NATIONAL BUREAU OF STANDARDS REPORT

 10488
A COMPUTER MODEL FOR SIMULATING THE RESPONSE ACTIVITIES OF A FIRE DEPARTMENT

Prepared for

The Fire Research Program National Bureau of Standards
U.S. DEPARTMENT OF COMMERCE
national bureau of standards

NATIONAL BUREAU OF STANDARDS

The National Bureau of Standards ${ }^{1}$ was established by an act of Congress March 3, 1901. The Bureaư's overall goal is to strengthen and advance the Nation's science and technology and facilitate their effective application for public benefit. To this end, the Bureau conducts research and provides: (1) a basis for the Nation's physical measurement system, (2) scientific and technological services for industry and government, (3) a technical basis for equity in trade, and (4) technical services to promote public safety. The Bureau consists of the Institute for Basic Standards, the Institute for Materials Research, the Institute for Applied Technology, the Center for Computer Sciences and Technology, and the Office for Information Programs.

THE INSTITUTE FOR BASIC STANDARDS provides the central basis within the United States of a complete and consistent system of physical measurement; coordinates that system with measurement systems of other nations; and furnishes essential services leading to accurate and uniform physical measurements throughout the Nation's scientific community, industry, and commerce. The Institute consists of a Center for Radiation Research, an Office of Measurement Services and the following divisions:

Applied Mathematics-Electricity-Heat-Mechanics-Optical Physics-Linac Radiation ${ }^{2}$-Nuclear Radiation²-Applied Radiation ${ }^{2}$-Quantum Electronics ${ }^{3}$ Electromagnetics ${ }^{3}$-Time and Frequency ${ }^{3}$-Laboratory Astrophysics ${ }^{3}$-Cryogenics ${ }^{3}$.
THE INSTITUTE FOR MATERIALS RESEARCH conducts materials research leading to improved methods of measurement, standards, and data on the properties of well-characterized materials needed by industry, commerce, educational institutions, and Government; provides advisory and research services to other Government agencies; and develops, produces, and distributes standard reference materials. The Institute consists of the Office of Standard Reference Materials and the following divisions:

Analytical Chemistry-Polymers-Metallurgy-Inorganic Materials-Reactor Radiation-Physical Chemistry.

THE INSTITUTE FOR APPLIED TECHNOLOGY provides technical services to promote the use of available technology and to facilitate technological innovation in industry and Government; cooperates with public and private organizations leading to the development of technological standards (including mandatory safety standards), codes and methods of test; and provides technical advice and services to Government agencies upon request. The Institute also monitors NBS engineering standards activities and provides liaison between NBS and national and international engineering standards bodies. The Institute consists of the following technical divisions and offices:

Engineering Standards Services-Weights and Measures-Flammable FabricsInvention and Innovation-Vehicle Systems Research-Product Evaluation Technology-Building Research-Electronic Technology-Technical AnalysisMeasurement Engineering.
THE CENTER FOR COMPUTER SCIENCES AND TECHNOLOGY conducts research and provides technical services designed to aid Government agencies in improving cost effectiveness in the conduct of their programs through the selection, acquisition, and effective utilization of automatic data processing equipment; and serves as the principal focus within the executive branch for the development of Federal standards for automatic data processing equipment, techniques, and computer languages. The Center consists of the following offices and divisions:

Information Processing Standards-Computer Information-Computer Services -Systems Devclopment-Information Processing Technology.

THE OFFICE FOR INFORMATION PROGRAMS promotes optimum dissemination and accessibility of scientific information generated within NBS and other agencies of the Federal Government; promotes the development of the National Standard Reference Data System and a system of information analysis centers dealing with the broader aspects of the National Measurement System; provides appropriate services to ensure that the NBS staff has optimum accessibility to the scientific information of the world, and directs the public information activities of the Bureau. The Office consists of the following organizational units:

Office of Standard Reference Data-Office of Technical Information and Publications-Library-Office of Public Information-Office of International Relations.

[^0]
NATIONAL BUREAU OF STANDARDS REPORT

A COMPUTER MODEL FOR SMULATING THE RESPONSE ACTIVITIES FOR A FIRE DEPARTMENT

Patsy B. Saunders
Applied Mathematics Division (for the Technical Analysis Division) National Bureau of Standards

important notice

NATIONAL BUREAU OF S for use within. the Government. and review. For this reason, t whole or in part, is not authi Bureau of Standards, Washing the Report has been speciticall

Approved for public release by the Director of the National Institute of Standards and Technology (NIST) on October 9, 2015.
ess accounting documents intended
s subjected to additional evaluation e listing of this Report, either in he Office of the Director, National by the Government agency for which copies for its own use.

U.S. DEPARTMENT OF COMMERCE

This project was funded
by the Fire Research Program, National Bureau of Standards.

$$
\begin{gathered}
\vdots-\hbar \\
\leqslant
\end{gathered}
$$

ABSTRACT

This paper discusses a computer model for simulating the response activities of a fire department. It presents the model from the viewpoint of a user who may wish to run the model "as is" or change it to resemble more closely the fire department of a particular city. The paper assumes some knowledge of SIMSCRIPT, the language in which the program is written.

Keywords: fire department, simulation, SIMSCRIPT.

Table of Contents

Page

I. INTRODUCTION 1
II. EVENTS AND SUBROUTINES 8
III. DEFINITION OF MAJOR VARIABLES 12
A. The Temporary Entity CASE 12
B. The Temporary Entity ALARM 13
C. The Temporary Entity RUN 15
D. Event Notices AVAIL, NUCRU, NUDAY 16
E. Event Notices ARVSN, SNDBK, FINISH, and HOME 16
F. The Permanent Entity RES 17
G. The Permanent Entity KINDS 18
H. The Permanent Entity STATN 19
I. The Permanent Entity SHIFT 19
J. The Permanent Entity WDAY 19
K. The Permanent Entity CITY 19
L. The Permanent Entity REST 20
M. The Permanent Entity CATEG 20
N. The Permanent Entity FREE 20
O. General System Variables 20
IV. INITIALIZATION DECK 22
A. System Specifications Card 22
B. Initial Conditions Deck 23
V. EXOGENOUS EVENT TAPE 39
VI. OUTPUT 41
VII. OPERATING INSTRUCTIONS 51
A. Run Deck for Rumning the Model "As Is" 51
B. To Recompile a Portion of the Program 54
VIII. COMPUTATIONAL RESULTS AND FUTURE DEVELOPMENT 56
REFERENCES 58
APPENDIX: COMPUTER LISTINGS OF FIDOS 2 A-1

LIST OF FIGURES

Page
Figure VI-1: Sample Output Showing Case
Occurrences and Terminations 42
Figure VI-2: Sample of General Summary Output 43
Figure VI-3: Sample of Summary Output Indicating Resource Work Load and Response Capability 44
Figure VI-4: Sample of Summary Output Showing Breakdown of Resource Utilization
by Day of the Week 45
Figure VI-5: Sample of Output Summarizing Fire Service by Type of Case 46
Figure VI-6: Sample of Output Showing Distribution of Response Times for the Last Arriving Engine 47
Figure VI-7: Sample of Availability Output 48
Figure VII-1: Sample of Run Deck to Execute Program "As Is" 53
Figure VII-2: Sample Run Deck for Recompilation 55
Figure VIII-1: Comparison of Two Basic Runs 57

I. INTRODUCTION

In conjunction with project PHOENIX it was desired to simulate the response activities of the fire departments of various cities. In order to accomplish this aim, a computer program or mode1, FIDOS2, was developed. The language in which the program is written is SIMSCRIPT. This paper will discuss the model from the viewpoint of a user who may wish to use the model "as is" or perhaps modify it to model more closely the fire department of a particular city. Some knowledge of SIMSCRIPT will facilitate the reading, particularly in Sections IV and V. References [2 and 3] are major documentations of the SIMSCRIPT language. A reader familiar with simulation in general can probably read and understand the rest of the paper.

In a very general sense, the model may be described as follows: a casc enters the system, i.e., the fire department receives a call for service. The assignment portion of the model acts as the dispatcher by determining which resources will serve the case. The selected resources then travel to the case and remain at the scene of the case for a specificd length of time. At the end of this specified time, the resources leave the scene and return to their stations. When the last resource leaves the scene of the case, the case is terminated.

Unlike the RAND simulation model for the Fire Department of New York City [1], FIDOS2 is quite simple and is not designed to model any particular fire department. As the model now stands, it is best suited to model fire departments in relatively small cities. FIDOS2 does not
now include provisions for such things as the queuing of cases at the dispatcher, delayed responses resulting when a case occurs in an area whose resources are already busy, interruption of service to "low priority" cases when an urgent case occurs, or "moving up" resources into other stations in areas where most of the resources are out on call. These provisions, although obviously important in modeling some fire departments, have not been of major concern in the applications of the model thus far. The inclusion of such provisions in the model would over-complicate the systems simulated to date. It should be noted, however, that the modular structure of FIDOS2 was developed to minimize the difficulty associated with adding such provisions to adapt the model to a particular fire department.

The purpose of the simulation model is to estimate measures of the ability of the fire department to respond "quickly" when needed under various system configurations. The output of the model gives measures of response time, utilization, and availability which can be used to indicate to what extent proposed changes in the system would improve the overall service.

The basic system parameters which can be varied via input are:

1. The number and locations of fire stations.
2. The amount and location of equipment (only engines and trucks are now considered).
3. The average speeds at which vehicles travel in emergency and non-emergency situations.
4. The starting delay, i.e. the time between the notification of a resource that its services are needed and the resulting departure of the resource from its station.

By revising one subroutine in the code, it is possible to change the dispatching or assignment policy used. The policy which is presently coded will be discussed in Section II (under the description of subroutine RESAP) .

Two important terms should be clarified at this time. First, throughout the remainder of this paper the word resource will be used frequently. As the model is coded, a resource can be either a single piece of equipment, i.e. an engine or a truck, or else a company, i.e. an engine company or a truck company, where the individual pieces of equipment comprising the company act as a single unit with respect to response time and time spent at the scene of a case. Either interpretation can be applied (so long as it is applied consistently) in defining the situation to be simulated and in interpreting the outputs of the model.

The second point concerns the use of the term alarm. An alarm is a request for one or more resources. All resources associated with an alarm are dispatched at the same time and remain at the scene of the case for the same length of time. If they come from different locations they will (in general) arrive at the scene at different times and will therefore leave the scene at different times. Thus a case requiring three engine resources and two truck resources, a!l of which are requested at the same time and will stay on scene the same length of time, could be input either with one
alarm requesting three engines and two trucks, or with five alarms each requesting one resource of the given type.

The cases to be served by the fire department being simulated are input to the model via the Exogenous Events Tape. The format of the tape is discussed in Section V. The data on this tape are derived from reports: logged by the fire department being simulated. A pre-processor prooram must generally be written to extract the data from the reports and put them in the appropriate format. One very important conclusion drawn from this study thus far is the need for standardized reporting forms. Since the data and format of the report forms vary among fire departments, a detailed discussion of a general preprocessor is meaningless. Until such time as standardized reporting forms are used, each fire department to be simulated requires a different preprocessor. The help of the fire department will be useful in deriving the required data from the reported data. The following list gives the case attributes required as input to the model.

1. The day and time the case occurs.
2. An identification number for the case, such as its log number.
3. The number of alarms for the case.
4. The location of the case, in (x, y) coordinates.
5. A number indicating the type of case, e.g. public service, accidental alarm, fire, etc.
6. The time of occurrence, the on scene time (service time excluding travel time to and from the case), the number of engine resources, and the number of truck resources, for every alarm of the case. It should be noted that the Exogenous Events Tape could be reduced. It is possible to have an endogenous event corresponding to the occurrence of a case where the time between such events is sampled from a distribution, e.g. negative exponential. The \log number for the $I-t h$ incoming case could be I, and the remaining case and alarm attributes could be gotten by sampling distributions derived from historical data. This arrangement has the advantage of allowing the user to vary the case scenario so as to answer questions such as " "How does the system perform if the number of false alarns decreases, for example after a community relations program has been initiated?" or "What is the effect on availability and response time if the number of serious cases (cases requiring many resources) increases by ten percent?" Using three months' data (approximately 900 cases) from the fire department records for the city of Alexandria, Virginia, it has been shown in [4] that the times between case occurrences do follow a negative exponential distribution. If it is desired to simulate other than historical cases, it will be necessary to develop probability distrinutions for the case attributes based on historical records and to verify the distributions hypothesized for the city being simulated. These distributions could then be included in the model, thereby reducing the Exogenous Events Tape so that it contains only the events which start and stop the simulation.

