NATIONAL BUREAU OF STANDARDS REPORT

10433

A SEARCH AND RESCUE SIMULATION MODEL FOR THE UNITED STATES COAST GUARD VOLUME IV

PROGRAMMER LEVEL DOCUMENTATION FOR "OPSIM"
U. S. Coast Guard
U.S. DEPARTMENT OF COMMERCE national bureau of standards

NATIONAL BUREAU OF STANDARDS

The National Bureau of Standards ' was established by an act of Congress March 3, 1901. Today, in addition to serving as the Nation's central measurement laboratory, the Bureau is a principal focal point in the Federal Government for assuring maximurı1 application of the physical and engineering sciences to the advancement of technology in industry and commerce. To this end the Bureau conducts research and provides central national services in four broad program areas. These are: (1) basic measurements and standards, (2) materials measurements and standards, (3) technological measurements and standards, and (4) transfer of technology.
The Bureau comprises the Institute for Basic Standards, the Institute for Materials Research, the Institute for Applied Technology, the Center for Radiation Research, the Center for Computer Sciences and Technology, and the Office for Information Programs.
THE INSTITUTE FOR BASIC STANDARDS provides the central basis within the United States of a complete and consistent system of physical measurement; coordinates that system with measurement systems of other nations; and furnishes essential services leading to accurate and uniform physical measurements throughout the Nation's scientific community, industry, and commerce. The Irstitute consists of an Office of Measurement Services and the following technical divisions:

Applied Mathematics-Electricity-Metrology-Mechanics-Heat—Atomic and Molecular Physics-Radio Physics - - Radio Engineering 2-Time and Frequency 2-Astrophysics ${ }^{-}$-Cryogenics. ${ }^{2}$
THE INSTITUTE FOR MATERIALS RESEARCH conducts materials research leading to improved methods of measurement standards, and data on the properties of well-cbaracterized materials needed by industry, commerce, educational institutions, and Government; develops, produces, and distributes stanaard reference materials; relates the physical and chemical properties of materials to their behavior and their interaction with their environments; and provides advisory and research services to other Government agencies. The Institute consists of an Office of Standard Reference Materials and the following divisions:

Analytical Chemistry-Polymers- M . 亻etallurgy-Inorganic Materials—Physical Chemistry.
THE INSTITUTE FOR APPLIED TECHNOLOGY provides technical services to promose the use of available technology and to facilitate technological innovation in industry and Government; cooperates with public and private organizations in the development of technological standards, and test methodologies; and provides advisory and research services for Federal, state, and local government agencies. The Institute consists of the following technical divisions and offices:

Engineering Standards-Weights and Measures - Invention and Innovation - Vehicle Systems Research-Product Evaluation-Building Research—Instrument Shops-Measurement Engineering-Electronic 「echnology-Technical Analysis.
THE CENTER FOR RADIATION RESEARCH engages in research measurement, and application of radiation to the solution of Bureau mission froblems and the problems of other agencies and institutions. The Center consists of the following divisions:

Reactor Radiation-Linac Radiation-Nuclear Radiation-Applied Radiation.
THE CENTER FOR COMPUTER SCIENCES AND TECHNOLOGY conducts research and provides technical services designed to aid Government agencies in the selection, acquisition, and effective use of automatic data prozessing equipment; and serves as the principal focus for the development of Federal standards for automatic data processing equipment, techniques, and computer languages. The Center consists of the following offices and divisions:

Information Processing Standards-Computer Information - Computer Services - Systems Development-Information Processing Technology.
THE OFFICE FOR INFORMATION PROGRAMS promotes optimum dissemination and accessibility of scientific information generated within NBS and other agencies of the Federal government; promotes the development of the National Standard Reference Data System and a system of information aralysis centers dealing with the broader aspects of the National Measurement System, and provides appropriati services to ensure that the NBS staff has optirum accessibility to the scientific information of the world. The Offirs consists of the following organizational units:

Office of Standard Reference Data-Clearinghouse for Federal Scientific and Technical Information "—Office of Technical Information and Publications-Library-Office of Public Information-Office of Internatio:al Relations.

[^0]
NATIONAL BUREAU OF STANDARDS REPORT NBS PROJECT
 4314561
 June 1971
 NBS REPORT
 10433

A SEARCH AND RESCUE SIMULATION MODEL FOR THE UNITED STATES COAST GUARD
VOLUME IV
Programmer level documentation for
"OPSIM"
by
P. L. B. Saunders, E. E. Leyendecker

Sponsored by
U. S. Coast Guard

IMPORTANT NOTICE

NATIONAL BUREAU OF STAN for use within the Government. Be and review. For this reason, the p whole or in part, is not authorize Bureau of Standards, Washington, the Report has been specifically pri

Approved for public release by the Director of the National Institute of Standards and Technology (NIST) on October 9, 2015 . is for its own use.
iccounting documents intended jected to additional evaluation ting of this Report, either in ffice of the Director, National le Government agency for which
U.S. DEPARTMENT OF COMMERCE

NATIONAL BUREAU OF STANDARDS

PREFACE

This volume is one of a series which documents a Search and Rescue Simulation Model for the United States Coast Guard. The material reported in this documenation was develoned by an interdisciplinary team at the National Dureau of Standards with representation from the U.S. Coast Guard wnder MTPR Z-70099-0-01935.

The complete documertation is comurised of the following:
Volume I Executive Ievel Documentation
Volume II Analyst Level Documentation
Volume III Programmer Level Documentation for "PREPROCESSOR"
Volume IV Programmer Level Documentation for "OPSIM"
Volume V Programmer Level Documentation for "POSTPROCESSOR"
Appendix A Flow Charts for Progranmer Level Documentation
Appendix B Program Listings for Programmer Level Documentation The study was initially conducted under the supervision of Martin J. Aronoff; subsequently efforts were supervised by Richard T. Penn, Jr. Technical Project leadership was supplied throughout the project by Stephen S. Karp. Other participants from the National Bureau of Standards Technical Analysis Division included the following:

Susan S. Chamberlin	Elizabeth E. Leyendecker
Linda K. Cummings	Marcia D. Maltese
Mary Jane Duberg	Patsy L.B. Saunders*
William Elliott, III	Wayne A. Steele
Walter G. Leight	Michael R. Vogt
Joel Levy	Arnold L. Weber

Valuable advice was received from Alan J. Goldman* and Prof. Gustave J. Rath of Northwestern University.
U.S. Coast Guard participants included:

Paul D'Zmura
Gerald L. Underwood
Thomas T. Matteson Robert R. Wells
Support services were furnished by the following members of the NBS Technical Analysis Divison:

Mary M. Abbott
Frances E. Jones
Theresa I. Conrad
Lucinda I. Farrell

* Staff members of the NBS Applied Mathematics Divison

Table of Contents

For OPSIM
I. Computer Program Listing for OPSIM
A. Definition Deck, Subroutines, Events and Reports

1. Definition Deck
2. Events List
3. START
4. NUCRU
5. OPSIM
6. SRAS
7. CRES
8. VEC
9. OSET
10. RESAP
11. ROCA
12. MRAS
13. NOTIF
14. TOW
15. DTD
16. SRCH
17. NOTE
18. SASS
19. SSS
20. READY
21. ARSCH
22. COMPL
23. SSET
24. FUEL
25. HOMEF
26. SNDBK
27. SRISE
28. XSET
29. SERVE
30. DELAY
31. ARVSN
32. STATS
33. SRCHF
34. ONSCN
35. COVER
36. CHEKN
37. RETN
38. TERM
39. HOME
40. SAQ
41. QUEUE
42. EXQ
43. STNBY
44. SVQUE
45. WRECK
46. ENDSIM
47. DRIVE
48. SARSIM
49. GRPRES
50. HEADER
51. TITLE
52. RESULT
53. HEAD
54. EXCASE
55. DSTRIB
56. JUMPER
II. Definition Deck. 1
III. OPSIM Subroutines and Event Routines 18
A. Brief Description of Each Routine. 18
B. Note on Flowchart Nomenclature 35
IV. OPSIM Input Data Deck 36
A. Composition of Data Deck 36
B . Systems Specification Card 36
C. Initial Conditions Deck. 38
D. B1ank Card 78
E. Exogenous Event Deck 78
F. Data to Subroutine JUMPER. 81
V. User's Guide 85
VI. Interpretation of Outputs 97
FIGURE II-1 2
FIGURE II-2 3
FIGURE IV-1. 36
FIGURE IV-2. 59
FIGURE IV-3. 60
FIGURE IV-4. 64
FIGURE IV-5. 84
FIGURE V-1 86
FIGURE V-2 89
FIGURE V-3 90
FIGURE V-4 92
page
FIGURE V-5 93
FIGURE V-6 95
FIGURE V-7 96
FIGURE VI-1. 98
FIGURE VI-2 112

I. Computer Program Listing for OPSIM

Computer listings for OPSIM are found in Appendix B (NBS Report No. 10436).

II. Definition Deck

Every Temporary Entity, Event Notice, Permanent Entity, Attribute, and Set must be described in the Definition Deck. A sample coding form for the Definition Deck is shown in Figure II-1. A listing of the Definition Deck used for OPSIM is included with the program listing For a detailed descrìption of the Definition Deck preparation, the reader is referred to SIMSCRIPT A Simulation Progranming Language by Markowitz, Hausner and Karr, Prentice-Hall, Inc., 1963.

Special mention should be made of the manner in which attributes are stored and packed. Packing allows more than one attribute to occupy a single word of computer storage. This is necessary in order to accommodate in core storage the large amount of information utilized by the simulation. Care must be taken, however, that the size of the stored attribute does not exceed the maximum allowable size for the packing code. It should be further noted that time information must be stored as floating point days. For maximum possible accuracy, all attributes which contain specific times (not durations) and other critical values should be stored in full words. The maximum size for several packing codes is shown in Figure II-2 below. This is an amended version of Table 2 found on page 107 of the above references. It should be noted that one-sixth $(1 / 6)$ packing is also allowed for the UNIVAC 1108 system, but since it is not universally available, it has not been used for OPSIM.

For attributes of Permanent Entities the packing code is in column 44 of the Definition Card. For example the listing of the

PRt:FIX
SET NAME

PERMANENT SVSTEM VARIABLES

Maximum Size For Various Packing Codes

Packing Code	Position In Word	Maximum Unsigned	eger Value Signed	$\begin{aligned} & \text { Approxim } \\ & \text { Floating } \\ & \text { Unsigned } \\ & \hline \end{aligned}$	Maximum nt Value Signed
$\begin{array}{r} \text { Blank or } 1 / 1 \\ 1 / 2 \\ 2 / 2 \end{array}$	full word first half second half	$\begin{aligned} & 2^{35}-1 \\ & 131,071 \\ & 131,071 \end{aligned}$	$\begin{aligned} & 2^{35}-1 \\ & 131,071 \\ & 131,071 \end{aligned}$	2^{-128} 2^{-32} 2^{-32} to $2^{127} 2^{31}$ to 2^{31}	$\begin{aligned} & 2^{-128} t \\ & 2^{-16} t \\ & 2^{-16} t \end{aligned}$
$1 / 3$	first third	4,095	2,047	Not Permitted	
2/3	second third	4,095	2,047		
3/3	last third	4,095	2,047		
1/4	first quarter	511	255		
2/4	second quarter	511	255		
3/4	third quarter	511	255		
4/4	fourth quarter	511	255		

FIGURE II -2
definition deck in the computer program listings shows the attribute COST being packed two to a word and the attribute STN being packed four to a word.

The attributes of temporary entities are stored in a different manner. Associated with each temporary entity are a 'Master Record" and possibly several 'Satellite Records'. The number of words in the Master Record is found in column 9 and the number of words in each succeeding Sattelite Record follows in columns 10 through 17. There can be at most eight words per record. A particular word of any record may contain more than one different attribute. The storage code appears in columns 25 and 26 with the packing in columns 27-29. For example, the computer listing of the definition deck shows the CASE attribute COUNT with code 123/4 indicating that it is stored in the third quarter of the second word in the first satellite record. A zero or blank in column 25 indicates the master record. Two or more temporary entities and event notices may have attributes of the same name if that attribute occupies the same relative storage position. In this case the attribute name appears in the Definition Deck with only one of the temporary entities or event notices. A pictorial map of the storage layout for CASE, NOTE, NOTIF, and FLT is given below. The other event notices have short records and will not be mapped herein.

It should be noted that storage and retrieval times are somewhat greater for packed attributes than for unpacked ones, and also greater for attributes stored in Sate11ite Records than those in the Master Record.

Storage Layout

A. The Temporary Entity CASE

B. The Event Notice NOTIF

C. The Event Notice NOTE

RECORD WORD
0
1
2
3
4
5
6
7
8
The first two words are used by Simscript timing routines.

