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SEQUENCING THE PURCHASE AND RETIREMENT

OF FIRE ENGINES

1. INTRQIXJCTION

This report describes a method to determine an "optimum"

manner of sequencing the purchase and retirement of fire engines

(hereafter simply called "engines"), with specific application

to the Washington, D. C. Fire Department. The model developed,

however, has more general applicability as regards both the

equipment type and the fire department. Because of the apparent

similarity of the present problem to conventional equipment

replacement problems
,
we first review in brief some of the ideas

in the equipment replacement literature.

Equipment replacement problems have a long history in

industrial engineering and operations research. The reader

is referred to [8] for a comprehensive bibliography on this

subject. One class of equipment replacement problems balances

the cost of failures against the cost of planned replacements

(see [3]). If units are to operate continuously over some time

period [o ,
t] and are replaced upon failure, then typically the

expected cost C(t) during [0, t] may be given by

C(t) = c
1
ErN

1
(t)] + c

2
E[N

2
(t)], (1.1)

where
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c^ = per unit total cost resulting from a failure and its

replacement

,

c 7 = per unit total cost of replacing a non-failed item < c^)

,

N-^(t) = the number of failures in [0, t]
,
a random variable,

N
?
(t) = the number of replacements of non-failed units, a random

variable,

and E denotes expected value. The problem is to minimize (1.1) OA/'er

the possible replacement procedures available within a given policy

of replacement. Examples of replacement policies are: strictly

periodic replacement, random periodic replacement and sequentially

determined replacement. Electronic components typify the equipment

to which this well developed mathematical theory applies.

A second class of equipment replacement problems
,
called

"preparedness" problems, assumes that a piece of equipment is kept

in a readiness state for use in case of emergency. The objective

is to maintain the equipment in a state of operational readiness

at minimal cost. Thus a sequence of inspection and replacement actions

that minimizes the ratio of expected cost per unit time to proportion

of good time, would constitute an "optimal" decision stream (see

[8], [10]). Large military hardware provides examples of the type

of equipment to which this class of models may be applied.

One of the basic underlying concepts of the two classes of

equipment replacement models discussed so far is that of a reliability

2



function . This is the probability R(t) that the equipment is "good""

at time t (measured from a time at which the equipment is considered

to be "new") and is exemplified by the negative exponential form

R(t) = exp (-At). (1.2)

A closely related concept is the failure rate, defined for any

reliability function R(t) as p (t) = -R"(t)/R(t), where the prime

denotes the derivative. For the negative exponential, the failure

rate is the constant A.

A third class of equipment replacement problems deals with

the replacement of items that deteriorate. Mathematical models to

solve this class of problems typically trade off the increasing

operational and maintenance costs (and decreasing resale value
)
of an

aging item against the cost of a new purchase, i.e., the "optimal"

replacement time is that time at which these opposing forces are

equalized. Dreyfus [6] used a dynamic programming approach to solve

this problem under the additional complication of technological change.

The main concern of this report is the development of a model to

determine purchase and retirement decisions over a planning period,

subject to certain constraints, which would minimize the cost of

^See [11] for a discussion of the statistical theory of reliability.

2
It is implicitly assumed that the equipment is either in a "good"
or a "failed" state.
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operation of a fleet of engines during that period. The concern of the

Washington, D. C. Fire Department was not with the cost of failure

or the distribution of failures of fire engines per se
,
primarily

because of the negligible number of engine failures and the inability

to measure the "cost" of a single engine failure. The model developed

may be regarded as an extension of the ideas represented by the

third class of equipment replacement problems discussed above.

Section 2 describes a simple calculation, which serves to

introduce the data at hand and compares the results of this calculation

(as applied to Washington, D. C.) to those of a study [2] from which

the data were obtained. A dynamic programming (DP) model is formulated

and given illustrative application in Section 3, and directions for

further investigation are suggested in Section 4. Appendix A

develops certain details of the DP model and a listing of the DP

computer code appears in Appendix B. Finally, an integer programming

(IP) analog to the DP model is given in Appendix C.
I
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2 . INITIAL CONSIDERATIONS

Aside from personal communications with members of the staff of

the Washington, D. C. Fire Department, the main source of data was

a report by Balcolm [2], This report also proposes a model, for

determining the life-span of an engine, which will be described later.

A linear relationship between engine age and maintenance cost was

used in [2]

,

and least-squares regressions yielded three sets of

coefficients, corresponding to "high usage," "medium usage," and

"low usage" engines. Balcolm then obtained a "composite" equation-

-

a weighted average (by the number of engines in the three categories) --

which this report also uses. This equation is of the form:

u
a

= U
0

+ U
l
a

’ (2 - 1}

where

a = engine age,

u
&

= the maintenance cost of an engine entering its a
1^ year of

service

,

U
Q

= 24.17,

U-^ = 122 .46/year.
2

Values of are listed in Table 3.1. This relationship was adopted

as the basis of the data for maintenance cost since it was felt that a

more complex function could not be supported by the observed cost

figures.

3
All monetary quantities are expressed in dollars.
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A linear relationship was also used in [2] for the purchase

price of a new engine, given by

p
t

= p
0

+ p
!

(t - 1900), (2.2)

where

p
Q

= -16258.18,

P
1

= 576.87.

Values of p
t

are given in Table 3.1. The choice of the "base" year

1900 is not explained, but it accounts for the surprising (negative)

value of p g. The index t refers to the year for which a value of the

purchase price is desired.

Using these data, a simple calculation can be made to determine

an "optimum" life-span for a single engine. Assuming a zero salvage

4
value (for simplicity) and a constant purchase price, the accumulated

total cost of keeping an engine for n years is

n

TC(n) = l (U + U a) + P

a=l

n
= nUn + U, I a + p

0 1
ail

= nU
Q + [n(n+l)/2] Uj + P. (2.3)

Thus the average annual cost of keeping an engine for n years is

AC(n) = TC(n)/n

= U
Q

+ [ (n+l)/2] U
x

+ p/n. (2.4)

4
Constant salvage values (with respect to age) can be represented
by subtracting them from Uq.
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Clearly, the longer an engine is kept, the longer the time to amortize

the price P, so that portion of the cost per year will decrease with

n. However, the maintenance costs increase year by year. Thus, with

the "optimum" life-span defined as that value of n which minimizes(2.4)

,
the standard calculus technique of setting the derivative of

(2.4) to zero and solving for n yields:

(d/dn) (AC (n) )
= iy2 - P/n

2 =0, (2.5)

whence

n = (2P/U
1
)

1/2
. (2.6)

3
Since P > 0 and n > 0, the second derivative 2P/n is positive

so that the value of n given in (2.6) ensures a minimum value of

(2.4)

. Figure 2.1 indicates contours of the optimum value of n in

the (U-^
,

P) -plane

.