Implicit in the model are several major assumptions concerning the locations of resources and cases, and the network over which resources travel to and from cases. First, it is assumed that a grid has (conceptually) been placed over the city being simulated. As the model is now coded, the cells of the grid are assumed to be square. (This restriction was imposed because of the particular grids used in coding the case locations of the cities thus far simulated. The data were collected prior to the development of FIDOS2.) For the cities simulated thus far, all cases occurring within a cell were pre-coded as occurring at the center of the cell. The station locations specified via the initial Deck must be defined relative to the same grid.

Second, a "metropolitan metric" is used when determining the distance d between two points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$. Thus d is calculated as

$$
\mathrm{d}=\left|\mathrm{x}_{1}-\mathrm{x}_{2}\right|+\left|\mathrm{y}_{1}-\mathrm{y}_{2}\right|
$$

It is assumed that the speed of travel is the same in both the x and y directions so that travel time is simply $\mathrm{d} /$ speed, where the speed depends on the type of case being served. Only two speeds are now used in the model. The slower, non-emergency speed is used for cases of type 1 (public service), and also when returning to the station from all cases.

Finally, mention should be made of the paths over which resources travel to and from cases. In general, there are numerous routes of distance d, as calculated previously, between $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$. llowever, the model assumes that routes are parallel to the coordinate axes and that the entire distance in one direction is traveled prior to
travelling any distance in the other direction. There is a probability of 0.5 associated with traveling first in the x-direction.

II. EVENTS AND SUBROUTINES

The simulation model involves three exogenous events, eight endogenous cvents, and five subroutines.

Exogenous Event START occurs when the simulation begins. It initializes several variables, and creates and causes an event NUDAY to end the first day, an event NUCRU to end the first shift, and an event AVAIL to occur a half hour after the simulation begins.

Endogenous Event AVAIL occurs every hour on the half hour. It counts the number of idle engine resources. A resource is termed "idle" if it is neither enroute to a case nor on the scene of a case. The counts obtained by this event are used to form the availability distribution for each shift. Each AVAIL also causes another event AVAIL to occur an hour later.

Endogenous Event NUCRU occurs at the end of every shift. (The number of shifts per day and the time that each shift ends are specified via the initialization deck.) It accumulates the utilization of the individual resources by shift, and causes another event NUCRU to occur at the end of the next shift.

Endogenous Event NUDAY occurs every day at 2400 hours. It accimulates utilization of the individual resources by day of the week and causes another event NUDAY to occur 24 hours later.

Exogenous Event ALERT occurs whenever a case occurs. It is the input routine for the case attributes. It creates and causes an event ALARM to occur at the specified time for each alarm associated with the case. It also prints the input attributes of the case.

Endogenous Event ALARM occurs when one or more resources are requested to respond to the scene of a case. It calls subroutines ARR and RESAP to determine which specific resources will serve the alarm, and subroutine SERVE which assigns the resources to the alarm.

Subroutine ARR determines the time to respond to the scene of a case for every idle resource. If the company is idle at its station (as opposed to idle returning from a case), a fixed delay time specified via the initialization deck is added to the travel time. The locations of resources enroute back to their stations are determined via calls to subroutine WHERE. The resources are filed into a set RSET ranked on response time, i.e. the resource which can arrive soonest is the first member of the set.

Subroutine WHERE determines the location of a moving resource. The calculations are based on the speed at which the resource is traveling, the coordinates of the origin of the resource, the coordinates of the destination of the resource, the time at which the resource departed, and a random number indicating whether the resource first travels in the x direction or the y direction.

Subroutine RESAP is concerned with the resource assignment policy. The policy now used in the model selects those resources of each type which are idle and can arrive on the scene the quickest. The number of resources of each type is an attribute of the ALARM supplied on input. The engine resources to be assigned are filed into the set ESET (AiARM) and the truck resources are filed into the set TSET (ALARM). If fewer than the requested number of resources are available, a message is printed
indicating that an incomplete response is being made. The number of such incomplete responses is output at the end of the run.

Subroutine SERVE actually assigns the resources to the alarm. It sets up various bookkeeping parameters and cancels any event, e.g. HOME, which may have been scheduled for the resource prior to the present assignment. It changes the status of the resource to "busy going to a case." Usually it creates and causes an event ARVSN to occur when the resource arrives at the scene of the case. If, however, the on scene time as input for the alarm is negative, it creates an event SNDBK to occur after the resource has traveled half the distance to the scene of the case. The motivation for this provision arose from examination of recorded data from several fire departments. In some instances the time of departure and the time back "on the air" logged in by the individual companies indicated that the company never actually arrived at the scene of the case. This could reasonably occur if another resource arrived at the scene and reported back to the dispatcher that less than the requested amount of equipment was needed. The excess resources would then be sent back to their stations.

Endogenous Event SNDBK occurs when a resource is told to return to the station before reaching the scene of a case. It determines the location of the resource via calls to subroutine WHERE, and creates and causes an event FINSH to occur immediately, thereby relieving the resource of its assignment.

Enclogenous Event ARVSN occurs when a resource arrives at the scene of a case. The status of the resource is changed to "busy at the scene" and the location of the resource is changed to the location of the case. Various statistics on response time for the case and the resource are collected. ARVSN creates and casues an event FINSH to occur at the end of the on scene time specified for the alarm on input.

Endogenous Event FINSH occurs when a resource finishes serving a case. The status of the resource is changed to "idle returning." Case utilization statistics are collected here. FINSH creates and causes an event HOME to occur when the resource arrives back at the station. If all resources assigned to a case have completed their service, subroutine TERM is called to terminate the case.

Subroutine TERM occurs when a case is terminated. Various statistics for measuring the service of the case (in terms of time only) are collected. TERM prints out the case number, and the date and time of termination.

Endogenous Event HOME occurs when a resource arrives at its assigned station. The location of the resource is changed to the location of the station. The status of the resource is changed to "idle at the station." Resource utilization statistics are collected here.

Exogenous Event ENDSIM occurs when the simulation is to end. It averages various data, converts data to appropriate units, and outputs the statistics summarizing the simulation. A description of the output is given in Section VI.

III. DEFINITIONS OF MAJOR VARIABLES

The following list will define all entities, attributes, event notices, and major variables appearing in the Definition Deck. Any other variables used in the simulation are local variables used in at most one subroutine or event and are of no real concern to the average user. Attributes will be listed beneath the appropriate entity. In the case of temporary entities and event notices, a diagram of the storage layout will follow the definitions.
A. The Temporary Entity CASE

CASE - a call to the fire department for service.
ASET(CASE) - the set of all ALARM's associated with the CASE.
AVRES(CASE) - the ave rage response time for the CASE. The average is taken over all resources responding to the case.

CNRES(CASE) - the total number of resources arriving on the scene of the CASE.

FASET(CASE) - the first ALARM in ASET (CASE).
FIRST(CASE) - the first resource to arrive on the scene of the CASE.
NCOMP (CASE) - the number of resources that have completed their service to the CASE.

NECO(CASE) - the number of engine resources needed for the CASE. NOALM(CASE) - the number of ALARMS for the CASE.

NOCAS(CASE) - the user-suppiied identification number, e.g. log number, for the CASE.

NTCO(CASE) - the number of truck resources needed for the CASE.
OCCUR(CASE) - time the CASE occurs.
TOTME (CASE) - the total number of resource-days used by the CASE.
TWAIT(CASE) - the time between OCCUR(CASE) and the arrival of the first resource on the scene.

TYPE (CASE) - the number indicating the kind of CASE.
XC(CASE) - the x-coordinate of the CASE location.
YC(CASE) - the y-coordinate of the CASE location.

Record	Word	Storage Layout for Attributes of CASE			
0	1	FASET			
	2	NOCAS			
	3	OCCUR			
	4	NECO	NTCO	TYPE	FIRST
	5		XC		
	6				
	7		TOTME		
	8		NOALM	NCOMP	CNRES

B. The Temporary Entity ALARM

ALARM - a request for resources to be sent to serve a CASE. This also acts as an event notice occurring at the time of request.

CAS (ALARM) - the SIMSCRIPT identification number assigned to the CASE with which the ALARM is associated.

ESET(ALARM) - the set of engine resources which will serve the ALARM.

FESET (ALARM) - the first engine resource in ESET (ALARM).
FIRST(ALARM) - the first of the resources (requested by ALARM) to arrive on scene.

FTSET(ALARM) - the first truck resource in TSET (ALARM).
NECO (ALARM) - the number of engine resources needed for the ALARM.
NTCO (ALARM) - the number of truck resources needed for the ALARM.
NUMBR(ALARM) - the sequential number of the ALARM with respect to the case, i.e. the first ALARM is the one which chronologically occurs first.

OCCUR(ALARM) - the time difference between the case occurrence and the alarm occurrence, on input. It is immediately changed to the time of occurrence of the alarm.

OST(ALARM) - the length of time which all resources associated with the ALARM must remain on the scene of the case. If OST <0, the resources are sent back to their home stations after traveling half the distance toward the scene.

SASET(ALARM) - the successor of ALARM in ASET (CAS (ALARM)). TSET(ALARM) - the set of truck resources which will serve the ALARM. TWAIT (ALARM) - the time between OCCUR (ALARM) and the arrival on scene of the first resource associated with ALARM.

$\underline{\text { Record }}$	Word	Storage Layout for Attributes of ALARM			
0	1	Reserved by SIMSCRIPT Timing routines			
	2				
	3	OCCUR			
	4	NECO	NTCO	NUMBER	FIRST
	5	CAS		SASET	
	6	TWAIT			
	7	FESET		FTSET	
	8	OST			

C. The Temporary Entity RUN

RUN - temporary entity created when a resource is out of the station.
DEP(RUN) - the time at which the resource associated with the RUN left its last location.

IDEV (RUN) - SIMSCRIPT-assigned identification number for the next endogenous event scheduled for the resource associated with the RUN.
$\operatorname{IDIR}(\mathrm{RUN})$ - a flag to indicate the path the resource follows. If IDIR $=0$, the entire x-distance is traveled first. If $\operatorname{IDIR}=1$, the y-distance is traveled first.

NEXT(RUN) - A code number to determine which type of endogenous event is next to occur for the RUN. $\operatorname{ARVSN}=1$; $\operatorname{FINSH}=2$; HOME $=3 ; \operatorname{SNDBK}=4$.

TOUT (RUN) - the time at which the resource associated with the RUN left its station.

XDEST(RUN) - the x-coordinate of the location toward which the resource is moving. If $\mathrm{XDEST}=0$ and $\mathrm{YDEST}=0$, the resource is on scene.

YDEST (RUN) - the y-coordinate of the location toward which the resource is moving.

Record

Word	Storage Layout for Attributes of RUN		
1	DEP		
2	XDEST		
3			
4	NEXT	IDIR	IDEV

D. Event Notices AVAIL, NUCRU, NUDAY

The purpose of these three events is explained in Section II. They have no attributes and the only storage needed are the two words required for the SIMSCRIPT timing routines.
E. Event Notices ARVSN, SNDBK, FINISH, and HOME

The purpose of these four events is explained in Section.II. Each requires four words of storage, two of which are used by the SIMSCRIPT timing routines. The fourth word is blank. The third word is occupied by two attributes which have the same names for each of the four events. RESNO - the number of the resource for which the event is scheduled. ALMNO - the SIMSCRIPT identification number of the alarm associated with the event.