TS		SSRHS	
SM		ESAC	
SDAY	SFLAG	RSRC	
	SLIST	RESA	SASG
blank	PRI	FLG	SIGNL
PCQUE		SCQUE	

D. The Temporary Entity FLT

RECORD WORD	HCREW	
0		1inkage to satellite record.
	XDEST	YDEST
	IDEV	ACASE
	TARVL	FITON
	XI	YI
	DEP	
	TFLT	
	RLS	
$1 \quad 1$	TOW MFLG	TOWSP
2	ROS	

NUMEER OF NOTIFS THAT HAVE BFEN COMPLETELY SERVEU
CASE DEMERIT CASE DEMERIT FIRST NOTIF IN INSET(CASE) INITIAL PRIORITY OF CASE FIRST NOTE IN SRHS (CASE) DEGREE OF NON-PARRELLELISM FOR NULTI-RESOURCE CASES OISTRICT LOCATION OF CASF THE ADDITIONAL RESOURCE NEEDED FOR A SHORT SEARCH
(I.E. WHEN S2S(CASE) = 2) $=0$ IF CASE WAS NOT SERVED NITHIN TOLERANCE $=1$ IF CASE WAS SERVED WITHIN TOLERANCE
$=2$ FIRST ARVSN OR ARSCH HAS NOT YET OCCURRED $=3$ NO CAPABLE RESOURCE TYPES IN SYSTEM
$=4$ NO CAPABLE RESOURCE TYPES AT PRIMARY AHD ADJACENT STATIONS
$=5$ NO CAPABLE RESOURCE AVAILABLE TO SERVE AIR ESCORT
$=6$ IMPOSSIBLE SET OF INPUT PARAMETERS: CASE PLACED IN EXCS
$=7$ FAILSAFE SWITCH IN THE EVENT A CASE TAKES AN IMPOSSIBLE ROUTE IN PROGRANI
CORT NEED, EXOGENOUS EVENT OPS
$\stackrel{4}{\circ}$

$$
\begin{aligned}
& \text { NUMBER OF TOWS } \\
& \text { NEED OF SINGLE RESOURCE CASE } \\
& \text { NUMBER OF IVEEDS EXCEPT LONG SEARCH AND TOW } \\
& \text { HISTORICCAL CASE NUMEER } \\
& \text { CASE. INTFRRUPT COUNT } \\
& \text { TOTAL NUUBER OF TIMES THE CASE VISITED A OUEUE } \\
& \text { SET OF EVENT NOTICE ENTITIES CALLED NOTIF UHICH } \\
& \text { ARE CREATEU FOR EACH NEED OF A MULTI-RESOURCE CASE } \\
& \text { TIME THAT CASE OCCUKS } \\
& \text { DISTANCE OFFSHORE } \\
& \text { ORIGINAL STATION NUMBER OF CASE READ FROM INPUT TAPE } \\
& \text { ON-SCENE-TIME FOR SINGLE RESOURCE CASE } \\
& \text { PREDECESSOR IN COUE } \\
& \text { NUMBER OF PEOPLE ON BOARD DISTRESSED UNIT } \\
& \text { FINAL PRIORITY OF CASE } \\
& \text { FIRST REASON CASE GOES INTO OUEUE } \\
& =O \text { IF CASE WAS INTERRUPTED } \\
& =1 \text { IF NO AVAILABLE RESOURCES }
\end{aligned}
$$

$$
\begin{aligned}
& \text { LAST NOTIF IN NSET (CASE) } \\
& =\text { O CASE HAS NOT BEEN FOUND } \\
& =1 \text { CASE HAS BEEN FOUND } \\
& \text { LAST NOTE IN SRHS(CASE) } \\
& \text { NUMBER OF TOWS } \\
& \text { NEED OF SINGLE RESOURCE CASE } \\
& \text { NUMBER OF IEEDS EXCEPT LONG SE } \\
& \text { HISTORICAL CASE NUMEER } \\
& \text { CASE INTERRUPT COUNT }
\end{aligned}
$$

Eidt--Case

ITOL(CASE)

Alr (CASE)
CIJRES(CASE)
 CUUNT(CASE)
flu(CASE) FiNSET(CASE) FPRI(CASE) FSRHS (CASE)
GAMMA (CASE) IULOC (CASE)

OCCUR (CASE) OFSHR (CASE) OPFAC (CASE) OSt (CASE) PCOUE (CASE) POB(CASE)
PKI(CASE)
REA(CASE)

EDAC (NOTE)
FLG(NOTE)
PCQUE (NOTE)
PRI (NOTE)
RESA(NOTE)
RSFC (NOTE)
SASG(NOTE)

SCQUE (NOTE)
SDAY (NOTE)
SFLAG (NOTE)
SIGNL(NOTE)

SLIST (NOTE)
SM(NOTE)
TS(NOTE) ENT--FLT
ACASE(FLT)
OCP(FLT)
FITON(FLT)
HCREW(FLT)

IUEV(FLT)

$M F L G(F L T)$ ENT- F FLT
ACASE(FLT)
$\operatorname{DCP(FLT)~}$
FITON(FLT)
HCREW(FLT) $\begin{array}{ll}\text { SLIST(NOTE) } & - \\ \text { SM(NOTE) } & - \\ \text { TS(NOTE) } & -\end{array}$
ENT-NUTE - $\begin{array}{ll}\text { SCQUE (NOTE) } & - \\ \text { SDAY (NOTE) } & - \\ \text { SFLAG (NOTE) }\end{array}$
SIGNL(NOTE) -

$$
\begin{aligned}
& \text { EVENT NOYICE ENTITY CREATED FOR EACH OF SIS SEARCH } \\
& \text { REJOURCES OH A LONG SEARCH CASE; EACH ENTITY--NOTE-- } \\
& \text { IS PLACED INTO A FIFO SET--SRHS(CASE) } \\
& \text { CASE NUMBER OF NOTE } \\
& =3 \text { FLAG TO INDICATE A SEARCH NEED IN CQUE } \\
& \text { PREDECESSOR IN CQUE } \\
& \text { PRIORITY OF NOTE } \\
& \text { FIRST RESOURCE TO SERVE SEARCH NEED } \\
& \text { RESOURCE SERVING SEARCH NEED } \\
& =\text { U IF NO RESOURCE IS ASSIGNED TO THE SEARCH NEED } \\
& \text { DURING THE DAY } \\
& =1 \text { IF A RESOURCE WAS ASSIGNED TO THE SEARCH NEED } \\
& \text { DURING THE DAY } \\
& \text { SUCESSOR IN CQUE } \\
& \text { DAY OF SEARCH } \\
& \text { FLAG TO INDICATE THAT THIS SEARCH NEED WAS SERVICE? } \\
& \text { BY THE FIRST RESOURCE TO BE ASSIGNED TO THE CASE } \\
& \text { INUICATES REASON FOR NOTE BEING QUEUED } \\
& \text { = O QUEUED DUE TO NO AVAILABLE RESOURCES } \\
& \text { I QUEUED DUE TO INTERRUPT } \\
& \text { I QUOTE IS NOT IN QUEUE } \\
& \text { SUCCESSOR IN SLIST } \\
& \text { SEARCH MILES A SEARCH RESOURCE ATTEMPTS TO COMPLETE } \\
& \text { TIME SPENT ON SCENE SEARCHING }
\end{aligned}
$$

[^1]
RLS (FLT)
RUS(FLT)
TARVL(FLT)
TFLT(FLT)
TO. (FLT)
IU iSP(FLT)
XDLST (FLT)
YUEST(FLT)
XI (FLT)
YI(FLT)
(x) $13 \exists 10$
(x) 1505
$53 \mathrm{H}=-1 \mathrm{NJ}$
$(x) 9 I$
$(x) \perp \forall I \exists$
$(x) \perp 7\lrcorner I$
(1) $\exists \mathrm{S} \forall J \mathrm{~N}$
(x) $7 I \perp \cap 1$
(x)N1S
(x) YOIHd
TVEC (K)
TYPE K)
UTIL (K)
XR(K)
YR(K)

-RST
AUT (I)
COSTD(I) DLAY(I)
EIVO(I)
MK(I)
RCOSTII)
SLIM(I)
SUAI(I)
SUAZ(I)
SUAB(I)
SUTAGII)

EXPECTEI. LEAVE TIME ARRIVE ON SCENE TIME

TIME RESOURCE ARRIVES AT HOME STATION
TAG TO INLICATE RES IS PRESENTLY TOWINO
X'COORDINATE -- DESTINATION OF RES ON ASSIGNMEIIT
Y COORDINATE -- UESTINATION OF RES ON ASSIGNMENT
X COORDINATE -- INTERRUPT LOCATION
Y COORDINATE -- INTERRUPT LOCATION
PERMANEIT ENTITY WHERE NRES = NUMBER OF RESOURCES
COST OF RESOURCE K ON A GIVEN CASE
TIME IT TAKES RESOURCE K TO VECTOR TO THE CASE
LOCATION PLUS THE DELAY TIME IT TAKES TO READY
RESOURCE K
EXPECTED IDLE ALPHA TIME OF RESOURCE K
=O IF RESOURCE K IS IDLE
II IF RESOURCE K IS BUSY
=2 IF RESOURCE K IS COVERING
IDENTIFICATION NUMBER OF TEMPORARY ENTITY--FLT--
CREATED WHEN RESOURCE K IS ASSIGNED
TOTAL NUMBER OF CASES SERVED BY RESOURCE K
PERCENTAGE OF SEARCH MILES COMPLETED BEFORE SUNSET
OR TOLRS BY RESOURCE K
PRIORITY OF CASE TO WHICH RESOURCE K IS ASSIGNED
STATION TO WHICH RESOURCE K IS ASSIGNED
TOTAL TIME RESOURCE K HAS (EIAT)NE (O.O) DURING THE
PRESENT SHIFT
TIME IT TAKES RESOURCE K TO VECTOR TO CASE LOCATION
TYPE OF RESOURCE K
UTILIZATION OF RESOURCE
X COORDINATE -- LOCATION OF RESOURCE K
Y COORDINATE -- LOCATION OF RESOURCE K

[^2]1 1 1 1 1

REFUEL TIME FOR RESOURCE TYPF I
TAO TO IVDICATE IF THE TYPE IS A BOAT JR AIRPLA'E
$=U$ IF TYPE IS A BCAT
$=$ IF TYPE IS AN AIRPLANE
AN AIRPLANE

$$
\begin{aligned}
& \text { PERMANENT ENTITY WHERE NSTA = NUMBER OF STATIOHS } \\
& \text { IN THE OISTRICT }
\end{aligned}
$$

$$
\begin{aligned}
& \text { AUJACENT STATIONS OF STATION J - RAGGED TABLE } \\
& \text { AVERAGE TWAIT(CASE) OF STATION }
\end{aligned}
$$

$$
\begin{aligned}
& \text { IN THE UISTRICT } \\
& \text { COVERING AIP STATIONS OF STATIOH J- RAGGED TAELE } \\
& \text { AUJACENT STATIONS OF STATION J - RAGGED TABLE }
\end{aligned}
$$

$$
\begin{aligned}
& \text { NUMBER OF UUSY CREWS AT STATION } \\
& \text { AVERAGE FAILURE TYPE C ITWAIT-TOL }
\end{aligned}
$$

$$
\begin{aligned}
& \text { AVERAGE TWAIT(CASE) OF STATION } J \\
& \text { NUMBER OF BUSY CREWS AT STATION J }
\end{aligned}
$$

NORMALIZED DEMERIT AT STATION J

$$
\begin{aligned}
& \text { AVERAGE FAILURE TYPE C (TWAIT-TOL) AT STATION } J \\
& \text { RESPONSIBLE CUTTERS OF STATION J - RAGGED TABLE } \\
& \text { NORMALIZED DEMERIT AT STATION J }
\end{aligned}
$$

NUIABER OF FAILURE TYPE A S AT STATION J
NUMBER OF FAILURE TYPE B:S AT STATION
NUMBER OF FAILURE TYPE CVS AT STATION

$$
\begin{aligned}
& \text { NUMBER OF FAILURE TYPE CTS AT STATION J } \\
& \text { GROUP NUMBER TO WHICH STATION J EELONGS } \\
& \text { NUMEFR OF COVFRTNG ATR STATTONS OF STATI }
\end{aligned}
$$

NUMBER OF ADJ. STATIONS OF STATION J

$$
\begin{aligned}
& \text { NUMBER OF COVERING AIR STATIONS OF STATION } \\
& \text { NUMBER OF ADJ. STATIONS OF STATION J }
\end{aligned}
$$

$$
\begin{aligned}
& \text { NUMBER OF NEEDS SERVED BY STATION J } \\
& \text { NUMBER OF INTERRUPTIONS AT STATION J }
\end{aligned}
$$

$$
\begin{aligned}
& \text { NUMBER } \\
& \text { NUMBER CASES SERVED BY STATION J } \\
& \text { NU RESPONSIBLE CUTTERS OF STATION } \\
& \text { NUMBER } \\
& \text { OF NEEDS SERVED BY STATION J } \\
& \text { NUMRFR OF TNTFRRUPTIONS AT STATTON }
\end{aligned}
$$

$$
\begin{aligned}
& \text { SUM OF ALL NQUE (CASE) WHERE STATN(CASE) = } \\
& \text { TOTAL NUMBER OF TIMES A STANDBY IS CALLED }
\end{aligned}
$$

$$
\begin{aligned}
& \text { TOTAL NUMBER OF TIMES A STANDBY IS CALLED } \\
& \text { TAG TO INDICATE IF STATION J CAN/CANNOT BE A }
\end{aligned}
$$

$$
\begin{aligned}
& \text { PRIMARY STATION OF A CASE } \\
& =0 \text { STATION CANNOT BE A PRIMARY STATION }
\end{aligned}
$$

$$
\begin{aligned}
& =0 \quad \text { STATION CANNOT BE A PRIMARY STATION } \\
& =1 \text { STATION CAN BE A PRIMARY STATION }
\end{aligned}
$$

$$
\begin{aligned}
& =1 \text { STAI ION CAN BE A PRIMARY STATION } \\
& \text { NUMBER OF RESOURCES OF TYPE I AT STATION } J
\end{aligned}
$$

$$
\begin{aligned}
& \text { CREW MANNING LEVEL DURING SHIFT I AT STATION } \\
& \text { RAGGED TABLE }
\end{aligned}
$$

$$
\begin{aligned}
& \text { RAGGED TABLE } \\
& \text { AVERAGE POSITIVE (TWAIT-TOL) AT STATION } \\
& \text { TOTAL NUMBER OF TIMES A STANDBY IS CALLED }
\end{aligned}
$$

$$
\begin{aligned}
& \text { TOTAL NUMBER OF TIMES A STANDBY IS CALLED AND NOT } \\
& \text { USED (I.E. UNPRODUCTIVE CALL) } \\
& \text { AVERAGE UTILIZATION OF RESOURCES AT STATION J } \\
& \text { UTALIZATION OF RESOURCES DURING SHIFT I AT STATION } \\
& \text { J: USHF (J.I) IS AN ATTRIBUTE OF BOTH STA AND WENUS }
\end{aligned}
$$

$$
\begin{aligned}
& \text { AVERAGE TIME-TO-VECTOR AT STATION } \\
& X \text { COORDINATE - STATION LOCATION }
\end{aligned}
$$

$$
\begin{aligned}
& \text { AV USHF (U.I) IS AN ATTRIBUTE OF BOTH } \\
& \text { AVERAGE TIME-TO-VECTOR AT STATION J }
\end{aligned}
$$

Y COORDINATE -- STATION LOCATION
PERMANENT ENTITY WHERE NWEWDS = NUMRER OF WEEKEND

$$
\begin{aligned}
& \text { SHIFTS + NUMBER OF WEEKDAY SHIFTS } \\
& \text { AVERAGE UTILIZATION OVERALL (IN DISTRICT) DURING }
\end{aligned}
$$

$$
\begin{aligned}
& \text { AVERAGE UTILIZATION OVERALL (IN DISTRICT) DURING } \\
& \text { SHIFT I }
\end{aligned}
$$