For Washington, D. C. ,
using the 1969 purchase price, (2.6)

yields n = 19.6, considerably larger than the present life span of

15 years. Balcolm [2] recommends a life span of 10-11 years, depending

on the number of years over which an engine is linearly depreciated,

using as his criterion the equality of current (resale) value and

accumulated repair cost, i.e., n is chosen so that

P - n(P - S)/N = l U
a ,

a=l

where N is the number of years over which an engine is depreciated

and S is the salvage value of an engine after N years. (Note that

Balcolm assumes that the number of years over which an engine is

depreciated (N) and the number of years it is kept (n) need not

7
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be the same.) No rationale for this criterion is offered in [2],

but the large difference between [2

]

T

s "optimum" life span and

the one derived from the present calculation indicates a significant

difference between the two models.

9



3. A DYNAMIC PROGRAMMING MODEL

The dynamic programming (DP) model described in this section

takes a somewhat different approach to the problem of equipment

replacement. Instead of determining an "optimum" life-span which

would be applied to all engines, the DP model begins with the

existing scenario and prescribes purchasing and retiring decisions

over a T-year planning horizon. (The index t = 1, . .
. ,

T is used

in this model and appropriate notation changes' are made in the relevant

formulas presented in Section 2.) In this sense, the model may

be "tailored" to fit the initial state of affairs of any urban

fire department. The reader interested in DP in general, is

referred to the text [9]. For other DP formulations of equipment

replacement problems, see [1] and [4].

In accordance with the concerns and objectives of the Washington,

D. C. Fire Department, the DP model determines the purchases and

retirements to be made during the planning horizon such that the

total cost incurred during this period is minimized. The model

accounts for various constraints within which a fire department must

operate, e.g., constraints on the number of purchases and/or

retirements which may be made in any year, the total fleet size,

and the maximum allowable engine age.

The DP "state variables" (those which describe the system

at each stage, or year in this case) are:

10



x^
t

= the number of engines in the initial fleet which

remain in year t-1,

x 9 = the number of new engines purchased in years l,...,t-l,

x^
t

= the maintenance cost in year t-1 on engines purchased

in years 1, . .
.
,t-l.

(Note that x^
t

+ x 9 is the fleet size in year t-1.) The "decision

variables" are

dlt
= number °f engines retired from the initial fleet in

year t,

d7 = the number of engines purchased in year t.

It should be emphasized that retirements are made only from engines

in the initial fleet, i.e.

,

none of the engines purchased during the

planning period are considered for retirement. Since the

Washington, D. C. Fire Department indicated interest in a planning

horizon of at most five to ten years, restriction to retiring

engines from the initial fleet only is not considered a limitation.

The data required by the model are :

D = the minimum number of engines required during year t (checked

against the fleet size after year t's decisions have been

made)
,

^

= the maximum number of engines which may be purchased in year t,

c ...
That adequately measures the demand for fire service is a

simplification.

11



= the maximum number of engines which may be retired in year t,

R = the age by which engines must be retired,

P
t

= the purchase price of a new engine in year t,

Q = the number of a-year old engines in the initial fleet,
ci

= the initial fleet size,
a

u = the maintenance cost of an engine during its a
t^L

year of
cl

service

,

v = the resale value in year t of an engine which was initially

r 6
of age a,

a^ = the age of the i^ youngest engine in the initial fleet

(e.g.
,
a^ is the youngest).

As in the simple model of section 2, the maintenance costs are

calculated as

u
a

= U
0

+ U
l
a >

I

with the values of Up and U^, as indicated earlier. The linear

relationship leads to a recursive definition of u

,

u
a+l

’ U
0

+ Va+«

= U„ + Uja + Uj (3.1)

= u
a

+ U
l-

Letting x
f

= (x^^, x
9l_,

x^) , (3.1) may be used to obtain, as

the stage transformation formula,

^The convention is adopted that an £-year-old engine in the initial fleet
enters its (a+l)st year of service at t=l. It is assumed, for simplicity,
that decisions are made at the beginning of a year, and that a>l.

12
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(3.2)x
t+1

= (x
lt

- d
It’

X
2t

+ d
2t ’ 3t

+ u
l
d
2t

U
l
x
2t

} -

The transformation for and x
?t

is clear. The value of x^ , the

maintenance cost in year t on engines purchased in years' 1,. .. ,t,

is obtained by adding to both the cost of the first year of

maintenance for engines purchased in year t (u^d
?t ),

and the

incremental increase in maintenance cost on engines purchased in the

preceding years (UjX 9 ) , the latter deriving from (3.1).

The "stage return" is the cost of operation in year t. With

the notation d^ = (d^
,
d 9 ) ,

the stage return is calculated as:

x
it"

d
it

I
t
(x

t
,d

t ) = (P
t l

i=l
U

It
l v

a.+t •
L a-t

1 i=x
i t

- d
it

+1 1

+ x
3t

+ U
l
x2f (3.3)

The components of (3.3) have the following interpretations:

(P
t
+u

]_)^2t
= t^ie cost Purchasing d2

t
engines in

x
it'

d
it

l
i=l

+ t

year t and maintaining them during the

first year of service,

= the maintenance cost in year t on engines

which remain from the initial fleet

,

It
l v
j ,, a.+t

1=x
it.-

d
it

+1 1

= the revenue from retiring the d^ oldest

engines not previously retired,
1̂

'Whenever the lower limit of a summation exceeds the upper limit, the.

summation is taken to be zero. This is a standard notational convenience.

°This assumption of retiring "oldest" first" is supported by the

Washington, D. C. Fire Department.
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x^ + U^x-^ = the maintenance cost in year t on engines

purchased in years l,...,t-l.

The linear form of the maintenance cost yields the pleasing

9
result that the values of x^ are all exact multiples of U-^. This,

together with the fact that x^^ and x
?t

are integers bounded by the

constraints, makes it computationally feasible to consider all of the

combinations of values that the state variables may assume in any

stage. It follows that the optimal solution is exact
,
a condition

not often found in DP problems. This characteristic is explicitly

noted here as a favorable feature of the model.

The recursive equations of the DP model are:

f
t
(x

t )
= min [I

t
(x

t
,d

t
) + f

t+1 (xt+1 )/

(

1+r ) ]

,

d
t (3.4)

£j,(Xrp) = min I (Xrp,

h
The quantity r is a discount rate, so that division by (l+r) in the

first relation of (3.4) renders f^x^) as the minimum present value

cost of operations from years t through T, given that the state of the

system in year t is x^. Since the initial state is known to be

x^ = (m,0,0), f^(m,0,0) is the optimal value of the objective,

i.e., the minimum total cost of operations in years 1,...,T.

