NATIONAL BUREAU OF STANDARDS REPORT

10498

SEquENCING THE PURCHASE AND RETIREMENT OF FIRE ENGINES

Prepared for

The Fire Research Program
National Bureau of Standards

NATIONAL BUREAU OF STANDARDS

The National Bureau of Standards ' was established by an act of Congress March 3, 1901. Today, in addition to serving as the Nation's central measurement laboratory, the Bureau is a principal focal point in the Federal Government for assuring maximum application of the physical and engineering sciences to the advancement of technology in industry and commerce. To this end the Bureau conducts research and provides central national services in four broad program areas. These are: (1) basic measurements and standards, (2) materials measurements and standards, (3) technological measurements and standards, and (4) transfer of technology.
The Bureau comprises the Institute for Basic Standards, the Institute for Materials Research, the Institute for Applied Technology, the Center for Radiation Research, the Center for Computer Sciences and Technology, and the Office for Information Programs.
THE INSTITUTE FOR BASIC STANDARDS provides the central basis within the United States of a complete and consistent system of physical measurement; coordinates that system with measurement systems of other nations; and furnishes essential services leading to accurate and uniform physical measurements throughout the Nation's scientific community, industry, and commerce. The Institute consists of an Office of Measurement Services and the following technical divisions:

Applied Mathematics-Electricity-Metrology-Mechanics-Heat—Atomic and Molecular Physics—Radio Physics "-Radio Engineering ${ }^{2}$-Time and Frequency "-Astrophysics "-Cryogenics."
THE INSTITUTE FOR MATERIALS RESEARCH conducts materials research leading to improved methods of measurement standards, and data on the properties of well-characterized materials needed by industry, commerce, educational institutions, and Government; develops, produces, and distributes standard reference materials; relates the physical and chemical properties of materials to their behavior and their interaction with their environments; and provides advisory and research services to other Government agencies. The Institute consists of an Office of Standard Reference Materials and the following divisions:

Analytical Chemistry-Polymers-Metallurgy—Inorganic Materials—Physical Chemistry.
THE INSTITUTE FOR APPLIED TECHNOLOGY provides technical services to promote the use of available technology and to facilitate technological innovation in industry and Government; cooperates with public and private organizations in the development of technological standards, and test methodologies; and provides advisory and research services for Federal, state, and local government agencies. The Institute consists of the following technical divisions and offices:

Engineering Standards-Weights and Measures - Invention and Innovation - Vehicle Systems Research—Product Evaluation-Building Research—Instrument Shops—Measurement Engineering-Electronic Technology-Technical Analysis.
THE CENTER FOR RADIATION RESEARCH engages in research, measurement, and application of radiation to the solution of Bureau mission problems and the problems of other agencies and institutions. The Center consists of the following divisions:

Reactor Radiation-Linac Radiation-Nuclear Radiation-Applied Radiation.
THE CENTER FOR COMPUTER SCIENCES AND TECHNOLOGY conducts research and provides technical services designed to aid Government agencies in the selection, acquisition, and effective use of automatic data processing equipment; and serves as the principal focus for the development of Federal standards for automatic data processing equipment, techniques, and computer languages. The Center consists of the following offices and divisions:

Information Processing Standards-Computer Information - Computer Services - Systems Development-Information Processing Technology.
THE OFFICE FOR INFORMATION PROGRAMS promotes optimum dissemination and accessibility of scientific information generated within NBS and other agencies of the Federal government; promotes the development of the National Standard Reference Data System and a system of information analysis centers dealing with the broader aspects of the National Measurement System, and provides appropriate services to ensure that the NBS staff has optimum accessibility to the scientific information of the world. The Office consists of the following organizational units:

Office of Standard Reference Data-Clearinghouse for Federal Scientific and Technical Information "—Office of Technical Information and Publications-Library-Office of Public Information-Office of International Relations.

[^0]
NATIONAL BUREAU OF STANDARDS REPORT
 NBS PROJECT
 NBS REPORT
 10498

4314162
2050153

SEQUENCING THE PURCHASE AND RETIREMENT OF FIRE ENGINES

Richard Mu
Technical Analysis Division
Patsy B. Saunders
Applied Mathematics Division

Approved:
$\frac{(2 C \text { ain }}{\text { Technical Analysis Division }}$

Approved:

Applied mathematics Division

IMPORTANT NOTICE

NATIONAL BUREAU OF ST for use within the Government. and review. For this reason, th whole or in part, is not autho Bureau of Standards, Washing: the Report has been specifically

Approved for public release by the Director of the National Institute of Standards and Technology (NIST) on October 9, 2015.
ss accounting documents intended subjected to additional evaluation listing of this Report, either in e Office of the Director, National by the Government agency for which copies for its own use.

U.S. DEPARTMENT OF COMMERCE

TABLE OF CONTENTS

Page

1. Introduction 1
2. Initial Considerations 5
3. A Dynamic Programming Mode1 10
4. Concluding Comments 22
5. References 24
Appendix A: Details of the Dynamic Progranming Model A-1
Appendix B: Listing of the Computer Code for the
Dynamic Programming Mode1 B-1
Appendix C: An Integer Programming Mode1 C-1

TABLES AND FIGURES

Page

Figure 2.1: Contours of Optimum Engine Life 8
Table 3.1: Data for the Dynamic Programming Mode1 17
Table 3.2: Results of Finer Variation in r for Certain
Values of U_{1} 20
Table A-1: Formulas for the Ranges of the Variables in
the Dynamic Programming Mode1 A-19

ACKNOWLEDGEMENTS

The cooperation of the Washington, D. C. Fire Department is greatly appreciated. We would like to thank A. J. Goldman of the Applied Mathematics Division for his assistance, especially in the preparation of Appendix A, and D. Colner and W. Steele of the Technical Analysis Division for their helpful comments and suggestions.

SEQUENCING THE PURCHASE AND RETIREMENT OF FIRE ENGINES

1. INTRODUCTION

This report describes a method to determine an "optimu" manner of sequencing the purchase and retirement of fire engines (hereafter simply called "engines"), with specific application to the Washington, D. C. Fire Department. The mode1 developed, however, has more general applicability as regards both the equipment type and the fire department. Because of the apparent similarity of the present problem to conventional equipment replacement problems, we first review in brief some of the ideas in the equipment replacement literature.

Equipment replacement problems have a long history in industrial engineering and operations research. The reader is referred to [8] for a comprehensive bibliography on this subject. One class of equipment replacement problems balances the cost of failures against the cost of planned replacements (see [3]). If units are to operate continuously over some time period $[0, t]$ and are replaced upon failure, then typically the expected cost $C(t)$ during $[0, t]$ may be given by

$$
\begin{equation*}
C(t)=c_{1} E\left[N_{1}(t)\right]+c_{2} E\left[N_{2}(t)\right], \tag{1.1}
\end{equation*}
$$

where
$c_{1}=$ per unit total cost resulting from a failure and its replacement,
$c_{2}=$ per unit total cost of replacing a non-failed item $\left(c_{2}<c_{1}\right)$,
$N_{1}(t)=$ the number of failures in $[0, t]$, a random variable,
$N_{2}(t)=$ the number of replacements of non-failed units, a random variable,
and E denotes expected value. The problem is to minimize (1.1) over the possible replacement procedures available within a given policy of replacement. Examples of replacement policies are: btrictly periodic replacement, random periodic replacement and sequentially determined replacement. Electronic components typify the equipment to which this well developed mathematical theory applies.

A second class of equipment replacement problems, called "preparedness" problems, assumes that a piece of equipment is kept in a readiness state for use in case of emergency. The objective is to maintain the equipment in a state of operational readiness at minimal cost. Thus a sequence of inspection and replacement actions that minimizes the ratio of expected cost per unit time to proportion of good time, would constitute an "optimal" decision stream (see [8], [10]). Large military hardware provides examples of the type of equipment to which this class of models may be applied.

One of the basic underlying concepts of the two classes of equipment replacement models discussed so far is that of a reliability
function ${ }^{1}$. This is the probability $R(t)$ that the equipment is "good" ${ }^{2}$ at time t (measured from a time at which the equipment is considered to be "new') and is exemplified by the negative exponential form

$$
\begin{equation*}
R(t)=\exp (-\lambda t) . \tag{1.2}
\end{equation*}
$$

A closely related concept is the failure rate, defined for any reliability function $R(t)$ as $\rho(t)=-R^{-}(t) / R(t)$, where the prime denotes the derivative. For the negative exponential, the failure rate is the constant λ.

A third class of equipment replacement problems deals with the replacement of items that deteriorate. Mathematical models to solve this class of problems typically trade off the increasing operational and maintenance costs (and decreasing resale value) of an aging item against the cost of a new purchase, i.e., the "optimal" replacement time is that time at which these opposing forces are equalized. Dreyfus [6] used a dynamic progranming approach to solve this problem under the additional complication of technological change.

The main concern of this report is the development of a model to determine purchase and retirement decisions over a planning period, subject to certain constraints, which would minimize the cost of
$\overline{1_{\text {See }} \text { [11] for a discussion of the statistical theory of reliability. }}$
${ }^{2}$ It is implicitly assumed that the equipment is either in a "good" or a "failed" state.
operation of a fleet of engines during that period. The concern of the Washington, D. C. Fire Department was not with the cost of failune or the distribution of failures of fire engines per se, primarily because of the negligible number of engine failures and the inability to measure the "cost" of a single engine failure. The model developed may be regarded as an extension of the ideas represented by the third class of equipment replacement problems discussed above.

Section 2 describes a simple calculation, which serves to introduce the data at hand and compares the results of this calculation (as applied to Washington, D. C.) to those of a study [2] from which the data were obtained. A dynamic programming (DP) model is formulated and given illustrative application in Section 3, and directions for further investigation are suggested in Section 4. Appendix A develops certain details of the DP model and a listing of the DP computer code appears in Appendix B. Finally, an integer programming (IP) analog to the DP model is given in Appendix C.

2. INITIAL CONSIDERATIONS

Aside from personal conmunications with members of the staff of the Washington, D. C. Fire Department, the main source of data was a report by Balcolm [2]. This report also proposes a model, for determining the life-span of an engine, which will be described later.

A linear relationship between engine age and maintenance cost was used in [2], and least-squares regressions yielded three sets of coefficients, corresponding to "high usage," "medium usage," and "low usage" engines. Balcolm then obtained a "composite" equation-a weighted average (by the number of engines in the three categories)-which this report also uses. This equation is of the form:

$$
\begin{equation*}
u_{a}=U_{0}+U_{1} a \tag{2.1}
\end{equation*}
$$

where

$$
\begin{aligned}
\mathrm{a}= & \text { engine age, } \\
\mathrm{u}_{\mathrm{a}}= & \text { the maintenance cost of an engine entering its } \underline{a}^{\text {th }} \text { year of } \\
& \text { service, } \\
\mathrm{U}_{0}= & 24.17, \\
\mathrm{U}_{1}= & 122.46 / \text { year. }^{3}
\end{aligned}
$$

Values of u_{a} are listed in Table 3.1. This relationship was adopted as the basis of the data for maintenance cost since it was felt that a more complex function could not be supported by the observed cost figures.
${ }^{3}$ All monetary quantities are expressed in dollars.

