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1. Introduction

In this report we describe a program, written in Fortran,

for performing the elementary arithmetic operations— addition,

subtraction, multiplication and division— with real numbers

having a fixed but essentially arbitrary number of significant

digits, this number being determined by the user of the program.

The program consists of a set of subroutines which perform the

above arithmetic operations keeping a fixed number of digits

throughout the calculation, as well as a number of "peripheral"

subroutines which serve as a link to any outside program, taking

input from it in the form of integer, real or double precision

numbers and putting these numbers in a form suitable for input

to the arithemtic subroutines, or taking the output from the

arithmetic subroutines and either converting it to a double

precision number for return to the outside program, or simply

printing the arbitrary length number in a form that is convenient

to read.

Although it is clear that many parts of these subroutines,

or perhaps even an entire subroutine, could be written more

efficiently in machine language, such a program would be applicable

to only one particular computer. Since it was our desire to be

able to use these subroutines on any of the currently available

large computers, they have been written in ANSI Fortran, avoiding

the use of symbols or operations that are peculiar to a particular

computer

.
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Before describing some of the details of this program, let

us say a bit about its use and interest from the point of view

of a physicist or applied mathematician. Generally, a physics

problem does not require more than a few decimals of accuracy

in the final answer and rarely does it require more than the

six or seven significant figures present in single precision

real numbers in most computers. However, in arriving at the

final answers, one often encounters cancellation of numbers

which are very large relative to their difference, and in this

case the number of significant figures in the result is diminished'

there may in fact be none. One may in such cases use the double

precision arithmetic of the computer, which generally provides

about 16 significant figures, and for some computers up to 28

or 32, but that is, for practical purposes, the limit of what

is generally available, and for many problems of physical interest

that is not sufficient. The difficulty described here— the

cancellation of nearly equal numbers with consequent loss of

significance is indeed inherent in all diffraction problems,

and the mathematical difficulties encountered in computing the

cross sections for the scattering of high energy electrons and

high energy protons from nuclei provided much of the initial

impetus for the development of this arbitrary precision arithmetic

program. Although analytical methods may be developed for a

particular problem, the most direct and generally applicable
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technique is simply to perform the pertinent part of the

calculation (that part involving the cancellation with resultant

loss of significant figures) with however may significant figures

are needed in order that the final result have the desired number

of significant figures.

In addition to its use in obtaining numerical solutions to

physical problems with difficulties of the type just described,

another application of an arbitrary precision arithmetic program

is worth mentioning at this point, namely as a tool for checking

the routines used in existing computers for the computation of

elementary and special functions in double or higher precision.

With an arbitrary precision arithmetic program one may compute

the function values with a number of significant figures larger

than that given by the fixed word length computer routine to be

checked.

Our interest in the development of an arbitrary precision

arithmetic program has not been solely in conjunction with the

applications just mentioned, however. We do not consider an

arbitrary precision arithmetic program to be an end in itself,

but rather as a set of routines which would be called by

subroutines, also in arbitrary precision, for the computation

of the elementary functions and the special functions of mathematical

physics. It is the development of arbitrary precision algorithms

for these functions that is of interest from the standpoint of
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applied mathematics. For example, while the use of a combination

of power series and asymptotic series may be sufficient for the

computation of the values of a function to a relatively small

number of places, they are quite unsatisfactory for much of the

argument range if one is to compute function values to a very-

large, arbitrary number of places. In this case, non-linear

recursive processes (such as Newton’s method for calculating

square roots, for example), have great advantages, and the

mathematical analysis pertinent to these and other applicable

procedures is of importance in itself. In a subsequent report

we shall discuss some of the algorithms that have been developed

and used for the computation of the elementary and special

functions to arbitrary precision.

The basic elements of this program are, as we have said, the

Fortran subroutines which perform the elementary arithmetic

operations. Each of these subroutines has three arguments

—

two input variables, the two numbers to be added, subtracted,

multiplied or divided, — and one output variable, the sum,

difference, product or quotient of the two input variables.