F. The Permanent Entity RES

RES - a resource.
CMXRS (RES) - the identification number of the case for which RES's 1argest
response time (during the simulated period) occurred.
CRES(RES) - the response time of RES for the case it is currently serving. DAILY(RES, WDAY) - the average utilization of RES on the day of the week WDAY.

DUTIL(RES) - the utilization of RES on a single day. This is used in the process of determining DAILY.

IB(RES) - a flag to indicate the status of the RES:1 = idle at the station; 2 = idle returning to the station; $3=$ busy going to a case; $4=$ busy on the scene of a case.

IRUN(RES) - the SIMSCRIPT-assigned identification number of the RUN associated with RES. If RES is in the station, $\operatorname{IRUN}($ RES $)=0$. MXRES(RES) - the maximum time it took for RES to respond when called. NALAM(RES) - the number of ALARMS for which RES actually arrived at the scene.

NMXRS(RES) - the number of the ALARM for which RES had its maximum response time.

PRSET(RES) - the predecessor of RES in RSET.
RALAM(RES) - the SIMSCRIPT identification number for the ALARM being served by RES.

RUTIL(RES) - the total number of hours that RES is out of the station. RWAIT (RES) - the total response time for RES.

SESET(RES) - the successor of RES in ESET.
SRSET(RES) - the successor of RES in RSET.
STN(RES) - the station to which RES is assigned.
STSET(RES) - the successor of RES in TSET.
SUTIL(RES, SHIFT) - the total time RES is out of the station during shift SHIFT.

TARR(RES) - the time it would take for RES to arrive at the scene of a case. Resources are put into RSET ranked by this attribute.

TUTIL(RES) - the total time RES is out of the station in the current shift. This is used in calculating SUTIL.

TYP(RES) - a coded number indicating the type of RES. $1=$ engine; 2 = truck.

XR(RES) - the x-coordinate of the location of RES.
YR(RES) - the y-coordinate of the location of RES.
G. The Permanent Entity KINDS

KINDS - a type of case which can occur
AVTME(KINDS) - the average number of resource-hours required to serve cases of type KINDS.

AVTWT(KINDS) - the average first response time for cases of type KINDS. CKIND(KINDS) - the number of cases of type KINDS which occurred. ELAPS(KINDS) - the average total duration of cases of type KINDS. (Duration is defined as the time difference between the original notification of the fire department about the case and the departure of the last resource from the scene of the case.)

IDTYP(KINDS) - a six-character name to be used on output to identify the type KINDS.
H. The Permanent Entity STATN

STATN - a fire station
XS(STATN) - the x-coordinate of the location of STATN.
YS(STATN) - the y-coordinate of the location of STATN.
I. The Permanent Entity SHIFT

SHIFT - a period of time during the day.
FREQ2 (FREE, SHIFT) - the number of times during SHIFT that FREE engine resources were observed to be idle.

SUTIL(RES, SHIFT) - described under RES.
TME (SHIFT) - the hour of the day at which SHIFT ends.
TSHFT(SHIFT) - the total amount of simulated time occurring during SHIFT.
J. The Permanent Entity WDAY

WDAY - a day of the week.
DAILY(RES, WDAY) - described under RES.
CDAYS (WDAY) - the total number of days WDAY simulated.
K. The Permanent Entity CITY

CITY - the name of the city whose fire department is being simulated. NCITY is the number of computer words required to store the name of the city. (One computer word equals six alphanumeric characters.)

NAME (CITY) - the actual characters used in the name of the city. For example, for the city Alexandria, Va., NCITY $=3$ and $\operatorname{NAME}(1)=" \operatorname{ALEXAN} ", \operatorname{NAME}(2)=" D R I A, \Delta ", \quad$ and $\operatorname{NAME}(3)=$ "VA. $\Delta \Delta \Delta^{\prime \prime}$, where Δ indicates "blank."

L. The Permanent Entity REST

REST - a resource type.
TYPER(REST) - a six-character name for REST to be used on output, e.g. "ENG CO"。
M. The Permanent Entity CATEG

CATEG - a cell in the frequency distribution for response time of the last arriving resource.

CLIM(CATEG) - the right hand end point of the interval defining cell CATEG.

FREQ1 (FREE, CATEG) - the number of times (for cases using FRFE engine resources) that the response time for the FREE-th arriving engine resource fell into cell CATEG.
N. The Permanent Entity FREE

FREE - a number of possible idle engine resources, Since as few as 0 and as many as NOENG engine resources could be idle, NFREE $=$ NOENG +1 .

FREQ1 (FREE, CATEG) - defined under CATEG.
FREQ2 (FREE, SHIFT) - defined under SHIFT.
0. General System Variables

AVAVR - an average "average response time," i.e. the average resnonse
time per case is summed and divided by the number of cases.
CASES - the number of cases that were completed.
CINC - the width of the cells of the frequency distribution of the responsc time of the last arriving engine resource.

CMXTW - the user-supplied identification number of the case having the maximum first response time.

DEBUG - a flag to print or surpress intermediate output for use in debugging the model. $1=$ print debug output; $0=$ no debug output.

DELAY - the length of time it takes for a resource idle at the station to prepare to leave the station.

FRSET - the first resource in RSET.
IDAY - the index of the day of the week on which the simulation begins; 1 = Monday; $2=$ Tuesday, etc.

INSUF - the number of times that there were not enough idle resources to satisfy the needs of an ALARM.

LRSET - the last resource in RSET.
MXTWT - the maximum first response time over all cases in the simulation.
NOENG - the number of engine resources.
PSHFT - the index of the present shift.
RMXTW - the resource associated with the maximum first response time in the simulation.

SP1 - the speed at which resources travel in emergency situation. The units are "grid segments per day."

SP2 - the speed at which resources trave1 in non-emergency situations. The unit are "grid segments per day"."

TLAST - the time at which the last previous shift ended and the present shift began.

IV. INITIALIZATION DECK

The data deck consists of the system specifications card, followed by the initial conditions deck, a blank card, and the exogenous events deck.

A. System Specifications Card

The contents and format of the system specifications card are as follow:

Columns
1 The number " 1 ". printed. and 5.

Contents

 If non-blank, the initial conditions deck will heMaximum array number (as shown in the definition deck) as a right-justified integer. The present value is 64. Parameters which set the number of minutes per hour, hours per day, root to be used by the random number generator, and unit for reading the initial conditions deck. If left blank, the values will be $60,24,1$,

Right-justified integer giving the logical unit from which to read the exogenous event deck. If left blank, it is assumed to be 5, the card reader.

The logical unit for report generator output. There are no report generators used in FIDOS2.

Right-justified integer giving the number of lines per printed page. The maximum value is 59. If blank, it is set to 55 .

B. Initial Conditions Deck

The initial conditions deck serves to assign initial values to every array specified in the definition deck. The format of the initialization cards is very rigid. The reader is referred to Chapter 14 of [2]. Throughout the following table it shall be understood that all numbers are rightjustified integers in the indicated columns. The term "format" appearing as the content of columns $50-66$ on some cards refers to the format in which the following data cards are to be read. The particular format used is left to the discretion of the user, although an example is provided to show the type of format e.g., I, U, H, etc., which is needed. All format are leftjustified in the field. The comment field, columns 67-80, may contain any comment the user desires. In the following example, the name of the variable is the comment unless the card refers to more than one variable such as on card 3.

Initialization

Card	Columns	Content
1	4	The number "1."
	12	The letter "R."
	50-66	Number of resources in the run.
	67-80	Comment, e.g. "NRES."
2	4	The number "2."
	10	The number "l."
	12	The letter "R."
	15-18	Number of resources in the rum.
	22	The number "1."
	34	The number "4."

Columns	$\frac{\text { Contents }}{50-66}$
$67-80$	Format, e.g. "10(I2)."
Comment, e.g. "IB."	

Data cards giving the initial status of each resource must follow card 2. See the explanation of IB in Section III.

3
4 The number "3."
8 The number "4."
10 The number " 1. "
13 The letter "Z."
15-18 Number of resources in the run.
22
34
67-80
4
10
The number " 1. "
12
The letter "R."
15-18 Number of resources in the run.
22
34
50-66
67-80
The number " 1. "
The number " 4. "
Format, e.g. "10(I2)."
Comment, e.g. "TYP."
Data cards giving the type of each resource follow card 4 . See page 18 for the explanation of TYP.

Initialization
Card
Columns
4

10

12

22
34
50-66
67-80

15-18 Number of resources in the run.
Content
The number " 6. "
The number "1."
The letter "R."

The number "1."
The number "2."
Format, e.g. "10(U3.2)."
Comment, e.g. "XR."

Data cards giving the x-coordinate of the initial location of each resource follow card 5.

6

4	The number "7."
10	The number "1."
12	The letter "R."
$15-18$	Number of resources in the run.
22	The number "1."
34	The number "2."
$50-66$	Format, e.g. "10(U3.2)."
$67-80$	Comment, e.g. "YR."

Data cards giving the y-coordinate of the initial location of each resource follow card 6.

7
7-
$7-8$
1
1

4

- 8

The number " 8. "
The number "13."
The number " 1. "
The letter "Z."

Columns
15-18
22
34
67-80
8

3-4

10
12
15-18
22

34

50-66 Format, e.g. "10(I2)."
67-80

Number of resources in the rum.
The number " 1.0
The number " $2 . "$
Comment
The number "14."
The number "1."
The letter "R."
Number of resources in the rum.
The number " 1. "
The number "4."

Cormment, e.g. "STN."

Data cards following card 8 give the number of the station to which each resource is initially assigned.
$3-4$
12
$50-66$

$67-80$
$3-4$
12
$50-66$

The number "15."
The letter "R."
The speed at which resources travel in emergency situations, a floating point number in "grid segments per day".

Comment, e.g. "SP1."
The number " 16. "
The letter "R."
The speed in "grid segments per day" at which
resources travel in non-emergency
situations; a floating point number.

Comment, e.g. "SP2."
The number " 17. "
The number "19."
The letter "Z."
Corment.
The number "20."
The number " 22. "
The number "1."
The letter "Z."
Number of resources in the run
The number "1."
The number " 2. "
Comment.
The number " 23. "
The letter "R."
The number of kinds of cases, left-justified.
Comment, e.g. NKINDS.
The number " 24.0
The letter "Z."
Conment, e.g. "CASES."

Initialization
Card
Columns
Data cards follow card 18 giving the x-coordinate of the location of each station.

19

$3-4$	The number "30."
10	The number "1."
12	The letter "R."
$15-18$	The number of stations in the run.
$21-22$	The number "28."
34	The number "2."
$50-66$	Format, e.g. "6(U3.2)."
$67-80$	Comment, e.g. "YS."

Data cards follow card 19 giving the y-coordinate of the location of each station.

20	3-4	The number "31."
	12	The letter "R."
	50-66	Left-justified integer number of shifts
		in each day.)
	67-80	Comment, e.g. 'NSHIFT."
21	3-4	The number "32."
	10	The number "2."
	13	The letter "Z."
	15-18	Number of resources in the run.
	22	The number "1."
	23-26	Number of shifts per day.

Initialization Card	Columns	Content
22	29-30	The number "31."
	34	The number "2."
	67-80	Comment, e.g. "SUTIL."
	3-4	The number "33."
	10	The number " 1.0
	13	The letter "Z."
	15-18	Number of resources in the run.
	22	The number "1."
	34	The number "2."
23	67-80	Comment, e.g. "DUTIL."
	3-4	The number "34."
	12	The letter ' ${ }^{\text {R }}$."
24	50	The number "7." (The number of days
		per week.)
	67-80	Comment, e.g. "NWDAY."
	3-4	The number " 35.0
	10	The number "2."
	13	The letter "Z."
	15-18	Number of resources in the run.
	22	The number " 1.0
	26	The number "7." (Days per week.)
	29-30	The number "34."
	67-80	Comment, e.g. "DAILY."

A data card giving the name of the city whose fire department is being simulated follows card 31.

Initialization
Card

Columns
50-66
67-80

Content

Format, e.g."2(A6)."
Comment, e.g. "Typer."

Data cards following card 35 give a six-character name for each resource type, e.g. "ENG CO."