A linear relationship was also used in [2] for the purchase price of a new engine, given by

$$
\begin{equation*}
P_{t}=P_{0}+P_{1}(t-1900), \tag{2.2}
\end{equation*}
$$

where

$$
\begin{aligned}
& P_{0}=-16258.18, \\
& P_{1}=576.87 .
\end{aligned}
$$

Values of P_{t} are given in Table 3.1. The choice of the 'base" year 1900 is not explained, but it accounts for the surprising (negative) value of P_{0}. The index t refers to the year for which a value of the purchase price is desired.

Using these data, a simple calculation can be made to determine an "optimum" life-span for a single engine. Assuming a zero salvage value (for simplicity) ${ }^{4}$ and a constant purchase price, the accumulated total cost of keeping an engine for n years is

$$
\begin{align*}
T C(n) & =\sum_{a=1}^{n}\left(U_{0}+U_{1} a\right)+p \\
& =n U_{0}+U_{1} \sum_{a=1}^{n} a+p \\
& =n U_{0}+[n(n+1) / 2] U_{1}+P .
\end{align*}
$$

Thus the average annual cost of keeping an engine for n years is

$$
\begin{align*}
\operatorname{AC}(\mathrm{n}) & =T C(n) / n \\
& =U_{0}+[(\mathrm{n}+1) / 2] U_{1}+P / n . \tag{2.4}
\end{align*}
$$

[^1]Clearly, the longer an engine is kept, the longer the time to amortize the price P, so that portion of the cost per year will decrease with n. However, the maintenance costs increase year by year. Thus, with the "optimum" life-span defined as that value of n which minimizes (2.4), the standard calculus technique of setting the derivative of (2.4) to zero and solving for n yields:

$$
\begin{equation*}
(\mathrm{d} / \mathrm{dn})(\mathrm{AC}(\mathrm{n}))=\mathrm{U}_{1} / 2-\mathrm{P} / \mathrm{n}^{2}=0 \tag{2.5}
\end{equation*}
$$

whence

$$
\begin{equation*}
\mathrm{n}=\left(2 \mathrm{P} / \mathrm{U}_{1}\right)^{1 / 2} \tag{2.6}
\end{equation*}
$$

Since $P>0$ and $n>0$, the second derivative $2 P / n^{3}$ is positive so that the value of n given in (2.6) ensures a minimum value of (2.4). Figure 2.1 indicates contours of the optimum value of n in the $\left(U_{1}, P\right)-p l a n e$.

For Washington, D. C., using the 1969 purchase price, (2.6) yields $\mathrm{n}=19.6$, considerably larger than the present life span of 15 years. Balcolm [2] recommends a life span of 10-11 years, depending on the number of years over which an engine is linearly depreciated, using as his criterion the equality of current (resale) value and accumulated repair cost, i.e., n is chosen so that

$$
P-n(P-S) / N=\sum_{a=1}^{n} U_{a},
$$

where N is the number of years over which an engine is depreciated and S is the salvage value of an engine after N years. (Note that Balcolm assumes that the number of years over which an engine is depreciated (N) and the number of years it is kept (n) need not

FIGURE 2.1 CONTOURS OF TIE OPTIMUM ENGINE LIFE

be the same.) No rationale for this criterion is offered in [2], but the large difference between [2]'s "optimun" Iife span and the one derived from the present calculation indicates a significant difference between the two models.

3. A DYNAMIC PROGRAMMING MODEL

The dynamic programming (DP) model described in this section takes a somewhat different approach to the problem of equipment replacement. Instead of determining an "optimum" life-span which would be applied to all engines, the DP model begins with the existing scenario and prescribes purchasing and retiring decisions over a T-year planning horizon. (The index $t=1, \ldots, T$ is used in this model and appropriate notation changes are made in the relevant formulas presented in Section 2.) In this sense, the model may be "tailored" to fit the initial state of affairs of any urban fire department. The reader interested in DP in general, is referred to the text [9]. For other DP formulations of equipment replacement problems, see [1] and [4].

In accordance with the concerns and objectives of the Washington, D. C. Fire Department, the DP model determines the purchases and retirements to be made during the planning horizon such that the total cost incurred during this period is minimized. The model accounts for various constraints within which a fire department must operate, e.g., constraints on the number of purchases and/or retirements which may be made in any year, the total fleet size, and the maximum allowable engine age.

The DP "state variables" (those which describe the system at each stage, or year in this case) are:

$$
\begin{aligned}
x_{1 t}= & \text { the number of engines in the initial fleet which } \\
& \text { remain in year } t-1, \\
x_{2 t}= & \text { the number of new engines purchased in years } 1, \ldots, t-1, \\
x_{3 t}= & \text { the mainterance cost in year } t-1 \text { on engines purchased } \\
& \text { in years } 1, \ldots, t-1 .
\end{aligned}
$$

(Note that $x_{1 t}+x_{2 t}$ is the fleet size in year $\left.t-1.\right)$ The "decision variables" are

$$
\mathrm{d}_{1 t}=\text { the number of engines retired from the initial fleet in }
$$ year t,

$d_{2 t}=$ the number of engines purchased in year t.
It should be emphasized that retirements are made only from engines in the initial fleet, i.e., none of the engines purchased during the planning period are considered for retirement. Since the Washington, D. C. Fire Department indicated interest in a planning horizon of at most five to ten years, restriction to retiring engines from the initial fleet only is not considered a limitation.

The data required by the model are :
$D_{t}=$ the minimum number of engines required during year t (checked against the fleet size after year t's decisions have been made), ${ }^{5}$
$M_{t}=$ the maximum number of engines which may be purchased in year t,

[^2]\[

$$
\begin{aligned}
N_{t}= & \text { the maximum number of engines which may be retired in year } t, \\
R= & \text { the age by which engines must be retired, } \\
P_{t}= & \text { the purchase price of a new engine in year } t, \\
Q_{a}= & \text { the number of } \underline{a} \text {-year old engines in the initial fleet, } \\
m= & \sum_{a} Q_{a}=\text { the initial fleet size, } \\
u_{a}= & \text { the maintenance cost of an engine during its } \underline{a}^{\text {th }} \text { year of } \\
& \text { service, } \\
v_{a t}= & \text { the resale value in year } t \text { of an engine which was initially } \\
& \text { of age } \underline{a}, 6 \\
a_{i}= & \text { the age of the } \underline{i} \text { th youngest engine in the initial fleet } \\
& \text { (e.g., } a_{1} \text { is the youngest). }
\end{aligned}
$$
\]

As in the simple model of section 2 , the maintenance costs are calculated as

$$
u_{a}=U_{0}+U_{1} a
$$

with the values of U_{0} and U_{1}, as indicated earlier. The linear relationship leads to a recursive definition of u_{a},

$$
\begin{align*}
u_{a+1} & =U_{0}+U_{1}(a+1) \\
& =U_{0}+U_{1} a+U_{1} \tag{3.1}\\
& =u_{a}+U_{1}
\end{align*}
$$

Letting $x_{t}=\left(x_{1 t}, x_{2 t}, x_{3 t}\right)$, (3.1) may be used to obtain, as the stage transformation formula,

[^3]\[

$$
\begin{equation*}
x_{t+1}=\left(x_{1 t}-d_{1 t}, x_{2 t}+d_{2 t}, x_{3 t}+u_{1} d_{2 t}+U_{1} x_{2 t}\right) \tag{3.2}
\end{equation*}
$$

\]

The transformation for $x_{1 t}$ and $x_{2 t}$ is clear. The value of $x_{3, t+1}$, the maintenance cost in year t on engines purchased in years $1, \ldots, t$, is obtained by adding to $x_{3 t}$ both the cost of the first year of maintenance for engines purchased in year $t\left(u_{1} d_{2 t}\right)$, and the incremental increase in maintenance cost on engines purchased in the preceding years $\left(U_{1} x_{2 t}\right)$, the latter deriving from (3.1).

The "stage return" is the cost of operation in year t. With the notation $d_{t}=\left(d_{1 t}, d_{2 t}\right)$, the stage return is calculated as:

$$
\begin{align*}
& I_{t}\left(x_{t}, d_{t}\right)=\left(P_{t}+u_{1}\right) d_{2 t}+\sum_{i=1}^{x_{1}} \sum_{1 t}^{-d_{1 t}} U_{a_{i}+t}-\sum_{i=x_{1 t}}^{x_{1 t} t} d_{1 t}+1 \\
& v a_{i} t \tag{3.3}\\
&+x_{3 t}+U_{1} x_{2 t} .7
\end{align*}
$$

The components of (3.3) have the following interpretations:

$$
\begin{aligned}
& \left(P_{t}+u_{1}\right) d_{2 t}=\text { the cost of purchasing } d_{2 t} \text { engines in } \\
& \text { year } t \text { and maintaining them during the } \\
& \mathrm{x}_{1 \mathrm{t}}-\mathrm{d}_{1 t} \quad \text { first year of service, } \\
& \sum_{i=1} \mathrm{U}_{\mathrm{a}_{\mathrm{i}}}+t=\text { the maintenance cost in year } t \text { on engines } \\
& \text { which remain from the initial fleet, } \\
& i=x_{1 t} \cdot{ }^{-d_{1 t} t}+v a_{i}+t \\
& =\text { the revenue from retiring the } d_{1 t} \text { oldest } \\
& \text { engines not previously retired, }{ }^{8}
\end{aligned}
$$

[^4]\[

$$
\begin{aligned}
x_{3 t}+U_{1} x_{2 t}= & \text { the maintenance cost in year } t \text { on engines } \\
& \text { purchased in years } 1, \ldots, t-1 .
\end{aligned}
$$
\]

The linear form of the maintenance cost yields the pleasing result that the values of $x_{3 t}$ are all exact multiples of $U_{1} .{ }^{9}$ This, together with the fact that $x_{1 t}$ and $x_{2 t}$ are integers bounded by the constraints, makes it computationally feasible to consider all of the combinations of values that the state variables may assume in any stage. It follows that the optimal solution is exact, a condition not often found in DP problems. This characteristic is explicitly noted here as a favorable feature of the mode1.

The recursive equations of the DP model are:

$$
\begin{align*}
& f_{t}\left(x_{t}\right)=\min _{d_{t}}\left[I_{t}\left(x_{t}, d_{t}\right)+f_{t+1}\left(x_{t+1}\right) /(1+r)\right], \tag{3.4}\\
& f_{T}\left(x_{T}\right)=\min _{d_{T}} I_{t}\left(x_{T}, d_{T}\right) .
\end{align*}
$$

The quantity r is a discount rate, so that division by ($1+\mathrm{r}$) in the first relation of (3.4) renders $f_{\hat{t}}\left(x_{t}\right)$ as the minimum present value cost of operations from years t through T, given that the state of the system in year t is x_{t}. Since the initial state is known to be $x_{1}=(m, 0,0), f_{1}(m, 0,0)$ is the optimal value of the objective, i.e., the minimum total cost of operations in years $1, \ldots$, T.

The constraints of the DP model are straightforward from the definitions of the variables and parameters:

[^5]\[

$$
\begin{align*}
& 0 \leq d_{1 t} \leq N_{t} \quad(t=1, \ldots, T), \tag{3.5}\\
& 0 \leq d_{2 t} \leq M_{t} \quad(t=1, \ldots, T), \tag{3.6}\\
& x_{1 t}+x_{2 t} \geq D_{t-1}(t=2, \ldots, T+1), \tag{3.7}\\
& t-1 \tag{3.8}\\
& \sum_{j=1}^{t} d_{i j} \geq n_{t} \quad(t=2, \ldots, T+1)
\end{align*}
$$
\]

where $n_{t}=\sum_{a>R-t+1} Q_{a}$ is the number of engines which must be retired prior to year t because of the age limitation R. Note that by definition the initial conditions are: $x_{11}=m, x_{21}=0, x_{31}=0$, and $n_{1}=0$. With the definition $D_{0}=m,(3.7)$ and (3.8) automatically hold for $t=1$.