> TIME THAT SHIFT I ENDS
TOTAL SIMULATED TIME OF SHIFT

PERMANENT EITITY WHERE NTOLER

TOLERANCE TIME AT SEVERITY LEVEL I
TOLERANCE TIME AT SEVERITY TOLERANCE TIME AT SEVERITY LEVEL I

[^3]TOTAL NUMBER OF UNPRODUCTIVE STANDBY CALL－UPS IN GROUP（ ）
TOTAL NUMBER OF TIMES A STANDBY WAS CALLED IN GROUP（I）
AVERAGE POSITIVE（TWAIT－TOL）OF GROUP（I）
AVERAGE TIME＝TO－VECTOR OF GROUP（I）
AVERAGE TWAIT（CASE）OF GROUP（I）
AVERAGE UTILIZATION OF RESOURCES IN GROUP（I） PERMANENT ENTITY WHERE NDSTRB＝NUMBER OF
DISTRIBUTIONS OUTPUT IN REPORT GENERATORS

FREQUENCY OF EXPRESSION BEING IN A RANGE
>0.5 AND＜OR $=1.0$ REING IN A RANGE
>1.0 AND＜OR $=2.0$ RANGE
2．0 AND＜OR $=3.0$ A RANGE
3.0 AND $<O R=4.0$
FREQUENCY OF EXPRESSION AEING IN A RANGE
FREQUENCY OF EXPRESSION BEIING IN A RANGE
5.0 AND $<O R=10.0$
FREQUENCY OF EXPRESSION BEING IN A RANGE
PERMANENT ENTITY WHERE NHLDY $=$ NUMBER OF HOLIDAYS
NOTE：THE OPERATIONAL SIMULATOR CONSIDERS THE FIRST DAY AS DAY ZERO．THEREFORE．IF THE MONTH OF JULY WAS BEI NG SIMULATED，JULY 4 WOULD BE INPUT AS OAY 3. IF THE TNO MUNTHS OF JUNE AND JULY WERE BEING
SIMULATED．JULY 4 WOULS AE INPUT AS DAY 33.
$$
-13
$$

$\begin{array}{rr}- & (9 y 150) y 1 N J \\ - & (8 y 1 S O) N 3 \exists W \\ -r & \text { 日YISO－}\end{array}$ STUEV（DSTRB）－
－
－（ $\because \cup 1 S O) \varepsilon ๑ 1 \forall \supset$
$-(8 \subset 1 S O) \pi 91 H 5$
－（E\＆1SO）S૭1＊つ
－（日＋150）991Hつ
CATG7（DSTRB）－
－（8Y1SO）8914J

1 I

$\begin{aligned} & \text { ENT－} \text { HLDY } \\ & \text { HOLID（I）}\end{aligned}$

EVENT NOTICE ENTITY OCCURRING WHEIN A RESOUPCE ARKIVES ON SCEIVE TO SEARCH

ARSCH -
LIVOTE (ARSCCH) -
LRES(ARSCH) -
LFLG(ARSCH) -

OSy

$$
\begin{aligned}
& \text { IF ARSCH } \\
& \text { THE FIRST }
\end{aligned}
$$

EVENT NOTICE ENTITY OCCURRING WHEN A RESOURCE ARRIVES ON SCENE
CASE IDENTIFICATION NUMBER
RESOURCE IDENTIFICATION NUMBER
EVENT NOTICE ENTITY OCCURRING WIIEN A 'COVERING' RESOURCE EXAMINES THE QUFUE: THF. RESOURCE WILL EITHER - COVERING. OH HIS PRESENTLY ASSIGNED CASE
CASE IDENTIFICATION NUMBER
RESOURCE IDENTIFICATION NUMBER
EVENT NOTICE ENTITY OCCURRING WHEN A RESOURCE COMPLETES A SEARCH NEED
NOTE IDENTIFICATION NUMBER
RESOURCE IDENTIFICATION NUMBER
EVENT NOTICE ENTITY OCCURRING WHEN A RESOURCE STARTS TO VECTOR TO THE SCENE OF A CASE (LONG SEARCH NEEDS EXCLUDED) AFTER HAVING BEEN DELAYED FOR READYING CASE IDENTIFICATION NUMBER
RESOURCE IDENTIFICATION NUMBER
RESOURCE IDENTIFICATION NOTICE ENTITY OCCURRING
EVENT NOTICE ENTITY OCCURRING WHEN A RESOURCE
MUST LEAVE CASE TO REFUEL
RESOURCE IUENTIFICATION NUMBER
EVENT NOTICE ENTITY OCCURRING WHEN A RESOURCE
ARRIVES AT HIS HOME STATION
RESOURCE IDENTIFICATION NUMBER
EVENT NOTICE ENTITY OCCURRING WHEN A RESOURCE ARRIVES AT HIS HOME STATION TO REFUEL
NOTE IDENTIFICATION NUMBER
RESOURCE IDENTIFICATION NUMBER
event notice entity occurring at the shift change
EVENT NOTICE ENTITY OCCURRING AT PRIORITY
REEVALUATIFICATIO NUMBER
CASE IDENTIFICATION NUNBERMBER HAVING BEEN DELAYEO FOR PEAOYING
EVENT NOTICE ENTITY OCCURRING WHEN A RESOURCE STARTS TO VECTOR TO THE SCENE OF A LONG SEARCH NEED AFTER NOTE IDENTIFICATION NUMBER

111. OPSIM Subroutines and Event Routines

A. Brief description of each routine:

1. Exogenous Event START occurs at TIME $=0.0$. The system attribute LIMIT is calculated. The station, resource type, X coordinate and Y coordinate of all resources are set. A Saturday indicator, ISA, and a Monday indicator, IMO are calculated using IFDAY, the first day of the simulation. PSHFT, the present shift, is set after checking IFDAY and the possibility that the first day may be a holiday. The first crew change, the first sunrise and the first sunset are created and caused to occur at the appropriate future times.
2. Endogenous Event NUCRU occurs when there is a change of shift. Utilization data is accumulated for TUTIL, UTTL, USHF and CLLCT. If it is the last shift change of the day, weekend or weekday daily utilization statistics are also collected. PSHFT is updated and an event notice for another NUCRU is caused at the end of the next shift.

The case queue is examined in NUCRU for single resource cases, multi-resource needs and long search needs that can be served by idle resources.
3. Exogenous Event OPSIM creates a temporary entity, CASE, for the incoming case. Attributes of the case are read from the exogenous event tape. The primary station of the case, which is stored in STATN (CASE), is among the input data received from the preprocessor Note that there is not necessarily a one-to-one correspondence between the preprocessor and operational simulator station numbers; therefore, STATN(CASE) is converted to the correct OPSIM station number. After
this initial conversion, STATN(CASE) may be changed again in an effort to determine the best primary stacion of the case. If STATN(CASE) was converted to a zero value (meaning that the preprocessor station did not exist as such in the operational simulator), STATN(CASE) is set equal to the nearest OPSIM station in the district that is capable of being a primary station. If STATN (CASE) was converted to an existing operational simulator station that is capable of being a primary, STATN(CASE) is set equal to the nearest station capable of being a primary in a set which includes the primary and all of its adjacents. If STATN(CASE) was converted to an existing operational simulator station that is not capable of being a primary, STATN(CASE) is set equal to the nearest OPSIM station in the district that can be a primary.

Impossible combinations of case attributes are checked for, and if any are found, the case is filed into the exceptional cases set, EXCS. Exogenous Event OPSIM calls Subroutine SRCH for cases with long searches, calls Subroutine SRAS for single resource cases and calls Subroutine MRAS for multi-resource cases.
4. Subroutine SRAS serves as a driver for single resource cases. That is, it calls all necessary subroutines to find an ordered set of resources, to select one of those resources and to serve the case.
5. Subroutine CRES determines all resources capable of serving a single resource case, a multi-resource need or a long search need. To obtain the resource types capable of serving a case, Subroutine CRES first determines six applicable rows of the Resource Capability Matrix from the values SWELL(CASE), WIND(CASE), VIS(CASE), AIR(CASE), OFSHR (CASE), and NEED (CASE). These six rows (The rows of the

Resource Capability Macrix are imput as octal numbers in the Initialization Deck. See Section IX, Part IV.) axe "AND"ed using the FORTRAN AND function to yrield a final answer giving all the capable resource types which are stored in IRAY1. Next, Subroutine CRES determines all stations that can serve a case and stores them in IRAY2. All resources that meet the resource type and station requirements are then filed into RQUE. Note that if the number of resource types is ever input greater than twenty, Subroutine CRES must be recompiled and reassembled to increase the dimension of IRAY1. In like manner, if it is ever anticipated that the number of stations capable of serving a case may exceed thirty, the dimension of IRAY2 must be increased.
6. Subroutine VEC calculates TVEC (time-to-vector to the incoming case) for each resource in RQUE. Note that time-to-vector (TVEC) is a function of the location of the resource and speed of the resource's type, which in tum is a function of swell (SWELL).
7. Subroutine OSET orders the capable resources in RQUE. DVEC is set equal to TVEC (time-to-vector) for each capable resource. However, if the resource is idle at it's home station, DVEC is redefined to be TVEC + DLAY (a delay time necessary to ready the resource). Those resources with a DVEC less than or equal to the tolerance of the priority of the case are filed into the set, CSET, which is ranked on the attribute CDST with low value considered best. Before the resource is filed into CSET, the attribute COST is set according to the cost option (COSTO). If the COSTO is equal to zero, COST of the resource is set equal to the relative cost ranking of the type
of the resource. If COSTO is equal to one, COST of the resource is set equal to the cost per day (COSTD) of the type of the resource times the time-to-vector (TVEC). Those resources that cannot vector to the case within tolerance are filed into the set, TSET, which is ranked on the attribute DVEC with low value considered best. The two sets are then merged; all resources in CSET are filed into RQUE and then all resources in TSET are filed into RQUE.
8. Subroutine RESAP searches for a resource in RQUE to serve a single resource case, a multi-resource need or a long search need. It is divided into eight main sections: (1) searching for an idle resource at the primary station, (2) searching for an idle resource in RQUE, (3) searching for an idle resource at an adjacent station, (4) searching for a resource that can be interrupted at the primary station, (5) searching for a resource that can be interrupted at an adjacent station, (6) searching for a resource that can be interrupted in RQUE, (7) setting JRS $=0$ to indicate to the calling subroutine that no resource is immediately available, and (8) printing an error message for any impossible route. The sequence for exercising these sections is determined by the user input variable, RAP (Resource Assignment Policy.) As an example, if RAP $=2$, sections 1, 4, 3, 5 and 7 are exercised in that order. If at any point a resource is found in sections 1, 4, 3 or 5, Subroutine RESAP returns the number of that resource to the calling subroutine and subsequent sections are not executed. Note that primary station in this explanation of RESAP includes the aircraft covering stations
of the primary and the covering cutters of the primary. Moreover, "adjacent station" includes the aircraft covering stations of the adjacent and the covering cutters of the adjacent.
9. Subroutine ROCA determines both if the resource, selected by Subroutine RESAP, is operational and if there is an available crew. A standby crew may be called if the number of crews at the station of the resource has decreased to the user input value of CL (crew level at which a standby crew is called) and if the case has not previously caused a standby to occur. Note that if CL is equal to -1 , standby crews will never be called.
10. Subroutine MRAS is called for every multi-resource case. It establishes timing and causes an Event Notice NOTIF for non-tow needs. If the case requires a tow, Subroutine TOW is called.
11. Endogenous Event NOTIF calls the routines (CRES, VEC, OSET, and RESAP) necessary to locate a resource which can serve a single need of a multi-resource case. If no capable resource exists, Subroutine WRECK is called to destroy the case. If no capable resource is available, the need associated with the NOTIF is filed in the queue CQUE via a call to Subroutine QUEUE. If a capable resource is available, Subroutine SERVE is called.
12. Subroutine TOW creates an Event Notice NOTIF for each tow need of a multi-resource case. It determines the distance and destination of the tow via a call to Subroutine DTD. This information is used to establish hand-off coordinates. If there are no non-tow needs, the first tow NoTIF is caused. (If there are non-tow needs, the first tow NOTIF is caused in Endogenous Event ONSCN.)
13. Subroutine DTD determines the final destination for tow cases. The destination is the primary station of the case unless the primary station is a patrol. In this case the destination is the (first) adjacent station of the primary station. The total distance of the tow is also calculated.)
14. Subroutine SRCH creates an Event Notice NOTE for each long search need. If it is night time (i.e., the present time is greater than or equal to sunset and less than the time at which the sumrise list is examined), Subroutine SRCH attempts to serve the first search need. All remaining search needs are filed into LIST - the sumrise list. If it is daytime, Subroutine SRCH attempts to serve the first search need. All other search needs are caused to occur at TIME + EPSLN, where EPSIN, a user input, is a small time delay usually set to two minutes.
15. Endogenous Event NOTE occurs at TIME + EPSLN for all but the first search need of a long search case that occurs during the daytime. An attempt is made to serve the need. If no resource is available, the search need is filed into CQUE.
16. Subroutine SASS orders the resources in RQUE for search needs only. A call is made to Subroutine CRES to gather all capable resources in the set RQUE. Subroutine VEC is called to calculate TVEC for each resource in RQUE. The local variable TOLRS is set equal to the search tolerance of the priority of the case. If, however, the present time plus the search tolerance of the case priority is greater than the next sunset, TOLRS is redefined to be sunset minus the present time. (Note that this redefinition of TOLRS is used only
in the calculation of $P R$ for airplanes and not in the $P R$ calculation for small boats and cutters.) PR (percentage of search miles that a resource is capable of completing before sunset or within the search tolerance time of the case priority) is then calculated for each resource in RQUE. Those resources that can complete the desired percentage of search miles are filed into CSET. Resources that cannot complete the desired percentage of search miles, but have a PR value greater then 0.0 are filed into PSET which is ranked on the attribute PR with high value considered best. The remaining resources with a PR value of 0.0 are filed into TSET if they meet an endurance check. The three sets are then merged into RQUE.
17. Subroutine SSS is the service routine for long search needs. RES and FLT attributes are updated. Any previously scheduled future event for the resource serving the long search need is cancelled and destroyed. If the resource was idle at its home station when chosen, an Endogenous Event READY is created and caused. If, however, the resource was not at its' home station, an Endogenous Event ARSCH is created and caused for the resource serving the long search need.
18. Endogenous Erent READY occurs at the end of the delay time necessary to ready a resource at it's home station before serving a long search need. TVEC (time-to-vector) is calculated, DEP (departure time) is set, XDEST (X coordinate of destination) is set, and YDEST (Y coordinate of destination) is set. An Endogenous Event ARSCH is created and caused to occur at TIME + TVEC.
19. Endogenous Event ARSCH occurs when a resource arrives on scene to serve a long search need. Depending on the endurance of the resource and the present time, one of three possible future events. FUEL, SSET or COMPL - is created and caused to occur.
20. Endogenous Event COMPL occurs when a 1ong search need is completed. A check is made to determine if all long search needs of the case are completed. If this is true, Subroutine SRAS is called for single resource cases, Subroutine MRAS is called for multi-resource cases, and Subroutine TERM is called for cases that have no additional needs.
21. Endogenous Event SSET occurs at sunset when a resource serving a long search need is taken off the case because of darkness. The search need is placed in the sunrise list and a call is made to EXQ for the now idle resource.
22. Endogenous Event FUEL occurs when a resource serving a long search need must return home to refue1. Attributes are updated and Endogenous Event HOMEF is created and caused to occur.
23. Endogenous Event HOMEF occurs when a resource arrives at it's home station to refue1. Attributes are updated and Endogenous Event SNDBK is created and caused to occur.
24. Endogenous Event SNDBK occurs at the completion of refueling of a resource serving a long search need. At this point, the temporary entity FLT is destroyed for the refueled resource, and it is returned to an idle status. A call is made to Subroutine SASS to gather an ordered set of resources capable of serving the remaining portion of the
long search need. The set RQUE is then examined for the best idle resource to serve the need. If the best idle resource is the refueled resource that last served the search need, a new FLT is created, RES, FLT and NOTE attributes are updated, and an arrive-on-scene event (ARSCH) is created and caused to occur at TIME + TVEC. However, if the best idle resource is any other resource, Subroutine SSS is called.
25. Endogenous Event SRISE occurs at RISE-XRX. The sunrise 1ist is examined and resources are vectored to arrive on the search scene at sunrise or soon thereafter. The next SRISE is caused at TIME + 1.0 (day).
26. Endogenous Event XSET occurs at sunset each day. A11 queued long search needs are removed from CQUE and filed into the sunrise list, LIST. The next XSET is caused at TIME + 1.0 (day).
27. Subroutine SERVE is called every time a resource is assigned to a case for reasons other than a long search. Data is accumulated for several statistics (COSTC, CNRES, NEEDS and NCASE). If the resource is at it's home station, a temporary entity FLT is created to be associated with the resource until it returns home via Endogenous Event HOME. RES and FLT attributes are updated and an Event Notice DELAY is created and caused. If the resource is not at its home station, any event previously scheduled for the resource in connection with some other case is cancelled and destroyed. RES and FLT attributes are updated and an Endogenous Event ARVSN is created and caused.
28. Endogenous Event DELAY occurs at the end of the delay time necessary to ready a resource at it's home station before vectoring to
the scene of any need other than a long search need. XDEST and YDEST (destination coordinates) are set; DEP (departure time) and TFLT (time that resource leaves its home station) are set equal to TIME. An Endogenous Event ARVSN is then created and caused to occur at TIME + ROS .
29. Endogenous Event ARVSN occurs when a resource arrives at the scene of a case for reasons other than a long search. If the resource is the first resource to arrive on scene, data is collected for the statistics RESA, TWAIT, NCAS, AVGTW, TQUE1, and FAIL3. Subroutine STATS is also called to collect other case, station and group statistics. If this is the first resource to arrive on scene there is a check to see if a short search is needed. If so, there is a call to Subroutine SRGHF which establishes the information needed for a short search. The priority of the case is increased to S2PRI until the short search is completed. ARVSN also determines the resource responsible for maintaining coverage. The resource responsible for coverage is chosen from among all resources at the scene of the case as that resource associated with the greatest value of RLS. RLS is equal to the time that the resource arrived on scene plus the on scene time during which the resource will actually serve the particular need. If a covering resource has fulfilled its on scene time, the next resource to arrive on scene will become responsible for coverage and the resource formerly covering will be relieved of duty via a call to Subroutine RETN.