Initialization Card	Columns	Content
	18	The number "7" (days per week).
	21-22	The number "34."
	67-80	Comment, e.g. "CDAYS."
40	3-4	The number "53."
	10	The number "1."
	13	The letter "2."
	15-18	Number of shifts per day.
	21-22	The number "31."
	67-80	Comment, e.g. "TSHIFT."
41	3-4	The number "54."
	10	The number " 1.0
	12	The letter "R."
	15-18	Number of kinds of cases.
	21-22	The number " 23.0
	50-66	Format, e.g."7(A6)".
	67-80	Comment, e.g. "IDTYP."

Data cards follow card 41 giving a six character name for each kind of case.

42 \begin{tabular}{rl}
$3-4$ \& The number "55."

12 \& The letter "R."

$50-66$

\quad

Indicator for debugging type output.

\end{tabular}

Columns	Content
3-4	The number "60."
12	The letter "R."
50-66	The cell width in minutes of the frequency distribution on response time of the last arriving engine resource; a leftjustified floating point number.
67-80	Comment, e.g. "CINC."
3-4	The number "61."
10	The number " 2. "
13	The letter "Z."
15-18	Number of possibly free engine resources.
21-22	The number "58."
23-26	Number of ce11s in frequency distribution of response times for last arriving engine resource.
29-30	The number "56."
30	The number "2."
67-80	Comment, e.g. '"FREQ1."
3-4	The number "62."
10	The number "2."
13	The letter "Z."
15-18	Number of possibly free engine resources.
21-22	The number " 58.0
23-26	Number of shifts in the day.

V. EXOGENOUS EVENTS TAPE

'The Exogenous Events Tape drives the simulation by starting the simulation, causing cases to occur, and stopping the simulation at the end of the run. The Exogenous Event Tape can be either a deck of computer cards or a magnetic tape containing card image records. For most runs, the number of cases is so large that the use of cards is impractical. In the following description, all numbers are right-justified integers unless otherwise specified. Cases must be in chronological order.

Card Number	Columns	Variable Name	Format and Content
1	3	---	The number ' 1 '"
	4-7	---	I4; the day the simulation begins (Usually ' 0 "'.)
	8-10	---	I3; the hour the simulation begins (Usually " 0 ".)
	11-12	-	I2; the minute the simulation begins (Usually ' 0 ".)
2	3	---	The number " 2 ".
	4-7	*	I4; the day the case is to occur.
	8-10	*	I3; the hour the case is to occur.
	11-12	*	I2; the minute the case is to occur.
	16-20	NOCAS (CASE)	I5; the identification number of the case.
	21-25	NALAM (CASE)	I5; the number of alarms for the case.
	26-30	XC(CASE)	D4.0; the x-coordinate of the case location.
	31-35	YC (CASE)	D4.0; the y-coordinate of the case location.
	36-40	TYPE (CASE)	I5; the index of the type of case.

(Note: The variables marked by "*" are stored in OCCUR(CASE).)

Card Number Columans	Variable			
Name	Format and Content			
3	$1-5$	OCCUR(ALARM)		M5; the time difference (in
:---				
minutes) between the occurrence				
of the case and the occurrence of				
the alarm.				

The format shown for the first four fields of card 3 is repeated four more times on card 3, i.e. card 3 can contain data for as many as five alarms. If more than five alarms are needed for the case, additional cards like card 3 are needed. Thus, each case consists of one card like card 2 and one or more cards like card 3. The last card of the Exogenous Events Tape has the following format:

Card Number	Variable Name	Format and Content	
Last	3	\cdots	The number " 3 ".
	$4-7$	\cdots	I4; the day the simulation is to end.
	$8-10$	$\ldots-$	I3; the hour the simulation is to end.
	$11-12$	\cdots	I2; the minute the simulation is to end.

VI. OUTPUT

The standard output from FIDOS2 consists of two main parts. The first part is simploy a record of case occurrences and terminations. It is uscful in examining the characteristics of the individual cases and in giving an indication of the congestion of the system at a particular time.

When the exogenous event ALERT occurs, the phrase 'Case Input" is printed followed on the same 1ine by the SIMSCRIPT identification number of the case, the case parameters input on the first 'card' for the case, and the time the cases occurs. On the following line or lines are the alarm number, time of occurrence, on scene time, number of engine resources, and number of truck resources for each alarm of the case. Each of these lines of output contains data for at most five alarms. When a case ends, i.e., when subroutine TERM is called, the routine prints the phrase 'End of Case" followed by the SIMSCRIPT identification number of the case, the time the case ends, and the case number spocified by the user on input. A sample of this type of output is given in Figure VI-1.

The basic output of the model consists of six pages of summary data. Examples of this output are shown in Figures VI-2 through VI-7. The first page (Figure VI-2) is a very general summary of the simulation. It identifies the city whose fire department is being simulated, NAME(I), for $I=1,2,3$; the total number of days simulated, DPART(TIME), where TIME is the time at which exogenous event ENDSIM occurs; the total number of cases completed, CASES; the mean average response time per case, AVAVR; the total case utilization in resource-hours (utilization by type of case is surmed over all types and stored in the local variable TOTAL for printing purposes) ; and the number of inconplete responses, INSUF
$5 \quad 106.20 .190 .00 .2301$
1630
1631
1632
1633 $\stackrel{5}{0}$? 1634
1635 0 2 1637
1638 $\stackrel{\theta}{0}$ 1640 \square
-
0
0
0
0
0
0
0
\vdots
\vdots
0
0
0
 .52
.20
36 42159107.09 .07
42159107.14 .29
42207107.15 .22
42207107.19 .55

42191108.01 .13
END OF CASE 42191806.07 .36
42375108.16 .59
42215108.17 .00
42215108.21 .22
42215108.22 .27
42215108.23 .49 $35 v 9$
$35 \vee 2$
0 3107.114 .014
$0 \quad 107.04 .040 .00 .1201$
0 5106.20 .19

Caselmpor 121'in :m, zCal LStz lnavi isvo 1 197.37.140.00.i4 10 CASE 1.8., 4 41591633 (10\%.7\%.410.31.27 1
 PASE IVP1it 427.07 1635
 Caje InPut 422.9716 .35 491 S12\% HCNNI jSV)

 Case InPut 421911640 109.151.189.130.15 1 1 CASE InPur 42215 1641

 CASE 1fPNT 4 42151644 $\begin{array}{rlr}1 & 104015.497 .77 .2510 \\ \text { CASE } & 1 \text { APUT } \\ \text { 4 } & 103751645\end{array}$
CASE 1.4PSY 42219 1645

 42215164%

$$
108.15 .480 .00 .470
$$

 3108.21 .16
2108.72 .17
2108.23 .15
2109.01 .34 I-I

$10^{256} 65^{\circ} 0000005122 \%$
$\begin{aligned} & 08.13 .080 .00 .08 \\ & 42343108.13 .21 \\ & 42215108.13 .37 \\ & 08.13 .500 .00 .590 \\ & 42215108.14 .52\end{aligned}$

NUABER OF UAYS SIMILATED	123
TUTAL IUMUER LF CASES SEKVED	915
MEAN AVERAJE MESPJ.JSE TIME (PER CASE)	3.06 MINIJTES.
TUIAL UTILIZATION	834.65 RESOURCE-HOURS
NUGIBER OF INSUFFICIENT RESPONSES	1

Figure VI-2
Sample of General Summary Output
\bullet.

Figure VI-3
Sample of Summary Output Indicating Resource Work Load and Response Capability

GREAKUCNI OF RE JOUYCE UTILILATIOA DATA

AVE゙てへ	URS	OF ST	$13 Y$	AF W		
リט1	いリヒ	W！ 0	Tifu	FiरI		
$0 \cdot 5.6$	U． 61	ก．7\％	0.47	0.97	SAT	SUN
1． 3.4	0.94	0.46	0.54	0.88	0．ค日	0.4
U．5，6	1．11	0.133	0.59	0.56	1．17	0.6
1．1）0	1.75	0.86	0.85	1.56 1.24	0．52	．
1． 32	1.34	1.31	0.93	1．23	1． 18 1． 18	0.9
U． 70	0.81	0.60	0.50	0.65	0．64	
$0 \cdot 37$	C．90	0.67	0.84	0.62	0.64	0.
0.91	0.65	0.63	0.55	0.79	0．69	0.
0.40	0.68	0.60	0.29	0.53	0.65	
0.33	0.58	0.28	0.31	0.30	0.79	0
U． 49	0.37	0.40	0.35	0.39	0.44	0.31

Figure VI－4
Sample of Summary Output Showing Breakdown of Resource Utilization by Day of the Week

Figure VI-5
Sample of output Summarizing Fire Service by Type of Case

rJリット

1 EHGO CASESFRES HEL FiNEO		2 ENG．CASES		3 ENG．CASES		4 Eng．CASES FREQ REL FREA		5 FNG．CAS－S	
		FREO	REL FQEQ	FREQ	Rel freq				
3	0．005s	0	0 ．	0	0.	0	0 ．	0	0.
3	0.0055	0	0.	0	0 ．	0	0.	0	0.
3	0.0142	0	0.	0	0 ．	0	0 。	0	0 ．
215	0.3931	1	0.0143	0	0.	0	0.	0	0 ．
116	（0． 2121	11	0.1571	43	0.1547	0	0 ．	n	0 ．
0	リ．	1	0.0143	0	0.	0	0.	0	0.
79	0.1335	12	0.1714	69	0.24 .92	0	0 ．	0	0.
73	0.133	3	0.1143	31	0.1115	0	0.	n	0.
9	0.4165	1	0.0143	3	0.0108	0	0.	n	0.
14	0.0329	11	0.1571.	16	0.0576	1	1.	0	0.
12	0.0219	10	0.1429	11	0.0 .396	0	0.	0	0.
0	U．	0	0.	0	0.	0	0 。	0	0.
5	N．0091	6	0.0857	10	0.0360	0	0.	0	0.
3	－0．003	2	0.0296	9	0.0324	0	0.	n	0.
0	0.	0	0.	0	0.	0	0.	0	0.
2	0.11037	1	0.0143	7	0.0252	0	0.	0	0.
1	U．U018	4	0.0571	9	0.0324	0	0.	0	0 ．
0	U．	0	0 ．	1	0.0036	0	0.	0	0.
0	U．	0	0.	17	0.0617	0	0.	0	0 ．
1	0.0018	0	0.	11	0.0396	0	0.	0	0.
0	0.	0	0.	0	0.	0	0 ．	0	0.
1	0.10018	0	0 。	1	0.0036	0	0.	n	0.
2	0.0037	0	0 ．	10	0.0360	0	0.	0	0.
0	0.	0	0.	1	0.00 .36	0	0.	0	0.
1	0.0016	0	0.	12	0.04 .3 ？	0	0.	0	0.
0	0.	0	0.	9	0.0 .324	0	0.	n	0.
0	U．	0	0.	0	0.	0	0.	n	0 ．
1	0.0018	0	0.	0	0.	0	0.	0	0.
u	0.	0	0 。	1	0.0036	0	0.	0	0.
0	0.	0	0.	0	0.	0	0 ．	0	0.
0	$1{ }^{\text {d }}$	0	0 ．	0	0.	0	0 。	0	0 。
0	u.	0	0.	0	0.	0	0.	n	0 。
0	0.	0	0.	$?$	0.0072	0	0 ．	n	0.
u	U．	0	0.	1	0.0036	0	0 ．	n	0.
0	u U	1	0.0143	0	0.	0	0 ．	0	0.
0	U．－	0	0 ．	0	0.	0	0.	0	0 ．
0	0 －	0	0 。	0	0.	0	0.	0	0.
0	10.	0	0.	0	0.	0	0 ．	0	0.
0	u ．	0	0.	0	0.	0	0.	0	0.
0	U．	1	0.7143	4	0.0144	0	0.3	n	0.
547		70		78		1		0	

Figure VI－6
Sample of Output Showing Distribution of Response Times for the Last Arriving Engine

AVATLABILITY

N.J. UF IULE	SHIFT 1		SHIFT?		SHIFT 3	
Einjo CO.	FREQ.	REL. FRES.	FRES.	REL. FPEQ.	FREN.	REL. FREA.
0	0	0 .	0	0 。	0	0.
1	2	0.0020	0	0.	1	0.0010
2	3	0.1031	0	0.	1	0.0010
3	6́	0.0661	5	0.0051	7	0.0071
4	13	0.0132	17	0.0173	41	0.0417
3	19	0.0193	20	0.0203	22	0.02 .24
-	50	0.0508	68	0.0501	95	0.0965
7	891	U. 9055	874	0.0882	817	0.5303

Figure VI-7
Sample of Availability Output

The second page (Figure VI-3) gives an indication of the work load and the response capability of the individual resources. Each resource I is identified by type, TYPER(TYP(I)), number (the first NOENG resources are assumed to be of type 1, i.e., engines), and the number of the station to which it is assigned, STN(I). The data printed are the number of alarms for which resource I arrived on scene, NALAM(I); the total number of hours out of the station, RUTTi, (I); the average response time in minutes, (1440)RWAIT(I)/NALAM(I); the maximum response time, $\operatorname{MXRES}(I)$; the case for which this maximum response occurred; CMXRS(I); and the number of the alarm associated with this case, NMXRS (I).