The constraints of the DP model are straightforward from the

definitions of the variables and parameters

:

9
This will be proven in Appendix A.

14



( 3 . 5 )0 i d
lt
^ N

t
(t =

Old,ti H
t

(t-l,...,T), (3.6)

X
lt

+ X
2t - D

t-1
(l =2 >- •

•

T+1 ) > (3.7)

t-1

1 (t = 2,...,T+1) (3.8)
j=l 3

where n = £ Q is the number of engines which must be retired
r

a>R-t+l
a

prior to year t because of the age limitation R. Note that by

definition the initial conditions are: x^ = m, x^ = 0, x^ = 0,

and n^ = 0 . With the definition Dq = m, ( 3 . 7 ) and ( 3 . 8 ) automatically

hold for t = 1.

The constraints ( 3 . 5 ) - ( 3 . 8 ) and the relationships among the

state and decision variables lead to interesting and computationally

useful results which are detailed in Appendix A. Suffice it to say

here that a special computer code,^ developed as a part of this effort,

takes advantage of these results to make it possible to solve larger

problems than could be handled by a general purpose DP code.

Furthermore, experience thus far has indicated that computer running

times are significantly shorter using the special code. For example,

one of the runs to be discussed below took 12 seconds using the

11
special code, while the general purpose code took 227 seconds.

^A listing of this code appears in Appendix B.

^This code is an extension of the code documented in [5].

15



(Both codes are written in FORTRAN V and runs were made on the UNIVAC

1108 at NBS under the EXEC II Operating System.)

In exercising the DP model, the maintenance costs and purchase

prices were the same as those discussed previously (cf
. ,

Section 2)

.

The purchase price function was modified to

p
t

= p
0

+ p
!

(70 + t), (3.9)

so that t = 1 would correspond to 1971. The values of and P^ are

unaffected by the modification and remain as listed under equation

(2.2). The resale values v were calculated on the basis of (3.9),

assuming an annual depreciation rate p, as

v
at = a - p)

a+t_1
[P

0
+ Pj (70-a+l)], (3.10)

so that resale values of engines in the initial fleet (purchased

1

2

prior to t = 1) could be calculated from the appropriate purchase prices.

Finally, values of Qa
were obtained directly from the Washington, D. C.

Fire Department's inventory of engines. These data are given in

13
Table 3.1 with T = 5 (a five-year planning horizon).

For the remaining data specifications, it was suggested by members

of the Fire Department staff to take R = 15 (the present maximum

engine age in Washington), D = 64 for t = 0,...,5 (i.e. constant

A geometric depreciation is not required by the model. It is

incorporated in the code, but can easily be modified with minor
coding changes.

^Members of Fire Department staff advised that a planning period of
more than five years is unreasonable.

16



TABLE 3.1 - DATA FOR THE DYNAMIC PROGRAMMING MODEL

a
Qa

u *
a

v *
at

t=l t=2 t=3 t=4 t*5

1 4 147 14474 8684 5211 3126 1876

2 0 269 8477 5086 3052 1831 1099

3 10 392 4961 2977 1786 1072 643

4 5 514 2902 1741 1045 627 376

5 0 636 1696 1018 611 366 220

6 5 759 991 595 357 214 128

7 10 881 578 347 208 125 75

8 0 1004 337 202 121 73 44

9 5 1126 197 118 71 42 25

10 5 1249 114 69 41 25 15

11 3 1371 67 40 24 14 9

12 4 1494 39 23 14 8 --

13 4 1616 22 13 8 -- --

14 4 1739 13 8 -- -- --

15 5 1861 8 -- r» — -- --

t

1 (1971)
2

3

4

5 (1975)

p *
t

24700
25276
25853
26430
27007

Values have been rounded to the nearest dollar.

17



minimum required fleet size equal to the present fleet size)
,
and

M = = 6 for t = 1, . ..,5 (constant and equal purchase and retirement

ceilings)

.

A base run was made with no discounting, i.e.
,
r = 0, and the

resultant "optimal" decisions were to purchase and retire 6 engines

in each of the first three years and to purchase and retire 2 engines in

year 4, i.e., ^it
~

^"’t
— ^ Cl- 1 > 2 , 3), d-^ ~

*^24
— ^ ’ ^15

—
^25

— ^

*

Note from the age distribution Q in Table 3.1 that 20 engines reach the

mandatory retirement age by year 5 (i.e.
,
n^ = 20). Since the

maximum number of retirements permissible is 6 in each year, the

optimal policy is to retire the 20 engines as soon as possible (ASAP

policy)
,
replacing them with new engines to meet the minimum required

fleet size.

The above results are not surprising in view of the discount

rate r = 0. Increasing maintenance costs, decreasing salvage values,
I

and increasing purchase prices all indicate early retirement. The

same policy is optimal in the extreme case where the purchase price

is always zero. It is intuitively obvious that in this situation

the ASAP policy is optimal regardless of the value of r, since the

newly acquired (free) engines are operated at a lower maintenance

cost than are the old ones.

In order to study the effect of the discount rate r on the

optimal decisions, a series of runs was made with U-^ as a parameter,

taken from 62.46 to 162.46 in increments of 10.00. [Recall that

the "nominal" value of is 122.46.] Initially, r was varied from

18



0.0 to 0.5 in increments of 0.1 (a very rough grid), and based upon

these results, smaller ranges with finer increments were studied for

certain values of . The following observations were made consistently

from the outputs of all the runs

:

(1) The only engines retired were the 20 which reach their

maximum age during the 5 -year planning period.

(2) In every year, the numbers of purchases and retirements

were the same. This may be attributable to the constant

demand and to the constant and equal values of M and N

over all t.

(3) For those values of r considered, there was a value r^

such that for r <_ r^ the ASAP policy was optimal

,

and a value r
T
such that for r >_ r^ the optimal

policy was to retire as late as possible (ALAP policy)

[The ALAP policy has d^
.,

= d^
?

= 5, d^ = d 0 ^_
= 4

(t=2, 3, 4), d-^r- = d 9 ^
= 3 for this particular problem.]

(4)

The values of r
£ ,

r, and r
?

- r
£

are monotonically increasing

functions of U^.

The values of U
1

for which the behavior of the optimal policy,

as a function of r, was studied in greater detail are listed in

Table 3.2 together with the relevant results. All other values of

U
1
considered gave rise to values of r

£
= 0.0 and r

L
= 0.1 in

the initial runs. It can be seen from Table 3.2 that the finest
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TABLE 3.2 - RESULTS OF FINER VARIATION OF r FOR CERTAIN VALUES OF THE

PARAMETER ^

U
1

Range of r Increment r
E

r
L

62.46 .01 - .10 .01 .05 .06

122.46 .08 - .09 .001 .080 .089

152.46 .01 - .20 .01 .09 .11

162.46 .01 - .20 .01 .10 .12
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analysis with the smallest increments for r was made for the "nominal"

value of = 122.46. For .080 < r < .089 the optimal decisions

were "mixed", i.e.

