'BTU/HR,FT2.45X'BTU/HR'12X
```



```
    FORMAT (I!U.9F7.2.4x.4GIC.4)
    FORMAT (1H12OX' INSIDE SIRFACE TEMPERATURE, DEGREE F FOR 'GAG//7X'
    ITlME•5X•(1)\cdot7X•(2)•7X•(3)•7X•(4)•7X•(5)•7X•(6)•7X•(7)•7X•(8)•7X!(9
    2)!7x•TA•8x•&R'/1
    FORMAT (1|0,11FIח.2)
        FORMAT (1 CINVERSION EKNOR AT N=:110)
        FORMAT ('OT TOS')
        FORMAT (0O TIS')
        F!RMAT (11U.1DF10.2)
        FORMAT (1H1)
```



```
        I'COOLING IOAD•7X'TOTAL'/Z2X'BTU/HR'I9X•BTU/HR•9X•BTU/HR'7X'COOLING
    ? LOAD'//14X'SENSIBLE NEAT'3X'LATENT HEAT'///
        FORMAT (////' HEAT LOSS•IOX'COOLING LOAD'7X'AVERAGE HEAT GAIN•3X//
    11\times3(G10.4.10X))
        FORYAT (6(G10.4.5X))
        FORMAT 1////' HEAT LOSS',OX'MAX HEAT GAIN•7X'AVERAGE HEAT GAIN'3X'
    IMAX TOTAL COOL LOAD.//IX4(GID.4.1OX))
1177 FORMAT 1.O SURFACE NO ITYPE.4X,!IHT•7X,!IRF.7X,'ABSP!6X,'U'9X,.H.9
    IX,'A'9X,'NAZ'5X.'SHADE'8X,.UT')
    FORMAT (`? FADIATION I.TERCHANGE FACTORS')
    FORMAT 1'口 SURFACE
        IF'\mp@code{b}
        FORMAT ('O MODIFIED SURFACE DATA')
        FORMAT ('1 SOLAR OATA (~SUN/QGLASS)!)
        END
```

5200
5210
5220
5230
5240
5250
5260
5270
5280
5290
5300
5310
5320
5330
5340
5350
5360
5370
5380
5390
5400
5410
5420
5430
5440
5450
5460
5470
5480
5490
5500
5510
5520
5530
5540
5550
5560
5 570
5580
5590
5600
5610
5620
5630
5640
5650
5660
5670
5680
5690
5700
$5710=$
$110 ?$
1190
1200
1210
1220
SUBROUTINE ARCD $2(Z, K, L, G, A, B, C, D, N L)$ 10
DIMENSION $A X(10), B X(10), C X(10), D X(10), G(10)$ O O
RFALK（10），L（10） 40
FI＝4．＊ATAN（1＊）
$F^{\prime} P=P 1 \neq 0.5$50
615$0050 \quad 1=1, N L$
IF（G（1）） $40,40,10$ 70
80IF $(2) 30,30,20$
90ZW $=5$ QRT（I／G（1））
$Z Q L=Z Q *(I)$ 100
$(0)=5 I N(Z Q L)$ 1.0
$C 1=\operatorname{COS}(2 Q L)$
$C 1=\cos (2 Q L$ 120 130
$51=C O / Z Q L$
$52=(51-C 1) / Z Q L / Z Q L$ 140
$\wedge \times(1)=C 1$ 150
160$3 \times(1)=L(1) / K(1) * S 1$
$C \times(1)=-2$ QL＊K（1）／L1I）＊CO 170
1801）$\times(1)=C 1$
190
（1）T0 b0$A x(1)=1$ ．210
$C \times(1)=0$ ． 220
）$x(1)=1$ ． 230
$3 \times(1)=L(1) / K(1)$ 240
GO TO SO 250
$\Delta x(1)=1$ 。 260
$3 x(1)=1 / K(1)$ 270
$C x(1)=0$ ．280
1）$x(1)=1$ ． 290CONTINUE$A=A \times(1)$300
$i=B \times(1)$ 310$C=C \times(1)$$D=0 \times(1)$
3.30320
IF（ML．LT．2）GO TO 60
CALL MULT $(A X, B X, C X, D X, A, B, C, D, N L)$ 350RFTURN360
どNO
S！JBROUTINE ABCDP2（Z，K，L，G，AP，BP，CP，CP） 10
REAL K，L 20
$P I=4 . * A T A N(1$. 30
IF（G） $30,30,10$ 40
$P P=P 1 / 4 \cdot / G$ 50
IF（7）40，40，20 60
L？$=$ SQRT（Z／G） 70
$\angle Q L=\angle Q *$ 80
$x=L * L * \cdot 5 / G$ 90
KES $=L / K$ 100
CO＝SIN（ZOL） 110
$C 1=C O S(Z Q L)$ 120
$S 1=C O / L Q L$ 130
S2＝（S1－C1）／ZQL／ZOL 140
$A P=X * S 1$ 150
HP $=x$＊Kと $S * S 2$ 160
$C P=X \cdot(S)+C 1) / R E S$ 170
$D P=x * S!$ 180
GO TO SO 190
$A P=0$ ． 200
$B P=0$ 。 210
$C P=0$ 。 220
$D P=0$ 。 230
GO TO b O 240
cONTINUE 250
$X=L * L * O .5 / G$ 260
$A P=X$ 270
$B P=X / L / K / 3$ 280
$C P=K / L * X * 2$ 。 290
$D P=X$ 300
GO TO bO 310
RETURN 320
END 330 －
SUBROUTINE DERVT ($A, B, C, D, A P, B P, C P, D P, A P P, B P P, C P P, D P P, N$) 10
DIMENSION A(N),B(N),C(N),D(N),AP(N),BP(N),CP(N),DP(N),AT(IO),BT(10) 20
1),CT(10), DT(10),ATT(ID),ATT(10),CTT(10),DTT(10) 30
DO $30 \quad 1=1, N$ 40
DO $20 \mathrm{~J}=1, N$ 50
IF (I.EQ.J) GO TO 10 60
$A T(J)=A(J)$ 70
GT $T(J)=B(J)$ 80
$C T(J)=C(J)$ 90
DT(J)=D(J) 100
GO TO 20 110
$A T(J)=A P(J)$ 120
$B T(J)=B P(J)$ 130
$C T(J)=C P(J)$ 140
DT(J)=DP(J) 150
CONTINUE 160
CALL MULT (AT,RT,CT,DT,ATT(I),BTT(I),CTT(I),DTT(I),N) 170
$A P P=A T T(1)$ 180
$B P P=B T T(1)$ 190
$C P P=C T Y(1)$ 200
$D P P=D T(1)$ 210
DO $40 \quad i=2, N$ 220
$A P P=A P P+A T T(1)$ 230
$B P P=B P P+B T T(I)$ 240
$C P P=C P P+C T T(I)$ 250
$\cap P P=D P P+D T T(1)$ 260
RETURN 270
END 280 -
FUNCTION DPF (PV) 10
C THIS SUBROUTINE CALCULATES DEW-POINT TEMPERATURE FOR GIVEN VAPOR PRE 20
$Y=L O G(P V)$ 30
IF (PV.GT.0.1R36) GO TO 10 40
$D P F=71 \cdot 98+24.873 * Y+0.8927 * Y * Y$ 50
GO TO 20 60
10 $D P F=79.047+30.579 * Y+1.8893 * Y * Y$ 70
20END80
90
SUBROUTINE GLASS (SHDCF,GLTYP,GLAZE,SHGF) 10
DIMENSION TR(9),SH(25) 20
COMMON /SOL/ LAT,LONG,TZN,WAZ,WT,CN,DST,LPYR,S(35) 30
$T R(7)=S(19)$ 40
$T R(8)=G L T Y P$ 50
$\operatorname{TR}(9)=G L A Z E$ 60
(ALL TAR (TR) 70
$S H(1)=S(24)$ 80
$5 H(2)=S(22)$ 90
$5 H(3)=S(23)$ 100
$5 H(4)=S(19)$ 110
$5 H(5)=0.5$ 120
$S H(6)=0.5$ 130
$S H(7)=0.25$ 140
$5 H(8)=0$. 150
$5 H(9)=0.7$ 160
$S H(10)=1.0$ 170
SH(1))=SHDCF 180
SH(12) $=T R(1)$ 190
SH(13) $=T R(2)$ 200
$\operatorname{SH}(14)=T R(3)$ 210
$S H(15)=T R(5)$ 220
$S H(16)=T R(4)$ 230
SH(17) $=T R(6)$ 240
CALL SHG (SH) 250
$S H G F=5 H(18)$ 260
RETURN 270
END $280=$

```
SUBROUTINE GPF (U,ZL,Z) 10
DIMENSIONZ(1) 20
PI=4.*ATAN(1.))}3
SQTPI=SQRT(PI) 40
PI2=2./PI 50
ER=0.001 60
DR=0.1 
NRITE (6,30) 80
MRITE (6,40) 90
Z(1)=2*ZL*SQRT(U)/SQTPI 100
LZ=Z(1) 110
Z(2)=Z(1)*(SQRT(2.)-2.) 120
DO 10K=3,b0 130
ZK=K 140
Z(K)=Z(1)*(SQRT(ZK)-2.*STRT(ZK-1)+SQRT(ZK-2.)) 150
DO 20 K=1,b0 160
ARITE (6,5U) K,Z(K) 170
RETURN 180
. (190
200
FORMAT (5THO RESPONSE FACTORS FOR SEMI-INFINITE BED 210
FORMAT (SOHO Z(K) K 220
FORMAT (1I\D,3FIO.5) 230
END
240.
```

SUBROUTINE MULT (A,B,C,D,AT,BT,CT,DT,N) 10
DIMENSION A(N),B(N),C(N),D(N) 20
ATT=A(1) 30
BTT=B(1) 40
CTT=C(1) 50
DTT=D(1) 60
IF (N.LT.2) GO TO 20 70
$0010 \quad J=2, N$ 80
$A T=A T T * A(J)+B T T * C(J)$ 90
$B T=A T T * B(J)+B T T * D(J)$ 100
$C T=C T T * A(J)+D T T * C(J)$ 110
DT=CTT*B(J)+DTT*D(J) 120
ATT=AT 130
$B T T=B T$ 140
$C T T=C T$ 150
10 $D T T=D T$ 160
GO TO 3D 170
20 $A T=A T T$ 180
$B T=B T T$ 190
$C T=C T T$ 200
OT=DTT 210
RETURN 220
END 230 -
SUBROUTINE OUTPUT IDB，WB，DBI，WBI，WA，WI，QGX，CFML，QLITE，QOCS，QOCL，Q， 10
I WAZ，ITYPE，NEXP，NAMEI 20
DIMENSION W（10），WAZ（10），ITYPE（10），NAME（6），QGX（10） 30
（）V：S $=0$ ． 40
Q i W $W=0$ 。50
QWN＝ 0 。 60
VAE $=0$ 。 70
QGS $=0$ 。 80
$Q G E=0$ 。 90
WGW $=0$ 。 100
$Q G N=0$－ 110
$Q D S=0$ 。 120
QDN＝ 0 。 130
マDE $=0$ 。 140
QDN＝0． 150
WRITE $(6,20)$（NAME（1）， $1=1,6)$ 160
NRITF（6，30）DB，WB，WA 170
ARITE（6，40）DBI，WBI，WI 180
$D B D=D B=D B I$ 190
$V D=W A-W I$ 200
WRITE $(6,50)$ 210
，VRITE $(6,6 U)$ DBD，WD 220
DO 1 O $1=1$ ，NEXP 230
$Q(I)=-Q(I)$ 240
$I I=I T Y H E(1)$ 250
IF（II．EQ．3）Q（I）$=Q(1)+Q r_{1} X(I)$ 260
I $A A Z=W A Z(1)$ 270
IF（II．EQ．I）QROOF＝Q（I） 280
IF（II．EQ．5）QFLOOR＝Q（1） 290
IF（II．EQ．6）QFLOOR＝QFLONR＋Q（I） 300
IF（II．EQ．2．AND．IWAZ．EQ．I）$Q W S=Q(I)$ 310
IF（II．EQ．2．AND．INAZ．EQ．90）QWW＝Q（I） 320
IF（II．EQ．2．AND．IWAZ．EQ．－90）$Q W E=Q(I)$ 330
IF（II．EQ．2．AND．IWAZ．EQ．18ח）$Q W N=Q(1)$ 340
IF（II．EQ．3．AND．IWAZ．EQ．II）QGS＝Q（I） 350
IF（II．EQ．3．AND．IWAZ．EW．90）$Q G W=Q(1)$ 360
IF（II．EQ．3．AND．IWAZ．EQ．－90）$Q G E=Q(I)$ 370
IF（II．EQ．3．AND．IWAZ．EQ．180）$Q G N=Q(I)$ 380
IF（II．EQ．4．AND．IWAZ．EQ．O）QDS＝Q（I） 390
IF（II．EQ．4．AND．IWAZ．EQ．90）QDW＝Q（I） 400
IF（II．EQ．4．AND．INAZ．EQ．$=90$ ）$Q D E=Q(1)$ 410
IF（II．EQ．4．AND．IWAZ．EW．180）QUN＝Q（I） 420
WRITE（6，350）430
WRITE $(6,70)$ QROOF 440WRITE $(6,80)$ QWS450
ARITE（6，90）QWE 460
WRITE（6，100）QWW 470
ARITE（6．110）QWN 480
NRITE $(6,180)$ 490
NRITE（6，190）QUS 500
WRITE $(6,200)$ QUE 510
ARITE $(6,220)$ QDW 520
WRITE $(6,210)$ QDN 530
WRITE（6．120）QFLOOR 540

```
        NRITE (6,130) 550
        WRITE (6,140) QGS
        560
    WRITE (6,150) QGE 570
    WRITE (6,160) QGN 580
    WITE (6,170) QGW 590
    QINFIL=1.OB*CFML*ORD 6OO
    NATT=QLITE/3.415 610
    NRITE (6,340)
    620
    SUM=QRUOF+QWS+QWE+QWW+QWH+QFLOOR+QDS+QDE+QDW+QDN+QGS+QGW+QGE+OGM 
    WRITE (6,270) SUM 640
    &RITE (6,230) 650
    WRITE (6,250) WATT,QLITE 660
    NRITE (6,260) QOCS 670
    NRITE (6,240) CFML,DBD,QINFIL 680
    NRITE (6,340) 690
    SUM=SUM+QLITE+QINFIL+QOCS 700
    NRITE 16,280) SUM 710
    QINFIL=4840.*WD*CFML 720
    WRITE (6,320) CFML,WD,QINFIL 730
    WRITE (6,330) QOCL 740
    WRITE (6,340) 750
    SUML=QINFIL+QOCL 760
    NRITE (6,290) SUML 770
    SUMT=SUM+SUML 78U
    WRITE (6,300) 790
    WRITE (6,310) SUMT 800
    RETURN 810
c
C
20
    FORMAT (IHIIOX'SUMMARY OF CALCULATIONS FOR'GAG)
    FORMAT (.D OUTDOOR CONDITIONS.....'F5.1,' DB'FIO.1,'WBMFIO.4,.HUMI 850
    IDTY RATIO')
    FORMAT ('O SPACE CONDITIONS.......F5.1,'DBMFID.1,'WBIFID.4,'HUMI }87
        1DTY RATIO')
        880
```



```
    FORMAT ('0 UIFFERENCE..............'F5.1,F25.4)
    FORMAT ('ROOF = 36X,F10.0)
    FORMAT (' SOUTH WALL= 36X,F1O.U)
    FORMAT (' EAST WALL = 36x,F10.0)
    FORMAT (, NORTH WALL=, 36x,F10.0)
110 FORMAT (. WEST WALL =9 36x,F10.0) 950
120 FORMAT ('FLOOR ='36X,F1O.O) 960
130 FORMAT ('O SOLAR HEAT GAIN AND TRANSMISSION THROUGH GLASS') }97
140 FORMAT ('SOUTH = = 36X,F10.0) 980
150 FORMAT ('EAST = 36x,F10.0) 990
160 FORMAT (' NORTH = 36x,F10.0) 1000
170 FORMAT ('WEST = 36x,F10.0) 1010
180
1 9 0
200
210
220
230
240
250
260 FORMAT (OPEOPLE = .37X,F10.0) 1100
270 FORMAT (48X,F10.0)
280 FORMAT ('O TOTAL SENSIBLE SPACE LOAD'2OX,F10.0)
FORMAT ('DUOORS')}102
FORMAT (. SOUTH = = 36X,F10.0) 1030
FORMAT (1 EAST =O 36X,F10.0) 1040
FORMAT ('NORTH =936x,F10.0)
FORMAT ('WEST = = 36x,F10.0)
FORMAT ('O INTERNAL LOAD')
1060
1070
FORMAT (' INFILTRATION'F10.0., CFMX 1.08 X 'F10.1,F13.0) 1080
FORMAT ('LIGHTSPF1O.1,'X 3.41E, 23X,F!O.0) 1090
1110
1120
```

