NATIONAL BUREAU OF STANDARDS REPORT

10 471

h

This report has been prepared for information and record purposes and is not to be referenced in any publication.

EXPERIMENTAL FIRES IN ENCLOSURES (GROWTH TO FLASHOVER) C.I.B. COOPERATIVE PROGRAM (CIB 2)

U.S. DEPARTMENT OF COMMERCE NATIONAL BUREAU OF STANDARDS

NATIONAL BUREAU OF STANDARDS

The National Bureau of Standards ' was established by an act of Congress March 3, 1901. Today, in addition to serving as the Nation's central measurement laboratory, the Bureau is a principal focal point in the Federal Government for assuring maximum application of the physical and engineering sciences to the advancement of technology in industry and commerce. To this end the Bureau conducts research and provides central national services in four broad program areas. These are: (1) basic measurements and standards, (2) materials measurements and standards, (3) technological measurements and standards, and (4) transfer of technology.

The Bureau comprises the Institute for Basic Standards, the Institute for Materials Research, the Institute for Applied Technology, the Center for Radiation Research, the Center for Computer Sciences and Technology, and the Office for Information Programs.

THE INSTITUTE FOR BASIC STANDARDS provides the central basis within the United States of a complete and consistent system of physical measurement; coordinates that system with measurement systems of other nations; and furnishes essential services leading to accurate and uniform physical measurements throughout the Nation's scientific community, industry, and commerce. The Institute consists of an Office of Measurement Services and the following technical divisions:

Applied Mathematics—Electricity—Metrology—Mechanics—Heat—Atomic and Molecular Physics—Radio Physics ²—Radio Engineering ²—Time and Frequency ²—Astrophysics ²—Cryogenics.²

THE INSTITUTE FOR MATERIALS RESEARCH conducts materials research leading to improved methods of measurement standards, and data on the properties of well-characterized materials needed by industry, commerce, educational institutions, and Government; develops, produces, and distributes standard reference materials; relates the physical and chemical properties of materials to their behavior and their interaction with their environments; and provides advisory and research services to other Government agencies. The Institute consists of an Office of Standard Reference Materials and the following divisions:

Analytical Chemistry—Polymers—Metallurgy—Inorganic Materials—Physical Chemistry. THE INSTITUTE FOR APPLIED TECHNOLOGY provides technical services to promote the use of available technology and to facilitate technological innovation in industry and Government; cooperates with public and private organizations in the development of technological standards, and test methodologies; and provides advisory and research services for Federal, state, and local government agencies. The Institute consists of the following technical divisions and offices:

Engineering Standards—Weights and Measures — Invention and Innovation — Vehicle Systems Research—Product Evaluation—Building Research—Instrument Shops—Measurement Engineering—Electronic Technology—Technical Analysis.

THE CENTER FOR RADIATION RESEARCH engages in research, measurement, and application of radiation to the solution of Bureau mission problems and the problems of other agencies and institutions. The Center consists of the following divisions:

Reactor Radiation-Linac Radiation-Nuclear Radiation-Applied Radiation.

THE CENTER FOR COMPUTER SCIENCES AND TECHNOLOGY conducts research and provides technical services designed to aid Government agencies in the selection, acquisition, and effective use of automatic data processing equipment; and serves as the principal focus for the development of Federal standards for automatic data processing equipment, techniques, and computer languages. The Center consists of the following offices and divisions:

Information Processing Standards—Computer Information — Computer Services — Systems Development—Information Processing Technology.

THE OFFICE FOR INFORMATION PROGRAMS promotes optimum dissemination and accessibility of scientific information generated within NBS and other agencies of the Federal government; promotes the development of the National Standard Reference Data System and a system of information analysis centers dealing with the broader aspects of the National Measurement System, and provides appropriate services to ensure that the NBS staff has optimum accessibility to the scientific information of the world. The Office consists of the following organizational units:

Office of Standard Reference Data—Clearinghouse for Federal Scientific and Technical Information ^a—Office of Technical Information and Publications—Library—Office of Public Information—Office of International Relations.

¹ Headquarters and Laboratories at Gaithersburg, Maryland, unless otherwise noted; mailing address Washington, D.C. 20234. ² Located at Boulder, Colorado 80302.

³ Located at 5285 Port Royal Road, Springfield, Virginia 22151.