,

neither an ASAP nor an ALAP policy. For example

with r = .085, the optimal decisions were

d = d „
11 12

fnr-H

r

d = d
23

d = d
15 25

d
12

d
22

6
’

d
14

= d
24

= 3
’

The "critical" range of r (.080, .089) is quite small, but it should

be noted that the values M = N = 6 do not permit a drastic

difference between the ASAP policy and the ALAP policy.

It is clear that if a value of r is specified, then the DP model

may be run to determine the optimal policy. If r cannot be specified,

then the values of rp and r
T

may be determined for a given value of

U^. Then one need only specify whether r £ r^ or r > r^ to conclude

that the ASAP policy or ALAP policy, respectively, is optimal.

One run was made with = 10 for all t and the other data

remaining the same.

case d^j - d-^-> — d0 -^

With r = 0, the ASAP policy resulted; in this

d99 = 10, d^ = d^
t
=0 (t = 3, 4, 5).

Unfortunately, lack of time prevented further study of this case.

Intuitively, one might expect a greater "critical" range of r since

the larger values of M and N given rise to a greater difference

between the ASAP and ALAP policies.
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4. CONCLUDING COMMENTS

It should be emphasized that the DP model has considerably

greater generality than was indicated in the limited application

to Washington, D. C. The only model constraint on the data is that

they be self-consistent (e.g. ,
M^ and N^ must be consistent with D^).

If, for example, an urban fire department sees fit to reduce its

fleet size because of overkill capacity or perhaps because of

declining demand, and the values of M and N fluctuate because

of a fluctuating budget, then a greater portion of the model's

generality could be exploited. The interactions among the variables

and parameters of the model which are evident in Appendix A should

support this contention.

On the other hand, time limitations prevented any attempts to

examine the model with particular relationships among the

parameters. It seems reasonable that certain conditions, e.g.,

M. = N, = constant, or D. = a constant for all t, could lead
t t t

perhaps to closed-form optimal solutions, or at least might

simplify the necessary DP calculations. Further research along

these lines is recommended. In addition to these basic issues,

there is a need for further sensitivity tests, with respect

to the discount rate and the value of
,
for other values of the

parameters M^, N^
,
D
t ,

and R. For instance, the optimal values of

the objective f^ (m, 0, 0) could be compared for different values of

R (in some reasonable range of maximum ages)
, leading to an "optimal"

22



value of R (i.e. one which minimizes f^ (m, 0, 0)). Finally, runs

with depreciation rate p varying, or using a different (perhaps

linear) depreciation policy, would be desirable.
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APPENDIX A

DETAILS OF THE DYNAMIC PROGRAMMING MODEL





This Appendix develops certain details of the DP model described in

Section 3. In particular, relationships among the variables are investigated

which make it possible to examine a limited number of states and

decisions for which the stage returns I^Cx^d^) are calculated.

Although technical in nature, this aspect of the problem is of great

importance to computational feasibility in the sense that computer

storage requirements and running times depend on the number of

states and decisions the algorithm must consider.

The definitions of the relevant variables and parameters are

repeated below for the reader's convenience:

Xf = the number of engines remaining from the initial fleet

in year t-1 (t=l, . .., T+l)

,

x
?t

= the number of new engines purchased in. years 1, ..., t-1

(t=l, T+l)

,

x T
^

= the maintenance cost during year t-1 on engines purchased

in years 1 ,
. .

. ,
t-1 (t= 1 , . .

.
,T+1)

,

d.lt
= the number of engines retired in year t (t=l,...,T),

d
7
^

= the number of engines purchased in year t (t=l,...,T),

= the minimum number of engines required in year t (t=l , . .
.
,T) ,

•

= the maximum number of engines which may be purchased in

year t (t=l,. .
.
,T)

,

= the maximum number of engines which may be retired in

year t (t=l,... ,T)

,

R = the age by which engines must be retired,

Q = the number of a-year-old engines in the initial fleet

.

cl
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From these definitions, we may calculate two other quantities

which are used throughout the sequel:

m = £ Qa = the number of engines in the initial fleet,

a

n = l Q = the number of engines which must be retired
Z

a>R-t+l
a

prior to year t because of the age limitation R(t=2 , . . .T+l)

.

Note that by definition: = m, x
? ^

= 0, x^ = 0> and n^ = 0.

It is notationally convenient to adopt the convention = m.

Using the definitions above, we may immediately establish the

relationships

It
" x

l,t-l
" d

i,t
Ct-2,... ,T+1) (A-l)

2t
= X

2,t-1
+
F,t-.!

(t= 2 , .

.

• ,T+1) (A- 2)

°^ d
lt iN

t
(t=l , . .

.
,T)

1

(A-3)

0 - d
2t iMt

r+
II 1—

1

(A-4)

X
lt

+ X
2t -

i

—

f

II
4J ,T+1) (A- 5)

t-1

l d in (t-1 T+l) (A-6)

j=l J

We maintain our convention regarding sums, viz., a sum is zero if

its lower limit exceeds its upper limit. For example, (A-6) is

valid for t=l since both sides of the inequality are zero. The

variations in the index- ranges are due to the fact that the state



variables refer to the system upon entering year t (or leaving

year t-1), while the decision variables refer to decisions made

in year t (presumed to be made at the beginning of year t)

.

Note that does not appear in (A-l) - (A-6). This is because

x^ depends only upon the distribution of the purchases x^ over

the years l,...,t-l. This observation is discussed at greater

length subsequently.

It is clear that the stream of decisions d.-,^ = (b=l , . . „ ,T)

t-1

resultant stream of states l M. (t=U
?
...,T) do not violate

j=i J

and the

(A-l) - (A-6)

.

Hence the least upper bound (LUB) of d
?

is

y(d2t )
= M

t
(t=l , . .

.
,T)

,

and the LUB of x^ is

t-1

p(x
2 ) = I M (t=2 T).

j=l >

[Recall that x^ = 0 by definition.] We use (A- 7) and (A-8) to

develop the LUB and the greatest lower bound (GLB) of x^

(t=2 , . .
.
,T+1)

.
[Recall that x^ = m by definition.]

For a lower bound on x^, we observe first that for

t < t < T+l, X-. . > X-, ,
so that— — ’It — lx’

t-1 t-1

"It l M. > x
1t + l d

j=l j=l
U •

2j
= x, + x~ > D

,lx 2 t — t-1

(A- 7)

(A-8)

A-
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implying that

T-l

x, .
> D , - y M. (t < T < T + 1) . CA-9)

It — T-l 1
— -

1=1 J

For 1 <_ t < t
,
we have

t-l

x, = x, ,+ y d, .