The constraints (3.5) - (3.8) and the relationships among the state and decision variables lead to interesting and computationally useful results which are detailed in Appendix A. Suffice it to say here that a special computer code, ${ }^{10}$ developed as a part of this effort, takes advantage of these results to make it possible to solve larger problems than could be handled by a general purpose DP code. Furthermore, experience thus far has indicated that computer running times are significantly shorter using the special code. For example, one of the runs to be discussed below took 12 seconds using the special code, while the general purpose code ${ }^{11}$ took 227 seconds.
$\overline{10}$ A listing of this code appears in Appendix B.
${ }^{11}$ This code is an extension of the code documented in [5].
(Both codes are written in FORTRAN V and runs were made on the UNIVAC 1108 at NBS under the EXEC II Operating System.)

In exercising the DP model, the maintenance costs and purchase prices were the same as those discussed previously (cf., Section 2). The purchase price function was modified to

$$
\begin{equation*}
P_{t}=P_{0}+P_{1}(70+t), \tag{3.9}
\end{equation*}
$$

so that $t=1$ would correspond to 1971 . The values of P_{0} and P_{1} are unaffected by the modification and remain as listed under equation (2.2). The resale values $v_{\text {at }}$ were calculated on the basis of (3.9), assuming an annual depreciation rate ρ, as

$$
\begin{equation*}
v_{a t}=(1-\rho)^{a+t-1}\left[P_{0}+P_{1}(70-a+1)\right] \tag{3.10}
\end{equation*}
$$

so that resale values of engines in the initial fleet (purchased prior to $t=1$) could be calculated from the appropriate purchase prices. ${ }^{12}$ Finally, values of Q_{a} were obtained directly from the Washington, D. C. Fire Department's inventory of engines. These data are given in Table 3.1 with $T=5$ (a five-year planning horizon). ${ }^{13}$

For the remaining data specifications, it was suggested by members of the Fire Department staff to take $R=15$ (the present maximum engine age in Washington), $\mathrm{D}_{\mathrm{t}}=64$ for $\mathrm{t}=0, \ldots, 5$ (i.e. constant

[^6]TABLE 3.1 - DATA FOR THE DYNAMIC PROGRAMMING MODEL

[^7]minimum required fleet size equal to the present fleet size), and $M_{t}=N_{t}=6$ for $t=1, \ldots, 5$ (constant and equal purchase and retirement ceilings).

A base run was made with no discounting, i.e., $r=0$, and the resultant "optimal" decisions were to purchase and retire 6 engines in each of the first three years and to purchase and retire 2 engines in year 4, i.e., $d_{1 t}=d_{2 t}=6(t=1,2,3), d_{14}=d_{24}=2, d_{15}=d_{25}=0$. Note from the age distribution Q_{a} in Table 3.1 that 20 engines reach the mandatory retirement age by year 5 (i.e., $n_{6}=20$). Since the maximum number of retirements permissible is 6 in each year, the optimal policy is to retire the 20 engines as soon as possible (ASAP policy), replacing them with new engines to meet the minimum required fleet size.

The above results are not surprising in view of the discount rate $r=0$. Increasing maintenance costs, decreasing salvage values, and increasing purchase prices all indicate early retirement. The same policy is optimal in the extreme case where the purchase price is always zero. It is intuitively obvious that in this situation the ASAP policy is optimal regardless of the value of r, since the newly acquired (free) engines are operated at a lower maintenance cost than are the old ones.

In order to study the effect of the discount rate r on the optimal decisions, a series of runs was made with U_{1} as a parameter, taken from 62.46 to 162.46 in increments of 10.00. [Recall that the "nominal" value of U_{1} is 122.46.] Initially, r was varied from
0.0 to 0.5 in increments of 0.1 (a very rough grid), and based upon these results, smaller ranges with finer increments were studied for certain values of U_{1}. The following observations were made consistently from the outputs of all the runs:
(1) The only engines retired were the 20 which reach their maximum age during the 5 -year planning period.
(2) In every year, the numbers of purchases and retirements were the same. This may be attributable to the constant demand and to the constant and equal values of M_{t} and N_{t} over all t.
(3) For those values of r considered, there was a value r_{E} such that for $r \leq r_{E}$ the ASAP policy was optimal, and a value r_{L} such that for $r \geq r_{L}$ the optimal policy was to retire as late as possible (ALAP policy) [The ALAP policy has $\mathrm{d}_{11}=\mathrm{d}_{12}=5, \mathrm{~d}_{1 t}=\mathrm{d}_{2 \mathrm{t}}=4$ $(\mathrm{t}=2,3,4), \mathrm{d}_{15}=\mathrm{d}_{25}=3$ for this particular problem.]
(4) The values of r_{E}, r_{L} and $r_{L}-r_{E}$ are monotonically increasing functions of U_{1}.

The values of U_{1} for which the behavior of the optimal policy, as a function of r, was studied in greater detail are listed in Table 3.2 together with the relevant results. All other values of U_{1} considered gave rise to values of $r_{E}=0.0$ and $r_{L}=0.1$ in the initial runs. It can be seen from Table 3.2 that the finest

TABLE 3.2 - RESULTS OF FINER VARIATION OF r FOR CERTAIN VALUES OF THF PARAMETER U_{1}

U_{1}	Range of r	Increment	r_{E}	r_{L}
62.46	$.01-.10$.01	.05	.06
122.46	$.08-.09$.001	.080	.089
152.46	$.01-.20$.01	.09	.11
162.46	$.01-.20$.01	.10	.1

analysis with the smallest increments for r was made for the "nominal" value of $U_{1}=122.46$. For $.080<r<.089$ the optimal decisions were "'mixed", i.e., neither an ASAP nor an ALAP policy. For example with $r=.085$, the optimal decisions were

$$
\begin{array}{ll}
d_{11}=d_{12}=5, & d_{12}=d_{22}=6 \\
d_{13}=d_{23}=6, & d_{14}=d_{24}=3 \\
d_{15}=d_{25}=0 &
\end{array}
$$

The "critical" range of $\mathrm{r}(.080, .089)$ is quite small, but it should be noted that the values $M_{t}=N_{t}=6$ do not permit a drastic difference between the ASAP policy and the ALAP policy.

It is clear that if a value of r is specified, then the $D P$ model may be run to determine the optimal policy. If r cannot be specified, then the values of r_{E} and r_{L} may be determined for a given value of U_{1}. Then one need only specify whether $r \leq r_{E}$ or $r \geq r_{L}$ to conclude that the ASAP policy or ALAP policy, respectively, is optimal.

One run was made with $M_{t}=N_{t}=10$ for all t and the other data remaining the same. With $\mathrm{r}=0$, the ASAP policy resulted; in this case $d_{11}=d_{12}=d_{21}=d_{22}=10, d_{1 t}=d_{2 t}=0(t=3,4,5)$.

Unfortunately, lack of time prevented further study of this case. Intuitively, one might expect a greater "critical" range of r since the larger values of M_{t} and N_{t} given rise to a greater difference tetween the ASAP and ALAP policies.

It should be emphasized that the DP mode1 has considerably greater generality than was indicated in the limited application to Washington, D. C. The only model constraint on the data is that they be self-consistent (e.g., M_{t} and N_{t} must be consistent with D_{t}). If, for example, an urban fire department sees fit to reduce its fleet size because of overki11 capacity or perhaps because of de $=$ lining demand, and the values of M_{t} and N_{t} fluctuate because of a fluctuating budget, then a greater portion of the model's generality could be exploited. The interactions among the variables and parameters of the model which are evident in Appendix A should support this contention.

On the other hand, time limitations prevented any attempts to examine the model with particular relationships among the parameters. It seems reasonable that certain conditions, e.g., $M_{t}=N_{t}=$ constant, or $D_{t}=a$ constant for all t, could lead perhaps to closed-form optimal solutions, or at least might simplify the necessary DP calculations. Further research along these lines is recommended. In addition to these basic issues, there is a need for further sensitivity tests, with respect to the discount rate and the value of U_{1}, for other values of the parameters M_{t}, N_{t}, D_{t}, and R. For instance, the optimal values of the objective $f_{1}(m, 0,0)$ could be compared for different values of R (in some reasonable range of maximum ages), leading to an "optimal"
value of R (i.e. one which minimizes $f_{1}(m, 0,0)$). Finally, runs with depreciation rate ρ varying, or using a different (perhaps linear) depreciation policy, would be desirable.

REFERENCES

1. Ackoff, R. L., Progress in Operations Research, John Wiley \& Sons, New York, (1961).
2. Balcolm, R. D., "A Systems Analysis for the District of Columbia Fire Department Dealing with the Replacement of Wagon Pumpers," report to the Washington, D. C. Fire Department (1970).
3. Barlow, R. E. and Proschan, F., "Planned Replacement," Strdies in Applied Probability and Management Science, K. J. rrow et al (eds.), Stanford University Press, Stanford, California, pp. 63-87 (1962).
4. Britten, A. A., "Decision Making in Vehicle Management," Report No. S.15, Local Govermment Operational Research Unit, Reading, England, (1971).
5. Bellmore, M., Howard, G. and Nenhauser, G. L., 'Dynamic Programming Computer Model 4," The Johns Hopkins University, Baltimore, Md. (1966).
6. Dreyfus, S., "A Generalized Equipment Replacement Study," JSIAM, Vo1. 8, No. 3, pp. 425-435 (1960).
7. Geoffrion, A. M. and Ne1son, A. B., 'Users' Instructions for 0-1 Integer Linear Programming Code RIP30C," Memorandum RM-5627-PR, The RAND Corporation (1968).
8. McCall, J. J., 'Maintenance Policies for Stochastically Failing Equipment: A Survey," Management Science, Vol. 11, No. 5, pp. 493-524 (1965).
9. Nemhauser, G. L., Introduction to Dynamic Programming, John Wiley \& Sons, New York (1967).
10. Radner, R. and Jorgenson, D. W., "Optimal Replacement and Inspection of Stochastically Failing Equipment," Studies in Applied Probability and Management Science, K. J. Arrow et al (eds.), Stanford University Press, Stanford, California, pp. 184-206 (1962).
11. Zelen, M. (ed.), Statistical Theory of Re1iability, The University of Wisconsin Press, Madison, Wisconsin (1963).

APPENDIX A
DETAILS OF THE DYNAMIC PROGRAMMING MODEL

This Appendix develops certain details of the DP model described in Section 3. In particular, relationships among the variables are investigated which make it possible to examine a limited number of states and decisions for which the stage returns $I_{t}\left(x_{t}, d_{t}\right)$ are calculated. Although technical in nature, this aspect of the problem is of great importance to computational feasibility in the sense that computer storage requirements and running times depend on the number of states and decisions the algorithm must consider.