```
290 FORMAT 1'D TOATL LATENT SPACE LOAD'2OX,F10.O
290 FORMAT 1'D TOATL LATENT SPACE LOAD'2OX,F1O.O)
    1130
1140
```



```
    1)
310 FORMAT (' GRANO TOTAL LOAD 1 3OX,F1O.O)
320 FORMAT ('OINFILTRATIONPF5.1,'CFM X 4840 X'F6.4,'=.1OX,FIO.O)
330 FORMAT ('PEOPLE = '27X,F20.0)
340 FORMAT (50X,M-0-0--=---0) 1190
END
1150
1160
1170
1180
1200=
```

```
    SUBROUTINE OUTSID(X,Y,Z,CR,UX,FO,DB,TIM,QO,QI,QSUN,QSKY,TO,TI,TON IO
    IEW,TA,ITEMPI
        2 0
    DIMENSION TO(1),T1(1),X(1),Y(1),Z(1)
    XNUM=QSUN-QSKY+FO*(DB-TIM)
    IF (X(2)) 50,10,50
    IF (FO) 20,20,30
TONEW=TO(1)
GO TO 40
\(T A M=T A-T I M\)
IF \((X(2)) \quad 50,10,50\)
```

TONEW=(XNUM+UX*TAM)/(UX+50)
CONTINUE
$Q O=U X *(T A M-T O N E W)$
IF (ITEMP.EQ.O) QI =QO

```
TO(1) = TONEW

\section*{RETURN}
SUMZ \(=0\).
SUMY \(=\) Y(1)*T1(1)
110
SUMX \(=X(1)\) I I (1)
120
SUMXY \(=0\).
130
DO \(60 \quad J=2,48\)
140
150
SUMY \(=\) SUMY \(Y\) +Y(J)*T1(J)
160
```

```
SUMX=SUMX+X(J)*TI(J) 220
1 7 0
SUMXY=SUMXY+Y(J)*TO(J-1)
SUMZ \(=\) SUMZ \(+Z(J) * T O(J-1)\) 190
\(X N U M=S U M Y-S U M Z+C R * Q O+X N U M\) 200
TONEW=XNUM/(Z(1)+FO)
IF (FO) 70,70,80
210
TONEW=TO(1)
TO(1) = TONEW
SUMZ \(=\) SUM \(Z+L(1)\) TO(1)
250
SUMXY=SUMXY+Y(1)*TO(1)
\(Q O=S U M Y-S U M Z+C R * Q O\)
IF (ITEMP.EQ•O) QI \(=S U M X-S U M X Y+C K\) QI 270
RETURN
END
SUBROUTINE PSYI (DB, WB,PR,DP,PV,W,H,V,RH) ..... 10
THIS SUBROUTINE CALCULATES VAPOR PRESSURE(PV), HUMIDITY RATIO (N) ..... 20
ENTHALPY(H), VOLUME(V), RELATIVE HUMIDITY(RH) AND DDEW-POINT ..... 30
TEMPERATURE WHEN THE DRY-BULB TEMPERATURE(DB), WET-BULB TEMPERATUR ..... 40
(WR) AND BAROMETRIC PRESSURE(PB) ARE GIVEN ..... 50
PVP=PVSF (NB) ..... 60
IF (DB-NB) \(30,30,10\) ..... 70
: STAR \(=0.622 . P V P /(P B-P V P)\) ..... 80
IF (WB-32.) 20,20.40 ..... 90
\(P V=P V P=5.704 E=4 \cdot P B \cdot(D B-W H) / 1.8\) ..... 100
\(G O\) TO 50 ..... 110
PV=PVP ..... 120
GO TO 50 ..... 130
\(C D B=(D B-32 \cdot) / 1.8\) ..... 140
\(C W B=(n B-32 \cdot) / 1.8\) ..... 150
\(H L=597 \cdot 31+0.4409 \cdot C D R-C N B\) ..... 160
\(C H=0.2402+0.4409\) WSTAR ..... 170
\(E X=(W S T A R-C H *(C O B-C W B) / H I) / 0.622\) ..... 180
\(P V=P B \in E X /(\bar{I} .+E X)\) ..... 190
\(N=0.622 \cdot P V /(P B-P V)\) ..... 200
\(V=0.754 \cdot(08+459 \cdot 7) \cdot(1+70 n 0 \cdot n / 4360) / P R\) ..... 210
\(H=0.24 \cdot D R+(1061+0.444 \cdot D B) \cdot N\) ..... 220
\(D P=D P F(P V)\) ..... 230
\(R H=P V / P \vee S F(D B)\) ..... 240
RETURN ..... 250
END ..... 260 -
```

C THIS SUBROUTINE CALCULATES THE FOLLOWINGS WHEN DRY-BULB TEMPERATURE
C THIS SUBROUTINE CALCULATES THE FOLLOWINGS WHEN DRY-BULB TEMPERATURE
10
20
C (DR),DEW-POINT TEMPERATURE(DP),AND BAROMETRIC PRESSURE(PB) ARE GIVEN30

```
WB NET-BULB TEMPERATURE ..... 40
a HUMIDITY RATIO ..... 50
    V VOLUME 
    PV VAPOR PRESSURE 80
    C RH RELATIVE HUMIDITY
        IF (DP-DB) 20,10,10 100
        90
    DP=DB
                            110
\(D P=D B\)
    PV=PVSF(DP)
    PV=PVSF(DP)
130
    PVS=PVSF(DB)
    RH=PV/PVS
150
    N=0.622*PV/(PB-PV)
    1 6 0
    V=0.754*(DB+459.7)*(1+70rO*N/4360)/PB
    170
    H=0.24*DB+(1061+0.444*DB)** 180
    WB=WBF(H,PB)
    1 9 0
    RETURN
    200
    END
210
```

FUNCTION PVSF (X) 10
DIMENSION A $(6) /=7 \cdot 90298,5 \cdot 02808,-1 \cdot 3816 E-7,11 \cdot 344,8.1328 E=3,-3.491$ 20
$149 /, 8(4) /-9.09718,-3.56654,0.876793,0.0060273 /, P(4)$ 30
$T=(X+459.688) / 1 \cdot 8$ 40
IF (T.LT.273.16) GO TO 1ח 50
$Z=373.16 / T$ 60
$P(1)=A(1) *(Z-1)$ 70
$P(2)=A(2) * L O G 10(Z)$ 80
$Z 1=A(4) *(1-1 / Z)$ 90
$P(3)=A(3) *(10 * Z 1-1)$ 100
$Z 1=A(6) *(Z-1)$ 110
$P(4)=A(5) *(10 * 21-1)$ 120
GO TO 20 130
$10 \quad Z=273.16 / T$ 140
$P(1)=B(1) *(Z-1)$ 150
$P(2)=B(2) * L O G 10(Z)$ 160
$P(3)=8(3) \cdot(1-1 / 2)$ 170
$P(4)=L O G 1 O(B(4))$ 180
$S \cup M=0$ 190
DO $30 \quad 1=1,4$ 200
$S U M=5 U M+P$ (ل) 210
PVSF $=29.921 \cdot 10 * S U M$ 220
RETURN 230
END 240-

```
    SUBROUTINE RESF (XX,YY,ZT,IRUN)
    THIS PROGRAM IS DEVELOPEO BY TOKUSUDA OF THE NATIONAL BUREAU OF
    STANDARDS FOR CALCULTING THE THERMAL RESPONSE FACTORS FOR
    COMPOSITE WALLS,FLOORS,ROOFS,BASEMENT WALLS BASEMENT FLOORS
    AND INTERNAL FURNISHINGS OF SIMPLE SHAPES
    RESPONSE FACTORS ARE USEO IN THE FOLLOWING MANNER
    X,Y,Z ARE RESPONSE FACTORS
    QI=X*TI-Y*TO*GMA INSIDE WHERE R IS MINIMUM
    QO=Y TI-Z*TO OUTSIDE WHERE R IS MAXIMUM
    TI INSIDE TEMPERARURE WHERE R IS MINIMUM
    TO OUTSIDE TEMPERATURE WHERE R IS MAXIMUM
    K THERMAL CONDUCTIVITY
    G THERMAL DIFFUSIVITY
    L THICKNESS
    FINITE THICK WALL
    IF RESPONSE FACTORS OF THE SOLID CYLINDER OR SPHERE OF HOMOGENEOUS I IO
    PROPETY ARE DESIRED, TREAT THE PROBLEM OF MULTILAYER BUT WITH THE 190
    IDENTICAL PROPERTIES FOR ALL THE LAYERS EXCEPT THE RADIUS 200
    REAL K(10),G(10),L(10),KG
    DIMENSION X (100),Y(100),Z(100),C(10),D(10),RES(10),RMK(10,4)
    DIMENSION RMKG(4),F(100),XX(100,1),YY(100,1),ZZ(100,1),FF(100,20)
    READ (5,240) DELTAT
    IRUN=0
    READ (5,230) NLAYR,IN
    IF (NLAYR.EQ.O) GO TO 2Oח
    IRUN=IRUN+1
    IF (NLAYR.GT•10) GO TO 200
    NNLAYR=NLAYR+1
    IF (NLAYR.EQ.O) GO TO 40
    DO 30 I=1,NLAYR
30
    READ (5,240) L(I),K(1),D(1),C(1),RES(1)
    IF (IN.EQ.2.AND.IM.EQ.O) GO TO 50
    READ K,RHO, AND C OF GROUNN IF IN=1
    FOLLOWINGS ARE GROUND THERMAL CONDUCTIVITY, DENSITY AND SP.HT IF
        IN=2, OTHERWISE THE SAME PROPLRTIES OF THE INTERNAL SLAB
        IF (IN.NE.O) READ (5,240) KG,DG,CG
        IN.NE.O) READ (5,240) KG,DG,CG 380
    AG THERMAL DIFFUSIVITY OF EARTH
        IF (IN.NE.O) AG=KG/CG/DG
        IF (NLAYR.EQ.O) GO TO 10O
    IF (IN.EQ.2) READ (5,330) (RMKG(J),J=1,4)
    DO 6D I=1,NLAYR
    READ (5,330) (RMK(1,J),J=1,4)
    IF (IN.EQ.1) READ (5,330) (RMKG(J),J=1,4)
    DO 90 I=1,NLAYR
    IF (L(I)) 80,70,80
    G(I)=0.
    K(1)=1./RES(1)
    GO TO 90
    G(I)=K(I)/C(I)/D(I)
    CONTINUE
    WRITE (6,350)
    CALL RESPTK (K,L,G,AG,KG,X,Y,Z,NLAYR,DELTAT,NRT,CR,UT,IN,F)
```

WRITE (6.220) IRUN

550
WRITE $(6,360)$ 560
WRITE $(6,250)$ 570
WRITE $(6,260)$ 580
WRITE (6,210) 590
IF (NLAYR.EQ.D) GO TO $13 n$ 600
IF (IN,EQ.2.AND.IM,NE.O) WRITE (6,37ロ) KG,DG,CG, (KMKG(J),J=1,4) 610
DO $120 \mathrm{I}=1$, NLAYR620
IF (L(1)) $120,110,120$630
$K(1)=0$ 。 640
$11) \quad K(1)=0$. 650
IF (IN•EQ.1) WRITE $(6,370) K G, U G, C G,(R M K G(J), J=1,4)$ 660
NRITE (6,290) DELTAT 670
WRITE $(6,280)$ UT 680
VRITE $(6,300)$ 690
WRITE (6,210) 700
IF (IN.NE, O) GO TO 150 710
WRITE $(6,310)$ 720
$X X(1, I R U N)=F L O A T(N R T)$ 730
$Y Y(1, I R U N)=F L O A T(N R T)$ 740
$Z Z(1, I R U N)=F L O A T(N R T)$ 750
$X X(2, I R U N)=C R$ 760
$Y Y(2, I R U N)=C R$ 770
$Z Z(2, I R U N)=C R$ 780
$x X(N R T+3, I R U N)=U T$ 790
DO $140 \quad N=1, N R T$ 800
$X X(N+2, I R U N)=X(N)$ 810
$Y Y(N+2, I R(U N)=Y(N)$ 820
$Z Z(N+2,!R!N)=Z(N)$ 830
$J N=N-1$ 840
WRITE $(6,320)$ JN, X(N),Y(N),Z(N) 850
GOTO 190 860
WRITE (6.380) 870
IF (IN.EQ.1) GO TO 170 880
IF (IN•EQ.2) GO TO 170 890
$X X(1, I R U N)=F L O A T(N R T)$ 900
$X X(2, I R U N)=C R$ 910
$x X(N R T+3, I R U N)=U T$ 920
DO $160 \mathrm{~N}=1$, NRT 930$J N=N-1$$X(N)=-X(N)$
$X X(N+2, I R \cup N)=X(N)$
940
950
960
:VRITE $(6,390) \mathrm{JN}, \mathrm{X}(\mathrm{N})$ 970
GO TO 190 980
$70 \quad 00 \quad 180 \quad N=1, N R T$ 990
$J N=N-1$ 1000
$F F(N+2, I R \cup N)=F(N)$ 1010
NRITE (6,390) JN,F(N) 1020
$F F(1, I R U N)=F L O A T(N R T)$ 1030
$F F(2, I R U N)=C R$ 1040
$F F(N R T+3, I K U N)=U T$ 1050
VRITE $(6,210)$ 10601070
WRITE (6,340) CR 1080
GO TO 201090
RETURN 1100

SUBROUTINE RESFX $(X, Y, Z, X X, Y Y, Z Z, N R, C R, U T, N E X P)$ 10
DIMENSION XX(100,10),YY(100,10),ZZ(100,10),X(10,100),Y(10,100),Z11 20
$10,100)$, NR (10), CR(10),UT(10) 30
$0010 K=1,10$ 40
0) $10 \quad J=1,100$ 50
$X X(J, K)=0$ 60
$Y Y(J, K)=0$ 70
$10 \quad \angle Z(J, K)=0$ 80
CALL RESSF (XX,YY,ZZ,IRUN) 90
DO $30 \mathrm{~K}=1$, NEXP 100
$1=K$110
IF (K.GT.IRUN) GO TO 30 120
$X(1,1)=X X(3, K)$ 130
$Y(1,1)=Y Y(3, K)$ 140
$Z(1,1)=Z Z(3, K)$ 150
$N R(1)=X \times(1, K)$ 160
CR(I) $=x \times(2, K)$ 170
$J J J=N R(1)+3$ 180
UT(I) $=x \times(J J J, K)$ 190
NMAX=NR(!) 200
DO $20 \quad J=2$, NMAX 210
$J 3=J+2$ 220
$\mathrm{J} 2=\mathrm{J}+1$ 230
$x(1, J)=x X(J 3, K)-x X(J 2, K) * C R(1)$ 240
$Y(1, J)=Y Y(J 3, K)-Y Y(J 2, K) \in C R(1)$ 250
20 $Z(1, J)=Z Z(J 3, K)-Z Z(J 2, K) \cdot C R(I)$ 260
30 CONTINUE 270
RETURN 280
END 290-