Still another function of ARVSN is to determine the on scene time if the resource will be towing or providing an air escort. For sing1e resource cases there is a call to Subroutine DTD to determine the destination and distance for the tow. (For multi-resource cases this information was previously determined and stored by a call to Subroutine TOW from MRAS.) The length of the case as well as the type of resource serving the tow or air escort determine the speed at which the tow proceeds and thus the on scene time. 30. Subroutine STATS, which can be called from Endogenous Event ARVSN or from Endogenous Event ARSCH, colle'cts station, group and district statistics when the first resource arrives at the scene of a case. It also accumulates case statistics for both weekdays and weekends with holidays being included in the weekend statistics.
31. Subroutine SRCHF is called when the first ARVSN occurs for a case requiring a short search. If an additional resource is needed, Subroutine SASS and RESAP are called. If an additional resource is located, the associated on scene time is calculated. The on scene time of the resource having the first ARVSN is increased so that it remains on scene until the short search is completed. For multiresources cases an Event Notice NOTIF is created to be associated with the short search. The additional resource is assigned to the case via a call to Subroutine SERVE. If the short search was originally to
be handled by the first arriving resource or if there is no additional resource available, the resource having the first ARVSN will also serve the short search. The on scene time for this resource is increased to include the time spent searching.
32. Endogenous Event ONSCN occurs differently for resources that are towing and resources serving non-tow needs. For non-towing resources there is an ONSCN when the resource first arrives on scene and thereafter at intervals of time equal to the on scene time divided by KKK. On all but the last ONSCN for a particular resource there is a reevaluation of the case priority. At the last ONSCN for the resource serving the last non-tow need of a case there is a check to see if a tow is needed. If so the first tow is initiated. A call to Subroutine CRES determines whether or not the resource serving the last non-tow need can also serve the tow. If so, it is assigned to serve the tow via a call to Subroutine SERVE. If not, an Event Notice NOTIF is caused for the first tow. If a resource is not responsible for coverage at the time of its last ONSCN, it is relieved of duty via a call to Subroutine RETN. For towing resources there is only one occurrence of ONSCN, that being when the tow is completed. There is no reevaluation of the case priority in this situation. If the resource is completing the first of a two part tow, an Event Notice NoTIF is created for the second tow. The attribute COUNT (CASE) keeps track of the number of needs and tows for the case which have been completed. This variable is increased by one whenever a resource has its last ONSCN
for a particular case. There is one exception to the above description which applies to short searches which are served by the first resource to arrive on the scene of the case. The first occurrence of ONSCN for such a resource is after the short search is completed. The priority of the case is inmediately restored to the original case priority and the on scene time applicable for this resource is reduced to its origianl value. (Subroutine SRCHF increases on scene time). Thereafter the above description applies depending on whether the resource is towing or not.
33. Subroutine COVER is called when a resource responsible for coverage is interrupted to serve another case. It considers all other resources on the scene of the case being interrupted to determine another resource responsible for coverage. As explained in the description of ARVSN, the attribute RLS is used to establish coverage.
34. Endogenous Event CHEKN occurs every TCHEK hours for a covering resource. Subroutine EXQ is called to determine if the covering resource can serve any case in the queue. If it cannot serve any case in the queue, it remains as the covering resource on it's present case and another CHERN is created and caused to occur at TIME + TCHEK. If it can serve a queued case or need, Subroutine EXQ updates all applicable attributes and calls the proper subroutine to serve the case or need.
35. Subroutine RETN is called when a resource serving other than a long search finishes an assignment. It relieves the resource of its current duty by setting $I B=0$ and returns the resource to the system via a call to Subroutine EXQ. If the resource was an additional
resource serving only a short search, the priority of the case is reduced to its original level. If COUNT (CASE) indicates that all needs and tows of the case have been completed, the case is terminated via a call to Subroutine TERM.
36. Subroutine TERM occurs when all the needs and tows of a case have been completed. TSVC (time case spent in system) statistics are accumulated and the value of STAPE is tested. If STAPE is not equal to zero, all pertinent case attributes are output on logical unit STAPE for the post processor. There is no output for the post processor if STAPE is equal to zero. All temporary entities and event notices associated with the case as well as the case itself are destroyed.
37. Endogenous Event HOME occurs when a resource arrives at its home station after finishing an assignment. The temporary entity FLT is destroyed and expected idle alphà time (EIAT) is set to zero. The coordinates of the resource are set to the coordinates of the home station and the number of busy crews is reduced by one. Utilization data is collected in TUTIL.
38. Subroutine $S A Q$ is called from RESAP when a single resource case, a multi-resource need or a long search need is interrupted. If a tow was interrupted, the location of the case and the location of the resource are updated to be the previously calculated interrupt location of the resource. Interrupt statistics (NOINT, TOTIN and NINTR) are accumulated. Subroutine COVER is called if the resource was covering on the interrupted case. If it's determined that the interrupted
resource was covering only, no attempt is made to vector an idle resource to the scene for coverage purposes.

If a single resource case or a search need has been interrupted, Subroutine SAQ attempts to find an idle resource to serve it. The case or need is queued if no capable resource is available. If a multi-resource need has been interrupted, Subroutine QUEUE is called.
39. Subroutine QUEUE is called when a resource is interrupted while serving a multi-resource need or when no capable resource is available to serve a multi-resource need. In the interrupt situation, an attempt is made to locate another resource to serve the need via calls to Subroutines CRES, VEC, OSET, and ROCA. The usual call to RESAP is replaced by a search through the ordered set of resources RQUE. The first nonbusy resource with an available crew is assigned to serve the multiresource need via a call to Subroutine SERVE. RESAP cannot be called since it created the interrupt situation and an infinite logical loop would be generated. If no capable resource is available to serve the need, the NOTIF associated with the need is filed in the queue CQUE. If there are no other NOTIF's of the case already in CQUE or if there are no other NOTIF's of the case in CQUE due to interrupts, and this NOTIF is queued because of an Interrupt, the attributes TINQ and/or STINO are set to the current value of TIME. If an air escort is to be queued, Subroutine WRECK is called.
40. Subroutine EXQ examines the queue, CQUE, for a single resource case, a multi-resource need or a long search need that can be served by a resource becoming idle. If the resource is not capable of serving any case or need in the queue, an Endogenous Event HOME is created and caused for the recource.
41. Endogenous Event Sininy occurs when a standby crew arrives at it's station. The queue is examined for cases which that station is capable of serving. If the crew cannot be used to serve any CASE or need in the queue, the stand-by crew is not added to the available crews at the station. If the crew can be used, the appropriate subroutine is called to serve the case.
42. Subroutine SVQUE is called when a resource is assigned to serve a NOTIF in the queue CQUE. If there are no other NOTIF's of the case in CQUE, the time in queue TQUE is accumulated. If this NOTIF was queued because of an interrupt and if there are no other NOTIF's of the case in the queue due to interrupts, the attribute TINT is accumulated. The NOTIF is removed from CQUE and Bubroutine SERVE is called.
43. Subroutine WRECK is called when a multi-resource case is being terminated for reasons other than completion. It cancels and destroys temporary entities and event notices associated with the case. Any resources serving the case are released via a call to Subroutine EXQ. The case is filed in a set of exceptional cases EXCS to be output at the end of the simulation.
44. Exogenous Event ENDSIM occurs when the simulation is to end. It is triggered by the last entry on the Exogenous Event Tape containing the case input data. Output data are averaged over time and DRIVE is called to control the report output. The statistics and
data of the report output will be described later in part VI of this section. A11 cases in the set of exceptional cases EXCS are output on logical unit STAPE, if STAPE is unequal to zero.
45. Subroutine DRIVE is called from ENDSIM at the end of the simulation. It serves as a driver to call the several report generators and the output subroutines, EXCASE and JUMPER. It also generates printed output for cases remaining in CQUE and for cases still being served at the end of the simulation.
46. Report SARSIM is the report generator for printing district statistics and station response.
47. Report GRPRES prints group response.
48. Report HEADER is the report generator for printing the heading of the resource utilization section.
49. Report TITLE is the report generator for printing resource utilization for each shift at each station.
50. Report RESULT, a report generator, prints the utilization of each resource.
51. Report HEAD, a report generator, prints the heading of the exceptional cases section.
52. Subroutine EXCASE prints all exceptional cases in the set EXCS.
53. Report DSTRIB prints daily utilization distributions and certain case attribute distributions.
54. Subroutine JUMPER is an output routine printing all changes, additions and deletions to the initialization data base. It is coded in FORTRAN.
B. Note on Flowchart Nomenclature

It should be mentioned that attribute names shown in the flowcharts*are sometimes abbreviated relative to the names in the conputer programming code. This abbreviation is due to the lengthiness of the subscripts required to completely identify a particular entity or event notice of which the variable is an attribute. The context removes any possible ambiguity. For example, CUT (ADJS (STAN(CASE), I), J), which is the Jth cutter of the Ith adjacent station of the primary station of CASE, may be abbreviated at CUT (ADJS).

* All flowcharts for OPSIM are found in Appendix A (NBS Report No, 10435).

IV. OPSIM Input Data Deck

A. Composition of the data deck

The data deck is composed of the system specifications card, the initial conditions deck, a blank card, the exogenous events deck and input data for Subroutine JUMPER. The order of these is illustrated in figure IV - 1 below.

Figure IV - 1
B. System Specifications Card

The contents and format of the system specifications card follow :

Columns
1
6

7-12

Contents
The number one (1).
If this Column is non-blank, the initial conditions deck will output to the printer.
Maximum array number that appears in columns 32 through 34 of the Definition Form. (Section II, Part II). This integer is right-justified in the field and presently has the value of 175 .

Right-justified integer number of minutes per hour of simulated time. If left blank, the number of minutes per hour is assumed to be 60. For OPSIM runs, it may te left blank. Right-justified integer number of hours per day of simulated time. If left blank, the number of hours per day is assumed to be 24. For OPSIM rums, it may be left blank. The initial value of the root to be used in generating random numbers. This is a right-justified integer and must be an odd number. If left blank, it is assumed to be 1. It is suggested that the user fill the field with an odd number. Right-justified integer indicating the logical tape unit from which the initial conditions deck is read. If left blank, the initial conditions deck will be read from logical tape unit five - the card reader.
Right-justified integer indicating the logical tape unit from which the exogenous events deck is read. If left blank, logical tape unit five the card reader-is assumed.
Right-justifi $\ni d$ integer indicating the logical tape unit on which reports are written. If left blank, logical tape unit six - the printer is assumed.

Number of lines per page of printed output. This is a right-justified integer, the maximum value of which is 59. The number of lines will be 55 if this field is left blank.