Each of the arguments is a linear array containing the digits

1
of the fraction part

, the exponent part and the sign of the

number in question. We therefore also provide in the program

a number of peripheral subroutines which serve an input-output

function with respect to the subroutines performing the
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elementary arithmetic operations. Of these peripheral subroutines,

those which serve an input function take an integer, real number

or double precision number, either from the main program or from

some other program, and put them in a form (the linear array just

referred to) suitable for input variables to the elementary

arithmetic routines. Those peripheral subroutines which perform

an output function take the linear array that is the output

(the sum, difference, product or dividend) of one of the elementary

arithmetic routines and either convert it into a double precision

number to be used in the main program or returned to some other

program, or print out the linear array in a form that is easy to read.

In addition there are two subroutines, PRM(NDG) and WRIT (NSG,NCH, NCI)

,

which serve both as depositories for all the parameters and format

statements (needed for the print-out just mentioned) that one

might wish to change at one time or another, and to calculate

and send to all the other subroutines via labeled COMMON any

parameters which they need for their operation. The subroutine

PRM(NDG) , with a single argument specifying the number of digits

with which the multilength calculation is to be performed, must

be called before calling any other subroutines of the program.

In the following pages of this report we shall discuss in

some detail the linear array in which numbers are stored as well

as the components of the program just mentioned: The elementary

arithmetic subroutines, the input-output subroutines and the

executor subroutine PRM(NDG) . Since there are clearly many ways
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to write and structure an arbitrary precision arithmetic program, our

discussion will be primarily concerned with the detailed reasons and

over-all point of view which led us to the features and structure

specific to this program, and which we believe must, in any event, at

least be considered in writing an arbitrary or multiple precision

arithmetic program. The choice in writing or structuring a specific

part of the program was often influenced by considerations of

mathematical simplicity and over-all flexibility of the program as

well as questions of computer storage requirements and computer time

required for a given operation. One would of course like to minimize storage

and time requirements and have nonetheless a program with flexibility,

simple in its details and over-all structure. Since these attributes

are sometimes mutually exclusive, one must, throughout the writing of

the program, choose some compromise position between them, and the

exact choice of this position is of course a subjective matter. We

shall try to point out the reasons for our choices. Clearly one might

write a quite different program if, for example, the question either

of storage or time of operation were of critical importance, and

flexibility of the program as a whole of relatively minor interest.

In the present case, the desire to have a
,;portable" program, i.e.,

one which could be run with essentially no modifications on any of

the modern computers which accept ANSI Fortran, determined a conscious

choice in which flexibility was chosen over speed of operation. A

program written in assembly language, applicable to one specific

computer, could have a much shorter running time, and, depending on

the circumstances in which the program is to be used, such a

program might be preferable.
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2. Numbers, their representation and storage

Since it is basic to all of the subroutines, we discuss

first the manner in which a number is represented in this

program, and the linear array in which it is stored. In this,

and indeed in any computer program, we are dealing with numbers

with a finite though possibly large number of digits, and

there are many ways of representing such numbers. The representation

of a real number, a, which corresponds most closely to the

numbers which are the input to and output from each of the

elementary arithmetic subroutines, is

a = i d'M^ (1)

where M is a positive integer ^ 2,

k is an integer, positive, negative or zero

and ~
<; d < 1

.

M

Any real number, with the exception of zero, can be written in

2
this form. With this exception, d has a decimal representation

• i
^
i
^ ^ ^

• • •

where the i
n

are integers such that
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0 <i <M

and 0 ^ i < M, n>l.
n

This form of the representation of a, in which the first digit

of the fraction part is non-zero, we call a normalized number.

The number zero is denoted throughout this program by setting

all the digits of d equal to zero, k=0, and a plus sign in front

of the representation. It is thus the only number in this program

for which the first digit is zero. The linear array corresponding

to this representation contains, successively, the digits i^, i£, ...

of d, the exponent, k, and the sign (stored as a +1 or a -1). The

elements of the linear array are thus all integers, and all

manipulations with the elements of the arrays are performed in

*
integer arithmetic. The base, M, is denoted in the program by

NBRT, specified in the subroutine PRM(NDG) and shared with the

other subroutines via the labeled COMMON/DGS/. While the value of

NBRT may be changed from one calculation to the next (see discussion

of PRM) , it is not changed in the course of a calculation and

hence need not be carried in the linear array NA(I) denoting the

number a. With regard to the digits i^, i^, ... one could of

course store them successively in the first, second, ... cells

of the array NA(I). This would, however, not only be wasteful of

computer storage, but, more seriously, result in excessively

long computation times: The subroutines for addition, subtraction

* At the end of this report we give a list of the important

parameters and their acronymic origins.'
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and multiplication perform these operations in much the same

fashion as one does in grade school, the basic operations being

addition, subtraction, multiplication, shifting and carrying.