NATIONAL BUREAU OF STANDARDS REPORT

NBS PROJECT

July 15, 1971

NBS REPORT 10 471

4219229

EXPERIMENTAL FIRES IN ENCLOSURES (GROWTH TO FLASHOVER) C.I.B. COOPERATIVE PROGRAM (CIB 2)

bу

D. Gross and J. N. Breese Fire Research Section Building Research Division Institute for Applied Technology National Bureau of Standards

NATIONAL BUREAU OF STAN for use within the Government. Be and review. For this reason, the pi whole or in part, is not authorized Bureau of Standards, Washington,

the Report has been specifically pre-

Approved for public release by the director of the National Institute of Standards and Technology (NIST) on October 9, 2015

IMPORTANT NOTICE

ccounting documents intended jected to additional evaluation ting of this Report, either in ffice of the Director, National e Government agency for which is for its own use.

U.S. DEPARTMENT OF COMMERCE NATIONAL BUREAU OF STANDARDS

TABLE OF CONTENTS

	ABSTI	RACT	i					
1.0	INTR(DDUCTION	l					
2.0	EXPEI	RIMENTAL DETAILS	2					
	2.1	Compartment	2					
	2.2	Ventilation	3					
	2.3	Wall Lining	3					
	2.4	Fuel	4					
	2.5	Ignition Source	5					
	2.6	Extinguishment	5					
3.0	TEST	RESULTS	6					
	3.1	Flame Spread	6					
	3.2	Flame Height	6					
	3.3	Weight	7					
	3.4	Temperature	7					
	3.5	Radiation Intensity	7					
	3.6	Gas Concentrations (0 ₂ , C0 ₂ , C0)						
	3.7	Lining	8					
4.0	DISCU	JSSION	8					
TABLE	ΞI	Test Variables	11					
TABLI	E II	Types of Cribs and Distribution	12					
TABLE	E III	Test Results - Compartment Shape 121	13					
TABLI	III 3	Test Results - Compartment Shape 211	14					
TABLE	E IV	Test Results - Effect of Wall Lining	15					

TABLE OF CONTENTS (cont.)

TABLE V Effe	ect of Lining on Growth to Flashover	16
GRAPHS - KEY	• • • • • • • • • • • • • • • • • • • •	17
Figs. 1 - 16	Ignition of 21 Small Cribs	18
Figs. 17 - 21	Flame Spread and Flame Height	26
Figs. 22 - 24	Weight	31
Figs. 25 - 61	Temperature	34
Figs. 62 - 98	Radiation Intensity	71
Figs. 99 - 134	Gas Concentrations	108
Fig. 135	Effect of Thermal Inertia (kpc) of Compartment Lining on Final Transition Time (T_2)	144
Fig. 136	Small Crib Configuration	145
Fig. 137	Continuous Crib Configuration	146

ABSTRACT

Data are reported on the growth of fire in small-scale compartments performed under a C.I.B. international cooperative program. The results of the statistically designed program include measurements of flame spread time, flame height, weight loss, temperature, radiation intensity and gas concentration.

1.0 INTRODUCTION

Proposals were made in C.I.B. Paper No. CIB/CTF 66/11 (UK) for a cooperative experimental program to study the growth of fire in small-Scale compartments from ignition to a "flashover" or full-involved condition. A total of eight international laboratories agreed to participate. To permit evaluations to be made of the effects of eight main variables, each at two levels, and most first order interactions, a statistical design based on a half replicate was chosen. This required that each laboratory, including NBS, perform a series of 32 tests. The data will be analyzed in combination with the data from the seven other laboratories, comprising a total of 256 tests. The independent variables were the shape, ventilation and lining of the compartment, the size, shape and distribution of the fuel, and the size and position of the ignition source. (See Table I).

Based on the results of preliminary experiments by the Joint Fire Research Organization, certain experimental details were revised in June 1967. Additionally, revisions were suggested in the standardized form of data presentation in a letter of October 1968.

This report contains a summary of the 32 tests performed by the Fire Research Section, Building Research Division, NBS. Included are series of graphs showing the following variables as a function of time:

Flame Spread and Flame Height Weight Temperature Radiation Intensity Gas Concentration

Similar data were collected from five supplemental tests, in which additional types of linings were used, all other conditions remaining the same.

This study extends and supplements the C.I.B. first phase cooperative program on fully-developed fires in compartments. The results of NBS tests for the earlier study were reported in TR 8131; a summary report giving results for all eight participating laboratories, and a comprehensive analysis is being prepared under the auspices of the Fire Research Working Group (W 14) of C.I.B.