,

It It -
L li

5

1=t

so that

T-l t-l T-l

x
lt

+
l M ,- * l d

i-i
+

l d
?^

3 = 1 3
- It > ~lj ’ ^ ~2j

3
= T 3=1

>
"It

t-l

l
j= T

N.
3

+ x
2t

t-l

D
T-l

- I
]=T V

implying that

T-l t-l

x-,. > d ,
- y m. - y n. a < t < t). ca-io)

It — T-l -
L

-.
~

3=1 3
=T

With our convention concerning sums, (A-9) and CA- 10) Can be combined

as

T-l t-l
x. > max [D , - [ M. - J N.] (t= 2 T+l)

,

1<t<T+ 1
T 1

j=l 1 j=T 1

where the case t=1 corresponds to the condition x
n >_ m

t-l

- I N-.

3=1 3



We also require >_ 0. Hence

t- 1 t-1
x, >_ max {0, max [D

1
- l M. - £ N.]} (t=2 , . .

.
,T+1)

.

1<t<T+1
t_1

j=l 3 j= T 3

For an upper bound to x^, we note that for t <_ x <_ T + 1,

n
T

T-1

1 l
j-1

d
lj 1X d

13

T-1

+ 7 N. = m
j=t 3

T-1

x, + l N., so that
j=t 3

x
It

< m max [n

t<T<T+l
T

T-1

l N.] (t=2 , . . . ,T+1)

,

j=t 3

where the case T=t corresponds to the condition x^ <_ m-n .

We now let

t- 1 t-1

A (x, )
= max {0, max [D - £ M. - £ N. ]

}

(t=2, . ,
.
,T+1)

,

1<t<T+1
T_i

j=l 3 j=T 3

T-1

y(x
1 )

= m - max [n - l N.] (t=2, .

.

. ,T+1)

,

t<r<T+l j=t 3

and we show that the formulas (A- 13) and (A- 14) give the GLB and

LUB of x-j-
,
respectively. This is accomplished by showing that

the A(x^
t ) (t=l, . .

.
,T+1) and y(x

lt ) (t=l, . .
.
,T+1) are feasible

streams of the state variables x-^. From (A-13) we know that

(A-ll)

(A-12)

(A- 13)

(A-14)



t-1

i(x
it

} i D
t-i V or

t-1

Hx
lt

) + l M
i

> D

j
= l

(A

Since X(x^) £ y (x^) mast hold for the problem to be feasible, it follows

t-1

p(x
lt ) l M. >Dh .

j=l

(A

Next, (A- 14) implies

y(x
lt)i

m - n
t

,
(A

from which it follows that

A(x
lt ) < m - n

t
. (A-

Relations (A- 14) and (A-18) imply, respectively, that demand

is met in year t-1 with state A(x^^) and that required retirements

are met with state \(x^ ). Relations (A- 16) and (A-17) imply

that these same two conditions are met by the state y (x., )

.

-15)

that

,i6)

17)

18 )



We now state an obvious fact.

Lemma 1. If {a^} and {b^} are finite sequences and k-, and k
?
are

constants such that k-, <_ a. b. <_ k ~ for all i, then k, < max a. -max b. < k± i 1 z, 1 — i i—2
In order to show that A(x-^) and y(x-^) are feasible streams,

it remains only to show the following two propositions.

Proposition 1 . 0 < A(x
lt)

- A(x
1>t+1 ) < N

t
(t=l , . .

.
,T+1)

.

Proof. For arbitrary t, let a
Q

= b
Q

= 0, and let

T-l t-1

a
T

= d
t -i - I Mj - I N. (t=1,...,T+1),

j=l J j=T J

T-l t

V D
T _1

- I M . - l N (t=1, . .
.
,T+1)

.

j=l J j= T
J

It is clear that 0 £ a^ - b^ £ (t= 0, . .
.
,T+1)

, so that Lemma 1

implies 0 <_ max a - max b . < N.
, or 0 < A(x,J - A(x, . ) < N ,

0<x<T+l
t

0<t<T+1
t “ 1 u 1 l,t+l J - t*

A-

7

as stated.



Proposition 2 . 0 <_ y(x^) - y (x^
t+ ^)

<_ (t=l , . . . ,T+1)

.

Proof . For arbitrary t, let a = n
^ ,

b
t+ ^

= max [n^
,
n
t+ ,

- N^] ,

t-1
a = n - y N. (x=t+2 , . .

.
,T+1)

,

T x . f t jj=t+l

T-1

b = n -l -N 0=t+2 T+l)

.

T T
j=t+l

For x=t+2 , . .
.
,T+1

,
it is clear that 0 < a - b < N.. If b.^, = n, ,? J — x x — t t+l t

then a^
+ ^

- b
t+ ^

= n^ +1 - n^ >_ 0 by definition, and in this case

n
t i Vi - V 30 that a

t+i Vi = Vi n
t i V If

b
t+l

= n
t+l

- N
t >

then Vl b
t+I

= n
t+ l

' (n
t+ l

' NP = N
t i °‘

Hence 0 £ a - b .1 N (x=t+l , . .
.
,T+1)

,
so that Lemma 1 implies

0 < max a - max b < N. . Therefore .— x x — t J

x x

0 <_ (m - max b^ - (m - max aj = y(x
lt ) - y(x_

L t+1 ) £ N
t<

A-

8



Propositions 1 and 2 imply that A(x^ can be "reached" from

A(x^) with a feasible decision, and that y (x^
t+ j) can be "reached"

from y(x^ ) with a feasible decision, respectively. [See (A-3).]

These propositions together with the conclusions drawn from

(A-15) - (A- 18) imply that the ^(x-^) and the y(x^ ) are feasible

streams, and this together with (A- 11) and (A-12) in turn imply that

A

C

X
1

1

) u

C

x
^ t

) are the GLB and the LUB of x^ ,
respectively.

Fix a value of x^ ,
say x

-^ t
,.with A(x^

t
) <_ x^ <_ y(x^

t
). We

now develop the GLB of x
7t

,
given x^ . For t < t £ T+l, we have

x. < y (x, ) and x. < x,
. ,

and so x, < min [x,
. , y (x, ) 1

.

It — v lx' lx — It’ lx — L It’ v
1 t'

j

Hence

,

t-1

min [x,
. ,

y(x, )] + x9 .
+ 7 M. > x, +x 0 >D

L It v
1 t^ j 2t i — lx 2x — x-1’

3
= t

so

T-1

x
2t i

,

(D
t-1

- l M
j

" min txlt>
wCxlPr-

t<x<T+l j=t J

. t-1 ^ t-1

For 1 < x < t, x
]t £ y(x

i T
) and x

1t
= x^ + l d-j. 1 x

lt
+ l N.

j=T J j=T -

~ ^ "A"
Thus x, <_ min[y (x^

(

) ,
x^ + £ N ]

= x*^. [The notation = means
j=x j

T

"defined as."] Essentially x*^^ is the largest value of x-^ such

that x^
t
can be "reached" from it by feasible decisions.