C. Initial Conditions Deck

1. Composition of initial conditions deck

The initial conditions deck consists of initialization cards and data cards keypunched from the form shown in Figure IV-2. Every array number appearing in columns 32-34 of the definition deck must be accounted for in sequential order in the initialization cards. It is suggested that the user read Chapter 14 (Initial Conditions Deck) in SIMSCRIPT, A Simulation Programming Language by Markowitz, Hausner and Karr for farther explanations on procedures for preparing the initial conditions deck.
2. Explanation of format and content of OPSIM's initial conditions deck using the Thirteenth Coast Guard District, July 1968, as an example. Note that all data is right-justified unless otherwise specified.
SIMSCRIPT INITIALIZATION FORM

PROCRMMMLR
PROBLEM
PROBLEM
DATE

ARRAY NUMBER												LIST AND TABLE DIMENSIONS															TABLE READ-IN				RANDAM LIOOK-UTTARLES						INITIAL VALUE OR FORMAT FIELD DESCRIPTION											COMMENT				IDENTIFICATION										
								Rows						COLUMNS																																																
FROM			To							NUMBER OF ROWS			ARRAY NUMAER OF ATIRIDUTE EQUUL TS NUMACA of Rows																																																	
01	102	23]	040	0506	0607	07108			809	920	11	12	131	115	1611	1718	19	202	2122				$23]$	24.25	2526	2728			829	3031	3132	233	34.35		45	47	18		51	5253	54	5556	57	${ }^{8} 5$	60		63	64 [6	566	6716	58.69	697017			73 74]	75.76	77	778	79780			
																														/																																
																											1																																			
																									/																																					
																									1																																					
																									1																																					
																									1.																																					
																									1																																					
																									/																																					
																									1																																					
																									1																																					
																									1																																					
																									1																																					
																									1																																					
																									1																																					
																									1																																					
																									1																																					
																									1																																					
																									1																																					
																									1											,																										
																									1						-																															
																									1						\checkmark																															
																									1											,																										
																									1						\cdots														,																	
																									1																																					
								3																	1						4																															

4 5 4 6 7 7 5345678901234567 ห9~1234567890
alization card no.

§

$\stackrel{\text { に }}{\substack{2 \\ 8}}$

$\underset{\sim}{\rightleftarrows}$
－
－
－
m
∞

思

$\cdots \quad m \quad m \quad m$

$\stackrel{\infty}{\aleph}$
m
がが
$\underset{m}{\infty} \quad \stackrel{\infty}{\sim}$
－
 M

N

M
m
~
N -1
-1

 珸解

$\frac{a}{\alpha} m \sim$		$\begin{aligned} & \infty \\ & \stackrel{\infty}{\text { r}} \\ & \stackrel{\sim}{0} \end{aligned}$		$\begin{aligned} & z^{-1}-1 \\ & \frac{1}{6}-1-1 \\ & a \end{aligned}$	
～o				$\rightarrow-1$	
－1				$\rightarrow-1$	
$N-$				$\rightarrow-1$	
\pm			$\stackrel{ \pm}{\square}$	$\underset{\sim}{\Xi}$	
$\stackrel{\Gamma}{\infty}-1 \sim$		\sim	∞	あの－	
\cdots	σ		$\cdots \cdots$		\bigcirc
$\infty \pm$				$\bigcirc 0$	
$\infty \infty$				OO	
$00 m$	000000000000			$0 \rightarrow 0$	0000
6 N				$\rightarrow 0$	
\pm	NNOOOONOONOOJ			\rightarrow	Fono
O0न	0000000000000				0000
\bigcirc	000000000000			\bigcirc	0000
0 －				－-1	
\bigcirc	0000000000000				0000
$\bigcirc \cdot$				$\bigcirc \square$	
$\stackrel{m}{n}_{0}$	$\text { 志寺 } 0000$	0	$\begin{array}{lll} 0 & 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{array}$	商	$\mathfrak{m}^{5} 0$
	∞_{n}^{∞}			${ }_{n}^{\infty}$	$\operatorname{mon}_{n}^{\infty} \circ$
$\propto \sim \sim$	NNNN	＋	${ }^{N} \times{ }_{\text {c }}$	¢ O－	${ }_{\propto}{ }^{N N}$
\rightarrow	H－OOOOHOOMOOH			－1	$\rightarrow 0 \rightarrow$
	00000		0000	OOm	0000

INITIALIZATION CARD	COLUMAS	CONTENT
1	I-4	The number "I".
	12	The letter 'R".
	50-66	Left-justified integer giving the total number of resources in a run.
	67-80	Field for comment.
2	1-4	The number " 2 ".
	5-8	The number " 5 ".
	10	The number " 1 ".
	13	The letter "Z".
	15-18	Integer giving the total number of resources.
	19-22	The number "I'.
	34	The number " 2 ".
	67-80	Field for comment.
3	1-4	The number " 6 ".
	5-8	The number "7".
	10	The number " 1 ".
	13	The letter "Z".
	15-18	Integer giving the total number of resources.
	19-22	The number " 1 ".
	34	The number "4".
	67-80	Field for comment.
4	1-4	The number "8".
	5-8	The number " 20 ".
	10	The number " 1 ".
	13	The letter "Z".
	15-18	Integer giving the total number of resources.
	19-22	The number "I".
	34	The number "2".
	67-80	Field for comment.
5	1-4	The number " 21 ".
	5-8	The number " 22 ".

INITIALIZATION CARD	COLUMNS	CONTENT
6	10	The number " 1 ".
	13	The letter "Z".
	15-18	Integer giving the total number of resources
	19-22	The number " 1 ".
	34	The number " 4 ".
	67-80	Field for comment.
	1-4	The number " 23 ".
	12	The letter ' R ".
	50-66	Left-justified integer giving the number of resource types.
7	67-80	Field for comment.
	1-4	The number " 24 "
	10	The number " 1 ".
	13	The letter "Z".
	15-18	Integer giving the number of resource types.
	19-22	The number " 23 ".
	34	The number " 2 ".
	67-80	Field for comment.
8	1-4	The number " 25 ".
	10	The number " 1 ".
	12	The letter 'R".
	15-18	Integer giving the number of resource types.
	19-22	The number " 23 ".
	34	The number " 2 ".
	50-66	Left-justified format - 12 (H4.1)
	67-80	Field for comment

Data cards must follow initialization card number 8 to read in endurance times for each resource type. The format for these data cards is given in columns 50-66 of the initialization card. In this case, the format is $12(\mathrm{H} 4.1)$. The " 12 " gives the number of fields per card. The letter " H " indicates that the endurance times are to be read in decimal hours. The " 4.1 " indicates there will be four places to the left of the decimal point, the decimal point and one place after the decimal point making each field occupy six columns.

9	COLUMNS	CONTENT
	$1-4$	The number " 26 ".
10	The number " 1 ".	
	12	The 1etter " R ".
	$15-18$	Integer giving the number of resource types.
	$19-22$	The number " 23 ".
34	The number " 2 ".	
	$50-66$	Left-justified format - 7(U7.2)
	$67-80$	Field for comment.

Data cards are required after initialization card 9 to read in the cost per day of each resource type. The format 7 (U7.2), indicates seven floating point numbers per card each with seven places before the decimal point, the decimal point and two places after the decimal point. The 'U' means that "unsigned" floating point numbers are being read in.

10
$1-4$
10
12
$15-18$
$19-22$
34
$50-66$
$67-80$

The number " 27 ".
The number " 1 ".
The letter 'R".
Integer giving the number of resource types.
The number " 23 ".
The number " 4 ".
Left-justified format - 16(I4)
Comment field.

Data cards to read the relative cost ranking of each resource type should follow initialization card 10. The format 16(I4) implies sixteen integers per card with four columns per field.

11

1-4
10
12
15-18
19-22
34

The number " 28 ".
The number " 1 ". The letter " R ". Integer giving the number of resource types. The number " 23 " The number " 2 ".

INITIALIZATION CARD	COLUNAS	
	$50-66$	CONTENT
	$67-80$	Cont-justified format - 12(U4.1).
	Cont field.	

Data cards to read speed-of-advance I for each resource type follow card 11. These are read in miles per day under the format 12 (U4.1).

12

1-4
10
12
15-18
19-22
34
50-66
67-80

The number " 29 ".
The number " 1 ".
The letter ' R ".
Integer giving the number of resource types.
The number " 23 ".
The number " 2 ".
Left-justified format - 12(U4.1).
Comment field.

Following initialization card 12 are the data cards to read speed-of-advance II for each resource type. These are read in miles per day under the format $12(\mathrm{U} 4.1)$.

13

1-4
10
12
15-18
19-22
34
50-66
67-80

The number " 30 ".
The number " 1 ".
The letter ' R ".
Integer giving the number of resource types.
The number " 23 ".
The number " 2 ".
Left-justified format - 12 (U4.1).
Comment field.
Data cards to read the search speed-of-advance for each resource type follow card 13. These are also input in miles per day under the format $12(\mathrm{U4} .1)$.

14

1-4
10
12
15-18

The number " 31 ".
The number " 1 ". The letter ' R ". Integer giving the number of resource types.

INITIALIZATION CARD	COLUNNS	CONTENT
	$19-22$	The number "23".。
	34	The number "4".
	$50-66$	Left-justified format - 16(I4).
	$67-80$	Conment field

Data cards follow to read in the swell 1imit on speed-of-advance I for each resource type. The swell limit is expressed in feet under the format 16 (I4). Note that there is no swell limit for an aircraft resource type.
15

1-4
10
12
15-18
19-22
34
50-66
67-80

The number " 32 ".
The number " 1 ".
The letter 'R".
Integer giving the number of resource types.
The number " 23 ".
The number " 2 ".
Left-justified format - 12(H4.1).
Conment field.

Data cards follow to read the time-to-refuel for each resource type. The format is $12(\mathrm{H} 4.1)$.

16

1-4
10
12
15-18
19-22
34
50-66
67-80

The number "33".
The number " 1 ".
The letter " R ".
Integer giving the number of resource types.
The number " 23 ".
The number " 2 ".
Left-justified format - 13(U2.2).
Conment field.

Data cards follow to input operational probabilities for each resource type under the format $13(\mathrm{U} 2.2)$.

17

The number "34".
The letter " R ".
Left-justified integer giving the number of stations.
Comment field
The number " 35 ".
The number " 2 ".

12	The letter "R".
$15-18$	Integer giving the number of stations.
$19-22$	The number " 34 ".
40	The number " 4 ".
41	The letter "R".
$50-66 \quad$ Left-justified format - 14 (I5).	
$67-80 \quad$ Comment field	

Following initialization card 18 is the ragged table (refer to Mar Markowitz for an explanation of ragged tables) to input the covering aircraft stations of each station. There is usually one input card per station in this set of data cards. Each card contains the aircraft covering stations of one station under the format 14(I5) and an integer right-justified in columns 71 and 72 giving the number of fields to be read from the card. If a station has more than 14 aircraft covering stations, the first card would contain the first 14 and the letter " C " heypunched in column 72. The next card would contain the remaining aircraft covering stations with the numbers of fields to be read keypunched in columns 71 and 72. Note that if a station has no aircraft covering station, a " 0 " should be keypunched in column 4 and a " 1 " should be keypunched in column 72 on the card for that station.
19

1-4
10
12 The letter " R ".
15-18 Integer giving the number of stations.
19-22 The number "34".
40 The number " 4 ".
41 The letter 'R".
50-66 Left-justified format - 14(I5).
67-80 Comment field

Following initialization card 19 is the ragged table to input the adjacent stations of each station. The above discussion on the ragged table input of aircraft covering stations applies here also.

20

The number " 37 ".
The number " 2 ". The letter " R ". Integer giving the number of stations. The number "34". The number " 4 ". The letter "R".

INITIALIZATION CARD	COLUNNS	CONTENT
	$50-66$	Left-justified format - 14(I5). $67-80$
	Conment field.	

Following card 20 is the ragged table to input the covering cutters of each station. The discussion of ragged table input above applies.

21

1-4
10
12
15-18
19-22
34
50-66
67-80

The number " 38 ".
The number " 1 ".
The letter "R'".
Integer giving the number of stations.
The number " 34 ".
The number " 2 ".
Left-justified format - 12(D4.1). Comment field.

Data cards to input the X coordinate of each station follow initialization card 21. The format 12(D4.1) calls for " 12 " fields per card. The 'D4.1" means that signed floating point numbers with four places before the decimal point, the decimal point and one place after the decimal point are to be read.

22

1-4
10
12

19-22 The number "34".
34 The number " 2 ".
50-66
67-80

15-18 Integer giving the number of stations.
The number " 39 ". The number " 1 ". The letter "R".

Left-justified format - 12(D4.1). Comment field.

Data cards to input the Y coordinate of each station follow initialization card 22. The format, 12(D4.1), is explained above under initialization card 21.

23

1-4
10
13
15-18

The number " 40 ".
The number " 1 ".
The letter " 2 ".
Integer giving the number of stations.

INITIALIZATION CARD	COLUMNS	CONTENT
24	19-22	The number "34".
	34	The number " 2 ".
	67-80	Comment field
	1-4	The number " 41 ".
	10	The number ' 1 ".
	13	The letter "Z".
	15-18	Integer giving the number of stations.
	19-22	The number "34".
	34	The number " 4 ".
	67-80	Comment field.
25	1-4	The number "42".
	10	The number " 1 ".
	13	The letter " 2 ".
	15-18	Integer giving the number of stations.
	19-22	The number " 34 ".
	34	The number " 4 ".
	67-80	Comment field.
26	1-4	The number " 43 ".
	10	The number " 1 ".
	13	The 1etter "Z".
	15-18	Integer giving the number of stations.
	19-22	The number " 34 ".
	34	The number " 4 ".
	67-80	Conment field.
27	1-4	The number " 44 ".
	10	The number " 1 ".
	13	The letter "Z".
	15-18	Integer giving the number of stations.
	19-22	The number "34".
	34	The number " 2 ".
	67-80	Conment field.
28	1-4	The number " 45 ".
	10	The number " 1 ".

INITIALIZATION CARD	COLUNNS	CONTENT
	41	The letter " R ".
	$50-66$	Left-justified format - 16(I4).
	$67-80$	Comment field.

The table to input the number of resources of each resource type at each station follows initialization card 32. There is usually one input card per station in this data set. Each card contains the number of resources of each resource type at a station read in under the format 16(I4) and an integer rightjustified in columns 71 and 72 giving the number of resource If there are more than 16 resource types, the first card for a station would contain the number of resources of the first 16 types and a C keypunched in column 72. The next card would contain the number of resources of the remaining types and the number of fields to be read keypunched in column 71 and 72.

33

10
12
15-18
19-22
40
41
50-66
67-80

The number " 50 ".
The number " 2 ".
The letter " R ".
Integer giving the number of stations.
The number "34".
The number " 4 ".
The letter " R ".
Left-justified format - 8(I4).
Comment field.