2.0 EXPERIMENTAL DETAILS

2.1 Compartment

Two compartments were constructed for ease in performing tests in the two assigned shapes. The frames of the compartments were made of hotrolled steel angle welded together such that one box had the 121 configuration and the other box had the 211 configuration. The inside dimensions were 2 meters by 1 meter by 1 meter high. Each compartment was lined with a single layer of 10 mm thick asbestos millboard (type M4 purchased from Bell's Asbestos and Engineering, Ltd., England, in 40 in. square sheets). A loose board of the same material was laid on the floor to provide a double thickness. The nominal density was 1.1 g/cm^3 and thermal conductivity at room termperature 3.8×10^{-4} cal/s cm °C.

Observation windows in the sides of the compartment were 10 cm square and were made of a high-temperature fused silica glass. The compartment was positioned so that its floor was above the laboratory floor by a distance equal to the compartment height (1 meter).

2.2 Ventilation

The ventilation window was either completely open or only 1/4 open. In the latter case, two sheets of asbestos millboard of the correct size were bolted on either side of the frame to provide the required window opening at the center. When the compartment was required to be lined, the window-limiting asbestos boards were also lined.

2.3 Wall Lining

The lining used in the tests was purchased from Evans Products Co., Chesapeake, Va., according to the prescribed specification:

"Golden Royal Board, manufactured by Aktiebolaget Statens Skogsindustrier, Stockholm. Thickness 5 ± 0.5 mm, weight 5.0 ± 0.2 kg/m² thermal conductivity 0.026 ± 0.002 cal/s cm °C, smooth one side, untreated."

The material received was of the same thickness and weight, marked "TIMBERIT STD-WGR-SBS Made in So. Africa." In the five additional tests, five different linings were used and are noted in the data (Tables IV and V). The linings were not conditioned before testing.

2.4 Fuel

The fuel used was Ponderosa Pine, which had a density of between 0.44 and 0.53 g/cm³. The fuel used in the tests was conditioned for at least 14 days prior to use. The moisture content generally varied between 8 and 12.3% (see Table III), but were occasionally higher when the prescribed humidity level could not be maintained by the air conditioning system. The sticks had a cross section 2 cm square and were planed smooth top and bottom and fine sawn on the sides.

The cribs were 8 or 16 layers high with alternate layers perpendicular to each other. The spacing between sticks was either 2 or 6 cm. The sticks were glued together with urea - formaldehyde thermosetting adhesive.

There were eight different types of crib arrangements, four for tests

with multiple, separated cribs and four for tests with a single continuous crib. See Table II for details. This number of arrangements allowed for examination of the interaction between the spacing of sticks and the size and height of the cribs.

The large cribs were made of sticks 68 cm and 168 or 164 cm long, the latter depending on the spacing, 2 or 6 cm respectively.

In every case, the top layer of the crib over the ignition source was parallel to the opening in the compartment.

2.5 Ignition Source

The cribs were ignited by either a "small" source, consisting of 3 ml of ethyl alcohol in a 4 cm x 4 cm tray or a "large" source, 25 ml of ethyl alcohol in a 12 cm x 12 cm tray. The alcohol was placed in the recessed tray, either in a back corner or in the center of the compartment.

2.6 Extinguishment

After flaming had covered the top(s) of the crib(s), the fire was extinguished. Two methods were used. The first method was to knock down the fire with a hand-held CO₂ extinguisher, and then close the compartment with an asbestos door and pump in nitrogen gas. The second, which proved to be much more effective, was to shovel dry

ice (solid CO_2), into the compartment and then close the door over the opening.

3.0 TEST_RESULTS

3.1 Flame Spread

The progress of the flames across the sticks and the cribs was measured visually using a stop watch.

In all cases, the spread along the length of the box was measured; in some cases it was also possible to measure the flame spread laterally. The times at which ignition was observed in tests with 21 small cribs are given in Figures 1 - 16.

There is a graph of distance spread vs. time for each test (see Figs. 17 - 21). From the graphs it was generally easy to find T_2 , the time of the final transition when the spread suddenly increases. However, in several tests, no sharp transition was noted and the "final transition time, T_2 ," was arbitrarily assumed to be the time at which the rate of flame spread exceeded 10 cm/min.

3.2 Flame Height

The flame height is represented on the same graphs as the flame spread (Figs. 17 - 21) and was also measured visually.

3.3 Weight

During the test the whole compartment was suspended from a load cell which provided a continuous weight record. The cribs were weighed separately on a platform balance before the test. If the test included a compartment lining, the weight of the lining was estimated after it had been fit and installed. The weight-time curves (Figs. 22 - 23) are based on the original crib weight, although the loss in weight includes that due to the combustible lining (where used), and moisture in the box. Figure 24 shows the weight records for the five additional tests, two of which were permitted to continue through the fully-developed stage.