The definitions of the relevant variables and parameters are repeated below for the reader's convenience:
$x_{1 t}=$ the number of engines remaining from the initial fleet in year $t-1(t=1, \ldots, T+1)$,
$x_{2 t}=$ the number of new engines purchased in years $1, \ldots, t-1$ $(t=1, \ldots, T+1)$,
$x_{3 t}=$ the maintenance cost during year $t-1$ on engines purchased in years $1, \ldots, t-1(t=1, \ldots, T+1)$,
$d_{1 t}=$ the number of engines retired in year $t(t=1, \ldots, T)$,
$d_{2 t}=$ the number of engines purchased in year $t(t=1, \ldots, T)$,
$D_{t}=$ the minimum number of engines required in year $t(t=1, \ldots, T)$,
$M_{t}=$ the maximum number of engines which may be purchased in year $t(t=1, \ldots, T)$,
$N_{t}=$ the maximum number of engines which may be retired in year $t(t=1, \ldots, T)$,
$R=$ the age by which engines must be retired,
$Q_{a}=$ the number of a-year-old engines in the initial fleet.

From these definitions, we may calculate two other quantities which are used throughout the sequel:

$$
m=\sum_{a} Q_{a}=\text { the number of engines in the initial fleet, }
$$

$n_{t}=\sum_{a>R-t+1} Q_{a}=$ the number of engines which must be retired prior to year t because of the age limitation $R(t=2, \ldots T+1)$.

Note that by definition: $x_{11}=m, x_{21}=0, x_{31}=0$, and $n_{1}=0$. It is notationally convenient to adopt the convention $D_{0}=m$. Using the definitions above, we may inmediately establish the relationships

$$
\begin{gather*}
x_{1 t}=x_{1, t-1}-d_{1, t-1} \quad(t=2, \ldots, T+1) \tag{A-1}\\
x_{2 t}=x_{2, t-1}+d_{2, t-1} \quad(t=2, \ldots, T+1) \tag{A-2}\\
0 \leq d_{1 t} \leq N_{t} \quad(t=1, \ldots, T) \tag{A-3}\\
0 \leq d_{2 t} \leq M_{t} \quad(t=1, \ldots, T) \tag{A-4}\\
x_{1 t}+x_{2 t} \geq D_{t-1} \quad(t=1, \ldots, T+1) \tag{A-5}\\
t-1 \\
\sum_{j=1} d_{1 j} \geq n_{t} \quad(t=1, \ldots, T+1) \tag{A-6}
\end{gather*}
$$

We maintain our convention regarding sums, viz., a sum is zero if its lower limit exceeds its upper limit. For example, (A-6) is valid for $t=1$ since both sides of the inequality are zero. The variations in the index-ranges are due to the fact that the state
variables refer to the system upon entering year t (or leaving year t-1), while the decision variables refer to decisions made in year t (presumed to be made at the beginning of year t). Note that $x_{3 t}$ does not appear in $(A-1)-(A-6)$. This is because $x_{3 t}$ depends only upon the distribution of the purchases $x_{2 t}$ over the years $1, \ldots, t-1$. This observation is discussed at greater length subsequently.

It is clear that the stream of decisions $d_{2 t}=M_{t}(t=1, \ldots, T)$ and the resultant stream of states $x_{2 t}=\sum_{j=1}^{t-1} M_{j}(t=1, \ldots, T)$ do not violate $(A-1)-(A-6)$.

Hence the 1east upper bound (LUB) of $\mathrm{d}_{2 t}$ is

$$
\begin{equation*}
\mu\left(d_{2 t}\right)=M_{t} \quad(t=1, \ldots, T) \tag{A-7}
\end{equation*}
$$

and the LUB of $x_{2 t}$ is

$$
\begin{equation*}
\mu\left(x_{2 t}\right)=\sum_{j=1}^{t-1} M_{j} \quad(t=2, \ldots, T) . \tag{A-8}
\end{equation*}
$$

[Recall that $x_{21}=0$ by definition.] We use $(A-7)$ and $(A-8)$ to develop the LUB and the greatest lower bound (GLB) of $x_{1 t}$ $(t=2, \ldots, T+1)$. [Recall that $x_{11}=m$ by definition.]

For a lower bound on $x_{1 t}$, we observe first that for $t \leq \tau \leq T+1, x_{1 t} \geq x_{1 \tau}$, so that

$$
x_{1 t}+\sum_{j=1}^{\tau-1} M_{j} \geq x_{1 \tau}+\sum_{j=1}^{\tau-1} d_{2 j}=x_{1 \tau}+x_{2 \tau} \geq D_{\tau-1}
$$

implying that

$$
x_{1 t} \geq D_{\tau-1}-\sum_{j=1}^{\tau-1} M_{j} \quad(t \leq \tau \leq T+1)
$$

For $1 \leq \tau<t$, we have

$$
x_{1 \tau}=x_{1 t}+\sum_{j=\tau}^{t-1} d_{1 j}
$$

so that

$$
\begin{aligned}
x_{1 t}+\sum_{j=1}^{\tau-1} M_{j} & \geq x_{1 \tau}-\sum_{j=\tau}^{t-1} d_{1 j}+\sum_{j=1}^{\tau-1} d_{2 j} \\
& \geq x_{1 \tau}-\sum_{j=\tau}^{t-1} N_{j}+x_{2 \tau} \\
& \geq D_{\tau-1}-\sum_{j=\tau}^{t-1} N_{j}
\end{aligned}
$$

implying that

$$
\begin{equation*}
x_{1 t} \geq D_{\tau-1}-\sum_{j=1}^{\tau-1} M_{j}-\sum_{j=\tau}^{t-1} N_{j} \quad(1 \leq \tau<t) . \tag{A-10}
\end{equation*}
$$

With our convention concerring sums, (A-9) and (A-10) can be combined as

$$
x_{1 t} \geq \max _{1 \leq \tau \leq T+1}\left[D D_{\tau-1}-\sum_{j=1}^{\tau-1} M_{j}-\sum_{j=\tau}^{t-1} N_{j}\right] \quad(t=2, \ldots, T+1)
$$

Where the case $\tau=1$ corresponds to the condition $x_{1 t} \geq m-\sum_{j=1}^{t-1} N_{j}$.

We also require $x_{1 t} \geq 0$. Hence

$$
\begin{equation*}
x_{1 t} \geq \max \left\{0, \max _{1 \leq \tau \leq T+1}\left[D_{\tau-1}-\sum_{j=1}^{\tau-1} M_{j}-\sum_{j=\tau}^{t-1} N_{j}\right]\right\} \quad(t=2, \ldots, T+1) . \tag{A-11}
\end{equation*}
$$

For an upper bound to $X_{1 t}$, we note that for $t \leq \tau \leq T+1$,
$n_{\tau} \leq \sum_{j=1}^{\tau-1} d_{1 j} \leq \sum_{j=1}^{t-1} d_{1 j}+\sum_{j=t}^{\tau-1} N_{j}=m-x_{1 t}+\sum_{j=t}^{\tau-1} N_{j}$, so that

$$
\begin{equation*}
x_{1 t} \leq m-\max _{t \leq \tau \leq T+1}\left[n_{\tau}-\sum_{j=t}^{\tau-1} N_{j}\right] \quad(t=2, \ldots, T+1), \tag{A-12}
\end{equation*}
$$

where the case $\tau=t$ corresponds to the condition $x_{1 t} \leq m-n_{t}$.
We now let

$$
\begin{align*}
& \lambda\left(x_{1 t}\right)=\max \left\{0, \max _{1 \leq \tau \leq T+1}\left[D_{\tau-1}-\sum_{j=1}^{\tau-1} M_{j}-\sum_{j=\tau}^{t-1} N_{j}\right]\right\} \quad(t=2, \ldots, T+1), \tag{A-13}\\
& \mu\left(x_{1 t}\right)=m-\max _{t \leq \tau \leq T+1}\left[n_{\tau}-\sum_{j=t}^{\tau-1} N_{j}\right] \quad(t=2, \ldots, T+1), \tag{A-14}
\end{align*}
$$

and we show that the formulas $(A-13)$ and $(A-14)$ give the GLB and LUB of $x_{1 t}$, respectively. This is accomplished by showing that the $\lambda\left(x_{1 t}\right) \quad(t=1, \ldots, T+1)$ and $\mu\left(x_{1 t}\right) \quad(t=1, \ldots, T+1)$ are feasible streams of the state variables $x_{1 t}$. From (A-13) we know that
$\lambda\left(x_{I t}\right) \geq D_{t-I}-\sum_{j=1}^{t-1} M_{j}$, or

$$
\begin{equation*}
\lambda\left(x_{I t}\right)+\sum_{j=1}^{t-I} M_{j} \geq D_{t-I} . \tag{A-15}
\end{equation*}
$$

Since $\lambda\left(\mathrm{x}_{\text {It }}\right) \leq \mu\left(\mathrm{x}_{\text {It }}\right)$ must hold for the problem to be feasible, it follows that

$$
\mu\left(x_{1 t}\right)+\sum_{j=1}^{t-I} M_{j} \geq D_{t-I} .
$$

Next, (A-14) implies

$$
\begin{equation*}
\mu\left(x_{1 t}\right) \leq m-n_{t}, \tag{A-17}
\end{equation*}
$$

from which it follows that

$$
\begin{equation*}
\lambda\left(x_{l t}\right) \leq m-n_{t} . \tag{A-18}
\end{equation*}
$$

Relations (A-14) and (A-18) imply, respectively, that demand is met in year $t-1$ with state $\lambda\left(X_{I t}\right)$ and that required retirements are met with state $\lambda\left(x_{1 t}\right)$. Relations (A-16) and (A-17) imply that these same two conditions are met by the state $\mu\left(x_{1 t}\right)$.

We now state an obvious fact.

Lemma 1. If $\left\{a_{i}\right\}$ and $\left\{b_{i}\right\}$ are finite sequences and k_{1} and k_{2} are constants such that $k_{1} \leq a_{i}-b_{i} \leq k_{2}$ for $a l l i$, then $k_{1} \leq \max a_{i}-\max b_{i} \leq k_{2}$.

In order to show that $\lambda\left(x_{1 t}\right)$ and $\mu\left(x_{1 t}\right)$ are feasible streams, it remains only to show the following two propositions.

Proposition 1. $0 \leq \lambda\left(x_{1 t}\right)-\lambda\left(x_{1, t+1}\right) \leq N_{t} \quad(t=1, \ldots, T+1)$.
Proof. For arbitrary t, let $\mathrm{a}_{0}=\mathrm{b}_{0}=0$, and let

$$
\begin{aligned}
& a_{\tau}=D_{\tau-1}-\sum_{j=1}^{\tau-1} M_{j}-\sum_{j=\tau}^{t-1} N_{j} \quad(\tau=1, \ldots, T+1), \\
& b_{\tau}=D_{\tau-1}-\sum_{j=1}^{\tau-1} M_{j}-\sum_{j=\tau}^{t} N_{j} \quad(\tau=1, \ldots, T+1) .
\end{aligned}
$$

It is clear that $0 \leq \mathrm{a}_{\tau}-\mathrm{b}_{\tau} \leq \mathrm{N}_{\mathrm{t}}(\tau=0, \ldots, \mathrm{~T}+1)$, so that Lenma 1
implies $0 \leq \max _{0 \leq \tau \leq T+1} a_{\tau}-\max _{0 \leq \tau \leq T+1} b_{\tau} \leq N_{t}$, or $0 \leq \lambda\left(x_{1 t}\right)-\lambda\left(x_{1, t+1}\right) \leq N_{t}$,
as stated.