The time required for the addition of two numbers thus increases

linearly with the number of digits in the array and the time

required for the multiplication of two numbers increases

3 jfc

quadratically with the number of digits in the array. The

computing time required by these' programs is thus reduced very

considerably by storing the digits i
,
i^,^... in groups

—

the first n digits in NA(1), the next n digits in NA(2)
,
and

so forth. The operations of addition, subtraction and multiplication

are then between pairs of blocks of n digits. The number n is denoted

by NDW in the program and the number of cells of NA(I) needed

to hold all the digits is denoted by ND. The exponent k (in Eq.(l))

is stored in cell ND1=NEH-1 and the sign in front of that equation

is stored in cell ND2=ND4-2. As in the case of the base NBRT , the

parameters NDW, ND, ND1 and ND2, along with the parameters

NBASE = NBRT
NDW

and NBASEP = NBASE/NBRT are given in the subroutine

PRM(NDG) and shared with the other subroutines via labeled COMMON,

* There are in fact two subroutines for division in the program; for

one the computation time increases linearly with the number of digits,

for the other quadratically. These are discussed in some detail later

in this report.

- 9 -



listed in each subroutine as

COMMON/DGS/ND,ND1 ,ND2 ,NDW ,NBRT ,NBASE , NBASEP (2)

The parameter NBASE is thus effectively the base in which the

calculation is performed: the addition of a number in a cell of

NA(I) with a number in a cell of the linear array NB(J) corresponding

to a number b will require a carry if their sum is equal to or

greater than NBASE. The parameter NBASEP is the smallest number

that can appear in NA(1) unless a is zero, in which case the first

ND1 cells of NA(I) will have zeros and cell ND2 will have +1.

All the parameters just listed in the COMMON/DGS/ are used

frequently by all the subroutines. As we have mentioned, in order

to save on memory requirements and, most especially, to reduce

computation time, it would be desireable to make ND, the number

of cells needed to store the digits of a number, as small as

possible. This means that one should make NDW, the number of

digits in each cell, as large as possible. However, we are finally

limited by the fact that on a given computer there is a limit to

the magnitude of an integer which may be stored in one cell.

Thus, generally, for a computer operating in the binary mode and

having a word length of N bits, the largest integer that can be

N-l
stored is 2 - 1. Further, since in the multiplication subroutine

in particular, and in other subroutines in general, we will want

to multiply the integer in a cell of one array by the integer in

some ceil of another array, their product must not exceed the
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largest integer that can be stored. As we have already noted, the

largest integer that will appear in one of the first ND cells is

NDW
NBASE - 1 = NBRT - 1. Thus the number of digits per cell, NDW,

is restricted by the condition

(

NDW 2
NBRT - 1 )

Z * 2
N 1

- 1 .

The largest possible value of NDW for a few values of NBRT is

indicated in the table below, for word lengths of 32, 36, 48 and

60 bits.

Table I

Word length in bits

NBRT 32 36 48 60

2 15 17 23 29

8 5 5 7 9

10 4 5 7 8

16 3 4 5 7

From the table above it is clear, given our previous remarks, that

it is greatly advantageous to use the present program on a computer

with a longer word length. Not only are the storage requirements

reduced, but the running time on a machine with a 60 bit word length

will be approximately half of that on a machine with a 32 or 36 bit
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word length for the addition and subtraction subroutines, and

approximately a quarter for the multiplication subroutine.

Two further items concerning the linear array should be

mentioned. As we have stated, the exponent part of a number

(k in Eq.(l)) is stored in cell ND1 = ND+1. The magnitude of

the exponent k is thus limited in this program to the value

of the largest integer that can be stored in the computer, which,

N-l
as we have noted, is generally 2 - 1 for a computer with an

N bit word length operating in the binary mode. The numbers

that can be handled by this program must therefore (see Eq.(l)) be

less, in magnitude, than

N-l2-1
NBRT .

If we choose NBRT = 10 and have a word length of 36 bits, for

example, this number is greater than

10
10

10

Even if NBRT = 2 and we consider a word length of 32 bits, we find

2 j 2.0
^

2
Z x

> IQ
1

Considering the size of these numbers, we provide neither overflow

nor underflow checks in this program.