3.4 Temperature

The temperature was measured by bare 0.020 in. dia. chromel-alumel thermocouples at three heights located along the central axis and 3/4 of the length of the box: at the ceiling (TC1), 25 cm from the ceiling (TC2), and 75 cm from the ceiling (TC3). A graph of the temperatures at TC1, TC2, and TC3 vs. time is given for each test. (See Figs. 25 - 61).

3.5 Radiation Intensity

Two radiometers were placed side-by-side outside the box facing the opening. One was unshielded and the second was shielded by an

aluminum plate which restricted the field of view of the radiometer to the area below the top opening in the compartment so as not to include the flames above. A graph of radiation intensity vs. time is given for each test (see Figs. 62 - 98).

3.6 Gas Concentrations (02, CO2, CO)

To take the gas sample, a hole was drilled through the top of the compartment 15 cm from the opening and a stainless steel tube was positioned in the hole so that the tip was 5 cm below the ceiling. The gas was drawn through a trap lined with glass wool and cooled with dry ice to remove smoke particles and water vapor.

The gas was divided into three streams which passed through individual instruments of the following types: non-dispersive infrared analyzers for CO and CO_2 , and a magnetic susceptibility analyzer for O_2 . The concentrations were calculated and plotted in Figs. 99 - 134.

3.7 Lining

The time at which the lining ignited was noted and was included in Table III where applicable.

4.0 DISCUSSION

A table of symbols precedes the graphs. These symbols are only used

where clarification is needed to help interpret the graphs and do not necessarily represent data points. The graphs of flame spread and flame height and the graphs of weight vs. time are presented with replicates on the same graph. The graphs of radiation intensity, temperature, and gas concentration are presented individually in order of test number (1 through 37).

The tests were performed in a random order (selected from random order tables), except for the following sequence according to compartment shape:

Compartment	Tests
121	1-8
211	9-24
121	25-37

There was no pattern which could be attributable to the order of testing.

Five additional tests were included to examine whether a relation exists between the flame spread rating, or the thermal properties $(k\rho c)$, of the lining material, and the time for flames to spread within a compartment under a given set of conditions. The principal test results from this comparison are given in Table V. The anticipated qualitative relation with thermal inertia was noted, although the difference in T₂ (final transition time) only ranged

between 7.33 min. (fiberboard) and 9.72 min. (plastic-coated hardboard). (See Fig. 135).

TABLE I

Test Variables

Versiehlen	Con	dition
Variables	1	2
Compartment Shape - (S) width depth height	1 m 2 m 121 1 m	2 m 1 m 211 1 m
Position of Ignition Source - (P)	corner	center
Fuel Height - (F)	16 cm	32 cm
Ventilation - (V)	1/4	full
Spacing Between Sticks (Bulk Density) - (B)	2 cm	6 cm
Fuel Distribution (Continuity) - (C)	l large crib	21 small cribs
Wall Lining - (L)	no lining	lined with hardboard
Area and Amount of Alcohol - (A)	16 cm ² ; 3 m1	144 cm ² ; 25 ml

TABLE II

Types of Cribs and Distribution

Туре	Length of Sticks, cm	Number of Layers	No. Sticks per Layer	Spacing, cm	Number of Cribs
А	20	8	5	2	21
В	20	8	3	6	21
С	20	16	5	2	21
D	20	16	3	6	21
E	168 68	4 4	1 7 42	2	1
F	164 68	4 4	9 21	6	1
G	168 68	8 8	17 42	2	1
Н	164 68	8 8	9 21	6	1