Proposition 2. $0 \leq \mu\left(x_{1 t}\right)-\mu\left(x_{1, t+1}\right) \leq N_{t} \quad(t=1, \ldots, T+1)$.
Proof. For arbitrary t, let $a_{t+1}=n_{t+1}, b_{t+1}=\max \left[n_{t}, n_{t+1}-N_{t}\right]$,

$$
\begin{aligned}
& a_{\tau}=n_{\tau}-\sum_{j=t+1}^{\tau-1} N_{j} \quad(\tau=t+2, \ldots, T+1), \\
& b_{\tau}=n_{\tau}-\sum_{j=t+1}^{\tau-1}-N_{t} \quad(\tau=t+2, \ldots, T+1) .
\end{aligned}
$$

For $\tau=t+2, \ldots, T+1$, it is clear that $0 \leq a_{\tau}-b_{\tau} \leq N_{t}$. If $b_{\tau+1}=n_{t}$,
then $a_{t+1}-b_{t+1}=n_{t+1}-n_{t} \geq 0$ by definition, and in this case
$n_{t} \geq n_{t+1}-N_{t}$, so that $a_{t+1}-b_{t+1}=n_{t+1}-n_{t} \leq N_{t}$. If
$b_{t+1}=n_{t+1}-N_{t}$, then $a_{t+1}-b_{t+1}=n_{t+1}-\left(n_{t+1}-N_{t}\right)=N_{t} \geq 0$.
Hence $0 \leq a_{\tau}-b_{\tau} \leq N_{t}(\tau=t+1, \ldots, T+1)$, so that Lemma 1 implies
$0 \leq \max _{\tau} a_{\tau}-\max _{\tau} b_{\tau} \leq N_{t}$. Therefore,

$$
0 \leq\left(m-\max _{\tau} b_{\tau}\right)-\left(m-\max _{\tau} a_{\tau}\right)=\mu\left(x_{1 t}\right)-\mu\left(x_{1}, t+1\right) \leq N_{t} .
$$

Propositions 1 and 2 imply that $\lambda\left(x_{1, t+1}\right)$ can be "reached" from $\lambda\left(x_{1 t}\right)$ with a feasible decision, and that $\mu\left(x_{1, t+1}\right)$ can be "reached" from $\mu\left(\mathrm{X}_{1 t}\right)$ with a feasible decision, respectively. [See (A-3).]

These propositions together with the conclusions drawn from (A-15) - (A-18) imply that the $\lambda\left(x_{1 t}\right)$ and the $\mu\left(x_{1 t}\right)$ are feasible streams, and this together with (A-11) and (A-12) in turn imply that $\lambda\left(x_{I t}\right)$ and $\mu\left(x_{1 t}\right)$ are the GLB and the LUB of $x_{1 t}$, respectively.

Fix a value of $x_{1 t}$, say $\hat{x}_{1 t}$, with $\lambda\left(x_{1 t}\right) \leq \hat{x}_{1 t} \leq \mu\left(x_{1 t}\right)$. We now develop the GLB of $x_{2 t}$, given $\hat{X}_{1 t}$. For $t<\tau \leq T+1$, we have $x_{1 \tau} \leq \mu\left(x_{1 \tau}\right)$ and $x_{1 \tau} \leq \hat{x}_{1 t}$, and so $x_{1 \tau} \leq \min \left[\hat{x}_{1 t}, \mu\left(x_{1 \tau}\right)\right]$.

Hence,

$$
\min \left[\hat{x}_{1 t}, \mu\left(x_{1 \tau}\right)\right]+x_{2 t}+\sum_{j=t}^{\tau-1} M_{j} \geq x_{1 \tau}+x_{2 \tau} \geq D_{\tau-1}
$$

so

$$
\begin{equation*}
x_{2 t} \geq \max _{t<\tau \leq T+1}\left\{D_{\tau-1}-\sum_{j=t}^{\tau-1} M_{j}-\min \left[\hat{x}_{1 t}, \mu\left(x_{1 \tau}\right)\right]\right\} . \tag{A-19}
\end{equation*}
$$

For $1 \leq \tau \leq t, x_{1 \tau} \leq \mu\left(x_{1 \tau}\right)$ and $x_{1 \tau}=\hat{x}_{1 t}+\sum_{j=\tau}^{t-1} d_{1 j} \leq \hat{x}_{1 t}+\sum_{j=\tau}^{t-1} N_{j}$.
Thus $x_{1 \tau} \leq \min \left[\mu\left(x_{1 \tau}\right), \hat{x}_{1 t}+\sum_{j=\tau}^{t-1} N_{j}\right] \triangleq x_{1 \tau}^{*} . \quad$ TThe notation $" \triangleq "$ means "defined as."'] Essentially $\mathrm{x}^{*}{ }_{1 \tau}$ is the largest value of $\mathrm{x}_{1 \tau}$ such that $\hat{x}_{\text {It }}$ can be "reached" from it by feasible decisions.

Now, for $\tau \leq \sigma \leq t$

$$
x_{1 \sigma}^{*}+x_{2 \tau}+\sum_{j=\tau}^{\sigma-1} M_{j} \geq x_{1 \sigma}^{*}+x_{2 \sigma} \geq D_{\sigma-1} .
$$

Hence $x_{2 \tau} \geq D_{\sigma-1}-x_{1 \sigma}^{*}-\sum_{j \div \tau}^{\sigma-1} M_{j}$. For $1 \leq \sigma \leq \tau$,

$$
x_{1 \sigma}^{*}+x_{2 \tau} \geq x_{1 \sigma}^{*}+x_{2 \sigma} \geq D_{\sigma-1},
$$

implying $x_{2 \tau}-D_{\sigma-1}-x_{1 \sigma}^{*}$. Again, using our convention regarding sums, we have

$$
\begin{equation*}
x_{2 \tau} \geq \max _{1 \leq 0 \leq t}\left[D_{\sigma-1}-x_{1 \sigma}^{*}-\sum_{j=\tau}^{\sigma-1} M_{j}\right] \triangleq x_{2 \tau}^{*} \quad(1 \leq \tau \leq \tau), \tag{A-20}
\end{equation*}
$$

and in particular
$x_{2 t} \geq \max _{1 \leq \tau \leq t}\left[D_{\sigma-1}-x_{1 \sigma}^{*}\right]=\max _{1 \leq \tau \leq t}\left\{D_{\tau-1}-\min \left[\mu\left(x_{1 \tau}\right), \hat{x}_{1 t}+\sum_{j=\tau}^{t-1} N_{j}\right]\right\}$.
Let

$$
\begin{equation*}
\lambda\left(x_{2 t} ; \hat{x}_{1 t}\right)=\max _{1 \leq \tau \leq T+1}\left\{D_{\tau-1}-\sum_{j=t}^{\tau-1} M_{j}-\min \left[\mu\left(x_{1 \tau}\right), \hat{x}_{1 t}+\sum_{j=\tau}^{t-1} N_{j}\right]\right\} . \tag{A-22}
\end{equation*}
$$

For $1 \leq \tau \leq t(A-22)$ reduces to ($\mathrm{A}-21$), and for $t<\tau \leq T+1$ ($\mathrm{A}-22$) reduces to (A-19), so that $\lambda\left(x_{2 t} ; \hat{x}_{1 t}\right)$ is a lower bound on $x_{2 t}$, given $\hat{x}_{I t}$. We show that $\lambda\left(x_{2 t} ; \hat{x}_{1 t}\right)$ is the GLB of $x_{2 t}$, given $\hat{x}_{1 t}$, by first showing the existence of a feasible stream to $\lambda\left(x_{2 t} ; \hat{x}_{1 t}\right)$ and then showing that this state can be completed into the future with a stream feasible in years τ for $t<\tau \leq T+1$. It is easily shown that the feasibility condition $\lambda\left(x_{2 t} ; \lambda\left(x_{1 t}\right)\right) \leq \mu\left(x_{2 t}\right)$ follows from the feasibility condition $\lambda\left(\mathrm{X}_{1 t}\right) \leq \mu\left(\mathrm{X}_{1 t}\right)$.

First, note that $\left(x_{1 t}^{*}, x_{2}^{*}\right)=\left(\hat{x}_{1 t}, \lambda\left(x_{2 t} ; \hat{x}_{1 t}\right)\right)$. We show that the sequence $\left\{\left(x_{1 \tau}^{*}, x_{2 \tau}^{*}\right)\right\}(\tau=1, \ldots, t)$ is the desired stream. That $x_{1 \tau}^{*} \leq \mu\left(x_{1 \tau}\right)$ follows from the definition of $x_{1 \tau}^{*}$. Since $\mu\left(\mathrm{x}_{1 \tau}\right) \geq \lambda\left(\mathrm{x}_{1 \tau}\right)$ and

$$
\hat{x}_{1 t}+\sum_{j=\tau}^{t-1} N_{j} \geq \lambda\left(x_{1 t}\right)+\sum_{j=\tau}^{t-1}\left[\lambda\left(x_{1 j}\right)-\lambda\left(x_{1, j+1}\right)\right]=\lambda\left(x_{1 \tau}\right)
$$

we have $x_{1 \tau}^{*} \geq \lambda\left(x_{1 \tau}\right)$. (The inequality in the above expression follows from $\hat{x}_{1 t} \geq \lambda\left(x_{1 t}\right)$ and Proposition 1.) Therefore, $\lambda\left(X_{1 \tau}\right) \leq x_{1 \tau}^{*} \leq \mu\left(X_{1 \tau}\right)$.

Next we observe that $0 \leq \mu\left(x_{1 \tau}\right)-\mu\left(x_{1, \tau+1}\right) \leq N_{t}$, by Proposition 2
and that

$$
\hat{x}_{1 t}+\sum_{j=\tau}^{t-1} N_{j}-\left(\hat{x}_{1 t}+\sum_{j=\tau+1}^{t-1} N_{j}\right)=N_{\tau} \cdot I t
$$

follows for all combinations of cases for $x_{1 \tau}^{*}$ and $x_{1, \tau+1}^{*}$, that
$0 \leq x_{1 \tau}^{*}-x_{1, \tau+1}^{*} \leq N_{\tau}$. We have already seen that $x_{2 \tau}^{*} \geq D_{\tau-1}-x_{1 \tau}^{*}$, so that $x_{1 \tau}^{*}+x_{2 \tau}^{*} \geq D_{\tau-1}$. Thus far we have shown that the sequence
$\left\{x_{1 \tau}^{*}\right\} \quad(\tau=1, \ldots, t)$ is feasible. To complete the proof for $x_{2 \tau}^{*}$, it remains to show that $0 \leq x_{2, \tau+1}^{*}-x_{2 \tau}^{*} \leq M_{\tau}$. This result follows from Lerma 1 with $a_{\sigma}=D_{\sigma-1}-x_{1 \sigma}^{*}-\sum_{j=\tau+1}^{\sigma-1} M_{j}$,
$b_{\sigma}=D_{\sigma-1}-x_{1 \sigma}^{*}-\sum_{j=\tau}^{\sigma-1} M_{j}$, since $a_{\sigma}-b_{\sigma}=M_{\tau}$ for $\tau+1 \leq \sigma \leq t$ and $a_{\sigma}-b_{\sigma}=0$ for $1 \leq \sigma \leq \tau$.