Lastly, as mentioned earlier, the sign of a number is stored

in cell ND2 = NEH-2 of the linear array as a +1 or a -1. One could
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clearly save one cell of memory by incorporating the sign, for

example with the number in the first cell, NA(1) , which would then

be either positive or negative depending on whether the number

itself was positive or negative. Alternatively, one could incorporate

the sign with each of the numbers in the first ND cells, NA(1) , NA(2),.

NA(ND), which would then all be either positive or negative,

depending on whether the number itself is positive or negative.

We considered that this saving in memory was, however, of little

importance and therefore opted for the conceptual simplicity that

is gained by having non-negative integers in all of the ND cells

containing the digits, and being able to manipulate the sign

independently of the digits.

3. The parameter repository, PRM(NDG)

So much then for the question of the manner in which we represent

a number and the description of the linear array in which it is stored.

We now proceed to a discussion of the subroutine PRM(NDG) . The

intention in establishing this subroutine was manifold. The first

concerned the manner in which the arbitrary precision routines

presented here might be used in conjunction with an already existing

program. We might envisage, for example, a program, very possibly

with a fairly complicated logical structure, in the course of which

certain quantities are calculated, but have an insufficient number

of significant digits due to cancellations such as we discussed earlier
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One might then desire to perform that part of the calculation in

which the loss of significance occurs with more significant digits

than are provided by double precision, utilizing the arbitrary

precision arithmetic routines. Since these routines will inevitably

increase the computation time, they would not be used when extended

precision is not required. After performing part of the calculation

with the arbitrary precision routines, the calculation would return

to the already existing program. As we have mentioned, this link

is performed by a number of peripheral subroutines which take

integer, real or double precision numbers and convert them into

linear arrays, and to this end a number of parameters which one may

wish to vary must be established: The base, NBRT, used in the

calculation, the number of digits per cell, NDW, the total number

of digits, NDG, and several others determined from them, ND, NDl,

ND2., NBASE, NBASEP. All of these parameters are in fact required

by both the peripheral and the arithmetic subroutines, and hence

must be established before calling any of those subroutines. There

are, to be sure, many ways of accomplishing this. The guiding

principle employed here was that of keeping to an absolute minimum

the modifications made to an already existing program, necessitated

by its incorporation of the arbitrary precision subroutines. Thus

we decided not to introduce any paramters or other data via READ

statements, which would introduce data into the program from external

data cards. The possible disruption of the sequence of data cards

read in a program of some complexity, due to the introduction of
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the arbitrary precision subroutines at one or a number of points

within the program, was considered an excessive modification. We

therefore confine to the subroutine PRM(NDG) the initial values of

the parameters NBRT and NDW and the subsequent calculation of the

other parameters shared by the various subroutines via COMMON/DGS/

(see (2) and (3)). Even this common statement need not appear in

the external calling program. The entire task of setting up the

parameters needed for the peripheral and arithmetic subroutines

comprising this program is accomplished by introducing into the

external calling program the single card CALL PRK(NDG)
,

the

argument NDG being the number of significant digits desired in

the course of the arbitrary precision computation. The subroutine

PRM(NDG) then computes ND = [NDG/NDW] (ND = largest integer

less than or equal to NDG/NDW), so that the number of significant

digits actually used in the computation is ND*NDW, In the event

that one wishes to change any of the parameters NDG, NDW or NBRT

during the calculation, this can be accomplished by specifying

the values of the three parameters and introducing the single

statement CALL PRM2 (NDG, NDW, NBRT) , Except for its argument list,

PRM2 is similar to PRM. It should be noted, however, that the

program which calls the subroutines of this arbitrary precision

program must, in addition to the statement CALL PRM (NDG)
,
have

dimension statements for the arrays which appear as arguments

in the subroutines of this program. The dimension of these arrays

must be at least ND2 = [NDG/NDW] +2. In the event that one may
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wish to change NDG or NDW from time to time, it is generally

convenient to assign at the outset a dimension size sufficiently

large to cover all reasonable eventualities.

By containing within it all statements and calculations

pertinent to the parameters of the program, the subroutine PRM(NDG)

not only frees the external program of any unneeded modifications,

but also frees the arithmetic subroutines of any mention of

specific parameter values. Once called, PRM sets up the parameters

which are then transmitted to the arithmetic subroutines and

determine the mode in which they operate.