```
    SUBROUTINE RESPTK (K,L,G,AG,KG,X,Y,Z,NL,DT,NR,CR,U,IS,F) IO
    DIMENSION K(IO),L(IO),G(1O),X(IOO),Y(1OO),Z(1OO),AP(IO),BP(IU),CP(
    110),DP(10),A(10),B(10),C(1O),D(10),ZR1(3),ZR2(3),RB(3),RAP(3),KOOI }3
    2(1OO),RA(3,100),ZRK(3,100),RX(100),RY(100),AZ(100),F(1OO)
        40
    REAL K,L,KG
    FI=4.*ATAN(1.)
        50
        60
    M3=3
        70
    IF (IS.NE.I) GO TO 10
        80
    ZL=KG/10. 90
    UY=100./AG/DT
    CALL GPF (UY,ZL,AZ)
        100
        110
    IF (IS.EQ.I.AND.NL.EQ.O) GO TO 330
        120
    (ALL ABCD2 (O.,K,L,G,AX,:ZX,CX,DX,NL)
    RB(1)=DX
    RB(2)=1.
    RA(3)=AX
    U=1./BX
    00 20 1 =1,NL
    PX=0
    90
    CALL ABCDP2 (PX,K(1),L(I),G(1),AP(I),BP(I),CP(I),DP(I))}20
    CALL ABCD2 (PX,K(I),L(I),G(I),A(1),B(I),C(I),D(1),1)
210
    IF (NL.LT.2) GO TO 30
220
    CALL DERVT (A,B,C,D,AP,BR,CP,DP,APP,RPP,CPP,DPP,NL) 2.30
    GO TO 40 240
    APP=AP(1)
250
    HPP=RP(1)}26
    CPP=CP(1)
    DPP=DP(1)
    RAP(1)=DFP 290
    RAP(2)=0.
300
    RAP(3)=APP 310
    DO 50 1=1,3
320
    C1=RAP(1)/甘X/DT 330
    C2=RB(1)*RPP/BX/BX/OT 340
    ZR2(1)=-C1+C2
350
    ZRI(I)=-ZR2(I)+RB(1)/RX 360
    WRITE (6,480)
370
    MRITE (6,490) (ZFI(1),I=1,M3) 380
    WRITE (6,490) (ZR2(I),I=1,M3) 390
    R,)OTS OF B(P)=0.
    NMAX=10
    TESTMX=40.
    PX=0.001
    OPO=0.1/DT
    OLX=0.0001
    N=0
    NRITE (6,500)
GO DL=DPO
    CALL ABCD2 (PX,K,L,G,AX,OX,CX,DX,NL)
    PXP=PX+DL
    CALL ABCD2 (PXP,K,L,G,AXF,RXP,CXP,DXP,NL)
    IF (BX*BXP) 90,110,80
    PX=PXP
5
    BX=BXP
```

```
    TESTX=PX*DT
IF (TESTX-IESTMX) \(70,170,170\)
IF (DL-DLX) \(140,140,100\)
\(1 \cap \cap \quad D L=O L / 2\).
GO TO 70
IF \((B X) 130,120,130\)
110
\(R X X=P X\)
GO TO 150
\(R \times X=P \times P\)
GO TO 150
\(14 \cap \quad A R=A B S(B X / F S X P)\)
\(R \times X=(P X+A B * P X P) /(1,+A E)\)
\(150 \quad N=N+1\)
ROOT(N) \(=\) RXX
IF (N.GT. 1 ) DPO=ROOT(N)-ROOT(N-I)
\(N R T=N\)
NRITE \((6,510)\) N,ROOT(N)
\(P X=R X X+D L X\)
TESTX \(=R X X\) - \(T\)
IF (TESTX-TESTMX) \(160,167,170\)
\(16 \cap\) IF (N.LT.NMAX) GO TO \(60 \quad 760\)
570
580
590
600
610
620
630
640
650
660
670
680
690
700
80
710
720
730
740
750
\(\begin{array}{ll}170 \text { WRITE }(6,520) & 770\end{array}\)
IF (ROOT(NRT)-100.) 190,180,180
\(\begin{array}{ll}180 & N R T=N R T-1 \\ 190 & D O \quad 250 \quad J J=1, N R T\end{array}\)
\(P X=R O O T(J J)\)
DO \(200 \mathrm{~J}=1, N L\)
CALL ABCO2 (PX,K(J),L(J),G(J), A(J),B(J),C(J),D(J), 1)
780
790
800
810
820
CALL ABCDP2 (PX,K(J),L(J),G(J),AP(J),BP(J),CP(J),OP(J))
830
CALL ABCD2 ( \(P X, K, L, G, A X, B X, C X, O X, N L\) )
IF (NL.LT.2) GO TO 210
840
CALL DERVT ( \(A, B, C, D, A P, B P, C P, D P, A P P, R P P, C P P, D P P, N L)\)
860
GOTO 220
870
\(A P P=A P(1)\)
880
\(B P P=A P(1)\)
890
\(C P P=C P(1)\)
\(D P P=D P(1)\)
900
910
920
\(220 \quad P Y=B P P * P X * P X * D T\)
\(K A(1, J J)=D X / P Y\)
\(R A(2, J J)=1 \cdot / P Y\)
\(R A(3, J J)=A X / P Y\)
940
\(P Z=P X * D T\)
IF \((P Z-20) \quad 240,240,\).
\(23 \cap \quad R X(J J)=0\) 。
\(R Y(J J)=25 \cdot E_{16}\)
GO TO 250
\(240 \quad R X(J J)=E X P(-P Z)\)
\(\operatorname{RY}(J J)=(1,-E X P(P Z)) * 2\)
250 SRITE \((6,530)\) ROOT (JJ), (NA (M,JJ), \(M=1, M 3)\)
DO \(260 \mathrm{JJ}=1, N R T\)
\(00260 \mathrm{M}=1, \mathrm{M}^{3}\)
\(Z R 1(M)=R A(M, J J) * R X(J J)+Z F \perp(M)\)
\(260 \quad Z R 2(M)=R A(M, J J) *(R X(J J) * R X(J J)-2 * R X(J J))+Z R 2(M)\)
950
960
970
980
990
1000
1010
1020
1030
1040
1050
1060
1070
\(11=1\)
\(111=2\)
WRITE \((6,540)\)
NRITE (6,550)
IF (ZR1(2)•LT.0) ZR1(2)= .
```

```
        WRITE (6,560) 1I,(ZRI(M),M=1,M3) 1130
        WRITE (6,560) III,(ZR2(M),M=1,M3)
        1140
        DO 270 M=1,M3
        ZRK(M,1)=ZR1(M)
        1150
270 ZRK(M,2)=ZR2(M)
    NT=100
    DO 3\capO N=3,NT
    NR=N
    DO 28O M=1,M3
    ZRK(M,N)=0.
    DO 290 M=1,M3
    00 290 JJ=1,NRT
    PZ=(RX(JJ))**N
29! ZRK(M,N)=ZKK(M,N)+PZ*RY(JJ)*RA(M,JJ)
    MRITE (6,560) N,(ZRK(M,N),M=1,M3)
    IF (N.LT.5) GO TO 300
    TEST1=LRK(1,N)/ZRK(1,N-1)
    TEST2=ZRK(1,N=1)/ZRK(1,N-2)
    TEST3=ABS(TEST1-TEST2)
    IF (TEST3-U.00001) 310,310,300
    CONTINUE
    320
1340
310 DO 320 N=1,NR
    X(N)=ZRK(1,N)
    Y(N)=ZRK(2,N)
    Z(N)=ZRK(3,N)
    CR=TEST2
    WRITE (6,570) CR
    IF (IS.EQ.2) GO TO 450
    IF (IS.NE.1) GO TO 470
    IF (NL.EQ.U) GO TO 390
    GF=2*KG/SQRT(DT*AG*PI)
    IF (NR.LT.50) GO TO 350
    DO 340 J=50,NR
    ZJ=J
340 AZ(J)=GF*(SQRT(ZJ)-2.*SQRT(ZJ-1.)+SQRT(ZJ-2.))
    NRR=NR
    GO TO 370
350 DO 360 J=NR,50
    Z(J+1)=Z(J)*CR
    x(J+1)=x(J)*CR
360 Y(J+1)=Y(J)*CR
    NRR=50
370 DO 380 J=1,NRR
380 F(J)=X(J)-Y(J)*Y(J)/(Z(J)+AZ(J))
    NR=NRR
    GO TO 410
    DO 400 J=1,NR
    F(J)=AL(J)
    WRITE (6,580)
    CRI=1.
    DO 430 J=1,50
    CR=F(J+1)/F(J)
    TESTCR=ABS(CR-CR1)
    IF (TESTCR=0.00001) 440,440,420
42п CRI=CR
    JJ=J-1
4 3 0 ~ W R I T E ~ ( 6 , 5 9 0 ) ~ J J , F ( J )
440 NR=J
```

```
        CR=CR1 1710
        GO TO 470
        1720
        NRITE (6,580)
        1 7 3 0
        nO 460 J=1,NK
        1740
        F(J)=X(J)+L(J)-2.*Y(J)
        1750
        JJ=J-1
        NRITE (6,590) JJ,F(J)
        RETURN
        FORMAT (SOHO RESIDUES AT P}=
        FORMAT (3F20.6)
500 FORMAT (50HO ROOTS OF B (P) =0
510 FORMAT (IIU,1F2O.6)
5 2 0 ~ F O R M A T ~ ( 5 O H O ~ R E S U D U E S ~ A T ~ P = R O O T ( N ) ,
530 FORMAT (4F20.6)
540 FORMAT ISOHO RESPONSE FACTORS OF FINITE SLAB
        FORMAT (12OHD J X(J)
        1 Z(J)
    2)
560 FORMAT (110,3F20.6)
570 FORMAT (10HO CR=1F1O.6)
    580 FORMAT (5OHO J F F
590 FORMAT (1110,1F20.5)
    END
55% FORMAT (12OHO
1
```



```
        SUBROUTINE RMTMP (NEXP,NX,TV,CFML,GFMV,R,TIM,TA,TIF,QL,ITK) (O
        COMMON /CC/ X(10,100),Y(10,100),Z(10,100),ITYPE(1O),IHT(1O),IRF,10
        20
        1),ARSP(10),U(10),H(10),HI(10),A(10),UT(10),TOS(10,48),TIS(10,48),G 30
        2(10,10),TOY(48),DB(24),QLITE(24),QEQUP(24),QOCPS(24),QI(10),CR(10)
        4 0
        3,NR(10),QGLAS(10,24),ITHST
        DIMENSION AA(20,20),BB(20),TT(20),TIF(20),A2(20,20),B2(20),B3(20), 60
        5 0
        IGSUM(20)
        7 0
        DBNX=DB(NX)-TIM
        80
        TU=TV-TIM 90
        NEXP2=NEXP+1 100
        DO 10 1=1,NEXP2 110
        RB(1)=0.
        120
    B2(I)=0.
        130
    DO 1\capJ=1,NEXP2 140
    A 2 (I,J)=0.
        150
    AA(I,J)=0.
    SHG=O.
        1 6 0
        170
    HSUM=0. 180
    A SUM=0.
    190
    A SUMT=0. 200
    DO 70 I=1,NEXP
    SHG=SHG+QGLAS(1,NX)*A(I) 220
    210
    A SUMT = A SUMT + A(1)
    230
    GSUM(I)=0. 240
    DO 20 J=1,NEXP
        250
    GSUM(I)=GSUM(I)+G(I,J) 260
    IF (ITYPE(I).NE.3) ASUM=ASIJM+A(I) 270
    HSUM=HSUM+HI(I)*A(I) 280
    IR=IRF(I)
    290
    CRX=CR(I)
    IF (X(lR,2)) 40,30,40
    300
        310
    X(IR,1)=UT(I)
        320
    Y(IK,I)=UT(I)
    CRX=0.
    Z(IR,1)=UT(I)
    330
    350
    AA(I,I)=X(IR,I)+HI(I)+GSUM(I)
    DO 5O J=1,NEXP
    IF (I.EQ.J) GO TO 50
    AA(1,J)=-G(1,J)
    CONTINUE
    AA(I,NEXP2)=-HI(I)
    SUMY=Y(IR,1)*TOS(I,1)
    SUMX=0.
    00 60 J=2,48
    SUMY=SUMY+Y(IR,J)*TOS(1,,1)
    SUMX=SUMX+X(IR,J)*TIS(I,J)
    50
    460
    H3(I)=SUMY-CRX*QI(I)-SUMX
    4 7 0
    AA(NEXP2,I)=A(I)*HI(1) 480
    QLT=QLITE(NX)/ASUMT*R
    4 9 0
    DO 80 I=1,NEXP
    500
    510
    SHF=SHG/ASUM
    IF (ITYPE(1).EQ.3) SHF=0.
    520
    BB(1)=B3(1)+SHF+QLT
530
    AA(NEXPZ2,NEXP2)=-1.08*(CFML+CFMV)-HSUM
540
```

SUBROUTINE SHG (SH) 10
DIMENSION SH(2O) 20
C SH(I) =INTENSITY OF DIRECT NORMAL SOLAR RADIATION 30
SH(2) =INTENSITY OF DIFFUSE SKY RADIATION 40
SH(3) =INTENSITY OF GROUNO REFLECTED DIFFUSE RADIATION 50
SH(4) = COSINE OF INCIDENCF OF DIRECT SOLAR RADIATION 60
SH(5) =FORM FACTOR BETWEET: THE WINDOW AND THE SKY 70
SH(6$)=F O R M$ FACTOR RETWEEN THE WINDOW AND THE GROUNO 80
SH(7)=THERMAL RESISTANCE AT OUTSIDE SURFACE 90
SH(8) = THERMAL RESISTANCE AT THE AIR SPACE (DOUBLE GLAZING) 100
SH(9) = THERMAL RESISTANCE AT THE INNER SURFACE 110
SH(IO) $=$ SUNLIT AREA FACTOR 120
SH(11)=SHADING COEFFICIENT, NON-ZERO VALUE WILL BE GIVEN ONLY 130
WHEN THE NINDOW IS SHADEO BY ORAPES OR BLINDS OR IF IT HAS 140
AN INTERPANE SEPARATION OF MORE THAN I-INCH 150
SH(12) $=$ TRANSMISSION FACTOR FOR OIRECT RADIATION 160
SH(13) $=$ TRANSMISSION FACTOR FOR DIFFUSE RADIATION 170
SH(14) =ABSORPTION FACTOR FOR DIRECT RADIATION (OUTER PANE) 180
SH(IS) =ABSORPTION FACTOR FOR DIRECT RADIATION (INNER PANE) 190
SH(16) =ABSORPTION FACTOR FOR DIFFUSE RADIATION(OUTER PANE) 200
SH(17) =ABSORPTION FACTOR FOR DIFFUSE RADIATION(INNER PANE) 210
SH(18) $=$ SOLAR HEAT GAIN 220
COMMON/SOL/ LAT,LONG,TZH,WAZ,WT,CN,DST,LPYR,S(35) 230
REAL NI,NO 240
$\mathrm{NI}=(5 \mathrm{H}(7)+\mathrm{SH}(8)) /(S H(7)+5 H(8)+5 H(9))$ 250
$\mathrm{NO}=(5 \mathrm{H}(7)) /(S H(7)+S H(8)+5 H(9))$ 260
$0=S H(10) * S H(1) * S H(4) *(S H(12)+N O * S H(14)+N I * S H(15))$ 270
$D D=(S H(2) * S H(5)+S H(3) * S H(6)) *(S H(13)+N O * S H(16) * N I * S H(17))$ 280
IF (SH(11)) 20,10,20 290
10 SH(18) $=D+D U$ 300
GO TO 30 310
SH(18)=(D+DD)*SH(11) 320
20
RETURN 330
END 340
SUBROUTINE SOLVP (M,N,C,n,X,I) 10
C THIS IS A ROUTINE FOR SOLVING SIMULTANEOUS LINEAR EQUATIONS 20
THE ROUTINE WAS DEVELOPET BY B•A. PEAVY OF NBS 30
ROUTINE FAILS WHEN ANY OF THE UIAGONAL ELEMENTS IS ZERO 40
DIMENSION A(100,101),C(1,1),D(1),X(1) 50
กO $1 \cap 1 X=1, M$ 60
DO $1 \cap \quad I Y=1, M$ 70
$A(I X, I Y)=C(I X, I Y)$ 80
DO $20 \quad I Z=1, M$ 90
$A(I Z, N)=D(I Z)$ 100
$L=1$ 110
$A A=A(L, L)$ 120
DO $40 \quad K=L, N$ 130
$A(L, K)=A(L, K) / A A$ 140
D) 0 O K $K=1$, M 150
IF (K.EQ.L) GO TO 6D 160
$A A=-A(K, L)$ 170
DO $50 \quad 1 A=L, N$ 180
$A(K, I A)=A(K, I A)+A A * A(L, I A)$ 190
CONTINUE 200
$L=L+1$ 210
IF (L.LE.M) GO TO 30 220
$0070 \quad I P=1, M$ 230
70 $x(I P)=A(I P, N)$ 240
RETURN 250
END