To show that $\left(\hat{x}_{1 t}, \lambda\left(x_{2 t} ; \hat{x}_{1 t}\right)\right)$ can be completed into the future to a stream feasible in years $t<\tau \leq T+1$, we choose $d_{2 \tau}=M_{\tau}$ and choose $d_{1 \tau}$ so that $x_{1 \tau}=\min \left[x_{1 t}, \mu\left(x_{1 \tau}\right)\right]$. Note that the sequence $\left\{\mathrm{X}_{1 \tau}\right\}$ ($\left.\tau=\mathrm{t}+1, \ldots, \mathrm{~T}+1\right)$ is non-increasing. That the condition $x_{1 \tau}+x_{2 \tau} \geq D_{\tau-1}$ holds is a direct consequence of the way $\lambda\left(x_{2 t} ; \hat{x}_{1 t}\right)$ was derived. Next, $x_{1 \tau} \leq \mu\left(x_{1 \tau}\right) \leq m-n_{\tau}$, so that the required number of retirements is met. We need only show that $0 \leq x_{1 \tau}-x_{1, \tau+1} \leq N_{\tau}(t<\tau \leq T)$ to complete the proof. The left-hand inequality is clear from Proposition 2. For the right-hand inequality, if $\mathrm{x}_{1 \tau}=\mu\left(\mathrm{x}_{1 \tau}\right)$, then $\mu\left(x_{1, \tau+1}\right) \leq \mu\left(x_{1 \tau}\right) \leq \hat{x}_{1 t}$, so that $x_{1 \tau}-x_{1, \tau+1} \leq \mu\left(x_{1 \tau}\right)-\mu\left(x_{1, \tau+1}\right) \leq N_{t}$ by Proposition 2. If $x_{1 \tau}=x_{1, \tau+1}=\hat{x}_{1 t}$, then the result is clear. If $x_{1 \tau}=\hat{x}_{1 t}$ and $x_{1, \tau+1}=\mu\left(x_{1, \tau+1}\right)$, then $x_{1 \tau}-x_{1, \tau+1}=\hat{x}_{1 t}-\mu\left(x_{1, \tau+1}\right) \leq$ $\mu\left(x_{1 \tau}\right)-\mu\left(x_{1, \tau+1}\right) \leq N_{t}$, again by Proposition 2.

We now assume given a state $\hat{x}_{1 t}, \lambda\left(x_{1 t}\right) \leq \hat{x}_{1 t} \leq \mu\left(x_{1 t}\right)$, and a state $x_{2 t}, \lambda\left(x_{2 t} ; \hat{x}_{1 t}\right) \leq \hat{x}_{2 t} \leq \mu\left(x_{2 t}\right)$, and we derive bounds on $x_{3 t}(2 \leq t \leq T)$. [Recall that $x_{31}=0$ by definition.] For the given states $\hat{x}_{1 t}, \hat{x}_{2 t}$ these bounds $\lambda\left(x_{3 t} ; \hat{x}_{1 t}, \hat{x}_{2 t}\right)$ and $\mu\left(x_{3 t} ; \hat{x}_{1 t}, \hat{x}_{2 t}\right)$ correspond to a "purchase late" scenario and a "purchase early" scenario, respectively, i.e. the smallest value of $x_{3 t}$ is realized when the $\hat{x}_{2 t}$ engines are purchased as close to t as possible,
while the largest value of $x_{3 t}$ is realized when the $\hat{x}_{2 t}$ engines are purchased as distant from t as possible. These intuitive concepts are formulated mathematically in the following paragraphs.

For the "purchase late" scenario, we observe that
$\hat{x}_{2 t}-\sum_{j=\tau}^{t-1} M_{j}$ is the smallest value of $x_{2 \tau}$ which can "reach"
$\hat{x}_{2 t}$. Hence $x_{2 \tau} \geq \hat{x}_{1 t}-\sum_{j=\tau}^{t-1} M_{j}$. We also have $x_{2 \tau} \geq x_{2 \tau}^{*}$, as
derived above. Combining these we have

$$
x_{2 \tau} \geq \max \left[x_{2 \tau}^{*}, \hat{x}_{1 t}-\sum_{j=\tau}^{t-1} M_{j}\right] \triangleq \bar{x}_{2 \tau} \quad(2 \leq \tau \leq t)
$$

To show that the $\bar{x}_{2 \tau}$ correspond to the GLB of $x_{3 t}$, given $\hat{x}_{1 t}$ and $\hat{x}_{L t}$, it suffices to show that the sequence $\left\{\left(x_{1 \tau}^{*}, \bar{x}_{2 \tau}\right)\right\}(\tau=1, \ldots, t)$ is feasible. We have already shown that $X_{1 \tau}^{*}$ is in the appropriate range and that $0 \leq x_{1 t}^{*}-x_{1, \tau+1}^{*} \leq N_{\tau}$. That demand is met follows from $x_{1 \tau}^{*}+\bar{x}_{2 \tau} \geq x_{1 \tau}^{*}+x_{2 \tau}^{*} \geq D_{\tau-1}$. Finally, $0 \leq \bar{x}_{2, \tau+1}-\bar{x}_{2 \tau} \leq M_{\tau}$ follows from $0 \leq x_{2, \tau+1}^{*}-x_{2 \tau}^{*} \leq M_{\tau}$ and $\hat{x}_{2 t}-\sum_{j=\tau+1}^{t-1} M_{j}-\left(\hat{x}_{2 t}-\sum_{j=\tau}^{t-1}\right)=M_{\tau}$, for all combinations of cases for $\bar{x}_{2 \tau}$ and $\bar{x}_{2, \tau+1}$. The number of purchases made in year τ in the "purchase late" scenario is

$$
\bar{x}_{2, \tau+1}-\bar{x}_{2 \tau}, \text { so that }
$$

$$
\begin{equation*}
\lambda\left(x_{3 t} ; \hat{x}_{1 t}, \hat{x}_{2 t}\right)=\sum_{\tau=1}^{t-1} u_{t-\tau}\left(\bar{x}_{2, \tau+1}-\bar{x}_{2 \tau}\right)(t-2, \ldots, T) . \tag{1-23}
\end{equation*}
$$

The "purchase early" scenario is somewhat simpler. We have $\hat{x}_{2 t} \leq \sum_{j=1}^{t-1} M_{j}$, so there exits a largest $\tau(2 \leq \tau \leq t)$, say $\tau=\sigma$,
for which $\hat{x}_{2 t} \geq \sum_{j=1}^{\sigma-1} M_{j}$. Let $\tilde{x}_{2 \tau}=\sum_{j=1}^{\tau-1} M_{j}$ for $1 \leq \tau<\sigma$ and $\tilde{x}_{2 \tau}=\hat{x}_{2 t}$ for $\sigma \leq \tau \leq t$. The sequence $\left\{\tilde{x}_{2 \tau}\right\} \quad(\tau=1, \ldots, t-1)$ is clearly feasible. Hence

$$
\begin{equation*}
\mu\left(x_{3 t} ; \hat{x}_{1 t}, \hat{x}_{2 t}\right)=\sum_{\tau=1}^{t-1} u_{t-\tau}\left(\tilde{x}_{2, \tau+1}-\tilde{x}_{2 \tau}\right) \quad(t=2, \ldots, \tau) . \tag{A-24}
\end{equation*}
$$

Note that $\hat{x}_{1 t}$ does not appear explicitly in this derivation.
It was stated in Section 3 that the linear form of the maintenance cost function yields a desirable property of the range of $x_{3 t}$, viz.,
that its values are precisely multiples of the slope U_{1} of the linear function. With $u_{a}=U_{0}+U_{1} a, y_{\tau}=\bar{x}_{2, t+1}-\bar{x}_{2 \tau}$ is the number of purchases in year τ corresponding to the "purchase late" scenario.

Let z_{τ} be any feasible number of purchases in year τ, given $\hat{x}_{1 \tau}$ and $\hat{x}_{2 t}$. Then

$$
x_{3 t}-\lambda\left(x_{3 t} ; \hat{x}_{1 t}, \hat{x}_{2 t}\right)=\sum_{\tau=1}^{t-1} u_{t-\tau_{\tau}} z_{\tau}-\sum_{\tau=1}^{t-1} u_{t-\tau} y_{\tau}
$$

$$
=\sum_{\tau=1}^{t-1}\left[U_{0}+U_{1}(t-\tau)\right]\left(z_{\tau}-y_{\tau}\right)=U_{1}\left[\sum_{\tau=1}^{t-1} \tau\left(z_{\tau}-y_{\tau}\right)\right]
$$

where the last equality follows from the fact that

$$
\sum_{\tau=1}^{t-1} y_{\tau}=\sum_{\tau=1}^{t-1} z_{\tau}=\hat{x}_{2 t} .
$$

$$
t-1
$$

Note that the number of values for $x_{3 t}$ is $\sum_{\tau=1} \tau\left(z_{\tau}-y_{\tau}\right)+1$.

We turn now to establishing bounds on the decision variables.

Assume fixed values of $x_{1 t}$ and $x_{2 t}$ in their appropriate ranges, say
$\lambda\left(x_{1 t}\right) \leq \hat{x}_{1 t} \leq \mu\left(x_{1 t}\right)$ and $\lambda\left(x_{2 t} ; \hat{x}_{1 t}\right) \leq \hat{x}_{2 t} \leq \mu\left(x_{2 t}\right)$; the state variable
$x_{\text {: }}$ does not play a role. We know that $d_{1 t} \geq 0$ from $(A-3)$, and that
$x_{1 t}-d_{1 t} \leq \mu\left(x_{1, t+1}\right)$. Thus

$$
\begin{equation*}
\lambda\left(\mathrm{d}_{1 t} ; \hat{\mathrm{x}}_{1 t}\right)=\max \left[0, \hat{\mathrm{x}}_{1 t}-\mu\left(\mathrm{x}_{1, t+1}\right)\right] \quad(\mathrm{t}=1, \ldots, \mathrm{~T}) . \tag{A-25}
\end{equation*}
$$

(Note that $\lambda\left(d_{1 t} ; \hat{x}_{1 t}\right)$ is not a function of $\left.\hat{x}_{2 t}.\right)$
Relations (A-3) also state that $d_{1 t} \leq N_{t}$, and we have
$\hat{x}_{1 t}-d_{1 t} \geq \lambda\left(x_{1, t+1}\right)$. In addition to these constraints, $d_{1 t}$ must be chosen so that the resulting $x_{1, t+1}$ yields a lower bound on $x_{2, t+1}$ that can be "reached" from $\hat{x}_{2 t}$, i.e. $\hat{x}_{2 t}+M_{t} \geq \lambda\left(x_{2, t+1} ; \hat{x}_{1 t}-d_{1 t}\right)$.

U . ng the definition of $\lambda\left(\mathrm{x}_{2, t+1} ; \hat{\mathrm{x}}_{1 t}-\mathrm{d}_{1 t}\right)$, we have

$$
\hat{x}_{2 t}+M_{t} \geq \max _{1 \leq \tau \leq t+1}\left\{D_{\tau-1}-\sum_{j=t+1}^{\tau-1} M_{j}-\min \left[\mu\left(x_{1 \tau}\right), \hat{x}_{1 t}-d_{1 t}+\sum_{j=\tau}^{t} N_{j}\right]\right\}
$$

$$
\begin{align*}
& =\max \left\{\max _{1 \leq \tau \leq T+1}\left[D_{\tau-1}-\sum_{j-t+1}^{\tau-1} M_{j}-\mu\left(x_{1 \tau}\right)\right],\right. \tag{A-26}\\
& \left.\max _{1 \leq \tau \leq T+1}\left[D_{\tau-1}-\sum_{j=t+1}^{\tau-1} M_{j}-\hat{x}_{1 t}+d_{1 t}-\sum_{j=\tau}^{t} N_{j}\right]\right\} .
\end{align*}
$$

The part of $(A-26)$ involving $d_{1 t}$ becomes

$$
d_{1 t} \leq x_{1 t}+\hat{x}_{2 t}+M_{t}-\max _{1 \leq \tau \leq T+1}\left[D_{1-1}-\sum_{j=t+1}^{\tau-1} M_{j}-\sum_{j=\tau}^{t} N_{j}\right]
$$

Therefore, we take

$$
\begin{align*}
& \mu\left(d_{1 t} ; \hat{x}_{1 t}, \hat{x}_{2 t}\right)=\min \left\{N_{t}, \hat{x}_{1 t}-\lambda\left(x_{1, t+1}\right),\right. \\
& \left.\hat{x}_{1 t}+\hat{x}_{2 t}+M_{t}-\max _{1 \leq \tau \leq T+1}\left[D_{\tau-1}-\sum_{j=t+1}^{\tau-1} M_{j}-\sum_{j=\tau}^{t} N_{j}\right]\right\}
\end{align*}
$$

That $\lambda\left(d_{1 t} ; \hat{x}_{1 t}, \hat{x}_{2 t}\right) \leq \mu\left(d_{1 t} ; \hat{x}_{1 t}, \hat{x}_{2 t}\right)$ holds may be shown straightforwardly by taking $\hat{x}_{2 t}=\lambda\left(x_{2 t} ; \hat{x}_{1 t}\right)$ in the μ term and applying the definitions in ($\mathrm{A}-25$) and ($\mathrm{A}-27$).