The table to input the number of crews during each shift at each station follows initialization card 33. There is one input card per station in this data set. Each card contains the number of crews during each shift for a station under the format 8(I4) and an integer right-justified in columns 71 and 72 giving the number of shifts. The number of shifts cannot be greater than 8.

34

1-4

The number " 51 ".
The number " 1 ".
The letter " Z ".
Integer giving the number of stations.

INITIALIZATION CARD	COLUNTS	CONTENT
35	19-22	The number "34".
	34	The number "4".
	67-80	Comment field.
	1-4	The number "52".
	10	The number "l".
	13	The letter "Z"。
	15-18	Integer giving the number of stations.
	19-22	The number "34".
	34	The number " 2 ".
	67-80	Comment field.
36	1-4	The number "53".
	12	The letter "R".
	50-66	Left-justified integer giving the total number of weekend shifts and weekday shifts.
	67-80	Comment field.
37	1-4	The number "54".
	10	The number " 2 ".
	13	The letter "Z".
	15-18	Integer giving the number of stations.
	19-22	The number "34".
	23-26	Integer giving the total number of shifts.
	27-30	The number ' 53 ".
	40	The number " 2 ".
	67-80	Comment field.
38	1-4	The number ' 55 ".
	10	The number " 1 ".
	13	The letter " 2 ".
	15-18	Integer giving the number of shifts.
	19-22	The number " 53 ".
	34	The number " 2 ".
	67-80	Comment field.

INITIALIZATION CARD	COLUMNS	CONTENT
39	$1-4$	The number " 56 ".
	10	The number " 1 ".
	12	The letter " R ".
	$15-18$	Integer giving the number of shifts.
	$19-22$	The number " 53 ".
	34	The number " 2 ".
	$50-66$	Left-justified format $-8(\mathrm{H} 2.2)$.
	$67-80$	Comment field.

One data card follows initialization card 39 to input the times that the shifts end. Times that weekday shifts end are keypunched forst with the times that weekend shifts end keypunched last. The format, $8(\mathrm{H} 2.2)$ indicates a maximum of eight fields on the card with the times given in decimal hours.

40	1-4	The number " 57 ".
	10	The number " 1 ".
	13	The letter " 2 ".
	15-18	Integer giving the number of shifts.
	19-22	The number "53".
	34	The number " 2 ".
	67-80	Comment field.
41	1-4	The number "58".
	12	The letter ' R ".
	50-66	The number " 5 ", left-justified.
	67-80	Conment field.
42	1-4	The number "59".
	10	The number " 1 ".
	12	The letter "R".
	15-18	The number " 5 ".
	19-22	The number " 58 ".
	34	The number " 2 ".
	50-66	Left-justified format - 5 (H2.2) .
	67-80	Comment field.

INITIALIZATION CARD COLUNNS CONTENT

One data card follows initialization card 42 to input tolerance times in decimal hours. Note that there are always 5 tolerance times. The first tolerance time will have the greatest value since severity level 1 is the lowest priority.

43

1-4
10
12
15-18
19-22
34
50-66
67-80

The nunber " 60 ".
The number " 1 ".
The letter " R ". The number " 5 ". The number " 58 ". The number " 2 ". Left-justified format - 5(H2.2). Comment field.

One data card follows to input search tolerance times in decimal hours. Again there are always 5 search tolerance times and the first will have the greatest value since severity level 1 is the lowest priority.
44

45

1-4
12
50-66

67-80
1-4
10
12
15-18
19-22
50-66
67-80

The number " 61 ".
The letter "R".
Left-justified integer giving the number of rows in the Resource Capability Matrix (Figure IV-3).
Comment field.
The number " 62 ".
The number " 1 ". The letter " R ".
Integer giving the number of rows in the Resource Capability Matrix The number " 61 ". Left-justified format - 6 (012). Comment field.

Data cards to input the Resource Capability Matrix follow injtialization card 45. The format, $6(012)$ indicates 6 fields per card with 12 colums per field. Each row of the Resource Capability Matrix is represented by one octal number. (See Figure IV-3). The Resource Capability Matrix must be changed

（continued）
1 －indicates capability
$0-$ indicates non－capability

	룰 $\stackrel{\circ}{\circ}$	\circ 	$\stackrel{\circ}{9}$	$\begin{array}{c\|c} 0.0 \\ 0 & 0 . \\ \hline & 0 \\ \hline \end{array}$			$\stackrel{\circ}{\circ}$							$\stackrel{1}{N}$	成	A	츷	
	等 0	0	－ 0	－ 0	－-1	-10	0 －	0 －	$0-1$	－1－	－1－		71			－1－	－1－	
$\begin{array}{\|c} 1 \\ 3 \\ 3 \\ I \end{array}$		0	－ 0	－ 0	0.0	－ 0	－ 0	－ 0	－-1.	\cdots	－		－10		－	－		
－	－10	0	－ 0	0	－ 0	－ 0	－ 0	\bigcirc	$\bigcirc-1$	$7-$	7	\rightarrow	$\rightarrow 1$			\rightarrow	－-1	
	合 0	\bigcirc	－ 0	\bigcirc	－ 0	\bigcirc	0 －	$\bigcirc 0$	－ 71	7.	7	－	－		7	-1	－-1.	
㽞	囟 -	H	－1－1	4.1	7 H	7 H	7.	$7 \quad 7$	$4-1$	－-	－－	－	－-1	-1	－-1	－1－	-10	
प	或 -1	－-1	－-1	7	\cdots	\cdots			$4-1$	－	－-1	-1	－-1	\square	H_{-1}	\rightarrow		
定		$\rightarrow-$	$\rightarrow-$	－	$\rightarrow-$	-1	$\rightarrow-1$	$\rightarrow 7$	40	0	0.	0	－7		\cdots	－	70	
		$\cdots \mathrm{H}$	－	10	－-	-1	-1	-1	-1.	$\rightarrow-$	\rightarrow	－			－	－	$\rightarrow 0$	$\frac{1}{i}$
		\rightarrow	－-1	10	$\bigcirc 1$	\cdots	\cdots	$\cdots \quad-$	－	\cdots	\checkmark				\checkmark	-1	$\rightarrow 0$	
		－ 0	－	－	－-1	-1	－ 0	0	$0 \cdot 10$	\bigcirc	－		$\rightarrow-1$	10	－10	－	$\rightarrow-1$	
$\begin{array}{\|l\|} \hline \\ \hline 0 \\ 0 \\ \hline \end{array}$	年－1	0	0	－ 0	－ 7	－	$1-1$	10	$0 \cdot 1-$	$\rightarrow-$	-1.				0			
［100	近	4	－-1	10	－-1	－		$1+$	－$-1 /$	$\rightarrow-$	－10							
－	＋	－-1	\cdots	0	－-1	$1-1$	-1	10	－－1－	－	-1.				－			
$\begin{array}{\|c\|} \hline n \\ \stackrel{n}{2} \\ \hline \end{array}$			0	0	0	0	\bigcirc	\bigcirc	－-10	00	$\bigcirc 0$	－-1	-1.	70	－-1	－	-1.	
$\begin{array}{\|c\|} \hline 5 \\ \hline 2 \\ \hline \end{array}$				0	－-1		$[0$	0101		0.	0.	－-1	-1.1	40	－-10	$0-$	-4	
\％	\％-1	－	\cdots	－	\rightarrow	7	－	0		$-1=$	$-$			，	$\rightarrow 0$	－－1	-1.	
		त	ส	～	d	～	～	$\stackrel{\text { a }}{ }$	$\stackrel{\sim}{\sim})^{\circ}$	요	\cdots				1 m			

if there is a change in the number of resource types and if there is a change in the capable/non-capable status of any matrix element. Of course, it would also need to be changed if more rows were added, but this would also require a change in the computer programming code in Subroutine CRES.

46
$1-4$
12
$50-66$
$67-80$
$1-4$

10
12
15-18
19-22
50-66
67-80

The number " 63 ".
The letter " R ".
Left-justified integer giving the number of resource types.
Comment field.
The number " 64 ".
The number " 1 ".
The letter ' R ".
Integer giving the number of resource types.
The number " 63 ".
Left-justified format - 6 (012).
Comment field.

Data cards follow initialization card 47 to input the permanent attribute, 'MASK". MASK(I), where I is the ordinal designation of a particular resource type, is used in Subroutine CRES in determining what resource types can serve a case. After "ANDing" the appropriate rows of the Resource Capability Matrix (see Subroutine CRES in Section II, Part III), each MASK(I) is "ANDed" with that product to determine if the Ith resource type can serve the case. From the above explanation of the function of 'MASK", the input of 'MASK' can be understood. (See Figure IV-4). For example, MASK(1) should have all bits of the 36-bit UNIVAC 1108 word zeroed out except the one representing the first resource type - thus the right justified octal number, 100000. If the number of resoúrce types was increased to 17, MASK(1) would be input as 200000, MASK(2) would be input as 100000 , etc.

The number " 65 ".
The letter " R ".
Left-justified integer giving to maximum number of S1S (CASE), number of resources operating in parallel on a long search case; the maximum number is presently 10.
SAMPLE 'MASK" INPUT FOR SIXTEEN RESOURCE TYPES 040000 020000 010000 004000 002000 001000 000400 000200 200100 000040 000020 000010 000004 000002 000001

'MASK' Input For Resource Type No.	Binary Representation of 'MiASK" Octal Number
1-(40's)	\longleftrightarrow Zero fill for first 20 bits of word—— 1000000000000000
2-(30's)	$\xrightarrow{\longrightarrow}$ Zero fill $\longrightarrow 0000000000000$
3-(17's)	$\xrightarrow{\longrightarrow} 0010000000000000$
4-(44's)	\longleftrightarrow Lero fill \longrightarrow Z 001000000000000
5-(52's)	Zero fill— 0000100000000000
6 - (36's)	-Zero fill $\longrightarrow 0000010000000000$
7-(MRRB/MSB)	Zero fill $\longrightarrow 0000001000000000$
8 - (82/95)	--Zero fill $\longrightarrow 0000000100000000$
9 - (82/95-P)	-Zero fill
$10-(W \mathrm{TTM} / \mathrm{L})$	Zero fill—— 0000000001000000
11- (MEC)	Zero fill $\longrightarrow 0000000000100000$
12-(HEC)	Zero fill
13-(C-130)	Zero fill
14-(HU-16)	Zero fill—— $000000000000 n 100$
15 - ($\mathrm{H} \mathrm{H}-52$)	-Zero fill
16 - (H H-3)	$\longleftarrow 0$ Zero fill
	-64-

INITIALIZATION CARD	COLUMNS	CONTENT
49	$67-80$	Comment field.
	$1-4$	The number " 66 ".
	10	The number " 2 ".
	12	The letter " R ".
	$15-18$	Integer giving the maximum SIS (CASE).
	$19-22$	The number " 65 ".
	40	The number " 2 ".
	41	The letter "R".
	$50-66$	Left-justified format - 10 (Ul.3).
	$67-80$	Comment field.

The ragged table to input the fractional split of the total search miles on a case as a function of SIS (CASE) follows initialication card 49. The format 10 (U1.3) indicates 10 fields per card with 5 columns in each field. The U means unsigned numbers must be input. The first data card inputs the percentage of search miles assigned to the resource when $S 1 S(C A S E)=1$, the second data card inputs the fractional split of the total search miles when $S 1 S(C A S E)=2$, the third data card inputs the fractional split when S1S (CASE) $=3$, etc. Each of the data cards must have an integer right-justified in columns 71 and 72 to indicate how many fields will be read from the card.

50	1-4	The number " 67 ".
	13	The letter "Z"
	67-80	Comment field.
51	1-4	The number "68".
	12	The letter ' R ',
	50-66	Left-justified integer giving the number of patrolling cutters.
	67-80	Conment field.
52	1-4	The number " 69 ".
	10	The number " 1 ".
	12	The letter ' R ".
	15-18	Integer giving the number of patrolling cutters.
	19-22	The number "68".

INITIALIZATION CARD	COLUMNS	CONTENT
	34	The number "4".
	$50-66$	Left-justified format - 18(14).
	$67-80$	Comment field.

Data cards follow to input the ordinal designations of the patroliing cutters under the format 18(I4).

53

54

55

56

57

58

1-4
13 The letter " 2 ".
67-80
1-4
12
50-66

67-80
1-4
12
50-66

67-80
1-4
12
50-66
67-80
1-4
12
50-66

67-80 Comment field.
1-4 The number "75".
5-8 The number " 80 ".

INITIALIZATION CARD	COLINN	CONTENT
59	13	The letter " 2 ".
	67-80	Cormment field.
	1-4	The number " 81 ".
	12	The letter "R'.
	50-66	Left-justified floating point number expressed in nautical miles giving the distance offshore where the handoff for a two-part tow takes place.
	67-80	Comment field.
60	1-4	The number " 82 ".
	12	The letter ' R '.
	50-66	Left-justified integer giving the increment to the priority of an interrupted case.
	67-80	Cormment field.
61	1-4	The number " 83 ".
	12	The letter "R".
	50-66	Left-justified integer giving the day of the week on which the simu1ation begins (Monday $=1$, Tuesday $=2$, etc.)
	67.-80	Conment field.
62	1-4	The number " 84 ".
	5-8	The number " 85 ".
	13	The letter " 2 ".
	67-80	Comment field.
63	1-4	The number " 86 ".
	12	The letter "R".
	50-66	Left-justified floating point number giving the number of looks at priority reevaluation.
	67-80	Conment field.
64	1-4	The number " 87 ".
	5-8	The number " 98 ".

INITIALIZATION CARD	COLUMNS	CONTENT
65	13	The letter "Z".
	67-80	Cormment field.
	1-4	The number "99".
	12	The letter "R".
	50-66	Left-justified integer giving the number of weekday shifts.
	67-80	Comment field.
66	1-4	The number " 100 ".
	12	The letter "R".
	50-66	Left-justified integer giving the number of weekend shifts.
	67-80	Comment field.
67	1-4	The number ' 101 ".
	12	The letter ' R ".
	50-66	Left-justified floating point number giving the percentage of search miles desirable to achieve by each resource on the first day of a long search.
	67-80	Comment field.
68	1-4	The number " 102 ".
	12	The letter " R ".
69	50-66	Left-justified floating point number giving the percentage of search miles desirable to achieve by each resource on any but the first day of a long search
	67-80	Comment field.
	1-4	The number "'103".
	12	The letter "R".
	50-66	Left-justified floating point number giving the probability that the priority will decrease when reevaluated.
70	67-80	Comment field.
	1-4	The number " 104 ".
	12	The letter 'R'.