```
        SUBROUTINE SUN
```

 SUBROUTINE SUN
 1 0
 1 0
 DIMENSION AO(5)/.302,..OND2,368.44,.1717,0.0905/.A1(5)/-22.93..419 20
 DIMENSION AO(5)/.302,..OND2,368.44,.1717,0.0905/.A1(5)/-22.93..419 20
 17,24.52,-.0344,-.0410/,A2(5)/-.229,-3.2265,-1.14,.0032,.0073/,A3(5
17,24.52,-.0344,-.0410/,A2(5)/-.229,-3.2265,-1.14,.0032,.0073/,A3(5
30
30
21/-.243,-.0903,-1.09,.0024,.0015/,81(5)/3.851,-7.351,.58,-.0043,-.4 40
21/-.243,-.0903,-1.09,.0024,.0015/,81(5)/3.851,-7.351,.58,-.0043,-.4 40
2)/-.243,-.0903,-1.09,.0024,.0015/, B1(5)/3.851,-7.351,%58,-.0043,,0.40
2)/-.243,-.0903,-1.09,.0024,.0015/, B1(5)/3.851,-7.351,%58,-.0043,,0.40
30034/, B2(5)/.002,-9.3912,-.18,0..0.0004/, B3(5)/-.055,-.3361,.28,-. 50
30034/, B2(5)/.002,-9.3912,-.18,0..0.0004/, B3(5)/-.055,-.3361,.28,-. 50
4008,-.0006/
4008,-.0006/
COMMON /SOL/ LAT,LONG,TZI:NAZ,WT,CN,DST,LPYR,S(35)
COMMON /SOL/ LAT,LONG,TZI:NAZ,WT,CN,DST,LPYR,S(35)
REAL LATD,LONG,MERID,LOND
REAL LATD,LONG,MERID,LOND
S(1)= LATITUDE,DEGREES(+MORTH,-SOUTH)
S(1)= LATITUDE,DEGREES(+MORTH,-SOUTH)
0
0
S(2)=LONGITUDE,DEGREES(+WEST,-EAST) 100
S(2)=LONGITUDE,DEGREES(+WEST,-EAST) 100
S(3)= TIME ZONE NUMRER
S(3)= TIME ZONE NUMRER
STANDARD TIME UAYLIGHT SAVING TIME
STANDARD TIME UAYLIGHT SAVING TIME
ATLANTIC 4
ATLANTIC 4
EASTERN 5 4 4 140
EASTERN 5 4 4 140
CENTRAL [lll
CENTRAL [lll
MOUNTAIN 7 6 % 160
MOUNTAIN 7 6 % 160
PACIFIC % % % 170
PACIFIC % % % 170
S(4)= DAYS(FROM START OF YEAR) 180
S(5)= TIME,HOUR AFTER MIONIGHT)
S(5)= TIME,HOUR AFTER MIONIGHT)
S(5)= TIME,HOUR AFTER MIONIGHT)
S(5)= TIME,HOUR AFTER MIONIGHT)
S(5)= TIME,HOUR AFTER MIINIGHT)
S(5)= TIME,HOUR AFTER MIINIGHT)
S(7)=GROUND REFLECTIVITY 210
S(7)=GROUND REFLECTIVITY 210
S(7)=GROUND REFLECTIVITY 210
S(7)=GROUND REFLECTIVITY 210
S(8)= CLEARNESS NUMBEK
S(8)= CLEARNESS NUMBEK
220
220
5(9) = WALL AZIMUTH ANGLE, DEGREES FROM SOUTH
5(9) = WALL AZIMUTH ANGLE, DEGREES FROM SOUTH
230
230
S(10)=WALL TILT ANGLE, DEGREES FROM HORIZON 240
S(10)=WALL TILT ANGLE, DEGREES FROM HORIZON 240
S(11)=SUN RISE TIME (HOURS AFTER MIONIGHT) 250
S(11)=SUN RISE TIME (HOURS AFTER MIONIGHT) 250
S(12)=SUN SET TIME
S(12)=SUN SET TIME
S(13)=COST DIRECTION COSINES 270
S(13)=COST DIRECTION COSINES 270
260
260
S(14)=COSN DIRECTION COSINES 280
S(14)=COSN DIRECTION COSINES 280
S(15)=COS(S) DIRECTION COSINES) 290
S(15)=COS(S) DIRECTION COSINES) 290
S(16)=ALPHA DIRECTION COSINES NORMAL TO SURFACE 300
S(16)=ALPHA DIRECTION COSINES NORMAL TO SURFACE 300
S(17)=BETA
S(17)=BETA
310
310
S(18)=GAMMA
S(18)=GAMMA
320
320
S(19)=COS(LTA)COSINE OF INCIDENCE ANGLE 3 3 %
S(19)=COS(LTA)COSINE OF INCIDENCE ANGLE 3 3 %
S(20)=SOLAR ALTITUDE ANGLE 340
S(20)=SOLAR ALTITUDE ANGLE 340
S(21)=SOLAR AZIMUTH ANGLE 350
S(21)=SOLAR AZIMUTH ANGLE 350
S(22)=DIFFUSE SKY RADIATION ON HORIZONTAL SURFACE 360
S(22)=DIFFUSE SKY RADIATION ON HORIZONTAL SURFACE 360
S(23)=DIFFUSE GROUND REFLECTED RADIATION 370
S(23)=DIFFUSE GROUND REFLECTED RADIATION 370
S(24)=DIRECT NORMAL RADIATION 380
S(24)=DIRECT NORMAL RADIATION 380
S(25)=TOTAL SOLAR RADIATION INTENSITY 390
S(25)=TOTAL SOLAR RADIATION INTENSITY 390
S(26)=DIFFUSE SKY RADIATION INTENSITY 400
S(26)=DIFFUSE SKY RADIATION INTENSITY 400
S(27)=GROUND REFLECTED DIFFUSE RADIATION INTENSITY 410
S(27)=GROUND REFLECTED DIFFUSE RADIATION INTENSITY 410
S(28)=SUN DECLINATION ANGLE,DEGREES 420
S(28)=SUN DECLINATION ANGLE,DEGREES 420
S(29)=EQUATION OF TIME ,HOURS 430
S(29)=EQUATION OF TIME ,HOURS 430
S(30)=A SOLAR FACTOR 440
S(30)=A SOLAR FACTOR 440
S(31)= SOLAR FACTOR 450
S(31)= SOLAR FACTOR 450
S(32)= SOLAR FACTOR 460
S(32)= SOLAR FACTOR 460
S(33)= CLOUD COVER MODIFIER 470
S(33)= CLOUD COVER MODIFIER 470
S(34) INTENSITY OF DIRECT SOLAR RADIATION ON SURFACE 480
S(34) INTENSITY OF DIRECT SOLAR RADIATION ON SURFACE 480
S(35) HOUR ANGLE,DEGRFE 490
S(35) HOUR ANGLE,DEGRFE 490
PI=3.1415927
PI=3.1415927
X=2*PI/366.*S(4)
X=2*PI/366.*S(4)
C l= cos(x)
C l= cos(x)
c 2= cos(2*x)
c 2= cos(2*x)
c 3 = cos (3*x)
c 3 = cos (3*x)
110
110
ATLANTIC 4 O S O
ATLANTIC 4 O S O
50
50
COMMON /SOL/ LAT,LONG,TZHOWAZ,WT,CN,DST,GPYR,S(35)
COMMON /SOL/ LAT,LONG,TZHOWAZ,WT,CN,DST,GPYR,S(35)
7 0
7 0
S(I)= LATITUDE,DEGREES(+IORTH,-SOUTH)
S(I)= LATITUDE,DEGREES(+IORTH,-SOUTH)
4
4
S(14)=CDSN DIRECTION COSINES 280

```
    S(14)=CDSN DIRECTION COSINES 280
```



```
500
```

500
510
510
520
520
530
530
540

```
540
```

```
        SI=SIN(X) 550
        S2=SIN(2*x)
        S3=SIN(3:X)
        DO 10 K=1,b
        KS = (K-1) + 2 8
1 0
    S(KS)=AO(K)+A1(K)*C1+A2(K)*C2+A3(K)*C3+B1(K)*S1+B2(K)
    S(29)=S(29)/60.
    LATD=S(1)
    LONG=S(2)
    MERID=15*5(3)
    LOND=LONG-MERID
    Y=S(28)*P!/180.
    YY=LATU*PI/180.
    HP=-TAN(Y)*TAN(YY)
    TR=12/PI*ACOS(HP)
    S(11)=(12-TR)-S(29)+LOND/15.
    S(12)=24.-S(11)
    H=15*(S(5)-12+S(3)+S(29)-S(6))-S(2)
    S(35) =H
    SI3=SIN(YY)*SIN(Y)+COS(YY)* COS(Y)*COS(H*PI/18!.)
    S(13)=S!3
    HP!=180.*ACOS(HP)/PI
    XI=ABS(HP1)
    X2 =ABS(H)
    lF (X1-X2) 130,20,20
    S(14)=COS(Y)*SIN(H*PI/18N.)
    S(15)=SQRT(1.-S(13)*S(13)-S(14)*S(14))
    STEST=S(15)
    STESTI=COS(H*PI/180.)-TAT(Y)/TAN(YY)
    IF (STESTI) 40,30,30
    S(15)=STEST
    GO TO 50
    S(15)=-STEST
    S(20)=ASIN(S(13))
    IF (S(15))}70,60,6
    S(2!)=ASIN(S(14)/COS(S(2N)))
    GO TO 80
    S(21)=PI-ASIN(S(14)/COS(S(20)))
    S(20)=180.*5(20)/PI
    S(21)=180.*S(21)/PI
    S(24)=S(30)*S(8)*S(33)*EXP(-S(31)/S(13))
    S(22)=S(32)*S(24)/S(8)/5(8)
    S(23)=S(7)*(S(22)+S(24)*S(13))
    NT=S(10)*P1/180.
    S(16)=COS(WT)
    WA=S(9)*P1/18C.
    S(16)=COS(WT)
    S(17)=SIN(WA)}\operatorname{SIN(WT)
    S(18)=COS(NA)*SIN(WT)
    S(19)=S(16)*S(13)+S(17)*S(14)+S(18)*S(15)
    S(34)=S(24)\cdotS(19)
    Y=0.45
    IF (S(19)+0.2) 100,100,90
    9 0
    Y=0.55+0.437*S(19)+0.313.5(19)**2
    100 IF (S(19)) 110,110,120
    110 S(19)=0.
    S(34)=0.
    120 CONTINUE
```

550
560
570
580
590
600
610
620
630
640
650
660
670
680
690
700
710
720
730
740
750
760
770
780
790
800
810
820
830
840
850
860
870
880
890
900
910
920
930
940
950
960
970
980
990
1000
1010
1020
1030
1040
1050
1060
1070
1080
1090
1100
1110
1120

```
    S(26)=S(22)*Y 1130
    S(27)=S(23)*(1-S(16))/2.
    S(25)=5(34)+5(26)+5(27)
    GO TO 150
    00 140 J=14,26
    S(J)=0.
    S(34)=0
150 RETURN
END
1140
```

130
00 $140 \quad \mathrm{~J}=1^{4}, 26$

RETURN
END

SUBROUTINE TAR (TR)
REAL A1 (6)/0.01154,0.77674, $-3.94657,8.57881,-8.38135,3.01188 /$
REAL A $2(6) / 0.01636,1.40783,-6.79030,14.37378,-13.83357,4.9243 \mathrm{~g} /$
REAL A3(6)/0.01837,1.92497, -8.89134,18.40197,-17.48648,6.17544/
REAL A $4(6) / 0.09902,2.35417,-10 \cdot 4715,21.24322,-19.95978 .6 .99964 /$
KEAL A5 (6)/0.01712,3.50839,-13. $8639,26.34330,-23.84846,8.173721$
REAL A6(6)/0.01406,4.15958, $-15.0628,27.18492,-23.88518,8.03650 /$
REAL A 7 (6)/0.01153,4.55946,-15.4329,26.70568, -22.87993,7.57795/
REAL A8 (6)/0.00962,4.81911,-15.4714,25.86516,-21.69106,7.08714/
REAL T1(6)/-0.00885,2.71235,-0.62062,-7.07329,9.75995,-3.89922/
REAL T2(6)/-0.01114.2.39371,0.42978,-8.98262,11.51798, -4.52064/
REAL $T 3(6) /=0.01200,2.13,36,1.13833,-10.07925,12.44161,-4.83285$,
REAL T4(6)/-0.01218,1.90950.1.61391, -10.64872.12.83698, -4.951991
REAL T5 (6)/-0.01056,1.29711,2.28615,-10.37132,11.95884,-4.54880/
REAL T6(6)/-0.00835,0.92766.2.15721,-8.71429,9.87152,-3.73328/
REAL T7(6)/-0.00646,0.68256,1.82499,-6.95325,7.80647,-2.94454/
REAL T8(6)/-0.00496,0.51043.1.47607,-5.41985,6.00546, -2.28162/
REAL AO1 (6) / 0.01407,1.06226, $-5.59131,12.15034,-11.78092,4.20070 /$
REAL AO2(6)/0.01819,1.86277,-9.24831,19.49443,-18.56094,6.53940/
REAL AO3(6)/0.01905,2.47900. - 11.7427,24.14037,-22.64299.7.89954/
REAL AO4 (6)/0.01862,2.96400, -13.4870,27.13020,-25.11877.8.68895/
REAL AO5 (6)/0.01423, 4.14384, -16.66709, 31.30484, -27.81955.9.36959/
REAL AU6(6)/0.01056,4.71447.-17.33454, 30.91781, -26.63898.8.79495/
REAL AO7(6)/0.00819,5.01768,-17.21228.29.46388, -24.76915,8.05040/
KEAL AO8(6)/0.00670,5.18781,-16.84820,27.90292,-22.99619,7.38140/
REAL AI $1(6) / 0.00228,0.34559,-1 \cdot 19908,2.22336,-2.05287,0.72376 /$
REAL. AI $2(6) / 0.00123,0.29788,-0.92256,1.58171,-1.40440,0.48316 /$
REAL AI $3(6) / 0.00061,0.26017,-0.72713,1.14950,-0.97138,0.32705 /$
REAL AI4(6)/0.00035,0.22974, -0.58381,0.84626, -0.67666,0.22102/
REAL AI5 (6)/-0.00009,0.15049,-0.27590,0.25618,-0.12919,0.02859/
REAL A16(6)/-0.00016,0.10579, $0.0 .15035,0.06487,0.02759,-0.02317 /$
REAL A17(6)/-0.00015,0.07717,-0.09059,0.00050,0.06711,-0.03394/
REAL AI $8(6) /-0.00012,0.05746,-0.05878,-0.01855,0.06837,-0.03191 /$
REAL TDI(6)/-0.00401,0.74050,7.20350,-20.11763,19.68824,-6.74585/
REAL TD2 (6)/-0.00438,0.57818,7.42065,-20.26848,19.79706, $-6.79619 /$
REAL TD $3(6) /-0.00428,0.45797,7.41367,-19.92004,19.40969,-6.66603 /$
REAL TD4(6)/-0.00401,0.36698,7.27324, -19.29364,18.75408, -6.43968/
REAL TD5 (6)/-0.00279,0.16468,6.17715,-15.84811,15.28302,-5.23666/
REAL TD6(6)/-0.00192,0.08180,4.94753,-12.43481,11.92495,-4.07787/
REAL TD $7(6) /-0.00136,0.04419,3.87529,-9.59069,9.16022,-3.12776 /$
REAL TO $8(6) /-0.00098,0.02576,3.00400,-4.33834,6.98747,-2.38328 /$
CIMENSION TR(9),A(8,6),T(8,6),AO(8,6),A1(8,6),TD(8,6)
TR(I) $=$ TRANSMISSION FACTOR, DIRECT
TR(2) = TRANSMISSION FACTDR , DIFFUSE
TR(3) $=$ ABSORPTION FACTOR ,DIRECT, OUTER
TR(4) = ,DIFFUSE,OUTER
TR(5) = , DIRECT ,INNER
TR(6) = DIFFUSE,INNER
TR(7) = COSINE OF INCIDENT ANGLE
TR $(8)=$ TYPE OF GLASS
$T R(9)=I D \quad$ CODE FOR THE GLAZING
$I D=1$ SINGLE GLAZING
$10=2$ DOUBLE GLAZING
DO $\quad 10 \quad J=1,6$
$A(1, J)=A \mid(J)$ 550
$A(2, J) \equiv A 2(J)$560
$A(3, J)=A 3(J)$ 570
$A(4, J)=A 4(J)$ 580
$A(5, J)=A 5(J)$ 590
$A(6, J)=A G(J)$ 600
$A(7, J)=A>(J)$ 610
$A(8, J)=A B(J)$ 620
$T(1, J)=T!(J)$ 630
$T(2, J)=T 2(J)$ 640
$T(3, J)=T 3(J)$ 650
$T(4, J)=T 4(J)$ 660
$T(5, J)=T 5(J)$ 670
$T(6, J)=T 6(J)$ 680
$T(7, J)=T 7(J)$ 690
$T(8, J)=T B(J)$ 700
$A O(1, J)=A O 1(J)$ 710
$A O(2, J)=A O 2(J)$ 720
$A O(3, J)=A O 3(J)$ 730
$A O(4, J)=A 04(J)$ 740
$A \cap(5, J)=A O S(J)$ 750
$A \cap(6, J)=A \cap 6(J)$ 760
$A O(7, J)=A 07(J)$ 770
$A O(8, J)=A D B(J)$ 780
AI($1, J)=A!1(J)$ 790
$A!(2, J)=A!2(J)$ 800
$A!(3, J)=A!3(J)$ 810
$A I(4, J)=A I^{4}(J)$ 820
$A!(5, J)=A!5(J)$ 830
$A!(6, J)=A!6(J)$ 840
$A!(7, J)=A!7(J)$ 850
$A!(8, J)=A!8(J)$ 860
$T D(1, J)=T 01(J)$ 870
$\operatorname{TD}(2, J)=T D 2(J)$ 880
$T \cap(3, J)=T D 3(J)$ 890
$T D(4, J)=T D 4(J)$ 900
$T D(5, J)=T D 5(J)$ 910
$\operatorname{TD}(6, J)=T D 6(J)$ 920
$T D(7, J)=T D 7(J)$ 930
$T D(8, J)=T D 8(J)$ 940
F. $T A=T R(7)$ 950
$L=T R(8)$ 960
$1 D=T R(9)$ 970
IF (ID.EQ.2) GO TO 30 980
$T R(1)=T(L, 1)$ 990
$T R(2)=T(L, 1) / 2$. 1000
$T R(3)=A(L, 1)$ 1010
$T R(4)=A(L, 1) / 2$. 1020
DO $20 J=2,6$ 1030
$T R(1)=T R(1)+T(L, J) *(E T A * *(J-1))$ 1040
$T R(2)=T R(2)+T(L, J) /(J+1)$1050
$T R(3)=T R(3)+A(L, J) *(E T A *(J-1))$ 1060
$T R(4)=T R(4)+A(L, J) /(J+1)$1070
$T R(5)=0$ 1080
$T R(6)=0$1090
GO TO 50 1100
$T R(1)=T D(L, 1)$1110
$T R(2)=T D(L, 1) / 2$ 。1120