Since we already have $\mu\left(d_{2 t}\right)=M_{t}$ from $(A-4)$, it remains only to find $\lambda\left(d_{2 t} ; \hat{x}_{1 t}, \hat{x}_{2 t}, \hat{\mathrm{~d}}_{1 t}\right)$, where the three given variables fall in their respective ranges. Relations $(A-4)$ state that $d_{2 t} \geq 0$. In addition, we require $\hat{x}_{2 t}+d_{2 t} \geq \lambda\left(x_{2, t+1} ; \hat{x}_{1 t}-\hat{d}_{1 t}\right)$, so that

$$
\lambda\left(\mathrm{d}_{2 t} ; \hat{\mathrm{x}}_{1 t}, \hat{x}_{2 t}, \hat{\mathrm{~d}}_{1 t}\right)=\max \left[0, \lambda\left(x_{2, t+1} ; \hat{x}_{1 t}-\hat{\mathrm{d}}_{1 t}\right)-\hat{x}_{2 t}\right](t=1, \ldots T) \cdot(A-28)
$$

That $\lambda\left(d_{2 t} ; \hat{x}_{1 t}, \hat{x}_{2 t}, \hat{\mathrm{~d}}_{1 t}\right) \leq \mu\left(d_{2 t}\right)=M_{t}$ holds also is straightforward to verify.

Observe that the ranges of $d_{1 t}$ and $d_{2 t}$, developed above, do not depend on $\mathrm{x}_{3 \mathrm{t}}$. In fact, we show below that the optimal decisions at any stage are independent of $x_{3 t}$, because given $\hat{x}_{1 t}$ and $\hat{x}_{2 t}$, the value of the objective $f_{t}\left(x_{t}\right)$ at each stage is a linear function of $x_{3 t}$, with the specific form

$$
f_{t}\left(x_{t}\right)=g_{t}\left(x_{1 t}, x_{2 t}\right)+\left(\sum_{j=0}^{T-t} \delta^{j}\right) x_{3 t}
$$

where $\delta=1 /(1+\mathrm{r})$. For $\mathrm{t}=\mathrm{T}$, equations (3.3) and (3.4) imply

$$
\begin{aligned}
\mathrm{f}_{\mathrm{T}}\left(\mathrm{x}_{\mathrm{T}}\right) & =\min _{\mathrm{d}_{\mathrm{T}}} \mathrm{I}_{\mathrm{T}}\left(\mathrm{x}_{\mathrm{T}}, \mathrm{~d}_{\mathrm{T}}\right) \\
& =\mathrm{g}_{\mathrm{T}}\left(\mathrm{x}_{1 \mathrm{~T}}, \mathrm{x}_{2 \mathrm{~T}}\right)+\mathrm{x}_{3 \mathrm{~T}},
\end{aligned}
$$

with g_{T} taken as that part of $(3,3)$ not involving $x_{3 T}$. Now assuming that

$$
f_{t}\left(x_{t}\right)=h_{t}\left(x_{1 t}, x_{2 t}\right)+\left(\sum_{j=0}^{T-t} \delta^{j}\right) x_{3 t} \text {, we show that }
$$

$$
f_{t-1}\left(x_{t-1}\right)=h_{t-1}\left(x_{1, t-1}, x_{2, t-1}\right)+\left(\sum_{j=0}^{T-t+1} \delta^{j}\right) x_{3, t-1} \text {, (i.e., 'backwards }
$$

induction" on t). We have

$$
\begin{aligned}
& f_{t-1}\left(x_{t-1}\right)=\min _{d_{t-1}}\left[I_{t-1}\left(x_{t-1}, d_{t-1}\right)+\delta f_{t}\left(x_{t}\right)\right] \\
= & \min _{d_{t-1}}\left[I_{t-1}+\delta h_{t}+\delta\left(\sum_{j=0}^{T-t} \delta^{j}\right)\left(x_{3, t-1}+u_{1} d_{2, t-1}+U_{1} x_{2, t-1}\right)\right]
\end{aligned}
$$

$=\min _{a_{t-1}}\left[g_{t-1}+\delta h_{t}+\left(\sum_{j=1}^{T-t+1} \delta^{j}\right)\left(u_{1} d_{2, t-1}+U_{1} x_{2, t-1}\right)+\left(\sum_{j=1}^{T-t+1} \delta^{j}\right) x_{3, t-1}+x_{3, t-1}\right]$,
where g t_{t-1} is that part of I_{t-1} not involving $x_{3, t-1}(c f$. equation ()).
$\left.f_{t-1}\left(x_{t-1}\right)=\min _{d_{t-1}}^{\left[h_{t-1}^{\prime}\right.}\left(x_{1, t-1}, x_{2, t-1}\right)+\left(\sum_{j=0}^{T-t+1} \delta^{j}\right) x_{3, t-1}\right]$

$$
=h_{t-1}\left(x_{1, t-1}, x_{2, t-1}\right)+\left(\sum_{j=0}^{T-t+1} \delta^{j}\right) x_{3, t-1}
$$

where $h_{t-1}^{\prime}=s_{t-1}+\Delta h_{t}+\left(\sum_{j=1}^{T-t+1} \delta_{j}\right)\left(u_{1} d_{2, t-1}+u_{1} x_{2, t-1}\right)$.
The fact just proven makes it unnecessary to cycle through all of the values of $d_{1 t}$ and $d_{2 t}$ for each $x_{3 t}$. We need only determine the optimal decisions for one value of $x_{3 t}$, say $\lambda\left(x_{3 t} ; x_{1 t}, x_{2 t}\right)$; these decisions are optimal for other values of $x_{3 t}$, given $\dot{x}_{1 t}$ and $\dot{x}_{2 t}$, and the corresponding values of $f_{t}\left(x_{t}\right)$ may be calculated simply by adding the appropriate multiple of $\left(\sum_{j=0}^{T-t} \delta^{j}\right)$ to the optimal value of the objective function for $\lambda\left(x_{3 t} ; \hat{x}_{1 t} ; \hat{x}_{2 t}\right)$.

Table A-l gives a summary of all formulas needed to calculate the ranges of the variables used in the dynamic programing model.

$$
\begin{aligned}
& \lambda\left(x_{1 t}\right)=\max \left\{0, \max _{1 \leq \tau \leq T+1}\left[D_{\tau-1}-\sum_{j=1}^{\tau-1} M_{j}-\sum_{j=\tau}^{t-1} N_{j}\right]\right\} \\
& \mu\left(x_{1 t}\right)=m-\max _{t \leq \tau \leq T+1}\left[n_{\tau}-\sum_{j=t}^{\tau-1} N_{j}\right] \\
& \lambda\left(x_{2 t} ; \hat{x}_{1 t}\right)=\max _{1 \leq \tau \leq T+1}\left\{D_{\tau-1}-\sum_{j=t}^{\tau-1} M_{j}-\min \left[\mu\left(x_{1 \tau}\right), \hat{x}_{1 t}+\sum_{j=\tau}^{t-1} N_{j}\right]\right\} \\
& \mu\left(x_{2 t}\right)=\sum_{j=1}^{t-1} M_{j}
\end{aligned}
$$

$$
\lambda\left(x_{3 t} ; \hat{x}_{1 t}, \hat{x}_{2 t}\right)=\sum_{\tau=1}^{t-1} U_{t-\tau}\left(\bar{x}_{2, \tau+1}-\bar{x}_{2 \tau}\right)
$$

$$
\bar{x}_{2 \tau}=\max \left[x_{2 \tau}^{*}, \hat{x}_{1 t}-\sum_{j=\tau}^{t-1} M_{j}\right]
$$

$$
\sigma-1
$$

$$
x_{2 \tau}^{*}=\max _{1 \leq \sigma \leq t}\left[D_{\sigma-1}-x_{1 \sigma}^{*}-\sum_{j=\tau} M_{j}\right]
$$

$$
x_{1 \sigma}^{*}=\min \left[\mu\left(x_{1 \sigma}\right), \hat{x}_{1 t}+\sum_{j=\sigma}^{t-1} N_{j}\right]
$$

$$
\mu\left(x_{3 t} ; \hat{x}_{1 t}, \hat{x}_{2 t}\right)=\sum_{\tau=1}^{t-1} U_{t-\tau}\left(\tilde{x}_{2, \tau+1}-\tilde{x}_{2 \tau}\right)
$$

$$
\tilde{x}_{2 \tau}=\sum_{j=1}^{\tau-1} M_{j} \text { for } 1 \leq \tau<\sigma
$$

$$
\tilde{x}_{2 \tau}=\hat{x}_{2 t} \text { for } \sigma \leq \tau \leq t
$$

σ is the largest value of k such that $\hat{x}_{2 t}>\sum_{j=1}^{k-1} M_{j}$.

$$
\begin{aligned}
& \lambda\left(d_{1 t} ; \hat{x}_{1 t}\right)=\max \left[0, \hat{x}_{1 t}-\mu\left(x_{1, t+1}\right)\right] \\
& \mu\left(d_{1 t} ; \hat{x}_{1 t}, \hat{x}_{2 t}\right)=\min \left\{N_{t}, \hat{x}_{1 t} \cdots \lambda\left(x_{1, t+1}\right), x_{1 t}+x_{2 t}+M_{t}\right. \\
& \left.\quad-\max _{1 \leq \tau \leq T+1}\left[D_{\tau-1}-\sum_{j=t+1}^{\tau-1} M_{j}-\sum_{j=\tau}^{t} N_{j}\right]\right\} \\
& \lambda\left(d_{2 t} ; \hat{x}_{1 t}, \hat{x}_{2 t}, \hat{d}_{1 t}\right)=\max \left[0, \lambda\left(x_{2, t+1} ; \hat{x}_{1 t}-\hat{d}_{1 t}\right)-\hat{x}_{2 t}\right] \\
& \mu\left(d_{2 t}\right)=M_{t} .
\end{aligned}
$$

APPENDIX B
LISTING OF THE COMPUTER CODE FOR THE DYNAMIC PROGRAMMING MODEL

REPLAC IS A
REPLACEMENT

$$
\begin{aligned}
& \text { IMPLICIT INTEGE? }(A-H \cdot O=7) \\
& \text { REAL RATEDELTA, DELTB, DELTAM }
\end{aligned}
$$