4. The peripheral subroutines, input and output

We next discuss briefly the peripheral subroutines. There

are three peripheral input subroutines, INT(I,NI), DFLT(DX,NX)

and AFLT(A,NA). The inputs to these three subroutines are,

respectively, integer, I, double precision, DX, and real, A.

The subroutines return, in each case, a linear array— NI
,
NX

and NA, respectively— of length ND2
,
corresponding to the input

constant, which may then be used as input to the arithmetic

subroutines. It is obviously assumed that the inputs to these

subroutines, I, DX and A, do not exceed the capacity of the

computer and are constants that can be handled legitimately by

it. From the standpoint of the subroutines INT, DFLT and AFLT

there are no other restrictions on their magnitude, except that
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in the case of the subroutine INT(I,NI) the number of digits,

ND-NDW, alloted in the array NI must be sufficient to allow

for storage of all of the digits of the input integer I. The

first argument of each of these subroutines must, however,

be of the type indicated: integer, double precision or real,

respectively

.

There are two peripheral output subroutines, RET(NX,DX) and

PRINT(NC). The input argument to the subroutine RET(NX,DX) is the

array NX and the subroutine returns DX, the double precision number

corresponding to this array, to the calling routine. The double

precision number, DX, must not exceed the overflow or underflow

capabilities of the computer. The subroutine PRINT (NC) prints out

the linear array NC in a form that is simple to read. The format in

which this print-out appears permits a number of options to the

user. Basically, the array appears as a string of digits, interspersed

with blanks, preceded by a + or a - sign and a decimal point, and

followed by parentheses in between which there is the exponent part

of the number. Although this exponent, lc in Eq.(l), refers to the

base M, its value is printed as a number in the base 10. Thus the

number rt may be printed in the form

+.31415 92653 58979 32384 ( 1)

However, it can also be printed out in the form

+3,14159 26535 89793 23846 ( 0)

or with any other number of digits before the decimal, denoted by
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the parameter NDBD. Further, the number of digits in each block

following the decimal, after which there appears a blank, need

not be five, but may be any other number of the user's choice,

this number being denoted by NDWP . In addition, the user may

determine the over-all format for the print-out, viz., the

indentation before printing the sign and the placement of the

parentheses and the exponent; (in the event that more than one

line is required to print out all the digits, one may wish to

print the parentheses and exponent on the last line, for example).

All these options— the parameters NDBD and NDWP and the

over-all format, are specified, not in the subroutine PRINT(NC)

itself, but in the subroutines PRM(NDG) and WRIT (NSG , NCH, NCI)

.

This latter subroutine is called by the subroutine PRINT(NC),

which provides all the arguments in the argument list of the

subroutine WRIT(NSG,NCH,NC1) : Here NSG is the sign (a Hollerith

+ or -) of the number, NCH is an array of Hollerith characters

(stored with but one character in each cell of the array)

which are the digits of the number, and NCI is an integer, the

exponent part of the number. The parameters NDWP and NDBD are

specified in the subroutine PRM(NDG) and the over-all format

is specified in the subroutine WRIT(NSG,NCH,NC1)
,

as is also

the number of characters, NL, of the array NCH that one

actually prints out. Although generally one would print out

all the digits calculated, it is at times convenient to be able

to print out fewer. Since the array NCH is filled with Hollerith



characters, one character per cell with the blanks between the

digits considered as characters in this array, the tota] number

of characters In this array is ND*NDW + [ (ND»NDW-NDBD) /NDWP]

.

Further, since the array NCH is formed in the subroutine PRIN'f(NC),

this subroutine also requires the values of the parameters NDWP

and NDBD. They are listed in the subroutine PRM(NDG) and passed

to the subroutines WRIT(NSG,NCH,NC1) and PRINT(NC) via the

COMMON/DGS/
,
which for these three subroutines reads

COMMON/DG S /ND , ND1 , ND2 , NDW , NBRT , NBAS E , NBASEP , NDWP , NDBD ( 3

)