```
```

TR(3)=AO(L,1) 1130

```
```

TR(3)=AO(L,1) 1130
TR(4)=AO(L.1)/2. 1140
TR(4)=AO(L.1)/2. 1140
TR(5)=A!(L.1) 1150
TR(5)=A!(L.1) 1150
TR(6)=A!(L,1)/2.
TR(6)=A!(L,1)/2.
DO 40 J=2,6
DO 40 J=2,6
x=ETA**(J-1)
x=ETA**(J-1)
TR(1)=TR(1)+TD(L,J)*x
TR(1)=TR(1)+TD(L,J)*x
-3
-3
M, 1210
M, 1210
TR(4)=TR(4)+AO(L,J)/(J+1)
TR(4)=TR(4)+AO(L,J)/(J+1)
TR(5)=TR(5)+AI(L,J)*X 1230
TR(5)=TR(5)+AI(L,J)*X 1230
TR(6)=TK(6)+AI(L,J)/(J+1)
TR(6)=TK(6)+AI(L,J)/(J+1)
TR(2)=2*TR(2)
TR(2)=2*TR(2)
TR(4)=2*TR(4)
TR(4)=2*TR(4)
TR(6)=2*TR(6)
TR(6)=2*TR(6)
RETURN
RETURN
END
END
1250
1250
1260
1260
1280

```
1280
```

```
1160
```

1160
1170
1170
1180
1180
1190
1190
1200
1200
1210
1210
1270
1270
1290-

```
1290-
```

FUNCTION NBF (H,PB) 10
c THIS PROGRAM APPROXIMATES THE WET-BULB TEMPERATURE WHEN 20
ENTHALPY IS GIVEN 30
IF (PB-29.92) 10,30,1040$Y=L O G(H)$50
IF (H.GT.11.758) GO TO 2 ?60
NAF $=0.6041+3.484!* Y+1.3601 * Y * Y+0.97307 * Y * Y * Y$ 70
GO TO 10080
$W B F=30.9185-39.68200 * Y+20.5841 * Y * Y-1.758 * Y * Y * Y$ 90
GO TO 100 100
$* R I=150$.110
PVI $=$ PVSF (NB1)120
$\forall 1=0.622 * P V 1 /(P B-P V 1)$ 130
$X 1=0.24 * * 81+(1061+0.444 *: B 1) * W 1$ 140
$Y_{1}=H-X 1$150
AB2 = WB 1-1 160
PV2=PVSF(WB2) 170

+ $2=0.622 * P V 2 /(P B-P V 2)$ 180
$\times 2=0.24 * B^{2}+(1061+0.444 * B 2) * W 2$ 190
$Y 2=H-X^{2}$ 200
IF (Y|*Y2) $90,60,50$ 210
$W B 1=W R Z$ 220
$Y 1=Y 2$ 230
GO TO 40 240
IF (Y1) 80,70,80 250
60
$\because B F=N B 1$ 260
GO 10100 270
$W B F=W B 2$ 280
GO TO 100 290
$Z=A B S(Y) / Y 2)$ 300
$W B F=(W B 2+Z+W R 1) /(1+Z)$ 310
RETURN 320
END $330=$

| | SUBROUTINE WF (QG,QX,QIS,LG,LX,LIS,QL) | 10 |
| :---: | :---: | :---: |
| C | THIS ROUTINE TAKES HEAT GAINS TO HEAT LOSS BY WEIGHTING FACTOR | 20 |
| c | QG--HISTORY OF SOLAR HEAT GAIN | 30 |
| c | QX--HISTORY OF LONG WAVE LENGTH HEAT GAIN | 40 |
| c | QIS--HISTORY OF LIGHTING PONER INPUT | 50 |
| | REAL QG(8), QX 8), QIS 8),LG(8),LX(8),LIS(8) | 60 |
| | REAL $A G(8) / 0.2060,-0.3988 .0 .2247,-0.0245,-0.0026,-0.0006,-0.0002,-$ | 70 |
| | 10.0001/ | 80 |
| | KEAL BG(8)/1.000, -2.4586, 2.0078,-0.5447,0.,0.,0.,0.1 | 90 |
| | KEAL $A X(8) / 0.6258,-1.2492,0.7932,-0.1573,-0.0003,0,00.0 .1$ | 100 |
| | REAL BX(8)/1.000, -2.0676, 1.3651,-0.2837,0.,0.,0.,0.1 | 110 |
| | REAL AIS (8)/0.2902,-0.1866, 0., 0, 0., 0., 0., 0.1 | 120 |
| | REAL BlS 8)/1.000,-0.8781,0., 0.0 , , O., 0., 0./ | 130 |
| | DIMENSION QZG(8), QZX(8), $02 I S(8)$ | 140 |
| | DO $10 \mathrm{~L}=2,8$ | 150 |
| | $\omega Z G(L)=L G(L-1)$ | 160 |
| | $02 \times(L)=L \times(L-1)$ | 170 |
| | QZIS(L) = L I (L-I) | 180 |
| 10 | CONTINUE | 190 |
| | DO $20 L=2,8$ | 200 |
| | $L G(L)=U Z G(L)$ | 210 |
| | $L \times(L)=Q Z \times(L)$ | 220 |
| | LIS(L) = Q ZIS (L) | 230 |
| 20 | CONTINUE | 240 |
| | SUMAG $=$ AG(1)*QG(1) | 250 |
| | SUMRG $=0$. | 260 |
| | SUMAX $=A \times(1) * Q \times(1)$ | 270 |
| | SUMBX $=0$. | 280 |
| | SUMAIS = A IS (1) Q Q S (1) | 290 |
| | SUMBIS $=0$. | 300 |
| | DO $30 L=2,8$ | 310 |
| | SUMAG=SUMAG+AG(L)*QG(L) | 320 |
| | SUMEG $=$ SUMBG+BG(L)*LG(L) | 330 |
| | SUMAX $=$ SUMAX $+A X(L) * Q \times(L)$ | 340 |
| | SUMBX $=$ SUMB $X+B X(L) * L X(L)$ | 350 |
| | SUMAIS = SUMAIS + AIS L L * Q IS (L) | 360 |
| | SUMBIS = SUMOIS + BIS(L)*LS(L) | 370 |
| 30 | CONTINUE | 380 |
| | $L G(1)=$ SUMAG-SUMBG | 390 |
| | $L X(1)=$ SUMAX-SUMBX | 400 |
| | LIS (1) = SUMAIS-SUMBIS | 410 |
| | $Q L=L G(1)+L X(1)+L$ IS ${ }^{\text {L }}$ (1) | 420 |
| | RETURN | 430 |
| | END | 440 - |

Appendix D

Computer Program Used in Evaluation for the Prototype Building
T. Kusuda
D. M. Burch

Environmental Engineering Section
Sensory Environment Branch
Building Research Division
Institute for Applied Technology
National Bureau of Standards

$$
1
$$

```
    IHIS HROGRAM CHECKS THE VBS INSIDEOUT HOUSF
    तX,YY. 72 ARE RESPDNSE FACTORS CALCULATFN RT RFSPTK
    WHICH HAS BEEV DEVELOPES BY T. KUSUDA OF NاマC
    \(X, Y\). 2 ARE AUGUMEVTED RESPONTE FACTORS TO SHORTFN THE CALCULATION
    A(1) AREA OF THE ROOF IV SQ.FT
    A(2) AREA OF THE WALLS IV SQ. FT
    A(3) AREA OF THE FLOOR IN SQ. FT
    A(4) जREA OF THE IVTERVAL FURNISHINGS
    CFM AIR LFAKAGE IV CU.FT.PFR VIV.
    () OVERALL HEAT TRAVSEER COEFFICEIVT OF THE OTOR IN BTH/HR.SQ.FT..F
    A) AREN OF THE DOOR I I SQ.FT.
        JW OVERNLL -IEAT TRAVSFER COEF=ICIENT FOJ WINOONS
        AM TOTAL WINDOW AREA SQ.FT
    IS GROJND TEMDERATURE IN F
    IA ASSUMES I IITIAL AIR TEMPERATJRE AT TIMF TERO IN F
```



```
    \(J I V E V \mathcal{O}\) OV \(X(R, S), Y(R, S), Z(R, S), X X(S, R), Y Y(S, R), Z L(S, K), C R(R), Q(R)\),
    LIO (S), TI(S), TOX(T), A(R),SUM(R),TOY(S),TIVE(T),TIX(T)
3リい1 J0700 \(70=1 \cdot R\)
    つ○ 711 ) \(J=1.5\)
    \(x \times(J, x)=0\) 。
    \(Y Y(J, K)=0\) 。
    10(:Ll Jok) L 。
    (ALL RESF (IRUッ・XX,YY, ? Z.JEL)
    \(001 \mathrm{I}=1\).IRUV
    \(X(I, 1)=X X(3,1)\)
    \(Y(1,1)=Y Y(3,1)\)
    \(\angle(I, 1)=2 \angle(3, I)\)
    Cर(I) =XX(2,I)
    VVAX \(=x X(1, I)\)
    نo \(1 \quad J=2\), VUAX
    」3ニJ + ?
    」2 \(=Ј+1\)
    \(x(I, J)=X X(J 3, I)-X X(J 2 \cdot I) * C R(I)\)
    \(Y(1, J)=Y Y(J 3, I)-Y Y(J 2 \cdot I) * C R(I)\)
        \(1 \angle(I, J)=Z L(J 3, I)-\angle Z(J 2, I) * C P(I)\)
    こ03 WRITE(6.005)
    1UC FJPMAT(11F7.0)
\(3 U 00\) KEAD(5.100) RUN
    ~21TE( -8007 ) RUN
H1い7 - URVAT(1H1'RUN NO='F10.0)
    1F(RUV) \(6000 \cdot 6000,7000\)
1U00 JEV=0.
    う) 102 I=1.T
    IIVE(I)=JEV
    1 Uح JEV=UEV+JEL
    READ (5.101) (TOX(I),I \(=1, T)\)
    REAJ (5,101) (TIX(I), I=1,T)
    REA) (5,100) (A(I),I=1,R),CFM,UD,AJ,UW,AW,TG,TA
101 FORUAT(12F6.1)
    WRITE(6.4000)
    4UUU EORMAI ( \(30 H O\) JUTDOOR TEMPERATURE CYCLE
    NRITE (6.609) (TOX(I),I=1,T)
    LF(T1×(1)) 8001.8002.8001
    HUU1 WR1TE(6.8003)
    WRITE (6,609) (TIX(I),I =1,T)
    vTI \(=1\)
```

```
H(1)3 Fう{MAI(1HO'IVSIDE AIR TEMPERATURE CYCLF')
    0|! F!)2पAT(12F10.?)
    vi) 1:) q(1)10
れいいだ VII=0
    6uS -024^1(2-0) )
```



```
        l \) A
                A) IJW
                IW AN
                A(z)
                    TG
                                A(4)
                                    CFM
Wまり(こ)り111JE
    w2I「t゙(6,005)
```



```
    )方 らいい J=1•T
    LF(VrI.VE.O) rI (J) = TIX(T-J+1)
```



```
    )0 h!1 Jここ.V
    L=(ソTI.^!E.0)TI(J)=TI(J-T)
    Jり! 1J(J)=Tこ(J-T)
    LF(VT1.VE.(l) GO TO \OmegaOL4
    )0? 1=1.V
        = II(I)=TA
```



```
    IO(J)=Tつ(J)-T`;
    かい? II(J)=TI(J)-r!,
    j) hl3 J=1.T
    LF(NII.NE.|) TIX(J)=TIX(J)-TG
    3ッ.3 1OX(J)=TUX(J)-TG
    )0 4 1=1.2
    Q(1)=1).
    JO 5 J=1.V
    !) \(I)=j(I)+(XX(J+2.I)*TI(J)-YY(J+?,I)*T?(J))
        & CDNTIJJE.
            JO 6 I=3.4
            0(1)=!.
            J!ó J=1.V
        ́\mp@code{ふ(I)=`(I)+XX(J+2,I)*TI(J)}
わ0!1 FOरMA!(2H1 )
            ~R1TE(5.50011)
            बर1TE(6.bOO0)
ちいい0 F゙う२MAT(10x.2ち.
                TEMPERATURES,F •.30x.30H HEAT FLONS
                TEMPERATURES.F •.30x.30H HEAT FLONS
```



```
            N2ITE(5.400)
```



```
        1 '.5X'7OOR',4X'WINOON'.5X'INFIL', 7X'VET')
            J0 20!! v=1,10
            JO ?(1) NK=1,T
            L=(V-1)*T+VK
            LF(VTI.|E.!) TINEW=TIX(VK)
            I VEW=TOX(NK)
            JO 10 NTT=2.V
        10 TOY(NrT)=TO(NTT-1)
            JO 11 リTT=2.V
        11 10(VTT)=TOY(NTT)
            )O 1? NTT=2.V
        12 IOY(MTT)=TI(VTT-1)
            J) 13 ^JTT=2.V
        13 II(NTT)=TOY(NTT)
            Tう(1)=T"VEW
            IF(VTI.NE.I) TI(1)=TIVEW
            JO }71=1.
            うJM(I)=う(I)*Cマ(I)-Y(I|I)*TO(1)
```

```
            vvax=xy(1,1)
            う) 3 J=?, リvinx
        4 勺J%(I)=5JM(I) +(X(I|J)*TI(J)-Y(I|J)*TO(J))
        l د):(I)=5Jv(I)*|(I)
            \jmath) 2! I=3.4
            3.JV(1)=こ々(I)*?(I)
            vianx=xv(1,1)
            \jmathว د J=?, NmAx
        \therefore\thereforeJM(1)=`JM(I)+V(I|J)*TI(J)
        &i)
            !=(\!1.决.1) こ') T0 9005
```