TA LE III	Test	Results - Compar	tment Shape	121						'limes	. min.	:		
Test Number	S P Rest	t Conditions V B C L A	Fuel Density g/cm ³	Fuel Moisture %	Room Temp °C	Relative Humidity %	Lining Ignited TL1	Flames Touched Ceiling T	Flames Out Window T _w	Flames Over Whole Ceiling TL2	Time Final Transition T2	Time Ignition lst ADJ Crib T _a	Flaming Whole Top Crib T ₃	Weight Loss At T ₃ Kg
1	1 2 2	2 2 1 1 1	0.45	12			-	2.2	6.0		6 ° 2		7.6	11.8
31			0.47	11.6	17	- 28 -		2 ° 9	5.0	7.3	5.8@		7.3	5.0
2	1 1 1	1 2 2 2 2	0.49	8			9°8	9.7	10.8	11.8	9°8	6.0	11.6	6.8
3			0.46	6			6.9	6.2	7.7	7.1	7.0	5.9	8.3	6.2
4	1 2 2	2 2 2 2 1	0.46	11		1	7.0	5.1	8.2	8.9	8.2	7.9	9.8	8.8
7			0,44	11			5.0	3.5	6.8	7.4	7.2	6 • 5	8.3	13.0
5	1 1 1	2 1 1 2 1	0.46	10			14.2	9.2	14.8	15.0	14.4		15.5	6.3
32			0.49	11.8	15	62	16.9	9.5	17.5	17.9	17.3		18.3	5.0
6	1 2 2	1 1 2 1 2	0.47	12				6.0	11.7		11.3	10.8	13.5	4.8
25			0.47		13	777		7.5	11.0		>10.3	9.8	13.1	5.0
8	1 1 1	2 1 2 1 1	0.53	10				10.4	35.0		33.2	16.4	36.3	18.5
30			0.53	14。2	24	38		25.2	39.0	39.7	37.0g	20.0	40.4	14.2
26	1 2 2	1 1 1 2 2	0.48	12.2	10	61	10.8	10.5	10.5	11.2**	>11.8		14.1	6.8
27			0。48	11 ° 6	23	42	9.5	9.5	6.9	10.5**	12.3		14.2	14.5
28	1 1 1	1 2 1 1 2	0.49	12°2	20	58		0.6	13.8	15.2	12 °6		15.2	7.0
29			0.46	12.3	22	48		8.0	11.5	12.8	12.1		13.2	6.3

+ Ventilation - Limited at 14 min.
 * Estimated; all cribs not ignited.
 ** Estimated; part of ceiling not involved.
 @ Based on 10 cm/min

Weight Loss At T3 kg	15.5 15.1	8 ° 1 5 • 9	6.5	9.1 6.0	5.0 5.1	9.1 9.1	>11 8.8	9.5 8.9
Flaming • Whole Top Crib T	23.7 25.4	~ 10* ~ 14 *	11.5 ~13.0	15.0 12.8	7.8 8.5	9.3 ~ 10.3 *	>14+ 23.6	13.0 13.2
Time Ignition 1st ADJ Crib Ta	11.8 13.9	4.4 9.2				7.5 8.6	9.8 17.2	
rin. Time Transition T2	~22 。5@ ~24@	8 °5@ ~13@	10.4 12.5	13。4 11。4	5,7@ 5,3@	8 6 8 6	10.8 21.3	8.8 8.2
Times, Flames Over Whole Ceiling T _{L2}			13-14	14.2 12.0	8 • 5	8.5 9.2	-	13.7
Flames Out Window T	20.0 19.1	9.2 >12	9.7 12.0	10.8 9.8	6.5 7.9	7.2 7.8	10.0 20.1	11-13 9.2
Flames Touched Ceiling T _f	6,5 8,0	8.2 >12	5.1 6.5	7.2 6.0	4.5 5.0	4 . 5 5.5	3.8 8.9	5.6 5.8
Lining İgnited T _L 1			8.7 11.3	12,1 9,8		6.5 7.1		
Relative Humidity %	61 54	66	71 56-	63 51	51 43	39 44	37 44	56
Room Temp • C	23 24	14	20 14	26 11	18 13	25 13	14 13	18
Fuel Moisture %	13,3	3.9 29.6	9.8 11.4	20.4 (13.2)	17.4 13.2	11.7 11.4	14.8 11.4	13.3 11.6
Fuel Density g/cm ³	0.46 0.49	0.45 0.46	0.45 0.48	0.46 0.47	0.45 0.44	0.46 (0.46)	0.47 0.47	0.45 0.44
Test Conditions S P F V B C L A	2 2 1 2 1 2 1 1 2 2 1 2 1 2 1 1	2 2 1 1 2 2 2 2 2 2 1 1 2 2 2 2	2 1 2 1 1 1 2 2 2 1 2 1 1 1 2 2	2 2 1 2 1 1 2 1 2 2 1 2 1 1 2 1	2 2 1 1 2 1 1 2 2 2 1 1 2 1 1 2	2 1 2 2 2 2 1 2 1 2 2 2 1 2 1	2 1 2 1 1 2 1 2 2 1 2 1 1 2 1 2	2 1 2 2 2 1 1 1 2 1 2 2 2 1 1 1
Test umber	9 13	11 16	15 19	14 20	17 21	12 22	18 23	10 24

+ Ventilation - Limited at 14 min. * Estimated; all cribs not ignited. ** Estimated; part of ceiling not involved. @ Based on 10 cm/min