rather than as shown in (2),

The reasons for putting the parameters NDW, NDBD and NL as

well as the over-all format statements in subroutines separate

from PRINT(NC) were both conceptual and practical. First, as

discussed earlier in describing the subroutine PRM(NDG)
,
we

wished to separate those elements of the subroutine which one

might wish to vary, such as specific parameter values or specific

format statements, from the structure of the subroutine performing

a given function— arithmetic or input-output in the case of the

peripheral subroutines, which is fixed. Then, from the practical

point of view, while this program has been written in ANSI Fortran,

someone working predominantly with a specific computer might

quite possibly prefer to use the already compiled (machine

dependent) object decks rather than the Fortran source decks. It

is nonetheless most convenient to leave in Fortran statements the

items that may be varied frequently, such as the over-all format
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for the print-out. Wishing to keep these Fortran statements to

a minimum, we therefore created the separate subroutine

WRIT(NSG,NCH,NC1) which contains nothing other than the over-all

format statements and the parameter NL. Thus in actual practice

one might have the entire program other than this subroutine

in the form of object decks, leaving only this subroutine as a

Fortran source deck.

5. Arithmetic

4
Finally we come to the arbitrary precision arithmetic

subroutines themselves. The program has five subroutines of

this kind— one each for addition, subtraction and multiplication,

and two for division: ADD(NA,NB,NC)
,
SUB(NA,NB,NC)

,
MULT (NA , NB , NC )

,

DIV(NA,NB,NC) and SDIV(NA,NB,NC) , In all of these, the first two

arguments, the arrays NA and NB, are the input to the subroutine,

and the subroutine returns the array NC which represents,

respectively, the sum, difference, product or quotient of the

numbers represented by the arrays NA and NB. Omitting the first

letter, N, to represent the number itself, the subroutine and

the corresponding operations they perform are given below:

ADD(NA.NB.NC) C = A + B

SUB (NA , NB , NC ) C = A - B

MULT (NA , NB , NC ) C = A°B
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DIV (NA,NB,NC)

SDIV (NA,NB,NC)

C = A/B

C = A/NB (1)

In the calling of any of the above five subroutines, the first

two argument names may be identical if they correspond to the

same number. Thus, for example, one may have the call statement

CALL ADD (NX, NX, NZ)

However, in calling the subroutines ADD, SUB, MULT or DIV,

the last argument name must never be identical to either of

the first two argument names, even if one does not desire to

keep either of those arguments, since throughout the operation

performed by the particular subroutine the array listed as the

third argument is used as an intermediate storage area. Thus,

for example, one must not write either

CALL MULT (NX, NY, NX)

or

CALL MULT (NX, NY, NY)

even if one is not interested in preserving either the first

or the second argument array. In the case of the subroutine

SDIV, this intermediate storage area is not required, and this

subroutine has been written so that one may write the statement
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CALL SDIV (NX, NY , NX)

or

CALL SDIV (NX, NY, NY)

In the former case, the result of the division is stored in the

array NX, in the second case in the array NY. While the option

of being able to write such call statements also for the

subroutines ADD, SUB, MULT and DIV would clearly have had certain

advantages, we considered them to be outweighed by the fact that

it would have necessitated adding an array, dimensioned within the

subroutine, to each of these subroutines. In the case of the

subroutines ADD, SUB, MULT and SDIV we chose to write them so

that there were no arrays other than the three named in the

argument list. With all of the arithmetic subroutines, the first

two argument arrays are either unaltered in the course of the

subroutine, or, if there are altered, then they are returned

in their original form by the end of the subroutine.

The difference between the subroutines DIV and SDIV will be

explained shortly, Of the first three of the arithmetic subroutines

there is relatively little to be said. The essence of the

operations in each case follows very closely the procedure used

in elementary school arithmetic. The basic operations involve
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comparison, shifting, carrying, adding, subtracting and multiplying.

The subroutine for multiplication has one refinement. We are

involved here with multiplying the number in a given cell of NA

by the number in some other cell of NB
,
say NA(J)*NB(K), where

1 £, J <. ND, 1 ^ K <_ ND. Now it might at first sight appear

consistent to neglect, in the product, all terms for which

J + K > ND, since an individual product NA(J)’NB(K) should be

entered in the cell NC(J+K) . There may be many such terms,

however— specifically, ND of them such that J + K = ND + 1,

ND - 1 of them such that J + K = ND + 2 ,
and so forth. And for

large values of ND the sum of all products such that J + K > ND

would, after carrying, make an important contribution to the

number that should appear in NC(ND) . For this reason we use the

cells ND1 and ND2 of the array NC for products of the form

NA(J) - NB(K) where J + K = NDl and J + K = ND2
,
respectively.