The third page (Figure VI-4) is a breakdown of the utilization of the individual resources by day of the week. Each resource I is identified by type, TYPER(TYP (I)), and number (again the first NOENG resource are assumed to be of type 1, engines). The table consists of the variables DAILY (I,J), i.e., the average number of hours that resource I was out of the station on the Jth day of the week where day 1 is Monday.

The fourth page (Figure VI-5) gives measures of the service provided for each type of case I. The types are identified by number, I, and name, IDTYP (I). The data are the number of cases of type I that were completed, CKIND(I); the average number of resource-hours required to serve cases of type I, AVTME(I); the average first response time in minutes, AVTWT(I); and the average total duration in minutes, ELAPS(I).

The fifth page (Figure VI-6) gives the distributions of response times for the last arriving engine resource for cases using 1, 2, ..., 5 engine resources. If there exist cases using more than five engine resources, exogenous event ENDSIM must be revised to print those
distributions as another page or pages. The frequencies which form the distributions are accumulated in subroutine TERM. When a case ends, it is possible to determine N, the total number of engine resources that arrived on the scene, and R, the time difference between the occurrence of the case and the arrival of the last resource on the scene. Then J is determined such that $\operatorname{CLIM}(J-1)<R \leq \operatorname{CLIM}(J)$. The variable FREOl (N,J) is then increased by one. Each time interval I is identified on output by CLIM(I-1) and CLIM(I). Then for values of $K=1$ through 5 the frequencies FREQ1(K,I) are printed for $I=1$ through NCATEG. A1so printed are the relative frequencies, computed and stored for each K in variables REL(K) for printing purposes:

$$
\operatorname{REL}(\mathrm{K})=\operatorname{FREQ} 1(\mathrm{~K}, \mathrm{~J}) / \sum_{\mathrm{I}=1}^{\text {NCATEG }} \operatorname{FREQ1}(\mathrm{K}, \mathrm{I}) .
$$

The sixth page of surmary output is concerned with availability. The variable FREQ2 (N, J) are printed for each shift $J . \operatorname{FREQ2}(N, J)$ is the number of times during shift J that endogenous event AVAIL observed $\mathrm{N}-1$ idle engine resources, $\mathrm{N}=1$ through NFREE. Also printed are the relative frequencies, again computed and stored for printing purposes in a local variable REL (J) for each value of J :

NFREE
$\operatorname{REL}(J)=\operatorname{FREQ} 2(K, J) / \sum_{\mathrm{I}=1} \operatorname{FREQ} 2(\mathrm{I}, \mathrm{J})$.

VII. OPERATING INSTRUCTIONS

The operating instructions explained herein will apply to runs made on the UNIVAC 1108 at NBS under the EXEC 2 operating system. The simulation model is stored on the FASTRAND drum under the file name FIDOS2. It will be assumed that the cases to be simulated are stored on magnetic tape. In this case, the first card of the initialization deck, the System Specifications Card, must have in column 42 the number of the logical unit on which the Exogenous Tape is to be mounted. This number must corespond to the letter shown on the ASG card assigning the tape. (A corresponds to 7, B to 8, etc.)

Two complete run decks will be discussed. The first will apply to the user who simply wants to mm the model "as is". The second applies to the user who wishes to change one or more subroutines and events. The following symbols will be used:
@ = keypunch both a seven and an eight
$\Delta=\mathrm{blank}$.
A. Run deck for running the model "as is". (Refer to Figure VII-1.)

Card 1:
\underline{D} is the priority of the rm.
RUN indicates the RUN card.
NAMEFG is the six character user name.
RUNID is a five digit account number.
M is the maximon rm time in minutes.
$P \mathrm{P}$ is the maximum number of pages to be printed.

Card 2:

$\underline{n S G}$ indicates a tape assignment.
A specifies the letter of the tape drive.
$\underline{X X X X}$ is the reel number of the Exogenous Events Tape.

Card 3:

Keypunch exactly as shown. This calls in the Complex Utility Routines.

Card 4:

Keypunch exactly as shown. This brings the program FIDOS2 into the user storage.

Card 5:

Kcypunch exactly as shown. This begins execution of the program.

Card 6:

The System Specifications Card is shown separately here only to show the correspondence between the tape drive A on Card 2 and the ' 7 ' ' in colum 4 ? of this card.

Initialization Deck and Blank Card:
This was described in Section IV.

Last Card:
Keypunch exactly as shown. This indicates the end of the run.

Figure VII-1

Sample Run Deck to Execute Program
 "As Is"

B . To reconpilc a portion of the program.

It may at some time be desirable to change one or more events and subroutines of the model. This change requires a recompilation of the routines being changed. A sample run deck for recompiling subroutine RESAP, endogenous event HOME, and exogenous event ENDSIM, is shown in Figure VII-2. The new version of the entire program will exist on the second file of reel number YYYY mounted on unit B. There are several major points to be noted in Figure VII-2.

1. There is no choice regarding the tape drive used by SIMSCRIPT to output the compiled version of the program; it must be unit B.
2. The Definition Deck must precede the routines to be recompiled.
3. A card with a " $\$$ " in column 1 must follow the last routine being recompiled.
4. Endogenous events are referred to on the DEL and ASM cards with the letter " X " preceding the name.

To execute the revised program from the tape, replace cards 3 and 4 shown in Figure VII-1 with the following four cards:

```
@\triangleASG\triangleB = YYYY
@\triangleXQT\triangleCUR
\triangle\trianglePEF\triangleB
\triangle\triangleIN\triangleB
```

```
@D\triangleRUNANAMEFG,RUNID,MM,PP
@W\triangleASG\Delta
@\triangleXQT\triangleCUR
\triangle\triangleINF\triangleSIMSC6
@N\triangleXQT\triangleSIM
    Definition Deck
    New Version of Subroutine RESAP
    New Version of endogenous event HOME
    New Version of exogenous event ENDSIM
$
@\triangleXQT\triangleCUR
\Delta\DeltaERS
\triangle\triangleINF\triangleFIDOS2
\triangleDEL\triangleRESAP
\triangle\triangleDEL\triangleXHOME
\triangle\triangleDEL\triangleENDSIM
\Delta\triangleIN\triangleB
@N\triangleASM,*\triangleRESAP, RESAP
@N\triangleASM,*\triangleXHOME,XHOME
@N\triangleASM,*\triangleENDSIM,XHOME
@\triangleXQT\triangleCUR
\Delta\DeltaOUT}\triangle\textrm{B
\triangle\triangleTEF\triangleB
\DeltaTRI }\triangle\textrm{B
@\triangleFIN
```

Figure VII-2
Sample Run Deck for Recompilation

VIII. COMPUTATIONAL RESULTS AND FUTURE DEVELOPNENT

At the time of this writing the simulation model has only been applied to two cities, Alexandria, Virginia and Washington, D. C. For Washington only one run was made so that little if anything was learned regarding possible changes in the system. For Alexandria several rums were made testing different station locations, different numbers of stations, and different locations for equipment. The results of this study are reported in [4].

Figure VIII-1 shows the relevant details of the two base rums, and their running times. It should be noted that neither run time includes compilation and assembly which take approximately 2.5 minutes. Although the Washington run simulated approximately 3.2 times as many cases as the Alexandria ru, the running time for Washington was approximately 6.4 times the running time for Alexandria. This is attributable mainly to the fact that in Washington there are 4.5 times as many resources as there are in Alexandria. Every time a case occurs all resources are examined as possible respondees, so that the resource assignment section of the model requires more time in the Washington run. Furthermore, although the average utilization per case is clearly greater in Alexandria (834.7/915 = . 91 vs. $2023.6 / 2766=.73$ for Washington), many of the cases in Washington used more resources than the cases in Alexandria. In summary, the Washington simulation required more computations per case than did the Alexandria rum.

The future use of the model may well require revisions in various portions of the code to more closely model a particular fire department. It is impossible to anticipate all the desired revisions and expansions of the model; however the following list includes those changes which seem most desirable at present.

1. Revise the distance-time calculations so that grids with rectangular cells can be considered.
2. Vary the speeds on links, possibly by section of the city and/or time of day.

| | Alexandria | Washington |
| :--- | :---: | :---: | :---: |
| | 123 | 31 |
| No. of days simulation | 915 | 2766 |
| No. of cases simulated | 7 | 32 |
| No. of engine resources (companies) | 4 | 17 |
| No. of truck resources (companies) | 834.7 | 2023.6 |
| Total utilization (resource-hours) | 1.34 | 8.45 |

Figure VIII-1 Comparison of Two Basic Runs
3. Provide for resources other than engines and trucks, e.g., ambulances and rescue squads. This change would probably require a provision for queuing cases.
4. Provide for a dynamic resource assignment policy. For example case location and/or time of day may be used probabilistically to determine "expected case type", which could dictate the response level. This would of course require some method for determing the effectiveness of the response, i.e., some penalty should be incurred if the response is not suited for the case Clearly there are numerous changes that may be made to model a particular fire department. The present version of the model was purposely developed to be a general model, not specifically tailored to match any single system. The modular form of the simulation should make any necessary changes fairly easy to incorporate.

References

1. Carter, G. and Ignall, E., "A Simulation Model of Fire Department Operations: Design and Preliminary Results," IEEE Transactions on Systems Science and Cybernetics, Vo1. SSC-6, No. 4, October 1970, pp. 282-293.
2. Markowitz, H., Hausner, B., Karr, H., Simscript: A Simulation Programming Language, Prentice-Hall, Englewood Cliffs, N. J., 1963.
3. Simscript I.5, Consolidated Analysis Center, Inc., Santa Monica, California, 1967.
4. Nilsson, E., Saunders, P., Swartz, J., Weber, A., Application of Systems Analysis to the Alexandria Virginia Fire Department, NBS Report No. 10454, Junc 1971.

Appendix: Computer Listing of FIDOS2

		Szcoars	1		1
		S3TSHFT	1		F
		S41nyP	1		1
		S50Ebug	0		1
		SGCATEG	E		
		STCLIM	1		-
		cafare	ε		
		591 nsur	0		1
		SDCINC	0		F
		GIFAEE1	2	12	1
		62 RREG2	2	18	1
		630 ELAY	0		F
		GYCRES	1	12	F
N	QESHA 31/2	1			
N	ALMNO 3212	1			

-	EVENTS		
1	3	EROGEN	NOUS
- 2		START	111
- 3		ALERT	121
- 4		F'DSIM	131
- 5	a	ENDOGE	NOUS
- 4		ALARM	
- 1		SNUAK	
- In		ARVSN	
-11		TINSH	
-17		WAME	-
-13		NUCTU	-
-14		NUOAY	
-15		AVAIL	
- 16	EH		

C EXDGFNOUS EVENT START IS. THE FIRET EVENT OF THE SIMULATION. IT
SETS UP TME CUROENT SHIFT AND DAY OF TME UEFK.
10 CREATE NUCRU
CAUSE NUCRU AT TMEIPSHFTI
LEY TLAST © TIME
CREATE NUDAY
CAUSE NUDAY AT TIME \& I.
LET CLIMII) E CINC
OO TO ID. FOR I日(2)INCATFG)
LET CLIM(I) E CLIMII-II*CINC
10
LONP
COEATE AYAS
COEATE AYAIL
cause avail at time + 1.i48.
RETURN
END DF START

ENDOGENOUS EVENT MUCRU CCCURS WHEN THERE IS A CHANGE OF SHIFTS. MAY be USED TO ACCIJMULATE UTILIZATION BY SHIFTS AND/OR TO CHANG the number of men.