A-

9
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Now, for x £ a <_ t

o-l

la
+ x

2t
+

l M
i ilo + X

2a — D
a-1.

j
= T

a-1

Hence x
2t

> - x*
a - j M.. For 1 < a < t

,

X
la

+ X
2 t — X

la
+ X

2o — D
a-1’

implying x
2t 1 D

(J
_ 1

- x*
a

- Again, using our convention regard-

sums
,
we have

a-1

x
2

> max [D
x

- x*
o - J M.] - x*

x
(VT<t) ,

l<a<t J=t J

(A- 20)

and in particular

t-1

x0 .
> max [D , - x?

2t - l«<t
0_1 10

l<T<t

]- max {D
t _2

' m^Wx^) , ^ (A- ')

Let
t-1

1=T

t-1

X(x
2t ;

xu ) = ^max
^ ^

{D
t _ 1

- M
j

- min[u(x
lT ) ,

x
lt +J

N^}.
1 < x < T+l l=t

(A- 22)

For l<r<t (A-22) reduces to (A-21)
,
and for t<x<T+l (A-22) reduces to

(A-19)
,
so that X(x

2t ;
x^^_) is a lower bound on x^, given x-

t
- We show

that X(x
2t

; x^ ) is the GLB of x^, given x^
t ,

by first showing the

existence of a feasible stream t£ \(x
2t ;

x
] t ) and then showing

that this state can be completed into the future with a stream

feasible in years t for t<T<_T+l„ It is easily shown that the

feasibility condition X(x
2 ^.; A(x-^)) <_ aCx^) follows from

the feasibility condition A(x^
t

) <_y(x^
t
).

A- 10



First, note that (x*
t ,

x 7p = (x^, A (x
^ t

; x^ )). We show

that the sequence {(x*^, X
2 T
^ ( T

= is the desired stream.

That x* < y(x, 1 follows from the definition of x* . Since
It — It It

y (x, ) > A (Xt ) and
It — It

X - j N > A(x ) + l [X(x J
- x(x )] = A(x ),

J ~T
J J=T J

we have x*^ _> A(x^ ). (The inequality in the above expression

follows from x-^ _> A(x-^) Proposition 1.) Therefore,

X (XlP £X*
t

< u(x
lT

).

Next we observe that 0 <_ y(x
lT )

- y(x^
t+ ^)

by Proposition 2

t-1 . t-1
and that x-j. + l N. - (x, + £ N.) = N . It

j=T J j=x+l -1
T

follows for all combinations of cases for x* and x* , , ,
that

It 1,t+1

0 < x* - x* , < N . We have already seen that x* > D , - x* ,— It 1,t+1 — t ' 2t — t-1 It

so that x*^ + x*^ _> D
t y Thus far we have shown that the sequence

{x*^} (T=l,...,t) is feasible. To complete the proof for

x? ,
it remains to show that 0 < x* , , - x* < M . This result

2t — 2,t+1 2t — t

a-1

follows from Lemma 1 with a =D , - x* - j M.

,

o a-1 la .
L

1_, ]]=t+1 j

a-1

b = D , - x* - y M., since a - b = M for T+l<a<t and
a a-1 la .

L
] a a t

J=T J

a - b =0 for 1< o<t.oo — —

A-ll



To show that (x,., A(x-*; x-,.)) can be completed into the
-L L Z l X L

future to a stream feasible in years t < x <_T+1, we choose

d 0 = M and choose d, so that x, = min[x-,., y(x., )]. Note that

the sequence {x^ } (x = t+l,...,T+l) is non- increasing. That

the condition x^ + x
? ^ £ D holds is a direct consequence of

the way Afx • x n ^) was derived. Next, x, < yfx, ) < m-n
,
so

} 2t It lx — lx — x

that the required number of retirements is met. We need

only show that 0 £ x^ - x^ £ N^ (t<x£T) to complete

the proof. The left-hand inequality is clear from Proposition 2.

For the right-hand inequality, if x^= y(x-^), then

UCX1,T*P i X
lt’

S° ^ X
lT

• X
1,T + 1 i', fXlT ) ' ^l.T+P

by Proposition 2. If x^ = x^ = x-^, then the result is clear.

If X
lT

= X
lt
^ X

1,T + 1
= P(X

1,T+P> tten X
lT

- Xl,m = X
lt

‘ t‘fXl,T +l ) i

y(x-^) - y (x^ £ Nj., again by Proposition 2.

We now assume given a state x^, A(x^
t ) £ x^ <_ y(x^

t
), and a state

x
2t’

^^x
2t’

X
lt^ — x

2t — y ^x2t^’
we derive bounds on

x^
t

(2£t<T)
.

[Recall that = 0 by definition.] For the given

states x
lt ,

x
2t

these bounds ACx^; x^
t , x

2t ) and y (x^ ;
x^

t , x
2t )

correspond to a "purchase late" scenario and a "purchase early"

scenario, respectively, i.e. the smallest value of x^ is realized

when the x
2t

engines are purchased as close to t as possible,

A-12



while the largest value of x^ is realized when the x
2

engines

are purchased as distant from t as possible. These intuitive

concepts are formulated mathematically in the following

paragraphs

.

For the "purchase late" scenario, we observe that

t-1
x0i.

- y M. is the smallest value of x 0 which can "reach"
2t .

L
i 2x

J=t J

t-1

x
?t .

Hence x 9 ^_ >_ x,^ - [ M.. We also have x
? ^ L X*

T
’ as

T ei.
j =T 1

derived above. Combining these we have

t-1
x
2t

>_max[x*
T

,
x
1 - l M.] = x

2t
(2<r£t)

.

j=x J

To show that the x^ correspond to the GLB of x^, given x^
t

and

x
/t ,

it suffices to show that the sequence { (x*
t

,
x^) } (x=l,...,t)

is feasible. We have already shown that x*^ is in the appropriate

range and that 0 <_ x*
t

- x* ^ . That demand is met follows

from x* + x0 > x* + x* > D ... Finally, 0 < x 0 - x0 < M

t-1 . t-1

follows from 0 <_ x*
t+1

- x*
T <_ and x

2t - l M. - (x
2t

~ I )
= M

T
»

for all combinations of cases for x 0 and x0 ,
, . The number of

2t 2,t+1

purchases made in year t in the "purchase late" scenario is

x0 , - x~ ,
so that

2,t+1 2t
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f:\-2 3)^ '7-4- ?
X 1 +- »

X '

t-1

"3t
’
A
lt’

A
2lP

=

^ Vt ^X
2 ,t+1

t=1

- x
2t ) (t-2 , . .

.
,T)

.

The "purchase early" scenario is somewhat simpler. We have

t-1

x
2t 1 I M., so there exits a largest x(2<r<t), say i=

j=l 3

a-1 T-1

for which xn . > j M.. Let x 0 = T M. for 1<t<o and x n =
2t — J 2 t i

— 2 t

j
= l j=l 1

L

2t

for o <r <t . The sequence {x^} (t=1 , . .
.