Only at the end of the calculation, when all carrying and

shifting operations have been performed, do we load the proper

exponent in NC(NDl) and the proper sign in NC(ND2)

.

The subroutine SDIV follows very closely the operation

known familiarly as short division. It may be used only if the

numbers stored in the cells NB(J) , J = 2,3, ... ND are all

zero, since it uses only the number stored in NB(1), and of

course the exponent NB(NDl) and the sign NB(ND2) . It is an

extremely fast routine, compared with the subroutine DIV, and

therefore is to be preferred whenever the number corresponding
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to the array NB is such that all digits after the first NDW are

zero. It is thus particularly useful for dividing by an integer

having not more than NDW digits, such as occurs, for example, in

the programming of power series in which successive terms must be

divided by integers or the product of integers. Provided these

NDW
integers are less than NBASE = NBRT (if NBRT = 10 and NDW = 5

these integers must be less than 100,000) one should use

SDIV(NA,NB ,NC) for division. In the event that the number

corresponding to the array NB is zero (in which case NB(1) = 0),

the subroutine returns the array NC with the elements of NA in it,

i.e., one gets the same answer as upon division by unity. However,

an error message DIVISION BY ZERO is printed out to warn the user.

The subroutine DIV(NA,NB ,NC) must be used for division if

the number B , corresponding to the array NB, is such that any digits

after the first NDW are non-zero. This subroutine first computes

the reciprocal of B and then multiplies (by calling the subroutine

MULT) the result by NA. The reciprocal is computed by the

non-linear iterative procedure defined by

x., = x (2 - Bx )n+1 n n

which involves two multiplications and one subtraction. This

recursion is equivalent to the Newton-Raphson method"* for the

function f (x) = ^ - B. The initial value for this recursion, Xq

,

which should be chosen to be as close as possible to the reciprocal

of B for rapid convergence, is determined within the subroutine
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using the contents of the first two cells of the array NB. The

number of iterations required is also determined within the

subroutine, by the requirement that the final iteration should

give the reciprocal of B correct to all ND’NDW places. In the

event that B = 0, the response of this subroutine is identical

to that just described in connection with the subroutine

SDIV (NA,NB ,NC)

.

Concerning the memory requirements of the arithmetic

subroutines, we note that with the exception of the subroutine

DIV(NA,NB,NC)
, there are no arrays internal to these subroutines—

the only arrays are those appearing in the argument list. The

subroutine DIV (NA,NB ,NC) has, in addition to the three arrays

in the argument list, three linear arrays internal to the

subroutine.

With regard to speed of operation, we have used these

subroutines on a number of different high-speed computers and

found, running the program in base ten (NBRT = 10), with a

32 or 36 bit word-length computer, that for arrays containing

60 digits, the operations of addition, subtraction and

multiplication are of the order of 1000 times as long as for

the same operation in double precision on the same computer.

(These operations are thus of the order of milliseconds rather

than microseconds, as is the case for the basic arithmetic

operations performed by the computer.) A division performed by

SDrV cakes a^o^c one-four i_h the time of an addition performed
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by ADD, and a division performed by DIV takes about 8 times as

long as a multiplication performed by MULT. In using this

arbitrary precision program for the calculation of the elementary

functions to 60 digits, we have again found this rough factor

of 1000 times the time required by the computer for the computation

of the same function in double precision.



Parameters and their names

NDG Number of DiGits

ND Number of Digits

NDl ND + 1

ND2 ND + 2

NDW Number of Digits per Word

NBRT Number Base RooT

NBASE Number BASE

NBASEP Number BASE, Provisional

NDWP Number of Digits per Word in the Print=out

NDBD Number of Digits Before the Decimal
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Subroutines and their names

ADD(NA,NB ,NC) ADDition

SUB(NA,NB,NC) SUBtraction

MULT (NA,NB ,NC) MULTiplication

DIV (NA,NB ,NC) Division

SDIV (NA ,NB ,NC) Short Division

PRM(NDG) PaRaMeters

PRM2 (NDG) PaRaMeters, 2nd version

WRIT (NSG,NCH, NCI) WRITe

INT (I ,NI) INTeger

DFLT(DX,NX) Double precision FLoaTing point number

AFLT (A,NA) reAl single precision FLoaTing point number

RET(NX,DX) RETurn double precision floating point number

PRINT (NC) PRINT
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