TABLE III (Cont.) Test Results - Compartment Shape 211

											Flames		Time	Flaming	
Test Number	ŝ	P Test	Conditions V B C L A	Fuel Density g/cm ³	Fuel Moisture %	Room Temp °C	Relative Humidity %	Lining Ignited T _{L1}	Flames Touched Ceiling T _f	Flames Out Window T	Over Whole Ceiling T _L 2	Time Final Transition T2	Ignition lst ADJ Crib T _a	Whole Top Crib T ₃	Weight Loss at T kg
33 Hardboard	-	1 1	1 2 1 2 2	0°472	10,8	r	36	7.12	7 . 50	8,50	8 , 50	7, 75		9.78	(15)
34 Fiber- boærd	-	1 1	1 2 1 2 2	0 . 462	5°6		36	7.33	7,50	7.83	7.83	7.33		8.50	(10)
35 Plastic- Coated Hardboard	-	1	1 2 1 2 2	0.492	10,8		36	10,63	00°6	10,87	11.00	9.72		11,92	(12)
36 Gypsum board	-	1 1	1 2 1 2 2	0.529			47	00°6	8.00	9 . 83	10.25	8 • 75		11.67	22
37 Plywood	-		1 2 1 2 2	0.520			50	8°83	00°6	9.30	9,50	9.25		10,10	11

TABLE IV Test Results - Effect of Wall Lining

TABLE V

Effect of Lining on Growth to Flashover

Test No.	Lining	Thickness mm	Thermal Inertia kpc W ² sec °C cm ⁴ x 10 ⁴	Flame Spread Index (ASTM E162)	Char TL 1	racteris T w	tic Tim T ₂	es ^T 3
						min	•	
28	None	-	6.9	-	-	13.75	12.60	15.00
29	None	-	6.9	-	-	11.50	12.10	13.23
33	Hardboard	5	20.0	203	7.12	8.50	7.75	9.78
34	Fiberboard	12	3.7	45	7.33	7.83	7.33	8.50
35	Plastic-Coate Hardboard	d 3	~20	122	10.63	10.87	9.72	11.92
36	Gypsum Board	10	7.4	~10	9.00	9.83	8.75	11.67
37	Plywood, Exterior Grad	е б	13.0	120	8.83	9.30	9.25	10.10

FLAME SPREAD & FLAME HEIGHT

- (16) Test number, see Tables III, IV
- O Flame spread, long side
- \triangle Flame spread, short side
- + Flame height

WEIGHT

- (7) Test number, see Tables III, IV
- . Weight

TEMPERATURE

X TC 1, thermocouple 1, top of box
O TC 2, thermocouple 2, 25 cm down from top
□ TC 3, thermocouple 3, 75 cm down from top

RADIATION

- Unshielded
- Shielded

GAS CONCENTRATION

- O 0₂, oxygen
- \triangle CO₂, carbon dioxide
- 🗆 CO, carbon monoxide

9 min 30 sec	10 min 05 sec				11 min 25 sec	
6 min 00 sec	8 min 50 sec	10 min 06 sec	10 min 25 sec	ll min OO sec		1/4 V E N T
LIT	6 min 05 sec	9 min 03 sec				

FIG. 1 Time to ignition of 21 small cribs.

TEST #2 $(S_1 P_1 F_1 V_1 B_2 C_2 L_2 A_2)$

7 min 15 sec					
5 min 55 sec	6 min 30 sec			8 min 20 sec	1/4 V E N T
LIT	5 min 56 sec				

FIG. 2 Time to ignition of 21 small cribs.

TEST #3 $(S_1 P_1 F_1 V_1 B_2 C_2 L_2 A_2)$

 ·	<u> </u>			 	
	8 min 45 sec	7 min 55 sec		9 min 25 sec	F
	8 min 35 sec	LIT	8 min 10 sec	9 min 26 sec	L L V E N
		8 min 20 sec		9 min 25 sec	Т

FIG. 3 Time to ignition of 21 small cribs.

 $\mathsf{TEST} \# 4 \quad (\mathsf{S}_1 \; \mathsf{P}_2 \; \mathsf{F}_2 \; \mathsf{V}_2 \; \mathsf{B}_2 \; \mathsf{C}_2 \; \mathsf{L}_2 \; \mathsf{A}_1)$

	11 mīn 30 sec	10 mïn 45 sec		12 min 25 sec		
	11 min 31 sec	LIT	11 min 20 sec	12 min 18 sec	12 min 45 sec	1/4 V E N T
	11 min 32 sec	ll min 00 sec				

FIG. 4 Time to ignition of 21 small cribs.