, t-1) is clearly feasible

Hence

t-1

y(x3t ; Xi t , x
2t ) = I Vt (*2,t+ 1

’
*2t } Ct=2 ,x). (A- 24)

Note that x-^
r

does not appear explicitly in this derivation.

It was stated in Section 3 that the linear form of the maintenance

cost function yields a desirable property of the range of x^ ,
viz.,

II

that its values are precisely multiples of the slope of the linear

function. With u^ = Uq + U-^a,
y^

= x
? t+^

- x^^ is the number of purchases

in year x corresponding to the "purchase late" scenario.

Let be any feasible number of purchases in year x, given x^

and x
2

.
Then

. . t-1 t-1
x
3t

- *(x^.; xu> =
I ui-. z

T - l u+.,y3t ’ It’ 2t' L
, “t-x“x L

-, “t-x 7
x

X=1 X=1
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t-1 t-1

= l [un + u
i O t )] ( Z

T
- y

T
)

= u l l t (z t - yT )]>o 1 , ,
T=1 1 T=1

where the last equality follows from the fact that

t-1 t-1

l r = l z =
T “ T 2t

T=1 T-1
t-1

Note that the number of values for x
x

is £ t (z -y)+l,
C -i T T

T = 1

We turn now to establishing bounds on the decision variables.

Assume fixed values of x and x^ in their appropriate ranges, say

A A A

A(x
lt ) £ x^

t £ y(x^
t
) and A(x

2t
;x^

t ) — x
?t — y ^x

2t'*’
t*ie state variable

x does not play a role. We know that d^
t £ 0 from (A-3), and that

x
it

'

At - u(xi,t+£ 1,1115

A(d
it

;
x
i t )

= max [°» x
lt

a(^
x
i

5
t+i^

(t=i , . .
.
,t) .

(Note that A.(d^ ;x^ ) is not a function of x
2 .)

Relations (A-3) also state that d^ £ N and we have

x-« ,
— d*. . > A (X-, , -* ) . In addition to these constraints, d,. must be

It It — l,t+l It

chosen so that the resulting x^
t+2

yields- a lower hound on oc
?

that

can be "reached" from x
2t ,

i.e. x
2t

+ M
t £ A(x

2 t+1 »
x
lt

” •

U ,ng tne definition of A(x
2 (:+2

’x
it

"
’
we ^ave

(A- 25)
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T-l * t

x
?

+ M > max {D - M - min [y(x ), x - d + l N.]}
2t 1

l<x<t+l j=t+l J lT Lt lt:
j=x •

-1

= max { max tD
T -i "I M. -

1<t<T+1 j-t+1

T-l

max
,

[D
t- 1 '.J ,

M
i

x
lt

+ d
lt 'l

N
j
]>

1<t<T+1 j=t+l

The part of (.A- 2 6) involving becomes

^ t-l t

d
1

< x. + x + M - max [D - l M . - l N.]
It It tx t

1<t<T+1 j=t+l J j=x J

Therefore, we take

u(d
it

;x
it>

x
2t )

= min {N
t’

x
it

‘ X (xi,t+d’

T-l ^

rn V m - J N-] }
+ x 0j_

+ XL - max [D i 1
j 31 1 -=t+llt 2t t

1<t<T+1 3

3='

(A-26)

(A-27)

That A(d^ ;x^
t ,

X
2 t ) £ y(d

lt
;x
lt ,

X
2t ) holds may be shown straightforwardly

by taking x
?t

= \(x
?t

;x^
t

) in the y term and applying the definitions

in (A- 2 5 ) and (A- 2 7 )

.

Since we already have y(d9 )
= M from (A-4), it remains only to find

X(d
?t

;x^
t ,

X
2 t

,
d^)

,
where the three given variables fall in their

respective ranges. Relations (A- 4) state that d
?t £ 0. In addition,

we require X
2 t

+ d
?t £ X(x-, x^ - d^)

,
so that

Ud
2t

;x
lt

,x
2t

,d
lt)

= max [0, X (x2jt+ i’
x
lt

“ ^
lt )

" x
2t J (t=l,...T). (A-28)
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That A
(^2t’

X
lt’

X
2t

,c
^lt^ — y ^2t^

= ^olds a^ s0 ^s straightforward to

verify.

Observe that the ranges of d ,
f
and developed above, do not

depend on x^. In fact, xve show below that the optimal decisions at any stage

are independent of x^, because given x^ and
,
the value of the objective

f
t
(x ) at each stage is a linear function of x

3t ,
with the specific form

T-t -W = g
t
(x
lt>

X
2t 5

+

1= o

where 6 = l/(l+r). For t=T, equations (3.3) and (3.4) imply

f
T
(x
T )

= min Lj,(Xp, cfp)

A

grp (X^rji ,
X^rp) *" X^rp,

with gy taken as that part of (3.3) not involving x^. Now assuming

T-t .

that £
t^
X
t^

= h
t
(x
lt ,

x
2t )

+
( I $ J ) x

5t ,
we show that

j=0

f
t-l

('
x
t-l'

) h t-l^
X
l,t-l’

x
2

induction" on t) . We have

t-1

T-t+1 .

) + ( l 6
J

) x
j=0 t-1’

(i.e., "backwards

f
t-i

Cxt-f
=

yn [I
t-i

fx
t-i*

dt-P
+ {f

t
(x

t
)]

h-i

T-t .

min [ip-i + 6ht
+ 6 ( I

6J
) Cx3 >t _i

+ u
i
d
2,t-l

+ U
l
x
2,t-1^

d
t-l

J
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T-t+1A .
T-t+1.

- nun Ig,.
+ <$h +( l &h (u

1
tl

2 t-1
+ U

l

X
2,t-l

)
+

^ x
3 ,

t
- 1

+ X
3»t-

d ,
j=l ’ 3-‘

t-1

where g , is that part of I. , not involving x, .
(cf. equation C ))

t - 1 t J- O
5
L j-3, t-1

T-t+1

f
t-l

(x
t-l }

=

d
min Ih

i-1

(X
l.t-l>

x
2,t-l

)+ ( i
Q

4 5 X
3,t-1

t-1

h
t-l

(x
l,t-l’

X
2,t-1 }

+
(J

Q
^ x

3 , t-1

T-t+1-

where hf , = g t _
]

+ +
C 1 (

ll
i
d
2,t-l

+ U
l
X
2,t-l

L i L
1
- 1

).