DO TO 30, FAR EACH RES IRS
IF IB(IRS) EQ 1, GO TO 20
If TOUT(IRUN(IRS)) GR TLAST, GO TO 10
LET TUTILIIOS) = TITIL(IRS) TIME - YLAST
GO TO 20
In LET TUTIL(I®S) = TUTILIIRS) + TIME-TOUT(IRUN(IRS))
20 LFT SUTIL(IマSOPSHFT) = SUTIL(IRSOPSHFT) + TUTIL(IRS)
LFT THTIL(IRS) = 0.
LOOP
LET TSHFT(PSHFT) = TSHFT(PSHFT) + TIME-TLAST
LET PSHFT = PSHFT + 1
IF PSHFT GR NSHIFT, LET PSHFT = 1
LET TLAST = TIME
LET DD = DPART(TIME)
IF DD +FLOAT(TME (PSHFT)) LS TIME, LET DD=DD+1.0
CAUSE NUCRU AT DD + TME(PSHFT)
LET DEBUG = O
RETURN
END OF NUCRU

```
-17
71 C
    -72 C
-73 C
-74
-74
-75
-77
- Inत
- Ini
- 1n2
- In3
-1n3
- Ins
-106
-107
-107
-110
-111
-1!2
-113
-114
- 115
-116
-117
c
    ENOOGENDUS FUTNT NUDAY
C ENODGENOUS EVENT NUDAY OCCURS AT THE SAMAT OF A NEW DAY. IT IS
ENROGENOUS FVENT NUOAY OCCURS AT TME START OF A NEM DAV. IT IS
    USED TO ACCUMULATE UTILIFATION BV DAY OF THE WEEKO
        LFT ILAST - DPAQTITIMEI
        LET MIL ILAST - (ILAST/Z|)07
        IF MILEP O. LET MIL % %
        LET INDEX GMIL-I+IDAY
        IF IHDEX GR 7. LET INOEX O INOEX=7
        LET CDAYSIIHDEXI ( CDAYSIINOEXI * I
        OO TO 30, FOR EACH RES IMS
        IF IAIJRSIFO 1: GO TO 20
        IF TDUTIIRUNIIRSIIGGR ILAST=I.GO TO IO
        LET DUTILIIRSI - I.O
        GO TO 20
    IOLET OUTILIIRSI - DUTILIIRSI TIME-TOUTIIRUNIIGSII
    2O LET OAILYIIQS,INDEXI OAILYIIRS,INDEMI DUTILIIRSI
        LET OUIILIIRSI OO.
    30 LDOF
        CAUSE NUDAY at TimE* 1.0
        QETURN
        END DF NUOAV
```

```
-120
-123
- 124
- 125
- 176
- 127
- 130
ENDUGENOUS EVENT AVAIL
LET IC = I
OO TO 10. FOR Im|||{NOENGI
    IF IH|I|LS 3. LET IC IC*I
10 LOMP
    LFT FAEQZIIC,PSHFTI EFREOZIIC,PSHFPJ* I
    CAUSE AVAIL AT TIME 1.i24.
    RETURN
    ENO OF AVAJI.
```

- 131
- 132
- 13J
- 134
- 135
- 136
- 137
- 140
- 141
- 142
- 143
- 144
- 145
- 146
- 147
- 150
- 151
- 152
-152
- 153
- 154
- 155
- 156
- 157
- 160
- 141
- Tar
- 162
-123
- 164
- 145
- 105
- 160
- 167
- 170
- 171
- 171
- 172
- 173
-174
- 175
- 176
-177
- 200
- $2 \pi 1$
- ?n2
- $2 n 3$
- $2 n 4$
- 205
- $3 n 6$
- 277
- 210
- 211
- 212
- 213
- 714
- 215
- 216

217
$-\quad 27$
$\begin{array}{r}0 \\ -\quad 221 \\ \hline\end{array}$

ExOGEHOUS EVENP ENOSIM
OIMFISION ISUMISI.RELISI
WRITE UN TAPE 6. NAME (I): NAME (2), NAHE(3)
FORMAT I'I'.S22,'SIMULATION OF FIRE OEDARTMENT ACTIVIVIES FOR THE

- city of •治gi
let potal o of.
LFT AVAVR AVAVROI440. IFLOAT(CASES)
LFT CASES = O
OO TO IO, FAR IOIIINKINOS)
IF CKIND(I) EGO, GO YO In
LET TCTAL - TOTAL * avtmeilit
LFT Cases - cases - ceinoiti
LET AVTKTII) = AVTHTIII-1440./FLOATICKINOITII
LET ELAPSIII E ELAPSIIIOI440./FLOATICKINOIII
LFT AVTME(l) AVTME(lleg4./FLDATICKIND(I)
in lonp
LET TOTAL - fotale24.
HRITE ON TAPE G. DPARTITIMEI, CASESGAVAVR, TOTAL.INSUF
format $1 / 1 / 1 / 1 / 1 / 1 / 1 / 1 / 0$ numater of oays simulateoo, sia.isijo total
- number of cases serveoo sim.isif mean average response time iper

-CF-WCURS" $1 /$ N NUMAER OF INSUFFICIENT RESPONGES.,510.15)
WRITE TM PADE 6

- aVg. RFfronsf max. RFSPONSF CASE No. of alamm no. of:/Siz.
- ©STATION ALARMS SERVEO OUT OF STATION TIMEIMINUTESI TIMEIMINU
- tfsi max response max pfsponsegil

DO TO ITD. FOR EACH RES I
LFT TFMF - 0.
LFT J E I
if i gr noeng, Let Jei-naEng
if nalamiti le 0, go to 100
LET RUTILII) © RUTILIII*24.
LET MXRESIII MXRESIIIEIU40.
LET TEMP E RYATT(I):1440./FLOAT(NA)AM(I)।
İD ARIPF ON PAPE G. TYPERITYP(II), J.STNIIIONALAMIII, RUTILICITFMP.
-MXRESIII, CMXRSIII,NMXRSII)
FORMAT 10.A6.14,15.115, 日12.2.013.2.012.2.21191
150 LOOP
ARITE ON TAPE 6

- ERAGE HOURS OUT OF STATION BY OAY OF WEEKP/SIT. MON TUE
-..50 THII FRT SAT SUN'I
DO TO 190. FOR EACH WOAY J
IF CDAYSIJI LEC O.GO PO ion
OO TO IBO, TOR EACH RES !
LFY OAILY(I.J) = OA(LYII.J)E24./FLOAPICOAYS(J))
- 80 lonp

190 LOOP
OO TO 200. FOR EACH RES I
LET J - i
if I gr noevg, let J ifenoeng
PRITE ON TADE G. PYPERIPYPIII, J, DAILY(I, II, DAILYII: 21 :
-OAILY(I, 3).DAILYII, 4, OAILYII.51,OAILYII.6), OAILYII,7I
FORMAT 1. •, Ab.13.52.70A.21
On LOOP
OO TO 250. FOR FACII SHIFTJ

227
721
－ 224
225
226
－ 727
－ 230
711
－ 232
－ 731
－ 234
235
－． 36
－ 237
－ 740
－ 241
－ $2+2$
－7＊3
－ 244
245
－ 246
－347
－ 25%
－•1
－ 752
－ 253
－ 254
－259
－ 346
－ 751
－ 360
－741
－ 362
－गA 3
－744
－3AB
－2AB
－2A）
－ 270
－ 271
－ 272
－ 371
－ 274
374
275
－ 275
－ 276
－ 777
－ 370
－ini
－ $3 n 2$
－ $3 \cap 3$
－ $3 n 4$
105
105
174
－307
110
－ 110
－ 311
312
－313
－314
－315
－ 318
317
IF ISNTTIJI LF O., GO TO 350

740 LOOP
250 LOOP
ARITF ON TAPE

-FRATIF TOTAL AVERAGE FIRST AVERAGEO/S4, TYPE NO. CASES RESOURC
- E-HIURS RESPONSE TIHE OURATIONO/S2S, REOUIRED
IMIN(JES)
- (minutesioji
IIRITE ON TAPE 6, I, IDTYPIISOCRINDIII, AVTMEIII,AVTMTIIJ, ELAPSII),
- FOR EACH KIMDS I
FORMAT (13.51.46.18,010.4, n:1).2.012.21
OO TO 310. FOR JEJilisi
LET ISUM(J) = O
OO TO 300, FOR $1=\{I \|$ NCATEGI
LFY JSUM(JI = ISUM(J) FREOIIJ.II
$\rightarrow 90$ Lクロー
310 LOOP
- RITE ON TAPE 6
FORMAT I'I', SIO. DISTRIBUTION OF RESPONSE TIMES FOR TME LAST ARRIV
-INCENGINEM/H RESPONSE TIME, ST, II ENG, CASES 2 ENG. CASES
- EMT. CASFS 4 ENG. CASFS. 5 ENG. CASESO/O IN HINUTESO,S7,
- ffrfo rel Fpfe freg rel freo freo rel freo prfo del free freg
-RFI FREO I
LET CI O.
DO TO 36O. FOR 1=JIIJNCATEGI
00 Tח 355. FOR JEIIII51
LFT RFL J : O.
IF ISUMIJ) NE O, LET RELIJI FFLOATIFREQIIJ,III/FLOATIISUMIJI
155 LOOP
LFT C C CLIMJII
URITE ON TAPF ©, CIOC2,FREQIII,II,RELIII,FREOII2.II,RELIZI,

53,14,52, nj, 4, 53,14,52, D1,4,531
I.ETCI C C?
van LOOF
HFITF ON TAPE A, ISUMIII.ISUMI2I,ISUMIJI, ISIHIWI.ISUMISI
FOWMAT 190 . 53, 'TOTALS., II4.4IISI
OO VO 510, FOR $1=111131$
LET ISUMIII - O
00 TO 500, FOR JEIIIINFRFEI
LET ISUMII) = ISUMISI +FPES2IJ.1!
500 LOOP
G10 LONF
ARITE ON TAPE 6

- RFL. FREQ. FRED, REL. FREO.'
00 TO 550, FOR IE (I)JNFREEI
00 TO 520, FOR JO(I)IS)
LET RELJJI = O.
IF ISUMIJI GRO, LET REL:JJ P FLOATIFREO2II.JII/FLOAPIISUAIJII
920 LOO~
LFTK=1-1
YRITE ON TARE 6, K,FREQ211,II, RELIII,FREQ2II.21,RELI21,FREQ211.31.
- RELI31
FORMAT $115,515,15,53,01,4,56,15,53,01,4,56,15,53,01.41$
550 LOOP
STOP
ENO OF ENOSIM

```
-320 EXOGENOUS EVENT ALERT
321 SAVE EVENT CARD
-133
- 
-174 C
-175 C
-177
- 130
331
- 3I
- 332
- 333
- 334
- 335
- 335
- 336
- 337
$37
- 340
- 341
- 342
- 143
- 143
- 344
- 345
-34h
- 147
350
-350
-151
-352
-352
- 353
-254
- 355
-355
- 356
-157
-35%
-361
-362
-362
- 363
-364
```