```
            )Ev=)ご!
            )0 1S T=1.2
    15 コ=ソニ0こソ+^(1)*x(I|1)
        XVEMニJF\because**T')(1)
        0) 1G I=1.2
```



```
            |!(1) =x•ほごノこに!
H|u5 .)ड 17 I=1.?
            17 iv(1)=5ilN(I)+4(I)*x(I,1)*TI(1)
            心㇒)=,!)*0.つ*(II(1)-T0(1))
            Uw=JN*!n*(TI(1)-T\cap(1))
            WI=1•1)?*こFり*(TT(1)-TO(1))
            1壮U(1)+TG
            IIV=I\perp(1)+TG
            \JMO=.jn+2n+QI
            )j quUn 1=1.k
    8いいた う.Jいるこら,N゙う+へ(I)
            \2 2|1 I=1.R
            L=(n(I)) 2!1.2\cap1.20?
    <u2 *(I)=`(1)/^(1)
    <゙りl (OMTIVIE
            1=(v.`E.10) うO) TO 2ח0
            N2ITE(5,300) VK,TOV,TIV,(O(I),I=1,R),\varthetaา,つW, २I.SUMQ
            JJV JJTSISE AIR TEVDETARURE
            IIV IVSITE AIR TEMDEQATURE
    U(I),I=1.4) HEAT FLJX IV STU OER HJIR,SR.FT
        OJ TOTOAL HEAT TQAV5EER THROUGH 7O.NR
        OA TOTAL HEAT TRAVS=ER THROUGH WIVJOWS
        .) TOTAL HEAT TRAVS=ĒR JUE TO INFILTRATION
    己J! UOVTIVIE
    3u0 FJरvat(Ib,10F1\cap.2)
    う) 10 3000
    GU00 ST!)
    EV.)
```

```
F(%)* LJ100.LDIUO
            IHIS DRJGRAM IS JEVELONEJ RY T.KISUOA OF THF NATIONAL SUREAU OF
    SIAVIARNS FOR CALCIILIVG THE THERYAL RESDOISE =ACTORS FOR
    COMPOSITE WALLS,FLOORS,ROOFS.BASEMENT WALLS Q^SEMENT FLOORS
    AV) I JTERNAL F IRVISHINGS OF SIMPLE SHAOES
    RESコ!NSE FACTORS ARF USED IN THE FOLLOWING MAVMER
    X,Y,Z ARE RESOONSF FACTORS
    W:\二Y*TI-Z*TO OUTSIJE WHERE R IS WAXIU|M
    II INSIDE TEVPERARJRE WHERE Q IS MIVTM!JM
    TO JITSIJE TEMPERATURE WHERE R IS MAXIVIM
    * THE.RVAL COVIUCTIVITY
    G THEPVAL DIFFUSIVITY
        HHICKVESS
    11=11 OH ?LABK OLAVE NALL
    Iリ=1 CrLIVDRICAL WALL
    IV=2 SD:ERICAL \becauseALL
    I`こ| FINITE TMICK WALL
    IV=1 SEMI-FIVITE WALL
    1V=? כOLID OBJECT
    IF RESPJISE FACTORS OF THE SOLID CYLINDER OR TRHERE OF HUNOGENEOUS
    PKODETY ARE OESIRED, TREAT THE PROBLEM OF M!ILTILAYER BJT WITH THE.
    JJEVTICAL PROPERTIES FOR ÄLL THE LAYERS EXCEDT THE RADIUS
        If IHEAT=0 VO TEMPERATIRE OATA THUS NO HEAT CALCULATIUN
    IF IHE゙AT=1 PERIODIC 3OUNDATRY CONDITIONS
4UO FOQMAT(?HO )
            ~ARAMETER S=1U\cap,T=10.U=T+1,TV=2*T
            KEAL K(T),G(T),L(T),KG
            UIVEVSTON X(S),Y(S),Z(S),C(T),D(T),R(U),RES(T),RYK(T,T),RMKG(T),
            If(S),XX(S,TV),YY(S,TV),ZZ(S,TV)
    1- -RVAT(10I7)
    ? FOFWAT(1UF7.0)
1UO FORUAI (14HO EXPOSURE NO= I1O)
#U FORUAT(77HO LAYEF L(I) K(I) (I) CII) RES(I
    1) UESCRIPTION
112 FORVAT(77H NO
            0)F LAYERS
103 FJ{VAT(116,1F11.3.1F10.3.1F10.2,1F10.3.1FR.2.2x.4A6)
1134 b0रMAT(59HO
    3.J=1F7.3)
IUS FORMAT(494त
L10G FORMAT(50HO
107 FORMAT(120H0 J
        l z
1才& F.{रUAT(1I17.1F23.4.2F15.4)
112. - JरUAT (4AG)
117 FO{MAT(44H0) COUMON RATIO CR=1F7.5)
1J0 KEAD(\zeta,?) DELTAT
        12いN二0
SUU READ(う.1) NLAYR,VTEST.IM,IN
    1F(NLAYR.E?.0) GO TO 8NO
    LRUN=1:2UV+1
    IF(VLAYR.GT.10) GO TO 600
    VVLAYiR=NLAYR+1
    1F(VLAYR.EO.O) GO TO 500
    JO20!)I=1.NLAYR
```

```
<u| <EA\cap(う.?) L(I),K(I),O(I),C(I),RES(I)
    1F(IV.Fi..2.A.N.).IM.EQ.0) GO TO 301
ついい
    IF(IV.VE.0) REAi)(5,2)KF,JG,CG
    1F(IV.VE.I)) Au=K(G/CG/i)S
    1F(VLAYR.EJ.0) (GO TO \O1
    IF(IM.E\vartheta.O) GO TO 301
    REへ)(ち.つ)(々(1),I=1.NNLAYR)
    00 10 302
301 2(1)=10.
    J:) 30} I=2,VVL^YK
```



```
    JU 113 I=1.'ル\YYK
113 REAO(כ,112)(2vん(I,J),J=1.4)
    LF(IN.EO.1) READ(b)112) (RMKG(J),J=1.4)
    JO 103 I=1.VLAYR
    1F(L(I)) 110.111.110
111 '́(1)=!.
    x(1)=1./RES(I)
    0) 1O 119%
110G(I)=人(I)/C(1)/\)(I)
10Э COMT1 VJE
3)] 认HA=(R(NNLAYR)/R(1))**[M
    GALL RESPTK(K,L,R,G,AG,KG,X,Y,Z,VLAYR,OELTAT,NRT,CR,JI,IM,IN,F)
    XX(1,IRJV)=FLO^T(VRT)
    YY(1,IRUV)=FLJ^T(:VRT)
    LL(1,IRUV)=FLJAT(VRT)
    xx(2,[{2UN)=CK
    YY(2,I!2UV)=CR
    LL(?,IR(IV)=CR
    XX(VRr+3,IR(JN)=|T
    YY(VQT+3,IRUN)=UT
    \angleL(VRT+3,IR(JV)=UT
    N2ITE(5,10(I) IDUN
    LF(IM.EQ.O) W2ITE(G.7!)1)
TJ] FOHVAT(SIH!? PLANFF WALL
    1F(IM.EQ.1) WRITE(6.70)?)
ノいて = こ々UAT(5UHO CYLINDRICAL WALL )
    1F(IM.E\vartheta.2) WRITE(6,70%)
103 FOYMAT(5OHO SOHERICAL NALL
    WRITE(5,101)
    W\1TE゙(f,0102)
    N'2ITE(5.400)
        IF(NLAYK.EQ.0) GO TO 502
    IF (IV.FQ.2.AVN.IM.NE.\cap) WRITE (S.l?O) KG.TG.CG.(RUKG(J),J=1,4)
    j) 2|ट I=1.NLAYR
    1F(L(I)) 202.203.20?
ひり3<(J)=0.
202 NRITE(G,10.3) I,L(I),K(I),D(I),C(I),RES(I),(RMK(I,J),J=1,4)
    1F(IN.EQ.1) WRITE(6.120) KG,DG,CG,(RUKG(J),J=1,4)
120 FORMAT(1F27.3.1F10.2,1F10.3.10X.4A6)
りり己 CONTIVUE
    IF(IU.NE.O) GU TO 1535
    JO 114 N=1 NRT
```



```
    xx(N+2,IRUN) =x(N)
    YY(V+2,IRUN) =Y(N)
```

```
    L2(N+2.I 2(NN) = C(N)
    14CONTIJIE
    (%) 1U r,n4
    1り35 こO`T I J!E
    0!5 FOWMAT(5UHI)
    IF(IV.EO.1) Gi' TO aggy
    O0 1!) aqC38
ay:f) >1'sy=1.0
    0) 10 505
    LF(Iリ.E亿.2.ANO.IM.En.1)) GO TO a377
    G) T: 7а96
```



```
    00 r!) 50b
    3.3:) LOJTI JIF
        うu 50@ V=1.NRT
        JV}=v-
        x(v)=-x(v)
        xx(N+\zeta,IRUN)=x(N)
    与り6 COOTIVIE
        v) 「引504
    y|!, 20 50:3 V=1 , NHT
        xx(v+2,[R|!)=STGV*F(V)
        Jv=v-1
    うUG CONTLVIF
    b)s. F0RUAT(1124.1Fつ1.5)
    \jmathい4 こ.)VTI NJE
        G0) TO 300
    0日| CO|TIVIF
    MnO रहTUR.s
        Ev
```

```
-(0r.* RESん.rこうよ
    YJ.}R:)JTINE RESF (IRUN,XX,YY,ZZ,DELTAT)
C IHIS PROGRAM IS JEVELONEO 3Y T.KUSUNA OF THE NATIU'JAL JUREAU OF
C STANOMRJS =OR CNLCIILTIVG THF THERUAL RESPONSE EACTORS FOR
    -つMD'JITE NALLS.FLOORS.ROOFS.BASEMENT WALLS SAGEMENT FLOORS
    AV'J I JTERVAL F,IRNISHINGS OF SIMPLE SHADFS
    RESDO)ISE FACTORS ADE USEO IN THE FOLLOWING YANMER
    A,YOL ARE RESUNNSE FACTORS
    IL=x*r1-Y*TO*OUA [MSIDE WHFRE R IS UIMIMU*A
    O1=X*T1-Y*TO*G*A IVSITE NHERE ? IS UIYTMU*
```



```
    TI LソSISE TEMNERARJRE WHERE ? IS MIVIM|M
    TJ JJ\IVE TE=ADEZATJRE NHERE R IS MAYIU\J^
    < TH{\MAL CON!)!JCTIVITY
    G THERVAL OIF=USIVITY
    L THIC<VESS
    IV=0) OR BLAZK DLANFWALL
    Iリ=1 CYLIVJRICAL WALL
    IM=2 5.NFQICAL *ALL
    INニ0 FINITE T,IICK NALL
    IV=1 \zetaFMI-FINITE NALL
    I`に? うOLIつ 0)3JECT
    IF RESNOMSE =ACTNRS OF THE SOLIJ CYLIVJER OR SDHERE OF HOMOGENEOJ'S
    NRUNETY A:RE ')ESIREJ, TREAT THE JROBLEY OE VULTILAYER BJT WITH THE
    I')EVYICAL MROPERTIES FOR ALL THE LAYERS FXCENT THE RADIJS
    1= 1HEAT=0 NO TEMDEQAT.1QE JATA THUS `O HFAT CALCULATION
    I- IHEAT=1 DFRIOJIC 子OJVATRY COVDITIOMS
+いい - こ2M^T(?-0 )
```



```
            JINEVSI?y X(20n),Y(\lambda00),Z(200),TI(1000),T\cap(100n),C(1U),D(10),RES(1
            1U), 24^(10.4), 2VKG(4),F(200)
```



```
    z =.2MaT(10F7.0)
1Uに FOKM^T(1UH1)
1リ1FうマUAT(フ7H\cap LAYEマ L(I) K(I) (I) C(I) RES(I
    1) DESCRI!TTI`!
LUそ FOZMAT(77H `?
    2 Or LAYERS
1U3 FO:2UAT(1IG.1F11.3.1F1!.3,1F10.?.1F1O.3.1FQ.2.2x.4AG)
IU4 FORMAT(5SH゙) THERUAL COVUJCIANCE
    3U=1F(.3)
IU5 FORMAT(4.#HT
106 FORWAI (5UH)
107 =')RMAT(12040 J
J
TIME INCREMENT DT=1F3.0 )
                                    RESPOVSE FACTORS
    l ?
)
1US3 FOLMAI(1I17.1F2.3.4.2=15.4)
112 -0KUAI(4AK)
117 FOUVAT(44HO COMMON RATIO CR=1F7.5)
    रEAD(5,1) IHEAT
    IF(IHEAT.NE.U) CALL TONTA(TO,TI,VP,IHEAT)
IUO READ(b,2) )ELTAT
SU0 READ(b,1) VLAY'R.VTEST•IM.IV
    IF(NLAYQ.GT.10) GO TO óOO
    VVLAYR=`|LAYR+1
    LF(NLAYR.EQ.O) GO TO SOO
    JU 2U!) I=1.NLAYR
```

```
<00 रेEAO(b,2) L(I),K(I), )(I),C(I),RES(I)
    1F(IN.FO.?.AN.).IU.EQ.0) GO TU 301
SU0 IF(IN.ME.0) READ(5,2)KG.DG,CG
    IF(IN.NE.0) AG=KG/CG/DG
    IF(NLAYQ.EQ.0) GO TO 501
    IF(IM.「Q.O) GO TO 301
    READ(!),?)(R(I),I=1,VVLAYR)
    GO 10 302
301 R(1)=10.
    O0 3!3 I=2,NINLAYR
3\cup3 K(I)={2(I-1)+L(I)
S|2 1F(IV.FQ.2.ANO.IM.NE.O) REA\cap(5,112)(RUKG(J),J=1.4)
    JJ 11S I=1.NLAYR
11.3 REAO(う,112)(RपK(I,J),J=1,4)
    1F(1N.E..1) REAO(5.112) (RVKG(J),J=1.4)
    つつ 1!OI=1.NLAYR
    1F(L(I)) 110.111.110
1.11 G(I)=0.
    K(I)=1./RES(I)
    G`) T0 107
110<(I)=x(I)/C(I)/D(I)
IUQ COOVTINJF
bu1 GMA=(R(NNLAYR)/R(1))**TM
    NR1TE(G.207)
2נ7 FORMAT(2H1 )
    CALL RESPTK(K,L,R,G,AG,KG,X,Y,Z,VLAYR,NELTAT,V马T,CR,JT,IM,IN,F)
    N21TE(5.100)
    1F(14.E..0) WQTTE(6.701)
101 FORMA1(5040 PLAVE WALL
    IF(IM.E..1) WRTTE(6.702)
IUZ FJRVAT(SOHO CYLINDRICAL WNLL
    1F(IM.E!.2) WRITE(6.703)
IU3 FORMAT(SOHO S,OHERICAL WALL )
    WRITE(白101)
    WRITE(5.102)
    N<ITE(6,400)
        IF(NLAYマ.EQ.0) GO TO 502
    1F(IN.E.,2) WFTTE(6,12ח) KG,JG,CG.(RUKG(J),J=1,4)
    JU 202 I=1.NLAYR
    1F(L(I)) 202.203.202
2U3 人(I)=U.
202 WRITE(G,103) I.L(I),K(I),D(I),C(I),RES(I),(RUK(I,J),J=1,4)
    1F(Iソ.F\supsetneq.1) WRITE(5,120) KG,JG,CG,(QYKG(,I),J=1,4)
120 FORMAT(1F27.3.1F10.2.1F10.3.10X.4AK)
SOZ NRITE(6,105) JELTAT
    WRITE(6.104)UT
    WRITE(G.106)
    NRITE(6.400)
    LF(IN.NIE.O) GO TO 1535
    WRITE(6.107)
    OO 114 N=1.NRT
    JN=N-1
    114 WRITE(G,10Y)JV,X(N),Y(N),Z(N)
    GO TO 5014
1535 WRITE(6,555)
    ちちS FORVAT(50HO
        IF(IN.EQ.1) GO TO 505
```