 $\texttt{TEST \#6} \quad (\texttt{S}_1 \ \texttt{P}_2 \ \texttt{F}_2 \ \texttt{V}_1 \ \texttt{B}_1 \ \texttt{C}_2 \ \texttt{L}_1 \ \texttt{A}_2)$

		7 min 08 sec		7 50	min sec	FUL
	7 min 09 sec	LIT	7 min 10 sec	- 7 55	min sec	L V E N
G		6 min 30 sec		7 55	min sec	T

FIG. 5 Time to ignition of 21 small cribs.

TEST #7 (S₁ P₂ F₂ V₂ B₂ C₂ L₂ A₁)

LIT	16 min 22 sec	27 min 10 sec	33 min 11 sec	34 min 14 sec	35 min 38 sec	36 min 17 sec F
16 min 55 sec	19 min 10 sec	27 min 00 sec	32 min 27 sec	34 min 25 sec	35 min 20 sec	35 min 59 sec E
28 min 54 sec	29 min 03 sec	30 min 13 sec	33 min 15 sec	34 min 35 sec	35 min 45 sec	N 36 min 05 sec

FIG. 6 Time to ignition of 21 small cribs.

 $\mathsf{TEST} \ \#8 \quad (\mathsf{S}_1 \ \mathsf{P}_1 \ \mathsf{F}_1 \ \mathsf{V}_2 \ \mathsf{B}_1 \ \mathsf{C}_2 \ \mathsf{L}_1 \ \mathsf{A}_1)$

22 min	18 min	15 min	ll min	14 mín	19 min	23 min
25 sec	50 sec	OO sec	50 sec	20 sec	OO sec	10 sec
22 min	19 min	ll min	LIT	12 min	20 min	23 min
30 sec	10 sec	52 sec		30 sec	00 sec	18 sec
22 min	20 min	14 min	12 min	14 min	20 min	23 min
55 sec	10 sec	45 sec	O6 sec	40 sec	10 sec	34 sec

FULL VENT

FIG. 7 Time to ignition of 21 small cribs.

 $\mathsf{TEST} \#9 \quad (\mathsf{S}_2 \; \mathsf{P}_2 \; \mathsf{F}_1 \; \mathsf{V}_2 \; \mathsf{B}_1 \; \mathsf{C}_2 \; \mathsf{L}_1 \; \mathsf{A}_1)$

8 min 30 sec4 min 22 secLIT6 min 10 sec8 min 46 sec9 min 20 sec9 min 20 sec101010		7 min 08 sec	6 min 25 sec	7 min 55 sec		
9 min 20 sec	8 min 30 sec	4 min 22 sec	LIT	6 min 10 sec	8 min 46 sec	
	9 min 20 sec					

FIG. 8 Time to ignition of 21 small cribs.

 $\texttt{TEST \#11} \quad (\texttt{S}_2 \ \texttt{P}_2 \ \texttt{F}_1 \ \texttt{V}_1 \ \texttt{B}_2 \ \texttt{C}_2 \ \texttt{L}_2 \ \texttt{A}_2)$

LIT	7 min 30 sec		8 min 50 sec			
8 min 25 sec	8 min 40 sec	8 min 45 sec	9 min 00 sec	9 min 05 sec	9 min 12 sec	9 min 15 sec
						9 min 20 sec

FULL VENT

FIG. 9 Time to ignition of 21 small cribs.

 $\texttt{TEST \#12} \quad (\texttt{S}_2 \ \texttt{P}_1 \ \texttt{F}_2 \ \texttt{V}_2 \ \texttt{B}_2 \ \texttt{C}_2 \ \texttt{L}_2 \ \texttt{A}_1)$

24 min	21 min	16 min	15 min	17 min	21 min	25 min
00 sec	14 sec	07 sec	24 sec	30 sec	42 sec	14 sec
23 min	20 min	13 min	LIT	14 min	21 min	25 min
54 sec	49 sec	55 sec		43 sec	42 sec	21 sec
23 min	20 min	15 min	12 min	15 min	21 min	25 min
52 sec	59 sec	45 sec	52 sec	30 sec	54 sec	24 sec

FULL VENT

FIG. 10 Time to ignition of 21 small cribs.

1

TEST #13 $(S_2 P_2 F_1 V_2 B_1 C_2 L_1 A_1)$

	ll min 34 sec	9 min 10 sec	10 min 39 sec		
13 min OO sec	9 min 49 sec	LIT	10 min 15 sec	13 min 00 sec	
	12 min 29 sec		12 min 37 sec	13 min 15 sec	

1/4 VENT

FIG. 11 Time to ignition of 21 small cribs.