- 321

322 - $174 \quad C$ 175 C 326

130
331
311

333
334
314
336
337
340 41
342
143
344
342
347
350
151
352
353
354
355
356
357
3 AO
$+2$

364

```
EXOGENOUS EVENT ALERT SAVE EVENT CARD
EXOGENOUS EVENT ALERT ACTS AS AN INPUT ROUTINE IT OCCURS WHENEVER THE FIRF DEPARTMENT IS NOTIFIEO THAT ITS SERVICES ARE NEEDED AT A PARTICULAR CASE.
CREATE CASE
REAO NOCASICASEI,NOALMICASEI.HCICASEI VCICASEI TYPEICASEI
FORMAT (S3.715.204.0.15)
LFT OCCUQ(CASE) ETIME
LFT NONOALM(CASF)
LET FIRST(CASEI O
ARITE ON TAPE G. CASE, NOCASICASEI, NOALMICASEI, KCICASEI YCICASEI.
- TYPEICASE) onCCUR(CASE)
FORMAT I' CASE INPUT. IIM. 215.205.0.15.M3.2.21
OO TO 40. FOR IEIU(N)
CREATE ALAR*
FILF. ALARM IN ASET(CASE)
LFT (ASTALARM) CASE
LET NUMHR(ALARM) = NOI +I
4 C LOOP
HFAN OCCURIPI, OSTIII,NECNEIIONTCOIII, FCR EACM I IN ASETICASE:
FORMAT 5! クME.13.121
LET NECOICASE) = 0
LFT NTCO(CASF)= O
OO TO 50. FOR EACH ALARM IN ASETICASEI
LET NECO(CASE) ENECO(CACE) + NECO(ALARM)
LET NTCOICASEI - NTCOICACES NTCOIALARMI
LFT OCCUR(ALARM) TIME OCCUR(ALARM)
CAUSE ALARM AT OCCURIALARMI
\(5 \cap\) LODP
WHITE ON TAPE 6. NUMAR(ALARM) OCCURIALARM) OST(ALARMIJNECO(ALARM).
- NTCOTALARM): FOR EACH ALARM IN ASET(CASEI
FORMAT Sil5.M4.2.2,MI.2.2.212)
HETURN
END OF ALERT
```

```
- 165
-346
- 347
-Mn
- 371
-371
-372
- 373
-374
. 374
-175
- 374
- 377
-477
-4n!
-4の2
-403
-403
-4n5
-406
-4n)
-410
-411
```

```
ENONGENOUS FVENT ALARM
ENDOGENOUS FVENY GLARM OCCURS WHENEVER IT IS DESIRED TO DISPATCH
ENDOGENOUS FVENY GLARM OCCURS WHENEVER IT IS DESIRED TO DISPATCH
MORF RESOUREES TO THE SCFNE NF CASE.
MORF RESOUREES TO THE SCFNE NF CASE.
    LET CASE O CAS(ALARM)
    LET CASE O CAS(ALARM)
    IF GEBUG EO I, WRITE ON TAPE 6. NDCASICASIMLARMIIICASIMLARMI.
    IF GEBUG EO I, WRITE ON TAPE 6. NDCASICASIMLARMIIICASIMLARMI.
    -NUMRA(ALARM) TIME
```

 -NUMRA(ALARM) TIME
    ```


```

 - TJME.,M3.2.2I
    ```
    - TJME.,M3.2.2I
    CAIL ARR(ALAHM)
    CAIL ARR(ALAHM)
    CMLL RESAP{ALARM}
    CMLL RESAP{ALARM}
    IF FSETIMLAQMI IS EMPPY,GO FO 20
    IF FSETIMLAQMI IS EMPPY,GO FO 20
    DO TO IO. FOR EAGH IRS IN ESET(MLARM)
    DO TO IO. FOR EAGH IRS IN ESET(MLARM)
    CAIL SERVE{ALARM,IAS!
    CAIL SERVE{ALARM,IAS!
    19 LOOP
    19 LOOP
    2O IF TSETIALARMI IS EMPTY, RETUAN
    2O IF TSETIALARMI IS EMPTY, RETUAN
    OO TO JO, FOR EACH IRS IN TSET(ALAMM)
    OO TO JO, FOR EACH IRS IN TSET(ALAMM)
    CALL SERVEIALARM,IRSI
    CALL SERVEIALARM,IRSI
    30 LOOP
    30 LOOP
    DFTIGN
    DFTIGN
    ENO OF ALARM
```

 ENO OF ALARM
    ```
```

-417
-413
413
414
-415
416
4,
417
420
-471
-422

- 4>3
-474
-425
-426
-427
-430
-431
-432
-433
-434
-435
-436
-417
-40
-441
442
-443
-444
445
-446
+47
450
451
452
453
- 454
455
C
C
c
SUAGOUTINF ARR DETERMINES THE TIME IT WOULN TAKE POR FACM RESOURCE
TO ANRIVE AT THE SCENE OF THE CASE. THE RESOURGES ARE PUT IN A
GA%HIN SfT \&SF゙,
In IF RSET IS FMPTY,GO TO IN
HEMOVF FIRST IRS FRDM RSFY
GO TO 10
OD LET CASE CASIALARM,
DO TO TO,FHR EACH RES IRS
GO TO (10.50.90.901,18(IRS)
SO LET 01SY m ITIME=OEPIIRUNIIRSIIIESPZ
IF INIRIIRU*IIRSII EO I. GO TO 60
CALL WHLREIOOXRIIRSI, MDECYIIRUNIIRSII.*OOISTI
1F NIST EO O..GO TD 70
CAIL WHEREI©OYRIIRSI, YOESYIIRUNIIRSII,*ODISTI
GO 10 70
GC CAII WHEREIOOYRIIRSI, YDESTIIRUNIIRSII:OOISTI
IF DIST EO n..GO TO 70
CALI. WHFREIOORIIRSI, XDESTIIRUNIIRSII, ODISTI
7nLET O AFSIXCICASEI*.S-MRIIRSII *ARSIYCICASEI*,S-YRIIREII
SO LET SPFEO-SPI
1F TYPE(CASE) LS 2. IET SPEED © <P>
LFT PARRIIRSI D/SPEED
IF IGIIHSI EQ I, LET TARRIIRSI E TARRIIRSI L DELAY
FI:E IRS IM RSET
90 LnO"
IF NSET I.5 FMPTY, RETURN
IF NEAUG FQ O, RETURN
DO TO IOO, FOR EACN IRS IN RSET
ARITF ON TARF b, IRS,TARQIIRSI,XRIIRSI,YRIIRSI,IBIIRSI
FORMAT (" HSFT CDNTAINS:,15.M5.204.0.IS'
IOO LONP
RFTIRN
ENO OF ARR

```
```

 SURDOUTINE FHTRF |RX,OR,NIST
 SURRDUIINF SHERE OETERMINES TME IX: COORDIMATE OF A RESOURCE
 TRAVELIHG FRON KA TO MD GHICH MAS PRAVELED A TOTAL DISTANCE DIST
 CE DELX © nx-Rx
 LET ADELX - ABSIDELX,
 IF ADELX LE DIST, GO P0 in
 IF DELI LS O.. LEF RX = RX-DISP
 IF RELX GR Do, bET Az a RX. DIST
 If RXLS D., LET RK- O
 LETOISI=0.
 REPUQN
 |OLET RX D DK
LET DIST \& NIST - MDELX
RETURN
END OF WHERE

```
```

-417
300 <
501 c
502
-503
-504
-575

- 5.76
- 597
-510
-511
-512
-513
- 514
-515
-516
-517
-4>n
-521
- 572
- 573
- S>4
- 575
-576
- 577
- 530
-531
- 537
-433
-4,4
-535
- F36
-537
-440
-441
-542
-543
-544
-S45
-446
- 54%
-540
- 551
-551
C
C
C
SURROUTINE RESAP CONCERNS THE RESOURCE ASSIGNMENT POLICY. IT
SELFCTS THE PARTICULAN RFSOUNRES UHICM OILL RESPOND TO THE ALARM.
LFT CASE CAS(ALARM)
LFT HFN O O
LET NTR O
IOIF GSET IS FMPTY.GO TO 3O
REMOVE FIRST IRS FROM RSET
IF IBIIRSI GR 2,GO TO IO
IF TYPIIRSI EQ 2,GO TO 2n
IF NEN GE NECOIMLARMI, GO TO 10
FILE IRS IN ESETIMLARMI
LET NEN O NFN * I
GO TO 10
20 IF NTR GE NYCOIALARMI, GO TO 10
FILFIRS IN TSET(ALARMI
LETNTR NTR*।
GO TO in
30 IF FSCTCALAGMI 15 EMPTT. GO TO 4N
IF NEAUG, EO O.GO TO 40
HRITE ON TADE G. IRS.TARQIIRSI,IBIIRSI,TYPIIRSI. FOR EACH IRS IN
-ESFTIMLARM)
FORNAT C:ESET CONTAINSO:15,MS,2151
4C IF PSETIALAQMI IS EMPTY, GO TO 50
IF CFAUG FO O.,GO 10 50
AQIIF OM TANE A, IRS,TAROIIRSI,IRIIRSI,TYPIIRSIPGOR EACH IRS IN
-TCET(ALARM)
FGRUAT 1. TGFT CONTAINSO..15.M5.2151
GN IFPEN NTGEQ NECOIALARMI ONTCOIALARMFO RETURN
WGITF ON TAFE G. NECOICASEI,NECOIALARMI,NEN
FORNAT 13110)
LFT NECOICASEI NECOICAGEI NECOIALARMT NEN
LFT HTCOICASFI - NTCOICAGEI NTCOIALARMI NTR
LFT INSUF = INSUF * I
N!ITF ON TAPE G TIME,NUMARIALARMI, NOCASICAEIALARMII, NECOIALARMI,
A!ITF ON TAPE 6, TIM

```

```

 -IVES AN INCNMPLETE RESPONSE.,/O THE ALARM CALLS FORO.IZ,' ENGINE C
 -OMPAHIES ANNO,I2,' TRUCK COMPANIES. ONLYO,I2, ENGINE COMPANIES AN
 -DO. I2, TRUCK COMPANIES AGE AVAILABLE.OI
 RTTURN
 ENO OF RESAP
    ```
```

-593
-554
-ir.s c
-55d
-557
-560
-561

- 562
-563
F564
-564
-566
[566
-570
- S71
-572
-573
-574
- 575
\& 476
* 576
-4\capD
-4の!
-602
*O3
AC!4
-kn5
-4n6
-bつ7
-310
* 611
-611
-613
- 314
- his
-615
-617
-Kフワ
-b7!
- n22
-623
- h24
-625
-626
-427
-630
C
C
C
55d C
557 C
565
*