 3

$$
\begin{aligned}
& T=1, T T P 1 \\
& \cdot L T \cdot T T P 1
\end{aligned}
$$

$$
\begin{aligned}
& \text { Y TO } 30 \\
& y(T)=V(i-1)+2(2 m T+2)
\end{aligned}
$$

$$
\begin{aligned}
& \because(T)=V 1 \\
& \text { こONTINJE }
\end{aligned}
$$

$$
90
$$

EOYPUTE LXI（T）AVD UXI（T）．THE LOAER AVO UPPER LIMITS FOR XIT．
XIT IS THE VUMRER OF RESJURCES REMAINIVG FROM THE INITIAL ELEET I V YEAR $T-1$ ．

070 T＝1，TTP1
J 60 TAJ＝1，TTD1
F（TAJ．GT．1）GO
$5 J M=4 n$
TAJV1＝TAJ－1
$S J M=D(T A J M 1)$
SJU $=$ D（TAJU1）
JJ 40 J＝1．TAJM1
SJM＝SJMーン（J）

IF（TAJ．© © T）GO TO 55
THI $=T-1$
$141=T-1$
$2050 \mathrm{~J}=\mathrm{TA}$
こOVTI VUE゙
ヨRIINO

$2 J 50$ J＝TAU．Tけ1
SJM $=$ SJM－AV（J）
COVTI VUẼ LX

にに
ごい

TP1 $=T+1$
OU 54 TAJ＝TP1，TTP1
SUM $=V(T A J)$
TAJM1＝TAJ－
2J $52 \mathrm{~J}=\mathrm{T} \cdot \mathrm{TAJU1}$

IF（Mu－S
4 EOVTINJE
－9 IF（LXI（T），LE． $4 \times 1(T))$ so TJ 70
NKITE $(6,940)$ T，LXI（T），पX1（T）

[^8]

\[

$$
\begin{aligned}
& =A L L \times 2 L I \\
& \therefore=L T S=1.0 /(1.0+J \equiv L T A) \\
& =L T A M=1.0
\end{aligned}
$$
\]

$$
\begin{aligned}
& \ddots \cup \cup U T=T T, 1,-1 \\
& \text { TF (T } L T, \text { TT) })
\end{aligned}
$$

$$
\begin{aligned}
& I=O I V T=U \\
& I \perp=0
\end{aligned}
$$

$$
\begin{aligned}
& L 1=L \times 1(T) \\
& 1=V \times 1(T) \\
& L=M \times 2(T)
\end{aligned}
$$

－
（1），心

$w_{01}=\operatorname{MIV}\left(N N(T), x_{1} T-L \times 1(T+1)\right)$

$$
\begin{aligned}
& \text {-t y yalue } \\
& \text { - } 1 \text { (つ) THE } \\
& \text { IMITF X T TIVEV THE }
\end{aligned}
$$

$50 T=1, T T^{\prime}$
$1 F(T$ GT，1）$n \times 2(T)=4 \times 2(T-1)+4(T-1), ~$
$L=L \times 1(T)$
$7=1 I X \quad 0+c C$
(1) IXA $=T に$
$0=\operatorname{Tn} \theta$
VO 1 ・アニC $\forall 1$ OE CC
©（ $1 \cdot \exists \approx \cdot n \forall 1$ ）\ddagger I
-5
11
110
-20
5
MALL

APPENDIX C

AN INTEGER PROGRAMMING MODEL

The model described in this Appendix is a somewhat simplified integer programming (IP) analog to the DP model presented in Section 3. Since the IP version is subsumed under the DP version, the former is documented here for its own sake, as an application of integer r programming, and is not necessarily intended to serve as an 'alternative" model.

As in the DP model, the IP model prescribes actions to be taken each year for a T-year period to minimize the total cost over those T years. From a given initial fleet, the decisions specify the number of purchases each year and the number of retirements, from the initial fleet, of engines of each age \underline{a}. (Note that T may not be taken so large as to make liable to retirement engines which were purchased during the T-year period.) These decisions are to be made so as to minimize the total cost for the T years, subject to the constraint that a specified minimum fleet size be met each year.

The variables are:

$$
\begin{aligned}
x_{a t}= & \text { the number of engines, initially of age } \underline{a}, \text { retired in } \\
& \text { year } t, \\
y_{t}= & \text { the number of new engines purchased in year } t .
\end{aligned}
$$

The conventions regarding age definition and decision times are the same as for the DP model (cf., footnote 6).

The data required by the model include:
$D_{t}=$ the minimum number of engines required during year t (checked against the fleet size after year t's decisions have been made),
$M_{t}=$ the maximum number of engines which may be purchased in year t,
$P_{t}=$ the purchase price of an engine in year t,
$\mathrm{Q}_{\mathrm{a}}=$ the number of $\underline{\mathrm{a}}$ - year - old engines in the initial fleet, $u_{a}=$ the maintenance cost of an engine during its $\underline{a}^{\text {th }}$ year of service,
$v_{\text {at }}=$ the resale value in year t of an engine which was initially of age $\underline{\text { a. }}$

Note that this model does not have a ceiling on the number of engines that may be retired, nor does it have a mandatory retirement age, as does the DP model. If a set A of ages of engines in the initial fleet is given, then the model requires data for u and v for as large as $\mu+\mathrm{T}$, where μ is the maximum age in A .

Using the above definitions, the IP is formulated as:
minimize

$$
\begin{equation*}
\sum_{t=1}^{T}\left\{P_{t}+u_{1}\right) y_{t}+\sum_{a \varepsilon A}\left[u_{a+t}\left(Q_{a}-\sum_{\tau \leq t} x_{a t}\right)-v_{a t} x_{a t}\right]+\sum_{\tau<t} u_{t-\tau+1} y_{\tau} \tag{14}
\end{equation*}
$$

14
The term $\sum_{t=1} \sum_{a \varepsilon A} u_{a+t} Q_{a}$ in the objective function (C-1) does not affect the minimizing values of $x_{a t}$ and y_{t}, but it must be included to calculate the minimum value of (C-1). Also, discounting has been omitted for simplicity and could clearly be implemented in the model.
subject to

$$
\begin{gather*}
\sum_{t=1}^{T} x_{a t} \leq Q_{a} \quad(a \varepsilon A), \tag{C-2}\\
y_{t} \leq M M_{t}(t=1, \ldots, T), \tag{C-3}\\
\sum_{a \in A} Q_{a}+\sum_{T \leq t}\left(y_{T}-\sum_{a \varepsilon A} x_{a \tau}\right) \geq D_{t} \quad(t=1, \ldots, T) \tag{C-4}\\
x_{a t}, y_{t} \text { nonnegative integers }(a \varepsilon A, t=1, \ldots, T) \tag{C-5}
\end{gather*}
$$

The expressions \{ \} summed in (C-1) are the costs for the individual years t. Each of these is calculated from the following components:

$$
\begin{aligned}
\left(P_{t}+u_{1}\right)= & \text { the cost of purchasing an engine and } \\
& \text { maintaining it during its first year } \\
& \text { of service, }
\end{aligned}
$$ $u_{a+t}\left(Q_{a}-\sum_{\tau \leq t} x_{a t}\right)=$ the maintenance cost in year t of engines, initially of age \underline{a}, which remain in the fleet,

$$
\begin{aligned}
v_{a t} x_{a t}= & \text { the revenue from retiring } x_{a t} \text { engines, initially } \\
& \text { of age } \underline{a} \text {, in year } t, \\
\sum_{\tau<t} u_{t-\tau+1} y_{\tau}= & \text { the maintenance cost in, year } t \text { of engines } \\
& \text { purchased during years } \tau=1, \ldots, t-1 .
\end{aligned}
$$

Constraint (C +2) specifies that the total number of engines retired, initially of age \underline{a}, not exceed the initial number of age a engines, and constraint ($C-3$) restricts to at most M_{t} the number i. engines purchased in year t. Constraint (C-4) requires that the number of engines in the fleet in year t (after purchases and retirements C-3
in year t) to be at least D_{t}. If d is the number of distinct ages in the set A of ages, then the IP in (C-1) through (C-5) has $\mathrm{d}+2 \mathrm{~T}$ constraints and $(\mathrm{d}+1) \mathrm{T}$ variables.

The reader may have observed that the IP described above does not specify any retirement order. The condition that engines be retired in order of decreasing age may be imposed by the following suggestion of A. J. Goldman. This uses (d - 1)T additional variables and $2(\mathrm{~d}-1) \mathrm{T}$ additional constraints :

$$
\begin{align*}
& \sum_{\alpha<a} x_{\alpha t} \leq\left(\sum_{\alpha<a} Q_{\alpha}\right) \delta_{a t}, \tag{C-6}\\
& Q_{a}-\sum_{\tau \leq t} x_{a \tau} \leq Q_{a}\left(1-\delta_{a t}\right), \tag{C-7}
\end{align*}
$$

with $\mathrm{a} \varepsilon \mathrm{A}, \mathrm{a} \neq \min \{\alpha \mid \alpha \varepsilon \mathrm{A}\}$ and $\mathrm{t}=1, \ldots, \mathrm{~T}$. The $0-1$ variable $\delta_{\text {at }}$ acts as a "switch": if $\delta_{\text {at }}=0$, then the retiring of engines of initial age less than \underline{a} in year t is prohibited by ($\mathrm{C}-6$), and ($\mathrm{C}-7$) is non-constraining, whereas if $\delta_{\text {at }}=1$ such engines may be retired since (C-7) together with (C-2) would imply that all Q_{a} engines, initially of age a, have been retired, and the right side of (C-6) is non-constraining in view of (C-2). Of course, the constraints (C-6) and (C-7) may be introduced only as they are needed. Thus if the IP (C-1) - (C-5) yields a solution in which retirements are partially "out of order," (C-6) and (C-7) would be imposed only for the exceptional pairs (a, t). The nature the solution will depend on the data, and if these are "reasonable" one might expect the "order"

$$
\mathrm{C}-4
$$

condition to hold on its own.
(a)

[^0]: Headquarters and Laboratories at Gaithersburg, Maryland, unless otherwise noted: mailing address Washington. D.C. 20234.
 = Located at Boulder. Colorado 80302 .
 Located at 5285 Port Royal Road, Springfield, Virginia 22151.

[^1]: ${ }^{4}$ Constant salvage values (with respect to age) can be represented by subtracting them from U_{0}.

[^2]: 5 That D_{t} adequately measures the demand for fire service is a simplification.

[^3]: ${ }^{6}$ The convention is adopted that an a-year-old engine in the initial fleet enters its $(a+1) s t$ year of service at $t=1$. It is assumed, for simplicity, that decisions are made at the beginning of a year, and that $a \geq 1$.

[^4]: Whenever the lower limit of a summation exceeds the upper limit, the 8 summation is taken to be zero. This is a standard notational convenience. 8 This assumption of retiring "oldest" first" is supported by the Washington, D. C. Fire Department.

[^5]: ${ }^{9}$ This will be proven in Appendix A.

[^6]: ${ }^{12}$ A geometric depreciation is not required by the model. It is incorporated in the code, but can easily be modified with minor coding changes.
 ${ }^{13}$ Members of Fire Department staff advised that a planning period of more than five years is unreasonable.

[^7]: *Values have been rounded to the nearest dollar.

[^8]: メLT IS THE NJMニシマ OF RESJURCES P，IRCHASET POIOR TA YEART．
 ：XI（T）IS 1HE VJUBER UE VALJES XIT ASSJUES THOOJGH YEAR T．