```
    IF(IN.EN.2.ANJ.IM.EO.(1) SO TO 505
```



```
    JV=V-1
    x(y)=-x(vN)
    ちUG NRITE(5.ちOK) J!.X(V)
    ல.) T!) ↔04
    bu5 Jつ 5|!% リ=1,:IRT
    JV=N-1
    つUЭ WLITE(弓.bO&) J\FF(V)
    bu& FO2VAT(1124.1F21.5)
    b(14 NRITE(6,040!)
    WRITE(:1.40(j)
    N<1TE(f.117) こ?
    LF(VTE&T.5J.0) GO TO 3nn
    CALL F=AT(X,Y,Z,TI,TO,.JELTAT,VD,VRT,GVA,CR)
    G!) T! z!U
    000 brjい
    = V.)
```

d1 FUR.* A.A

C CALCULATES RESPONSE FACTORS BY MARING USE OF THICKNESS, THERMAL
C CONDUCTIVITY, DENSITY, AND SPECIFIC HEAT OF EACH LAYER OF
C COMPOSITE WALL

3.F(1i))
REAL く, L•K';
かI=3•141ちロ27
$v_{1} 3=3$

IF(1S. vE•1) G.) TO 613
our $\angle L=K G /\{(V L+1)$
JYニ2(VL+1)**2/へG/つT
CALL SJF (UY, ZL,IM,AZ)
1F(IS.E厅.1.ANフ., NL.EQ.0) Gつ TO 901

रれ (1) =? x
々子(2) $=1$ 。
23(3) $=\wedge x$
$J=1 . / B y$
Jつ 1 I=1.VL
- $\mathrm{x}=0$
CALL ABCJP2(PX.K(I)•L(I),R(I), G(I), AD(I), RD(I),CP(I), J以(I), IM)
1 CALL ABCD? (PX,K(I),L(I),R(I),G(I),A(I), B(I),C(I),)(I),IM,I)
1F(•VL.LT.2) GJ TO 502
CALL JERVT(A, $3, C, O, A D, Z D, C D, O D, A D D, R D D, C D D, O D D, A L)$
GO TO 50S
勺U2 ADP=AP(1)
お以ロこうか(1)

```
    CPP=CP(1)
    UPP=DP(1)
    SU3 IF(IS.NE.2) GO TO 501
    IF(IM.FO.O) GO TO 501
    CALL SOLID(O.,R(1),KG,AG,IY,HF,HFP)
    \angleR1(1)=(-CDP+HFP*AX)/DX/JT
    LR2(1)=-2R1(1)
14(1) FORMAT(4F2(1.5)
    GO TO 1212
    bu1 KAP(1)=nPP
    KAL(2)=n.
    RAP(3)=APP
    U) 2 1=1.3
    Cl=RAP(I)/RX/OT
    C2 = R3(I)*BPP/F3X/BX/OT
    \angle2%(I)=-C1+C2
        2<R1(I)=-\angleR2(I)+RR(I)/BX
121C COVTIN|E
    100 FORMAT(3F20.6)
C ROUTS OF B(P)=0.
    212 VMAX=4n
        1F(IS.EQ.2.NNO.IM.VE.0) VMAX=100
        Py=0.0^1
        0P0=0.1./JT
        IF(IS.EQ.2.AN).IM.NE.0) JPO=3.1416*3.1416*AG/R(1)/R(1)*0.25
        JLX=0.0001
            1F(IS.EO.2.NNJ.IM.VE.0)DLX=OPO/1000
            V=1)
        11JLODO
            CALL ABCD2(PX,K,L,R,G,AX,BX,CX,DX,IM,NL)
            IF(IS.EQ.2.ANJ.IM.VE.0) CALL SOLDX(PX,D(1),KG.NG.IM.BX.DX,TEST1)
        15 DXP=PX+OL
            CALL ARCDح(PXP,K,L,R,G,AXP,RXP,CXP,DXP,IV,NL)
            IF(IS.VE.C) GO TO ?13
            LF(IM.EQ.0) GO TO 213
            CALL SOLJX(PXD,R(1),KG,AG,IM,BXP,DXP,TESTO)
            IF(TEST1*TEST2) 112.113.114
    114 PX=PXP)
            IEST1=TEST2
            GO T0 15
    112 1F(OL-OLX) 130.130.117
    117 JL=JL/2.
        GJ TO 15
    113 1F(TEST1) 118.119.118
    119 RXX=PX
        G0 T0 31
    113 KXX=P\timesP
            G) TO 31
    130) A:3=ABb(TEST1/TEST2)
    RXX=(DX+AB*PXP)/(1+AB)
    G0 TO 31
    213 1F(RX*RXP) 12,13.14
        14PX=PXP
            3x=3x 
            TESTX=PX*DT
            IF(TESTX-100.) 15,43.43
    12 IF(DL-OLX)30,30.17
```

```
        17 DL=DL/2.
    GO TO 15
    13 1F(BX) 18,19,18
    19 RXX=PX
    GO TO 31
    18 RXX=PXP
    GO TO 31
    30 AB=ABS(BX/RXP)
    RXX=(PX+AB*PXP)/(1.+AB)
    31N=N+1
    ROOT(N)=RXX
    IF(N.GT.1) DPO=ROOT(N)-ROOT(N-1)
    NRT=V
    41 FORMAT(I10.1F20.6)
    PX=RXX+DLX
    TESTMX=40
    TESTX=RXX*DT
    IF(TESTX-TESTMX)42,42,43
    4 2 ~ I F ( N . L T . V M A X ) ~ G O ~ T O ~ 1 1 ~
    4 3 \text { CONTINUE}
    DO 600 JJ=1,NRT
    PX=ROOT(JJ)
    DO 51 J=1.NL
    CALL ARCO2(PX,K(J),L(J),R(J),G(J),A(J),R(J),C(J),J(J),IM,I)
    5 1 \text { CALL ARCJP2(PX,K(J),L(J),R(J),G(J),AP(J),RP(J),CP(J),DP(J),IM)}
    CALL ARCD2(PX,K,L,R,G,AX,BX,CX,DX,IM,NL)
    IF(NL.LT.2) GO TO 504
    CALL DERVT(A,B,C,D,AP,BP,CP,DP,APP,RPP,CPP,DPP,NL)
    GO TO 505
504 APP=AP(1)
    BPP=BP(1)
    CPP=CP(1)
    DPP=DP(1)
b05 IF(IS.NE.2) GO TO 214
    IF(IM.EQ.O) GO TO 214
    CALL SOLID(PX,R(1),KG,AG,IM,HF,HFP)
    IF(HF) 401.400.401
401 PYS = (HF*AX-CX)/PX/PX/(DPP-HFP*BX-HF*RPD)/DT
    GO TO 402
400 PYS=0.
402 RA(1,JJ)=PYS
    GO TO 601
214 PY=BPP*PX*PX*DT
    RA(1,JJ)=DX/PY
    RA(2,JJ)=1•/PY
    RA(3,JJ)=AX/PY
001 PZ=PX*DT
    IF (PZ.LT.40.) GO TO 52
    RX(JJ) = .0
    RY(JJ) = 1.E30
    GO TO 500
    5 2 R X ( J J ) = E X P ( - P Z )
    5RY(JJ)=(1.-EXP(PZ))**2
OOO CONTINUE
    5 4 ~ F O R M A T ~ ( 4 F 2 0 . 6 ) ~
    DO 154 JJ=1,NRT
    DO 154 M=1.M3
```

```
    L२1(M)= <A(M,JJ)*RX(JJ)+2R1(M)
1り4<民2(u)=R^(M,JJ)*RX(JJ)*(ロX(JJ)-2.)+Zロ2(u)
    II=1
    1II=?
    30 FORMAT(5OHO RESPONSE FACTORS OF FIVITE SLAB
    # FOYMAT(1ट0:10 X(J) J Y(J)
    l Z(J)
7U1 FOOQUAI(12OH1 RFSPOYSE FACTORS FOR SOLTM CYLIVORICAL ODJECTS
    1 (
1U2 EORGAT(120H1 RESPONSE FACTORS FOR SOLIT SOHERICAL UBJECTS
    l
        1F(2Q1(2).LT.(1) 2F)(2)=0.
    JO 67 y=1,4.3
    1.2K(M,1)=2R1(:1)
    0) <2K(4.?)=7.22(U)
    ちゃドOマVA1(110.3F20.6)
        小T=1!U
    J) 5:% v=3.NT
    VR=v
    )0 6́1 ソ=1,1.3
    い1 <2K(M,`)=0.
    J0 57 M=1,v3
    うO 勺7 J.J=1.NRT
    つ2=(ん×(JJ))** *
```



```
    I=(N.L.T.5) GO TO 59
    1EST1=7RK(1,N)/LRK(1,N-1)
```



```
    IEらT3=A㐿(TEST1-TEST2)
    1F(TE゙うT3-0.00001) 59.5の.5&
    b& COOVTINUE
    \9 J0 6! v=1,NR
    X(\)=\angleQK(1,V)
    Y(V)=L२K(?,N)
    OOl(N)=\angleRK(3,V)
    C?ニTEなT?
    O2 = ORMAT(10HO CR=1F1\cap.6)
    1F(IS.FQ.2.AN).IM.EQ.0) GO TO 80O
    1F(IS.NE.1) GO rO 300
ЧU1 1F(NL.EQ.0) GO TO 905
    GF゙二?*KG/SQRT(JT*AG*PI)
    IF(NR.LT.50) GO TO 6IO
    )0 204 J=5!! N?
    <JニJ
2U4 AZ(J)= F.F*(SQRT(ZJ)-2.*5QRT(フJ-1.)+SQRT(ZJ-つ.))
    VR2=\N
    Gう TO 300
610 J0 301 J=NR.50
    C(J+1)=2(.J)*CR
    X(J+1) =X(J)*CR
301 Y(J+1)=Y(J)*CR
    VR2こち!
300 )0 20! J=1,NRR
ZU5F(J)=X(J)-Y(J)*Y(J)/(Z.(J)+AZ(J))
    VR=VRR
    (i) TJ OOG
```

```
405 00 9144 J=1.NR
yU4 F(J)=A?(J)
अU6 CONTINUE
2U7 「゙う々MAT(50H0J
    C21=1.
    う) 20!3 J=1.50
    LR=F(J+1)/F(J)
    IESTCR=ABS(CR-CR1)
    1F(TESTCR-0.00001) 611.611.612
O12CR1=C?
    JこJ-1
```



```
2J9 FORMAT(1I10.1F20.5)
011 VR=J
    CR=CQ1
    GO TO 900
GOOCOVTINUE
    JO 210 J=1.VR
    F(J)=2*Y(J)-(x(J)+Z(J))
    」J=コー1
C10 COYTINUE
OU RETIJRN
    END
```

al =OR.* B.B
SUBROUTIVE DERVT(A,B,C,D,AP,BP,CD,DP,ADR,BDP,CDD,DPP,N)
C COMPUTES DERIVATIVE OF MATRIX ELEMENTS FOR PLANE LAYER
UIMENSION A $(N), R(N), C(N), D(N), A P(N) \cdot B P(N), C D(N), D P(N) \cdot A T(10) \cdot B T(10$
1).CT(10)•DT(10)•ATT(10). BTT(10), CTT(10)•DTT(10)
うO 1 I=1•N
J) $2 \mathrm{~J}=1 \mathrm{~N}$
1F(I.EQ.J) GO TO 3
AT (J) =^(J)
$B T(J)=R(J)$
$C T(J)=C(J)$
UT (J) = O (J)
GO TO 2
$3 \operatorname{AT}(J)=A P(J)$
$B T(J)=B P(J)$
$C T(J)=C P(J)$
JT(J)=DP(J)
2 CONT INUE
1 CALL YULT(AT.BT•CT•गT.ATT(I)•BTT(I),CTT(I)•ITT(I),N)
$A P P=A T T(1)$
$3 \cup P=H T T(1)$
CPP=CTT(1)
JPP=OTT(1)
$304 \quad I=2 \cdot N$
$A P P=A P P+A T T(I)$
$B P P=3 P P+B T T(I)$
$C P P=C P P+C T T(I)$
4 DPD=DPP + JTT (I)
RETUQ:
EVI)

```
d! - UR.* し.C
```

SIFROUTIVE ABCO? (Z.K.L.R.G.A.B.C.D.I Y, IL)

C COMPUTES MATRIX ELEMENT FOR MULII－LAYER PLANE AS SHOWN IN TABLE I
C OF KUSUDA＇S PAPER

JOHBLE PRECISION DBEJ．JBFY，ZQ1． 2 Q？
KEAL K（10）．L（1ח）：J01•Jก2，J11•J12
やl＝3．1415927
やロニР1＊ 1 ・ち
$1 F(N L \cdot L T \cdot ?) \quad R(?)=R(1)+L(1)$
Jつ 4 I＝1•VL
1F（G（1））103．\｛03．102
1：1＝（7）1．1．101
$1: 1 \angle O=5(2 T(\angle / G(I))$
$\angle 01=20 * R(1)$
$\angle(12=2(1) * R(I+1)$
くきL＝Lu＊L（I）
1F（IV．VE．1）GO TO 3
J11＝D $35 \mathrm{~J}($ ZQ1•（i）
J11＝う3EJ（Zに1•1）

$J 1$ ？$=0.3 E J(2.02 \cdot 1)$
$Y \cup 1=0 \cdot 3 E Y(Z 01 \cdot 0)$
Y $11=$ ）SS Y（ ？P1，1）

$Y 12=0.35 Y(Z 22,1)$
$A X(I)=-P D * Z Q 2 *(J 01 * Y 12-Y 01 * J 12)$
$B x(I)=D P * R(I+1) / K(I) *(-Y \cap 1 * J 02+J \cap 1 * Y 02)$
CX（1）$=$ K（I）$/ R(I+1) *(-J 11 * Y 12+Y 11 * J 12) * P D * 202 * Z 0 ?$
JX（1）＝さゆ＊Z02＊（J11＊Y02－Y11．＊J？2）
（0） 104
3 COニ5l．小（7QL）
C1＝COS（7QL）
$S 1=C 0 / Z O L$
ら2こ（51－C1）／ZQL／2QL
1F（IU．FO．2）GO TO 5
$A \times(J)=C 1$
$3 \times(1)=L(I) / K(I) * 51$
CX（I）＝－2！ $2 * K(I) / L(I) * C O$
$J \times(I)=C 1$
60 1！ 4

$A x(I)=G M *(C I-L(I) / L(I+1) * 51)$
$3 \times(1)=L(I) / K(I) * G U * S I$
$C \times(I)=L(I) * L(I) / R(I) / R(I) *<(I) / L(I) *(-(701 * 202+1) * S 1+C 1)$
J×（I）＝．うM＊（こI＋L（I）／R（I）＊SI）
G）TO 1t
$1 A x(I)=1$ 。
こx（I）＝ก。
うx（I）＝（R（I＋1）／マ（I））＊＊I 4
$1 F(I 4 . E へ \cdot 0) \quad B \times(I)=L(I) / K(I)$
$1 F(I M . E Q \cdot 1) \quad 3 \times(I)=R(I+1) / K(I) * L \cap G(R(I+1) / R(I))$
$I F(I 甘, E Q \cdot 2) \quad B X(I)=L(I) / K(I) *(Q(I+1) / R(I))$
勺O TO 4
1．J． 3 aX（I）$=1$ 。

```
            -3P=RビS*x*R1*S2/R
            \angle\nu1= L心1
            \angleいつ=\angle詮
            CP=X*(L/R)**2/RES*((2.*R*R1/L/L+1)*51-(ZP1*7P?+1.)*SC)
            )こ=x*(R1/R*S1+(L/R)*(R1/R)*S2)
            GO 10 4
        ) AP=x*51
            jコ=x*2ES*S2
                            しロニx*(S1+C1)/RFS
                    うッニx*!)
                            G0 T0 4
    10.3 Aコ=1!
            ぶアニ1!
            Cここ!0.
            J\mu=0.
            O! 104
    LU1 LF(IN.NE.O) G!) TO 反
    x=L*L*n.b/!;
    ^ロ=X
    フコニX*L/K/3
    L尸=K/L*X*2.
        うF=X
    GJ Ti) 4
        f) I=(IU.VF.1) GO) TO 7
            Kl=R+L
            Aコ=(0.5*(R*R-21*R1)+R1*R1*LOG(R1/R))*0.5/F
            BP=R1/4/'今/K*((R1*R1+P*R)*LOG(R1/R)-(R1*R1-R*R))
            CP=K/R*0.5/G*(R1*R1-R*R)
            JP=(1.)/G*(0.5*(R1*Y1-R*R)*R1/R-R*R1*LOG(R1/R))
            G0 TO 4
    7 X=L*L*!.5/G
        < 1=Q+L
        A.ア=x/3.*(2*R1/2+1.)
        3P=L/<*R1/R*X/3.
        CコニK/L*X*L/R*L/R*(?**R*R1/L/L+0.666ち67)
        ココ=x/3.*R1/R*(マ1/R+2)
    4 RETURV
        Ev)
a) FOर.: D, )
    SJHROJTIVE ABCOO2(Z.K,L,R,G,AD,QO,CD,JR,IU)
C COMPUTES MATRIX ELEMENT FOR SINGLE-IAYER PLANE AS SHOWN IN TABLE I
C OF KUSUDA'S PAPER
    JOJHLE PRECISION Z,1.7.22.J3EJ.OQEY
    RE^L K.L,J01,JO?,J11,J1?
    I=3.1415927
    15(G) 103,103,104
    1J4 NP=P1/4./G
    1F(<) 101,101,105
    1(15 ZQ=SQRT(L/G)
    \angleOL=LQ*L
    <\hat{v}=l喰
    \angleQ2=\angle\1+\angleQ!
    1F(IM.NE.1) GO TO 3
    x=2*(ん+L)
```