 $\texttt{TEST \#16} \quad (\texttt{S}_2 \ \texttt{P}_2 \ \texttt{F}_1 \ \texttt{V}_1 \ \texttt{B}_2 \ \texttt{C}_2 \ \texttt{L}_2 \ \texttt{A}_2)$

LIT	9 min	ll min	ll min	12 min		
	J2 Sec	20 sec	57 sec	00 sec		
9 min 48 sec	10 min 40 sec	ll min 15 sec	ll min 45 sec	12 min 00 sec		
	ll min 30 sec		ll min 47 sec		12 min 15 sec	
			1// MENTE			

1/4 VENT

FIG. 12 Time to ignition of 21 small cribs.

 $\texttt{TEST \#18} \quad (\texttt{S}_2 \ \texttt{P}_1 \ \texttt{F}_2 \ \texttt{V}_1 \ \texttt{B}_1 \ \texttt{C}_2 \ \texttt{L}_1 \ \texttt{A}_2)$

LIT	8 min 47 sec	9 min 37 sec			
8 min 37 sec	9 min 07 sec	9 min 40 sec	9 min 49 sec	10 min 05 sec	
9 min 40 sec	9 min 49 sec	9 min 49 sec		10 min 12 sec	10 min 20 sec

FULL VENT

FIG. 13 Time to ignition of 21 small cribs.

TEST #22 (S₂ P₁ F₂ V₂ B₂ C₂ L₂ A₁)

LIT	l7 min	21 min	22 min	22 min	22 min	23 min
	10 sec	42 sec	15 sec	45 sec	52 sec	10 sec
18 min O6 sec	19 min 20 sec	21 min 25 sec	22 min 34 sec		22 min 55 sec	
21 min	21 min	22 min	22 min	22 min	22 min	23 min
45 sec	50 sec	05 sec	36 sec	50 sec	57 sec	35 sec
			1/4 VENT			

FIG. 14 Time to ignition of 21 small cribs.

TEST #23 (S₂ P₁ F₂ V₁ B₁ C₂ L₁ A₂)

 		h		 	
12 min 26 sec	ll min 17 sec	10 min 47 sec	ll min 31 sec	13 min O6 sec	
					1/4
	10 min 50 sec	LIT	10 min 20 sec	l2 min 45 sec	V E N
				 altre e consellation a	; L
	10 min 10 sec	9 min 52 sec	ll min 27 sec	13 min 00 sec	

FIG.15 Time to ignition of 21 small cribs.

TEST #25 $(S_1 P_2 F_2 V_1 B_1 C_2 L_1 A_2)$

LIT	20 min	31 min	36 min	38 min	39 min	40 min
	05 sec	OO sec	30 sec	45 sec	55 sec	25 sec
20 min 00 sec	22 min 28 sec	30 min 48 sec	36 min 24 sec	38 min 40 sec	39 min 30 sec	1/4 40 min E 25 sec N T
30 min	30 min	31 min	36 min	38 min	39 min	40 min
42 sec	48 sec	20 sec	35 sec	00 sec	50 sec	20 sec

FIG.16 Time to ignition of 21 small cribs.

TEST #30 (S₁ P₁ F₁ V₂ B₁ C₂ L₁ A₁)

FIG. 27 HEIGHT - COMPARTMENT 211

(C) JAUTARAGMAT

TEMPERATURE TEST NO. 16 FIG. 40

20

FIG. 64 TEST NO. 3 RADIATION INTENSITY

۲R

TEST NO. II RADIATION INTENSITY FIG. 72

FIG. 74 TEST NO. 13 RADIATION INTENSITY

22

20-

<u>.</u>

<u>9</u>

4

TIME MIN

2

-00

9

4

i

Ł

2

012

6

TEST NO. 17 RADIATION INTENSITY FIG. 78

TEST NO. 23 FIG. 84

GAS CONCENTRATION FIG. 101 TEST NO. 4 4 \mathcal{Q} 25_Γ 5 0 20 15

20

ß

9

4

2

IO TIME, MIN.

-00

G

4

R

0

0

GAS CONCENTRATION 20 TEST NO. 10 2 <u>9</u> FIG. 107 4 B. arepsilon2 TIME, MIN. œ ဖ 4 \sim 25F 0 0 2 S 0 20 5

TEST NO. IB GAS CONCENTRATION FIG. 115

FIG. I2I TEST NO. 24 GAS CONCENTRATION

GAS CONCENTRATION TEST NO. 28 FIG. 125 \triangleleft 25_Γ 15-0 20

20 -<u>00</u> 9 5 Ø 4 2 TIME, MIN. 0 œ ဖ 4 N 0 ŝ 0

CONCENTRATION, %

CONCENTRATION, %

CONCENTRATION, %

CONCENTRATION,%