INITIALIZATION CARD	COLUMNS	CONTENT
71	50－66	Left－justified floating point number giving the probability that the priority will increase when reevaluated．
	67－80	Comment field．
	1－4	The number＂105＂．
	13	The letter＂ Z ＂。
	67－80	Comment field．
72	1－4	The number＂ 106 ＂．
	12	The letter＇R＇。
	50－66	Left－justified integer giving the option for the resource assignment policy（See OPSIM Definitions，Section II，Part II）．
	67－80	Conment field．
73	1－4	The number＂107＂
	12	The letter ${ }^{\prime \prime} \mathrm{R}^{\prime \prime}$ ．
	50－66	Left－justified floating point number expressed in decimal days giving the time for sunrise．
	67－80	Conment field．
74	1－4	The number＂108＂．
	12	The letter＂ R ＂．
	50－66	Left－justified floating point number expressed in decimal days giving the time for sunset．
	67－80	Comment field．
75	1－4	The number＂109＂．
	13	The letter＂Z＂．
	67－80	Comment field．
76	1－4	The number＂ 110 ＂．
	12	The letter＇ R ＇＇。
	50－66	Left－justified integer giving the priority level to which a CASE is raised while a short search is being served．

INITIALIZATION CARD	COLUMNS	CONTENT
77	67-80	Comment field.
	1-4	The number "111".
	12	The letter 'R'.
	50-66	Left-justified floating point number expressed in decimal days giving the hook-up time on a tow case.
	67-80	Comment field.
78	1-4	The number " 112 ".
	5-8	The number " 114 ".
	13	The letter "z"。
	67-80	Comment field.
79	1-4	The number " 115 ".
	12	The letter 'R".
	50-66	Left-justified floating point number expressed in nautical miles per day giving the tow speed of resources if $L($ CASE $) \leq 26$ feet.
	67-80	Comment field.
80	1-4	The number " 116 ".
	12	The letter 'R'.
	50-66	Left-justified floating point number expressed in nautical miles per day giving the tow speed of resources
	67-80	Comment field.
83	1-4	The number " 117 ".
	13	The letter " 2 ".
	67-80	Comment field.
82	1-4	The number " 118 ".
	12	The letter "R".
	50-66	Left-justified floating point number expressed in decimal days giving the hours before sumrise when held over long search cases are examined for resource assignment.

INITIALIZATION CARD	COLUMNS	CONTENT
83	67-80	Cormment field.
	1-4	The number " 119 ".
	13	The letter "Z".
	67-80	Comment field.
84	1-4	The number " 120 ".
	10	The number " 1 ".
	12	The letter "R".
	15-18	Integer giving the number of resource types.
	19-22	The number " 23 ".
	34	The number "4".
	50-66	Left-justified format - 16(I4).
	67-80	Comment field.
Data cards follow initialization card 84 to input indicators (0 if resource type is a boat; 1 if resource type is an airplane) for each resource type under the format 16 (I4).		
85	1-4	The number " 121 ".
	13	The letter " 2 ".
	67-80	Comment field.
86	1-4	The number ' 122 ".
	13	The letter " 2 ".
	67-80	Comment field.
87	1-4	The number " 123 ".
	12	The letter 'R".
	50-66	Left-justified integer giving the maximum number of OPFAC(CASE), the station of the case input from the Exogenous Event Tape.
	67-80	Comment field.
88	1-4	The number " 124 ".
	10	The number " 1 ".
	12	The letter "R".

INITIALIZATION CARD	COLUNNS	CONTENT
	$19-22$	The number "23".
	34	The number "4".
	$50-66$	Left-justified format, 16(I4).
	$67-80$	Comment field.

Data cards follow to input indicators for each resource type under the format 16(I4). (0 for small vesse1s, 1 for cutters, 2 for C-130's and 3 for aircraft).

93
1-4
10
12
15-18
19-22
34
50-66
67-80

The number " 129 ".
The number " 1 ".
The 1etter ' R ".
Integer giving the number of resource types.
The number " 23 ".
The number " 2 ".
Left-justified format, 7(H3.6).
Comment field.

Following initialization card 93 are the data cards to input a delay time for each resource type under the format, $7(\mathrm{H} 3.6)$. .

94

95

1-4
12
50-66

1-4
10
13
15-18
19-22
34
67-80
1-4

The number " 130 ".
The letter " R ".
Left-justified floating point number giving the amount of time in decimal days
between check-in times when a 'covering'
resource examines the queue.
Corment field.
The number " 131 ".
The number " 1 ".
The letter " Z ".
Integer giving the number of stations.
The number " 34 ".
The number " 2 ".
Comment field.
The number ' 132 ".

INITIALIZATION CARD	COLUMNS	CONTENT
	10	The number＂ 1 ＂．
	12	The letter＂R＂．
	$15-18$	Integer giving the number of stations．
	$19-22$	The number＂ 34 ＂．
	34	The number＂4＂．
	$50-66$	Left－justified format，18（I4）．
	$67-80$	Conment field．

Data cards follow initialization card 96 to input the group number of each station under the format， 18 （I4）．
97
1－4 The number＇I33＇＂．

10
13 The letter＂2＂．
15－18 Integer giving the number of stations．
19－22 The number＂34＂。
$34 \quad$ The number＂ 2 ＂．
67－80 Comment field．
1－4 The number＂134＂．
10 The number＂I＂．
13 The letter＂Z＂．
15－18 Integer giving the number of stations．
19－22 The number＂ 34 ＂．
34 The number＂ 2 ＂。
67－80 ：Comment field．
1－4 ：The number＂ 135 ＂．
13 ：The letter＂Z＂。
67－80 Comment field．
1－4 ：The number＂136＂．
13 ：The Ietter＂Z＂．
67－80 Comment field．
1－4 The number＂137＂．
13 ：The letter＂Z＂．

INITIALIZATION CARD	COLUMNS	CONTENT
102	67-80	Comment field.
	1-4	The number " 138 ".
	12	The 1etter 'R',
	50-66	Left-justified integer giving the number of groups.
103	67-80	Corment field.
	1-4	The number ' 139 ".
	5-8	The number ' 151 ".
	10	The number " 1 ".
	13	The letter "Z".
	15-18	Integer giving the number of groups.
	19-22	The number " 138 ".
	34	The number " 2 ".
	67-80	Comment field.
104	1-4	The number " 152 ".
	5-8	The number " 155 ".
	13	The letter " 2 ".
	67-80	Comment field.
105	1-4	The number ' 156 '.
	12	The letter 'R'.
	50-66	Left-justified integer giving the number of distributions output in REPORT DSTRIB.
	67-80	Comment field.
106	1-4	The number " 157 ".
	5-8	The number " 167 ".
	10	The number " 1 ".
	13	The letter " 2 ".
	15-18	Integer giving the number of distributions output in REPORT DSTRIB.
	19-22	The number " 156 ".
	34	The number " 2 ".
	67-80	Corment field.

INITIALIZATION CARD	COLUMNS	CONTENT
107	1-4	The number ' 168 '.
	13	The letter " 2 ".
	67-80	Comment field.
108	1-4	The number " 169 ".
	12	The letter "R".
	50-66	Left-justified integer giving the number of holidays to be read in. If there are no holidays, input the number " 1 " in this field.
	67-80	Conment field.
109	1-4	The number ' 170 ".
	10	The number " 1 ".
	12	The letter "R".
	15-18	Integer giving the number of holidays. If there are not holidays, read in the number " 1 " here.
	19-22	The number "169".
	34	The number " 4 ".
	50-66	Left-justified format, 18(I4).
	67-80	Comment field.

Data cards follow initialization card 109 to read in holidays. A value of -1 should be read in here if chere are no holidays.

1-4 The number "171".
10 The number "1".
12 The letter "R".
15-18 Integer giving the number of stations.
19-22 The number "34".
34 The number "4".
50-66 : Left-justified format, 18 (I4).
Following initialization card 110 are the data cards to input PSTTN for each station under the format 18(I4). PSTTN is a tag to indicate if the station can or cannot be a primary station.

INITIALIZATION CARD	COLUMNS	CONTENT
111	1-4	The number " 172 ".
	10	The number " 1 ".
	13	The letter "Z".
	15-18	Integer giving the number of stations.
	19-22	The number " 34 ".
	34	The number "4".
	67-80	Comment field.
112	1-4	The number "173".
	12	The letter "R'.
	50-66	Left-justified integer giving the output option for printing/not printing the 'case created' and 'case terminated' information.
	67-80	Comment field.
113	1-4	The number " 174 ".
	10	The number " 1 ".
	13	The letter "Z".
	15-18	Integer giving the number of stations.
	19-22	The number " 34 ".
	34	The number " 2 ".
	67-80	Comment field.
114	1-4	The number " 175 ".
	13	The letter " 2 ".
	67-80	Comment field.

D. Blank Card

A blank card must follow the initial conditions deck.

E. Exogenous Event Deck

The exogenous events may be read from cards or from magnetic tape. For efficiency, OPSIM is reading exogenous events from magnetic tape.

There are three types of exogenous events in the operational simulator:
(1) Exogenous Event START, (2) Exogenous Event OPSIM, and (3) Exogenous Event ENDSIM. START occurs only once and must be the first event to occur at TIME $=0.0$. OPSIM occurs every time a case comes into the system. ENDSIM, an event to end the simulation, occurs only once and must be the last event on the tape. The contents and format of the exogenous tape event tape follow.

TYPE OF EVENT	CARD	COLLMAS	CONTENT
START	1	3	The number " 3 " to indicate Exogenous Event START.
(3)		7	A zero, " 0 ", to give the day the event occurred.
		10	A zero, " 0 ", to give the hour the event occurred.
		12	A zero, " 0 ", to give the minute the event occurred.
OPSIM	1	3	The number " 1 " to indicate Exogenous Event OPSIM.
(1)		4-7	Right-justified integer giving the day the event occurred.
		8-10	Right-justified integer giving the hour the event occurred.
		11-12	Right-justified integer giving the minute the event occurred.
		13-15	IDLOC(CASE), right-justified integer.
		16-20	OPFAC(CASE), right-justified integer.
		21-25	NOCAS(CASE), right-justified integer.
		26-30	POB(CASE), right-justified integer.
		31-35	AIR(CASE), right-justified integer.
		36-40	WIND(CASE), right-justified integer.
		41-45	SWELL (CASE), right-justified integer.
		46-50	VIS (CASE), right-justified integer.
		51-55	UTYPE (CASE), right-justified integer.
		56-60	L(CASE), right-justified integer.
		61-65	FPRI (CASE), right-justified integer.
		66-70	$\begin{aligned} & \text { N, right-justified integer. } \\ & \mathrm{N}=\operatorname{NNN}(\mathrm{CASE}) \text { if } \mathrm{MMM}(\mathrm{CASE})=0, \\ & \mathrm{~N}=\operatorname{NNN}(\mathrm{CASE})+1 \text { if } \operatorname{MMM}(\mathrm{CASE})>0 \end{aligned}$
	2	1-5	NNN(CASE), right-justified integer.
		6-10	MMM(CASE) right-justified integer.
		11-15	GAMMA(CASE), right-justified integer.
		16-20	SiS(CASE), right-justified integer.
			-79-

TYPE OF EVENT	CARD	COLUMNS	CONTENT
		21-25	S2S(CASE) right-justified integer.
		26-30	TSM(CASE), right-justified integer.
		31-35	OFSHR(CASE), right-justified integer given in tenths of miles.
		36-40	XC (CASE), right-justified integer.
		41-45	YC(CASE), right-justified integer.
		46-50	BOX(CASE), right-justified integer.
		51-60	VALUE (CASE) right-justified integer.

If a single resource case is being input, card 3 is read under the format (I2, D1.4).

3	$1-2$		
$3-8$		\quad	NEED(CASE), right-justified integer.
:---			
OST(CASE), a floating point number ex-			
pressed in decimal days input under			
the format DI.4.			

If a multi-resource case is being input, card 3 is read under the format 6(I2, D1.4, D1.2).

3 I-2
3-8

NEED(NOTIF), right-justified integer. OST (NOTIF), a floating point number expressed in decimal days.
DELTA(NOTIF), a floating point number.
Note that there are six sets of the above three fields on one input card. There is one set per need of a multi-resource case so that NEED (NOTIF), OST (NOTIF), and DELTA(NOTIF) are read repeatedly across the card for all NNN(CASE) needs. More than one card may be required to read in all needs.

ENDSIM
(2)

4 I2
$1 \quad 3$
4-7
8-10 Right-justified integer giving the last hour of the simulation.
11-12 Right-justified integer giving the last minute of the simulation.
F. Data to Subroutine JUMPER

The input data to Subroutine JUMPER immediately follows the Exogenous Event Deck. If the Exogenous Event Deck is read from magnetic tape, the data will follow the blank card.

Following is a description of the format and content of the JUMPER data set:

A. STATION CHANGES

$$
\begin{aligned}
& \text { FAC } 122 \\
& \text { FAC } 123 \\
& \text { FAC } 124 \\
& \text { LETE } \\
& \text { FAC } 121 \\
& \text { FAC } 133 \\
& \text { FAC } 145 \\
& \text { TRIBUTE } \\
& \text { FAC } 67 \\
& \text { FAC } \\
& \text { URCE TY }
\end{aligned}
$$

$$
\begin{aligned}
& \text { QPFACS } \\
& C \quad 122
\end{aligned}
$$

FIGURE IV-5
Samples Output from Subroutine JUMPER
SARSIM = DISTRICT 2

$$
\begin{aligned}
& \text { TO } 27 Z \\
& \text { B TO HQX }
\end{aligned}
$$ 2.4 PCT CHANGE FOR OPFAC 56

.17 .3 PCT CHANGE FOR CLIENTEL 31
6.8 PCT CHANGE FOR TIME PERIOO 6

1:INPUT CONDITIONS

$$
\begin{aligned}
& \text { m-N }
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
\text { SHFT } 7= \\
\text { SHFT } 7 \text { a }
\end{array} \\
& m \text { m } \\
& \begin{array}{l}
\text { HFT } 6= \\
\text { HFT } 6= \\
\text { HFT } 6=
\end{array} \\
& \text { Јल }
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{ll}
\text { SHFT4: } & 4 \\
\text { SHFT4: } & 2 \\
\text { SHFT } 4 \text { : } & 5
\end{array}
\end{aligned}
$$

V. User's Guide

The computer code consisting of the Definition Deck, Events List, Exogenous Events, Endogenous Events, and subroutines is stored on the FASTRAND drum for the UNIVAC 1108 at NBS under the file name CGSIM. It is assumed that the case input or demand data is stored on magnetic tape. (The large number of cases for most runs makes the use of keypunched cards impractical.) The unit or input device on which the tape is to be mounted is specified by letter on an ASG (assign) control card and by number in column 42 of the first card of the Initialization Deck referred to as the System Specifications Card. The letter and number must be in agreement, with A corresponding to 7 , B to 8 , etc. If it is desired to output attributes of the individual cases, the system variable STAPE must be set equal to the number of the output device. If this number corresponds to a tape drive, there must be an ASG control card assigning the appropriate tape.