4,7
ROUTINE SFRVEIALARM,IRSI
SINDNITINF FFRVF IS CALIFN WHEN A QFSOURCE IS ASSIGNFA TO SFRVE A
PARTICULAR ILARM. IT SETS UP BOOKKEEPING DEVIGES FOR DATA ON
RESTURCE UTILIZATION.
LFT CASE OCASIMLARMS
LET TEMP - TIME TARRIIQSI
IF DEBUG FQ IO YRITE ON TAPE G, IRSOCASE,TIME,TAMRIINSI, TEMP
FORMMT P'SFRVE*,21IO.3M302.2!
GO 10 130,19.20.25)|1R11RS1
IA CAMCEL HOME CALLED INEVIIRUNIIRSII
OFSTROY MOMF CALLED IDEVIIRUNIIASII
GO TO 40
20 CA*CEL ARVSN CALLEO IDEVII负UNIIRSII
DFSTHOY ARVEN CALLED IDEVIIRUNIIRSII
GO IO 40
25 CANCEL FINSH CALLEO IDEVIIRUNIIRSII
OESTROY FIHSH CALLED IDEVIIRUNIIRSII
G0 10 40
3n CFEATF RUN CALLEO IAUNI|RSI
LFT TOUT|IRINIIRSI' - TINF
4O LFT DFPIIRUNIIRSII YIME
LET F RANAM
LET IDIRIIRINNIIRSII:O
IFFGR GF I,ET IDIRIIRUHIIRSII 0.I
LFT |A\|RSI= =
LET GMLAMIIQSI ALARM
LET KDESTIIRUNIIRSI\ E YCICASEI -5
LEY YNESTIIRUNIIRSII © YCICASFI * .S
IF OSTIALARMI LS OO, GO IO 100
IF OSTIALARMI LSSOONGO TO ION
STORE IRS IN RESHOIIDEVIIRUNIIRSIII
STOUE ALARM IN ALMNOIIDEVIIRUNIIRSIII
CAUSE ARVSN CALLED IDEVIIRUNIIRSII AT.TINE * TARRIIRSI
LFT NFXTIIRIJNIIRSIV ©I
RFTIVRH
INO LET TEMP - NSTIALARM, TARAIIRSI
IF TEMP LE N. LEY TEMP TARRIIRSI/2.O
CRE\&TE SNORK CALLED IDEVIIRUNIIRSII
5TORE ALARM IN ALMPIOIIDEVIIRUNIIRSI|
STORF. IRS IN RESNOIIDEVIIRUNIIRSIOI
CAUSE SNDAK CALLED IDEVIIRUNIIRSII AT TIME: TFMP
LET NEXT\IRIJNIIRSI\ G 4
RFTINN
END OF SERVE

```
－ 431
－632
－633
－ 634
－ 15
－A3
－ 437
－ 447
－641
－ 842
－ 443
－644
－h45
－ \(\mathrm{H}_{4} 6\)
－ 647
－4 40
－ 851
－452
453
－クラ4
－A 55
－ 496
－ 547
－ 660

FHODGEHOUS FVENT SNOHK
STORF ALMNOISNOAKI IN ALARM
STOLE RESNDISNOHKI IN IRS
IF RFPUG EQ 1．WRITE ON TAPK 6．JRS，NOCASTEASIALARMIJ：
－numbrialaralitime

DFSTROY SNOAK CALLED JDEVIIRUNIIRSII
LFT SPEED＝SP2
IF TYPEICASIALARMII GE 2ं LET SPEED SPI
LET DIST－ITIHE－OEPIIRUNIIASIIIOSPEED
IF IDIRIJRIIIIRSII EQ I． 60 TD 20
CALI．WHEREIOOXRIIRSI，XOFETIIRUNIIRSII，©OISTI Ir DISte J．GO TO 50
CALL WHERFIOOYRIJRSI，YOESTIIRUN（IRSII，ODISTI GO 10 Sn
2n CALL VIHERFIO PRIIRSI，YDESTIIRUNIIRSIV，OOISTI IF OISTEO D．GO TO SO CALL WHFRFI也®XRIIRSI，XOESTIIRUNIIRSII，©OISTI
ST CPEATE FINSM CALLED IOEVIIRUNIIRSII STORE ALARM IN ALHNOIIDEVIIRUNIIRSIII STIRE IRS I＊RESNDIIDFVIIMUNIIRSIII CAlSE FINSH CALLED IOEVIIRUNIIRSIJ AT TIME RETURN ENO OF SNOBX
```

-4AJ
-462
ba4
-ba4
-4AS
-4A6

- *47
-67n
-67
- 691
-472
-471
-674
-674
-675
-676
-47%
-7no
-7n0
-7n!
- In?
-7ח3
-7n4
-7n4
-7n5
-7nb
- クク7
-719
-711
-712
-713
-714
-715
-714
-717
. 717
-777
-721
-122
-773
-773
-774
-725
- 774
-777
-777
-730
-731
-732
-732
ENOOGFNOUS FVENT ARVSN
ENOOGENOUS EVENT ARVSN OCCURS WMEM A RESOURCE AREIVES AT TME SCENE
OF CASE.
STORE RESNOIARVSNI ITI IRS
STORF ALMHOIARVSNI IN Al,ARM
LET |R||RS| - 4
LET CASE - CAS(ALANM)
IF NERUG EQ I. WRITE ON TAPE A, IGSICASEOTIME
EOP!AI 1' ARVSN0,2IIN,M3.2.21
LET XRIIRSI E XOESTIIRUNIIRSII
LFT YRIIRSI= YNESTIIRUNIIRSII
LET YOESTIIJIINIIRSII:O.
LF.T YDESTIIRUNIIRSII O O.
IF FIRSTICAGEI NE DOGO IO SO
LET EIRSTICASEI = IRG
LFT TMAITICASFI = IIME-OCCURIALARMI

```

```

 LETMXTHT= TWAITICASEI
 LET CMXTH - NOCASICASEI
 LFT RMETM=IRS
 SO IF FIRSTIALARMI NE O,GO TO 60
LFTFIRSTIALARMI IRS
LET THAITIALARMI OTJME=NCCIIR\ALARMI
AN LFT TEMP= TJMEOOCCURIALARMI
LFT (RESIIRSI TEMP
LFT RHAITIJRSI RNAITIIRSI* TEMP
LET AVAFSICASEI AVRFSICASEI \& PEMP
LFP CNRFSICASEI (CNRESICASEI * I
LFT |ALAMIIRSI ©NALAMIIRSI* I
IF TEMF LF MKRES(IRS). GOTO 70
IF TEMP LF MKRES(IRS)
LET CMKRSIIRSI NOCASICASIALARMII
LET NHKRSIIRSI NUMBRIALARMI
7O DFSTROY ARVSN CALLEO IOEVIIRUNIIRSII
LFFNEXIIIRIJNIIRSII - 2
CREATF FINSM CALLEO IDEVIIRUNIIGSII
STOHE ALARM IN ALMNOIIOEVIIRUNIIRSIII
STORE IRS IN RESNOIIOEVIIRUNIIRSIII
CAISE FINSN CALLEO IDEVIIRUNIIRSII AT PIME (OGTIALARM)
RETURN
ENO OF ARVSH

```
-734
-735
- 73 b
-73
740 C
- 741 STRRE ALMNOIFINSHI IN ALARM
- 742 STORE PISNOIFINSHIIN IRS
-743 (FYCAFIF CAS(ALARM)
- 743
- 74

746
747
74
- 750
- 751

751
152
- 757
- 753
- 754
- 755

755
756
- 757
- 760
- 7bl
- 762
- 763
- 764
- 765

ENOOGENOUS EVENT FINGH
\(c\) ASSISTANCF TO AN ALARM.

FORMAT 1 FINSH. . 211 O.M3.2.21
DFSTROY FINSM CALLED IOEVIIRUNIIRSII
CRFATE HOME (ALLEO IDEVIIRUNIIRSII
SYOHE IRS IURESAOIINEVIIRUNIIRSIII
LET XRESTIIDUNIINSII XSISTNIIQSII
LET YOESTIIGUNIIHSII YSISTNIIRSII
LET IAIIRSJ - 2
LET UFP(CBU:i|RS) E TiME
LET NEXTIIRUNIIRSII = 3
LET NCOMPICASEI NCOMPICASEI * 1

CALL TERMICASEI
RETUAN
ENO OF FINSH

ENODGENOUS FVENT FINSH ORCURS WHEN A RESOURCE FINISHES RENOERENG

IF NFBUGED \(1, V R I T E\) ON TAPE \(A\) O IASOCASE, TIME

LFT UIST AHSIXRIIRSI=XSISTNIIRSIII ABSAYRIIRSI-VSASTMIIGSIII

CAUSE MOMF CALLEO IDEVIIRUNIIRSII AT TIME OISTISP2

LET TOTMEICASEI TOTMEICASEIDTIMEOOCCURAAIARMI
IF NCOMPICASEI LS NECOICASEI ONTCOICASEI, RETURN
```

- 1036
-1^37
-194の
1C41
IC41
1042C
-1043
-1844
-1045
|74a
1047
-1750
1751
-195%
1753
1NS3
-1754
-1055
-1956
*)
 - In57
 - \N57
-1961
-1062.
 - Ins3
-1964
-1065
CNNNGENOUS FVENT HOME.
1745
-1956
C
C
NONGEPOUS FYFNY HOME OCRINQS WHEN A RESOUHCE AFRIVES AT ITS OHOME

```

```

 STCRE RESHOIMOHEI JN IRS
 IF OEBUG EO 1, NRITE ON TADE O. IRSOTIME
    ```

```

 ORSTHOV MOMF. CAGLED IOEVVIIRUNIIRSI
 LEF1B||RSI |
 GET IRIIRSI HSISTNIIRSII
 LFPVRI|RSI VSISTNIIWSII
 LET QUTILIIDSI GUTILIIRSI FIME-POUPIIRINIIRSII
 IF TOUTIIRUMIIRSIIGR YLAST. GO PO 10
 LET TIJILIIDSS TUYILIIISI' FIME TLAST
 60 10 2%
 IN LET TUTILIIOSI TUTILIIQSI TIME -TOUTIIRUNIIQSII
20 IF OPAQPITINEI EG OPARTITOUTIIRUNIIRSIII, GO TO SO
LET OJFILIIESI OUTILIIOSI FIME FLOATIOPMRYIIIMFII
60 1040
3O LFP OUTILIIGSI OUTIGIIRSI TIME POUTIIRUNIIRSII
4O LFTIQUNIIRSI O
HEPLON
EHO OF NOME

```
```

-766
-767
-770
-77%
•771
-773
-774
-775
-776
-777

- InOO
-1001
-1CO2
-1503
-10.04
-1905
. 1056
-.1\cap07
-1030
-1011
-1312
-17i*
- In!4
- Inis
-1716
-1017
-1727
.1921
-1922
-1923
-1723
-1924
-1925
-1026
-1927
-1コ3n
- 1731
-1032
-1033
-1034
-1035

```
-766
- 767 C
- 770
- 772
- 773
- 774
- 775
- 776
- 777
- 1000
- ICO2
- 1503
- 10.94
- 1905
.1036
-. 1n07
- 1010
- 1nil
- 1912
- Inl4
- 1715
-1716
- 1017
- 1727
-1921
- 1922
- 1723

1924
-1925
1026
-1927
- 133n
-1731
- 1033

1034
\(-\quad 1035\)
```

 SUGROUTINE TERAICASE!
 C
C
SUNROUTINE TERM OCCURS MWEN A CASE IS PEGMINATED.
\#GITE OH TAPE 6, CASE,TIME,NOCASICASEI
FORMAT 1570., END OF CASFO,110,MJ.2.2.110)
IF TVPETCASEI LS 1.GO 10 40
IF TVPE{CASFI,GQ NKINDS, %O TO 40,
LEP CLAPSITYPEICASEIN CLAPSITYPEICASFII IIME O OCCURICASE:
LET C台IPDITYPEICASFII CKINOITYPEICASEII,)
LET AVFWTITYPEICASEI: AVFAYITYPEICASEII IWAITICASEI
LET AVTMEITVPEICASEII MVTMEITYPEICASEII * YOTMEICASEI
4O IF CNQESICASFI RR C, LET UVAVR AVAVR AVRESICASEIM
- PlOATICNRFSICASEII
IF CPIRESICASRI GAO. LET CASES CASES. I
LET 1C=0
LET TMAK - n.
SJ If ASETICASFI IS EMPTV: \&, TO 6O
MFMOVE FIQST ALARM FROM ASFTICASEI
IF I:COIMLADNI EO O. 6O TO S5
4 IF FSTIALAOMI IS IMPTV,GO TO 5S
WEMNVE FIPST |RS FSOH ESETIMLARMI
IF CRISIIRSILS O.OGO TO 52
LET IC= IC*I
LFT GAAE OCCURIALAPAI - OCCURICASEI CRFSIIRSI
If SMAX GA TMAK,LET TMAM SMAX
1% 10 52
55 OESTHOV ALARM
60 10 50
6) IF ICEF 0.GOTO 70
LFPTMAX TMAXOIM4O.
DO TO 65, FAG IEIIIINCATCGI
If IMAX GR CLIMIII. GO In 65
LETFREDIIICOII FREOIIICOII* I
6n 10 70
65 LOOP
LET FREOIIIC.NCATEGI FREOIIIC.NCATEGI * I
70 OFSTHOY CASF
PETUR4
ENO OF TERM

```
\[
1
\]
\[
1
\]```


[^0]:    ${ }^{1}$ Headquarters and Laboratorics at Gaithersburg, Maryland, unless otherwise noted; mailing address Washing-
    ton, D.C. 20234.
    ${ }^{2}$ Part of the Center for Radiation Research
    ${ }^{3}$ Located at Boulder, Colorado 80302.