The fact just proven makes it unnecessary to cycle through all of the values of

d
j

and d 0 for each x,^. We need only determine the optimal decisions

for one value of x~ , say A(x~ ; x,
, x ? )

;

these decisions are optimal
Ol J)L JL L ZL

for other values of x,^
,
given x^

t
and x^, and the corresponding values

of i'

t
(x ) may be calculated simply by adding the appropriate multiple of

T-t

( l 5-1 to the optimal value of the objective function for A(Xj
;
x-^; x

7 t
)

i=0

Table A-l gives a summary of all formulas needed to calculate the

ranges of the variables used in the dynamic programming model.
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Table A-l - FORMULAS FOR RANGES OF THE DYNAMIC PROGRAMMING MODEL VARIABLES

x-1 t-1

A(x, )
= max (0, max [D - l M. - l N

. ]

}

lz
1 <j<J+1

T_1
j=l > j=r J

T-1

y(x
lt )

= m - max [n - l N.]

t<r<T+l j=t J

A(x
? ;

x, )
= max ID ,

1Z
1<t<T+1

T-1

l M.

l=t

t-1
- min [y(x

lT ),
*
lt

+
l Nj]>

t-1
y(x

2 )
= l M
j=l J

t-1

x(x
3t

;
x
lt ,

x
2t ) = I u

t _ T
(x

2 +1 - x
2t )

T= 1

7t

r* =
C

2t

t-1

max [x*
x

,
x
lt

- J Mj ]

J =T

a-l

max [D - x? - j M.]
, .

L a-l la .
L

l<a<t j
= t J

t-1

x
l0

= 11111 t*1 ^IcL x
lt

+ 1 N
j

]

- - t_ -* ^ ^
y(x

3t ; x
lt ,

x
2 )

= l u
t _ T

(x
2 T+i

' x
2t^

T=1

%
T-1

x0 = V M. for l<T<a
2t i

—
J=1

J

x? t
= x

2t
^°r a—T—t *

k-1

a is the largest value of k such that x
2t

> l M^

A-19



Table A-l continued

*(d
lt

; xid
= max [0, x

it
'

p(dlt
;
x
lt ,

x
2t )

= min {N
t

,
x
lt

-• *(x
1;t+1 )>

T-l T

rn - 7 M. - I N. ]

>

max [D
x-l - 3 3 -t 3

1<t<T+1 3"

-

+1 3
T

A (d2t’
x
lt-

x
2t ’

dld
= max [0 ' A(x

2,t+ l
; x

lt



APPENDIX B

LISTING OF THE COMPUTER CODE FOR THE DYNAMIC

PROGRAMMING MODEL
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APPENDIX C

AN INTEGER PROGRAMMING MODEL





The model described in this Appendix is a somewhat simplified

integer programming (IP) analog to the DP model presented in Section

3. Since the IP version is subsumed under the DP version, the former

is documented here for its own sake, as an application of integer

programming, and is not necessarily intended to serve as an

"alternative" model.

As in the DP model
,
the IP model prescribes actions to be

taken each year for a T-year period to minimize the total cost over

those T years. From a given initial fleet, the decisions specify the

number of purchases each year and the number of retirements
,
from

the initial fleet, of engines of each age a. (Note that T may

not be taken so large as to make liable to retirement engines which

were purchased during the T-year period.) These decisions are to

be made so as to minimize the total cost for the T years, subject

to the constraint that a specified minimum fleet size be met each

year.
• -/.•Vs*- - T >

- " ‘
'

•

The variables are:

x = the number of engines, initially of age a, retired in
cl

L

year t,

y = the number of new engines purchased in year t.

The conventions regarding age definition and decision times are the

same as for the DP model (cf . ,
footnote 6)

.

Ol



The data required by the model include:

= the minimum number of engines required during year t

(checked against the fleet size after year t's decisions

have been made)

,

M = the maximum number of engines which may be purchased in

year t,

P
t

= the purchase price of an engine in year t,

Q = the number of a - year - old engines in the initial fleet

,

u^ = the maintenance cost of an engine during its a^1
year of

service

,

v = the resale value in year t of an engine which was initially
cl U

of age a.

Note that this model does not have a ceiling on the number of engines

that may be retired, nor does it have a mandatory retirement age, as

does the DP model. If a set A of ages of engines in the initial fleet

is given, then the model requires data for u and v for a as large as

a + T, where u is the maximum age in A.

Using the above definitions
,
the IP is formulated as

:

minimize

T

l
t=i

f p
t

+ uPyt
+

l [u

14

aeA
a+t ^a ^ X

at^
V
at

x
at^

T < t T <t
Vt+1 >\ (C-l)

14 T
The term l l u Q in the objective function (C-l) does not

t=l aeA
a 1 a

affect the minimising values of x and y ,
but it must be included

3.L L

to calculate the minimum value of (C-l). Also, discounting has
been omitted for simplicity and could clearly be implemented in the model.

C-2



subject to

T

l x < Q (aeA)

,

t=l
at a (C-2)

:

.. . yt S;Mt (t=l,. . . ,T)

,

(C-3)

l Qa
+

l (yT - l x ) > d
acA

a
x<t

T
aeA

ax '

(C-4)

yt
nonnegative integers (aeA, t= l , . .

. ,1

)

(C-5)

The expressions { } summed in (C-l) are the costs for the individual

years t. Each of these is calculated from the following components:

(pt
+ up) = the cost of purchasing an engine and

maintaining it during its first year

of service,

„ rn ~ I x .
= the maintenance cost in year t of engines,

a+t^a x<t
o: . ’initially of age a, which remain in the fleet,

* v
at
x
at

= the revenue from retiring x engines, initially

of age a, in year t,

l u
t ^ T+p7T

= the maintenance cost in
;
year t of engines

T < t

purchased during years t = 1, . t-1.

Constraint (C^2j specifies that the total number of engines

retired, initially of age a, not exceed the initial number of age

a engines, and constraint (C-3) restricts to at most the number

of engines purchased in year t. Constraint (C-4) requires that the

number of engines in the fleet in year t (after purchases and retirements

C-3



in year t) to be at least D^. If d is the number of distinct ages in

the set A of ages, then the IP in (C-l) through (C-5) has d + 2T

constraints and (d + 1)T variables.

The reader may have observed that the IP described above does not

specify any retirement order. The condition that engines be retired

in order of decreasing age may be imposed by the following suggestion

of A. J. Goldman. This uses (d - 1)T additional variables and

2(d - 1) T additional constraints :

l
a<a

x
at

<
(I Q ) 6L a
a<a

at 5 (06)

Q, - l
T <t

x < Qax — xa
(1 6

at>’ (07 )

with aeA, a f min {a|aeA} and t = 1,...,T. The 0-1 variable 6
3. l

acts as a "switch": if 5 = 0, then the retiring of engines of

l

initial age less than a in year t is prohibited by (C-6), and (C-7)

is non- constraining
,
whereas if 6 = 1 such engines may be retired

since (C-7) together with (C-2) would imply that all Q engines,

initially of age a, have been retired, and the right side of (C-6)

is non-cons training in view of (C-2). Of course, the constraints

(C-6) and (C-7) may be introduced only as they are needed. Thus if

the IP (C-l) - (C-5) yields a solution in which retirements are

partially "out of order," (C-6) and (C-7) would be imposed only for

the exceptional pairs (a, t). The nature the solution will depend

on the data, and if these are "reasonable" one might expect the "order"
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