```
    Y=(! +LL)**2
    ll=(R+l)/k
    J!1=0.3FJ(ZN1•0)
    J!つ=う-3FJ(Z\?,(1)
    J11=)价(2)1,1)
    J12ニ.3F,J(Z\cap2,])
    Y(1)=0)35Y(ZM1.0)
    Y0?=D:3FY(ZO2.0)
    Y11=),35Y(Z!)1,1)
    Y1?=!)纤Y(Z\\?,1)
    Aつ=(-X*(J11*Y1つ-Y11*J1つ)+Y*(J01*Y\cap२-Y01*J\capつ))*חP
    -j~=(X*(J111*Y(0己-Y11*J0?)* Z1/7Q2+Y*(J01*Y12-Y01*J12)*Z1/LU2)*PP
```



```
    Jつ=(X*(-J01*Y(1)+Y\cap1*J0) )-Y*(-J11*Y1?+Y11*J1?))*PP
    (`) 10)4
3)
    < L=R+L
    KES=L/K
    COこS1H(2\L)
    C:=COO(\angleQL)
    S1=C.O/7, L
    S2=(S1-C1)/ROL/ZQL
    IF(IM.F゙Q.0) GO TO b
    ALこX*(El*S1/R-L*S2/L)
    -%(T)=1/人(1)
    Cx(1)=?.
    Jx(I)=(र(I+1)/つ(I))**I^
& ひ!りTl`EE
    A=A\times(1)
    j=2\times(1)
    C=Cx(1)
    J=1\times(1)
    1F(VL.LT.Z) j!! TO G
    CALL M:JLT(AX,3X,CX,7X,A,3,C,D,NL)
& <ET:JRV
    Ev:I
```

a 1 こして，
C ROUTINE TO PERFORM MATRIX MULTIPLICATION

```
    SJ३२!)JTI VE MULT(A, (,C,J,AT,RT,CT,DT,V)
    JIMEVSIOV ^(N),3(O|),C(V),D(N)
    ATT=A(1)
    うTT=引(1)
    CT「こC(1)
    )TT=.)(1)
    L=(V.LT.2) (%O TO 3
    つ) 1 J=?.N
    AT=^TT*A(J)+{TT*C(J)
    3l=ATT*&(J)+3TT*D(J)
    CT=CTT*\Delta(J)+DTT*C(J)
    JT=CTr*H(J)+DTT*)(J)
    ATT=A!
    -1T={T
    O゙T=CT
```

1 ЈTVOT
＇j）TO＇+
3 AT＝ATT
ST二RT
CT＝CTT
うTニかT
4 RETURV
EVJ

```
d\ =UR,* FOF
    SJMROJTIVE SOLIJ(Z,RI,KG,AG,IM,HF,HFP)
C COMPUTES RESPONSE FACTORS FOR SOLID MATERIAL
    REAL KG.J01.J11
    JOJBLE PLECISION IBEJ.ZOJ
    \angleQ=SQRT(Z/AG)
    \angleO1=2.a*21
    2.i)=2.11
    \angleA=R1*R1/AG
    COVニK`/R1
    lF(Z) ?,1,?
    2 lF(IU.NE.1) GO TO 100
        J01=0.3FJ(ZจO.0)
        Tx=A-35(J01)
        1F(TX-n.00n01) 4.4.5
    5 J11=う㑐(Z吅.1)
        HF=CON*Z21*J11/J01
        -HF1=J11/J01/2כ1
        -F2=(J\cap1*J!1+J11*J11-J01*J11/Z.Q1)/J\cap1/J\cap1
        HFN=-CO`*().5* LO*(HF1+HF?)
        GO TO 300
1\cup0C=COS(7.21)
    b=SIv(Z.21)/Z.Q1
    Ix=A-35(SIV(Z01))
    IF(TX-0.00001) 4.4.3
    3 HF=-C)!!*(c/s-1)
    HFD=-C\capN*0.b*Zへ*(1+C*(こ-5)/5/5/2.31/Z习1)
    G) TO ?(0U
    1-FF=O.
    1F(Iリ.5习.2) HFD=-CDN*2A/3.
    1F(1M.E.2.1) HFD=-0.5*COV*ZA
    G') T0 30U
    4 -F=0.
    HFO=0.
3U0 RETURV
    EVT
d_ FUR.* J.J
    SIJHRO.JTIVE GPF(U.ZL,IM.7)
```

C COMPUTES RESPONSE FACTORS FOR GROUND HEAT TRANSFER JIMEVSIOV Z（100），ZT（50nO），2S（5000）
JJJALE PRECISITN DBEJ．JREY．ZQ
みに3．1415927

```
    うこけいこGNRT(PI)
    ~1?=?./FI
    E-コ=0.1)!1
    J:3=0.1
    L(1)=2*フL*s@R「(U)/SOTHI
    \angle2=こ(1)
    L(>)=L(1)*(SNRT(2.)-2.)
    J! 2 k=3.50
    l.K=k
    ? L(k)=L(1)*(SQ2T(2K)-?.*SQRT(ZK-1)+S\capRT(7K-つ.))
    1F(IU.EN.0) GO TO 70
    1F(1H.E(0.]) GO TO 1
    L(1)=\angle(1)+\angleL
    心㇒ T070
    1 x=rI2 *LOG(0.5*EB ) +10.3674F5́g91
    SJV=らI*O.5*(AT^N(x)+0.5*つI)
    1x=!
    るニE々ーうこ
    う) 17L=1,!00!
    s=3+J3
    3) }\angle2=1
    1F(IX.F\.10) G? TO 30
    \angleJOこ!); EJ(Z!.0)
    \angleYO=D3=Y(Z0,0)
    1ESrX=2,O*Z NO+ZYO*ZYO
    に゙ら「Y=PTそ/?
    IESTZ=AMS(TESTX-TESTY)
    1F(TESTノ-0.00|\cap1) 30.30.31
```



```
    UO TO 子己
3N l.lこけ*!3*PI2
    1x=1!
Se<I(L)=1./27.
    LT=L
    16らT=AらS(ZT(L))*10
    1F(TEST-0.0001) 11.11.17
17 CONTINUE
11 LTY=L1/?
    LTX=LTY*L-1
    BVAX=匕H+(LTX-1)*DB
    B:}=1./GVAX
    \angleJこ1•/J
    SUT=SUN*2J
    3ニE゙ターう品
    J. 2H L=1.LT
    B=!3+04
    \angle-3=4*-3*l茦
    \sigma LO=EXiد(-\angleF)
c! &(L)=(1,-LP)*>T(L)
    CALL SIMS(2S.O% SUM.LTX)
    GK=(SJv+SUT)*PI? + 3.3
    GG=CK*PI?
    C(1)={G* LL*U
10 己ONTI JJE
    <こ|こんV
    EV)
```

Appendix E
Input and Output for the Response Factor Program

The Response Factor program (Appendix D) analyses the thermal performance of the inside space of the prototype building under a prescribed outdoor air temperature cycle. When the inside air temperature is thermostated, this program calculates the rate of heat loss from the building at prescribed time intervals. If the inside room air temperature is not controlled and floats in response to the outdoor air temperature cycle, the program then calculates time dependent variations of the inside room air temperature. Following this discussion is a sample set of data input and the print-out of corresponding computer results.

A description of a sample set of data input is given below:

Card Sequence

1 Time increment of the temperature data in hours
2 Number of roof layers (includes the thermal resistances of the inside and outside surfaces) Thermal resistance at inside surface of roof

4 Thickness, thermal conductivity, density, and specific heat of roof

Thermal resistance at outside surface of roof Description of the inside surface of the roof

7 Description of roof

Description of the outside surface of roof
Number of wall layers
Thermal resistance at inside surface of wall
Thickness, thermal conductivity, density, and specific heat of wall

Thermal resistance of the outside surface of wall
Description of the inside surface of wall
Description of wall
Description of the outside surface of wall
Number of layers of the floor and the semi-infinite layer index (if basement floor)

Thermal resistance at inside surface of floor Thickness, thermal conductivity, density, and specific heat of the first solid layer of the floor counted from the inside surface

Thickness, thermal conductivity, density, and specific heat of the second solid layer

Thermal conductivity, density, and specific heat of the earth

Description of the inside surface of floor
Description of the first solid layer
Description of the second solid layer
Description of the semi-infinite earth layer
Number of layers for inner mass
Thermal resistance at the outside surface of the interior mass

Thickness, density, specific heat, and thermal conductivity of the internal mass Thermal resistance at the other outside surface of internal mass

Description of the outside surface of interior mass Description of the interior mass Description of the other outside surface of interior mass

Blank card (necessary to show end of above data) Run no. card Outside air temperature Inside air temperature Roof area, wall area, floor area, inner mass surface area, air flow (ventilation on air leakage), conductance of door, door area, conductance of window, window area, ground temperature, average inside air temperature

Components possessing significant heat capacity (such as walls, roof, etc.) are described in cards 2 through 31, while components having negligible heat capacity are described on card 42. Some various options available in the Response Factor program are discussed below.

Additional layers can be readily handled. For example, if the roof contains a second layer, then the number of layers given in card 2 would be increased to four. Also, a card giving the thermal and physical properties of this additional layer and a card giving a description of this layer would be inserted in proper sequence (from inside to outside). Additional layers in any component would be handled in a similar manner. If the additional layer is an air insulating layer, then only an average value of the thermal resistance of the air layer would be specified on the card giving layer properties. Another option is a floor which has no semi-infinite layer (such as the floor of a room of a multi-story building). This case may be handled by omitting the semi-infinite layer index on card 16 and removing the card giving the properties of the earth and the card giving the layer description of the earth. Another option is the case of a building without a component (such as a room without windows). This case is handled by setting the area of that component (given on card 42) equal to zero. And finally, the option for determination of the inside room air temperature (floating test) is handled by inserting four blank cards for the inside air temperature (cards 38 through 41).

A print-out of the computer results follows the sample set of input data. The first page of the print-out of results gives the description and composition of each building component having significant heat capacity. The second page gives the run number, outside air temperature cycle, the inside air temperature cycle (if thermostated), and the data input given on card 42. And finally, the third page of the print-out of the computer results gives the inside and outside air temperatures, the heat fluxes from the room at the inside surfaces of the building components in Btu $\mathrm{hr}^{-1} \mathrm{ft}^{-2}$, the air infiltration loss, and the net heat loss from the room at prescribed time intervals, in Btu hr^{-1} 。
U． 3
\sim
$0 \cdot 13$
$-\quad \begin{aligned} & \infty \\ & \cdots \\ & 0 \\ & 0\end{aligned}$
$\begin{array}{r}0 \\ 0 \\ 0 \\ 1 \\ -1\end{array}$
$\cdot 23$
N）
－30

$$
\begin{aligned}
& \text { NにMNルNनNに } \\
& \dot{\operatorname{con}} \dot{\operatorname{con}} \dot{\operatorname{con}} \dot{\operatorname{con}} \\
& \text { NMぃ } 0 \text { のNー }
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{r}
0 \\
0 \\
0 \\
\vdots \\
\vdots
\end{array}
\end{aligned}
$$

polystyrene
$0 \cdot 15$
OUTSIDE SURF，ACE
（BLANK CARD）
LNSIUE SUNFACE
$\begin{gathered}\text { 8－IN LT．CONCRETE } \\ \text { OUTSIUE SURFACE } \\ 3\end{gathered}$
0.1666 U．80 160．
$\begin{array}{lll}0.1660 & 0.018 & 2.50 \\ 0.5 & 12 U . & 0.2\end{array}$
0.5 I2U．
－IN CONCRETE
10.
$78 \cdot 2$
101.3
$\begin{aligned} & \hat{+} \\ & \infty\end{aligned}$

LHリ＝NALL

| －$A Y=$ R | L（1） | ＜（1） | （ I ） | C（I） | 25．5（I） | のニ¢～RTPTIO） |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 10 | | | | | | OF L＾YEJS |

PLAV＝WALL
$-A Y=R \quad L(1) \quad<(I)$
10

1
－0011
－ 02 2
－リい）
3
\times PJフJRE $\because 0=$
LLAVE WALL
－AY＝R L（I）
vo
$\begin{array}{cc}1 & \cdot 0 \\ 2 & \cdot 1 \\ 3 & \cdot 1 \\ \text { MUsulRe サル＝}\end{array}$
دLAVE NALL

| 11） | | | | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| リフJJJr | Tミイー」マATJスミ | CYCL－ | | | | | | | | | |
| プ．？ 0 | 32.111 | 4り． 71 | 19．59 | 72．11 | O5．1＋＂ | フ5．211 | $\because 5.2$ | 97．60 | 110．31 | 101.00 | 101.50 |
| 1 J ． 30 | 9\％．+1 | 95．51 | ว3．3．0n | al． 0 | 05.00 | Q）． 311 | 74.5 ！ | 54.00 | 56.6 .1 | 54.70 | 52.90 |
| ？ 2.20 | 515.30 | 51.11 | － 3.50 | 1ヶ．4\％ | $17.1{ }^{\text {1 }}$ | 45.511 | 45.30 | ＋6．30 | 46.0% | 45.80 | 45.517 |
| $+5.311$ | ＋5．20 | 4，．？） | いち．3い | 15.00 | 45．？ | 44．5！： | 3 3．7．） | 59．2．） | 65．5：1 | 52.40 | 74.30 |
| $13010=A 12$ | 「ごつき？い」アミ | CYCLE | | | | | | | | | |
| 77.90 | 14.91 | 75．2．） | 70.1 .1 | 79.311 | 79.70 | 72.0 .1 | 74.50 | $73.3 n$ | 79.17 | 79.40 | 78.80 |
| 75.511 | 18.50 | 77.19 | 70.40 | 72.711 | 2n．0n | 27．211 | ， 61.20 | 30．？n | 79.9 | 70.40 | 79.00 |
| 75.711 | 78．7i | 75.39 | 79.9 .5 | 73.70 | 7a．0n | 79.111 | 19.111 | 78.50 | 78.9 | 79.90 | 78.00 |
| 75.20 | 79．1） 1 | 78.913 | 79.10 | 70.70 | 7n．7n | 79.0 .1 | 78.20 | 79.30 | 79.00 | 79.10 | 77.10 |
| A（1） | $A(E)$ | A（3） | n（1） | $?$ | 17 | A） | Un！ | AN | T3 | TA | |
| 350．00 | $=73.31$ | 350.01 | － 0 ， 0 | 21.71 | － 25 | 2n．511 | ． 45 | 64．00 | 70.90 | 79.00 | |

 \tilde{T}
\vdots
\vdots
\vdots
i
\vdots
\vdots
\vdots

[^3]
[^0]: 'Headquarters and Laboratories at Gaithersburg. Maryland, unless otherwise noted: mailing address Washington, D.C. 20234 2 Located at Boulder, Colorado 80302.
 ${ }^{3}$ Located at 5285 Port Royal Road, Springfield, Virginia 22151.

[^1]: 1/ Coblentz, C. W., and Achenbach, P. R., "Design and Performance of a Portable Infiltration Meter", Transactions, American Society of Heating and Air Conditioning Engineers, Vo1. 63, 1957.

[^2]: * Pink random noise is white noise passed through a network which weights at -3 dB per octave.

[^3]: $-2=0$
 $\because \because$
 $\dot{\sim} \underset{\sim}{\sim}$
 $2=202-$
 $20==-2$
 ว三ニロコー
 ミニニニコニニッ