A sanple run deck will now be described. The reader is referred to Figure V-1. The following symbols will be used:
@ = keypunch both a seven and an eight in column one
$\Delta=$ blank
A complete description of the individual cards follows:
Card 1:
D is the priority of the rum. The number of tapes, execution time, and the number of output pages determine the priority of a run.

RUN is simply the indication of a RUN card.

NAMEFG is the six character user name.
RUNID is a five digit charge number.
WW is the maximum time in minutes. Execution terminates abruptly if WW is exceeded.

XXX is the maximum number of pages to be output. Execution terminates if XXX is exceeded.

Card 2:
ASG designates a tape assignment.
A specifies the letter of the tape drive.
YYYY is the reel number of the tape to be mounted. For Figure V-1 this corresponds to the case input data since the number 7 appears in column 42 of the System Specifications Card.

Card 3:

W indicates the tape will be written on.
$\underline{\mathrm{C}}$ is the letter of the tape drive. The variable STAPE should be set to 9 so that case output will be written on this tape.

ZZZZ is the reel number of the tape to be mounted. If it is desired to obtain a new tape for this prupose, an \underline{S} is placed next to the W (on either side) and nothing is keypunched on the card after the letter C.

Card 4:
Keypunched exactly as shown. This calls in the Complex Utility Routines.

Card 5:

Keypunched exactly as shown. This brings the program file CGSIM into the user storage.

Card 6:

Keypunch exactly as shown. This begins execution of the program. Card 7:
This is the System Specifications Card described in part IV of the Operational Simulator documentation. It receives individual attention here only to show the correspondence between the 7 in column 42 and the assignment of tape A on Card 2.

Initialization, Blank Card, and JUMPER Input: These were described in part IV.

Last Card

Keypunch exactly as shown. This indicates that the run is finished.
It may at some time be desirable to change some portion of the computer code. A complete detailed description of all the control cards needed to accomplish such a change is quite lengthy and involves detailed explanation of UNIVAC 1108 control cards and SIMSCRIPT techniques. Instead, Figure V-2 will list the formatted cards required to change both Subroutine SERVE and Endogenous Event ARVSN as an example. The new version of the program will exist in the second file of the tape ree 1 YYYY mounted here on unit B.

Major points to note in Figure V-2 are as follows:

1. There is no choice regarding the tape unit used by SIMSCRIPT to output the compiled version of the program, it must be unit B.
2. The Definition Deck must preceed the routines being recompiled.
3. A card with "\$" in column 1 must follow the last routine being recompiled.

Figure V-2
Rum Deck to Revise SERVE and ARVSN
Card Column
Nưnber 1
@D \triangle RUN \triangle NAMEFG, RUNID, WW, XXX
@W $\triangle A S G \triangle B=Y Y Y$
@ $\triangle X Q T \triangle C U R$
$\triangle \triangle I N F \triangle S I M S C 6$
@N $\triangle X Q T \triangle S T M$
Place the Definition Deck here.
Place the New Version of Subroutine SERVE here.
Place the New Version of Endogenous Event ARVSN here.
\$
@ \triangle XQT $\triangle C U R$
$\triangle \triangle E R S$
$\triangle \triangle I N F \Delta C G S I M$
$\triangle \triangle D E L \triangle S E R V E / C O D E$
$\triangle \triangle$ DEL $\triangle X A R V S N / C O D E$
$\triangle \Delta I N \triangle B$
@N $\triangle A S M, * \triangle$ SERVE, SERVE
@NAASM,* \triangle XARVSN, XARVSN
@ $\triangle X Q T \triangle C U R$
$\triangle \triangle D E L \triangle S E R V E$
$\triangle \triangle$ DEL $\triangle X A R V S N$
$\triangle \triangle$ DEL \triangle DEFSXX
$\triangle \triangle \mathrm{PAC}$
$\triangle \triangle O U T \triangle B$
$\triangle \triangle T E F \triangle B$
$\triangle \triangle T R I \Delta B$
$@ \triangle$ FIN

Figure V-3
Execution of the Revised Program
Card Column
Number 1

@D \triangle RUN \triangle NAMEFG, RUNID, WW, XXX
$@ \triangle A S G \triangle A=X X X X$
$@ \triangle A S G \triangle B=Y Y Y Y$
@ $\triangle \mathrm{XQT} \triangle \mathrm{CUR}$
$\triangle \triangle P E F \triangle B$
$\triangle \triangle I N \triangle B$
@ $\triangle X Q T \triangle M A I N X X$
Initialization Deck
B1ank Card
Input to JUMPR
$@ \triangle$ FIN

4. Endogenous Events are referred to on DEL (delete) Cards and ASM (assemble) cards with an "X" preceeding the name.
5. There are other ways by which to accomplish the change shown in Figure V-2. This is a reasonable way, however, which should serve the purpose for users who wish to avoid detailed involvement with SIMSCRIPT and/or the UNIVAC 1108.

Having revised the code, it is then desired to execute the new version of the program. Assuming the case input tape to be found on tape ree1 XXXX and that $\mathrm{STAPE}=0$ so that no case output is desired, Figure V-3 shows a typical follow-up run to the run shown in Figure V-2.

The process of adding or deleting entries in the Definition Deck is somewhat complicated. SIMSCRIPT compiles a translator provided subroutine package for every definition on every card of the Definition Deck. Because of the large number of definitions required by OPSIM, the standard compilation and assembly procedures set up an overflow condition on the UNIVAC 1108. The suggested "fix" for this overflow breaks the assembled version into two parts which are now arbitrarily named A and B. Thus, one rum is required to compile, assemb1e, the 1ist the assembled code in order to see how to split the code, and a second rum actually accomplishes the split via two more assemblies. An example of the first rum is shown in Figure V-4.

The user must next examine the output from this first run. A computer reproduction of a sample Definition Deck is shown in Figure V-5. The assembly listing corresponding to this Definition Deck

FIGURE V-4

Rum to Compile and List Assembly of Definition Deck
@D \triangle RUN \triangle NAMEFG, RUNID, WW, XXX
@WDASG $\triangle B=Y Y Y Y$
@ \triangle XQT $\triangle C U R$
$\triangle \triangle$ INF \triangle SIMSC6
@ND XQTDSIM
Place the revised Definition Deck here.
\$
@ \triangle XQT \triangle CUR
$\triangle \triangle$ ERS
$\triangle \triangle I N F \triangle S I M L I B$
$\triangle \triangle I N \triangle B$
@I $\triangle A S M, * \triangle D E F S X X, D E F S X X$
$@ \triangle$ FIN
COMPILED BY UNIVAC $1107 / 1108$ SIMSCRIPT 1.5 DATED - MAR. 6, 1969 VERSION 2.11

Computer Output Version of Sample Definition Deck
is shown in Figure $V-6$. The six-digit numbers at the left of the listing are line numbers. The entities and attributes appear in the listing with a single letter prefix. The line on which an entity or attribute name appears and all lines up to the next entity or attribute constitute a package which must not be split. The first four lines and the last line (line 52) must appear in both sections A and B. A "good" place to split this assembly is after line 27. Figure V-7 shows the run which will result in A containing lines 1-27 and 52 B containing lines 1 - 4 and 28-52. The new version of OPSIM is then output in the second file of reel number YYYY.

Before concluding this part, some mention should be made of computer running time. Generally it takes approximately three to five minutes to compile all of the OPSIM routines. The assembly process requires approximately 10 minutes. To compile and assemble one or two routines in a single computer run can take as long as two to three minutes. As far as execution times are concerned, a set of about 900 real cases occurring during the month of July 1968 in District 1 was simulated in approximately 5 minutes when operating with 109 resources. When the number of resources was reduced to 34 , execution time decreased to $21 / 2$ minutes. When the number of resources was increased to 218 , execution time increased to approximately $71 / 2$ minutes.

－＊		＊						－	－
w	ω	ω	－	－	－			－	\cdots
$\cdots \cdots$	\cdots	n	\propto	$\boldsymbol{\sim}$	0	－	－	0	\cdots
N \rightarrow d	4	－	－	\sim	ω	\cup	\checkmark	0	－
－－U	\checkmark	\cup	＜	4	$\boldsymbol{\sim}$	\times	x	\cup	\cup
	－	0	v	0	2	0	1.	\bigcirc	0.

$$
\frac{\square}{3}
$$

$\begin{array}{ll}m & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0\end{array}$ ロロロ

 000000000016
 n^{0}

$$
\rightarrow 0 \rightarrow 00 \rightarrow 000 \rightarrow 0 \rightarrow 00000 \rightarrow 0-0
$$ 응

ERRXX
$\ln _{0}^{x} \underset{0}{2} \rightarrow$

FIGURE V-7
Splitting the Assembly of the Definition Deck
@D \triangle RUN $\triangle N A M E F G$, RUNID, WW, XXX
$@ W \triangle A S G \triangle B=Y Y Y Y$
@ $\triangle X Q T \triangle C U R$
$\triangle \triangle I N F \triangle C G S I M$
$\triangle \triangle D E L \triangle A / C O D E$
$\triangle \triangle D E L \triangle B / C O D E$
$\triangle \triangle I N \triangle B$
@I \triangle ASM, * \triangle DEFSXX, A
-28,51
@I \triangle ASM, ${ }^{*} \triangle$ DEFSXX, B
$-5,27$
@ $\triangle X Q T \triangle C U R$
$\triangle \triangle$ DEL \triangle DEFSXX
$\triangle \triangle P A C$
$\triangle \triangle$ OUT $\triangle B$
$\triangle \triangle T E F \triangle B$
$\triangle \triangle$ TRI $\triangle \mathrm{B}$
$@ \triangle$ FIN
VI. Interpretation of Output

In order to interpret properly the output produced by OPSIM, it is necessary to understand the calculations of the various statistics. A complete list of all statistical attributes discussed herein is given in Figure VI-1. The explanation of the collection of these statistics will be presented in like order; however, some preliminary definitions are required first.

TIME: In the context to follow, this will refer to the total time simulated for a given run.

NRES: The total number of resources in the district being simulated.

NSTA: The total number of stations in the district being simulated.

NWEWDS: The total number of weekend and weekday shifts. NRST: The total number of resource types. $\operatorname{REST}(I, J)$: The total numbe: of resources of type J at station I. TOTME(K): The cotal simulated tine occurring during shift K . This attribute of WEWDS is accumulated in Endogenous Event NUCRU and Exogenous Event ENBSMM.

TVILI(i): The total time during a parcicular shift fict which EIAT(L) 中 0. This attribute of RES is set to zero at the start of every new shift. At the end of a shift its value is accumurated into UML (L) and USite (i, K) for the appropriate values of I and K.

[^4] NUCRU, XSET, EXQ, STNBY, SVQUE NUGRU, XSET, EXQ, STNAY, SVQUE x
u
u
a
a
0
z
\vdots
\vdots
x
ARVSN, ARSCH
z
\leq
0
0
$<$

SERVE, SSS, EXQ, STNEY
NUCRU, ENDSIM
NUCRU, ENDSIM
ENDSIM
ARVSN, ARSCH, ENDSIM
1
0
\sim
0
0
0
0

SRAS NOTIF, SRCH
SRAS,NOTIF,SRCK
ARVSN, ARSCH
SERVE, SSS.EXQ,STNBY
TERM
ROCA ENDSIM
STATS
STNPY
STNDSIM
NUCPU, ENDSIM
STATS, ENDS!M
NUCFU, ENDSIM

x
n
0
2
Σ
n
0
0
ENOSIM
ENDSIM
STATS ENOSIM
STATS, ENIDSIM
STATS,E:DSIM
MLCHU, STATS,TERN FFNOSIM
MICRU, STAIS, TERN

u
u
u
u

$\begin{array}{ll}0 & a \\ c & 0 \\ = & 0 \\ = & \end{array}$
STATS.TERM, ENDSIM

STREV
CYSTEM VAR:
CATGI-CATGE
AIRU
AVUTO
BUTIL
CUTIL
CIBOU
KDUNT
LIMIT
MCFTT
MEAND
MEANV
MEANW
MNTMT
NBRCD
NBRCS
NBRFA
NBRFB
NBRFC
SNEED
TDSBY
TDTIN
TUNPR

Following is an explanation of the statistics collected in OPSIM:
CNRES(CASE): The total number of resources assigned to serve a case.

COSTC(CASE): This is the total cost of the case. It is equal to the sum of COST(IRS) for every resource IRS assigned to serve the case.

DMERT (CASE): This is the case demerit calculated in Subroutine STATS. If (TWAIT-TOL) ≤ 0, then DMERT $=0.0$. If (TWAIT-TOL) > 0, then DMERT is calculated as follows. If OFSHR > 20 and PRI ≤ 2 or if OFSHR > 20 and PRI >2, then DMERT $=2.0$ * (TWAIT - TOL). If OFSHR ≤ 20 and PRI >2, then DMERT $=3.0$ * (TWAIT - TOL). If OFSHR > 20 and PRI ≤ 2, then DMERT $=$ TWAIT - TOL .

NOINT (CASE): The total number of times that the resource(s) serving a case are interrupted.

NQUE (CASE): The total number of times that the case enters a queue. This value is increased by one every time that a need, tow, or search is filed in the queue,

REA(CASE): The reason the case first enters a queue. The meanings of the various values this can assume are given in part II.

RESA(CASE): This is the first resource to arrive on the scene of the case.

TINT (CASE): The total 'time that some need, tow, or search of the case is in the queue because of an interrupt. Time starts to accumulate in this attribute as soon as the first need, tow, or search of the case is in interrupt status in CQUE. It ceases to accumulate when the last need, tow, or search in the queue because of an interrupt is served.

TQUE(CASE): Total time during which at least one need, tow, or search of the case is in the queue.

TQUE1(CASE): Total time before the first resource arrives on the scene of the case for which at least one need, tow or search of the case is in the queue.

TSVC(CASE): Total time the case is in the system. A case is considered "in the system" from the time it occurs until the'time at which the resource serving the last need, tow, or search leaves the scene of the case having completed its duty.

TWAIT (CASE): Total time between the occurrence of the case and the time that the first resource arrives on scene.

RESA(NOTIF) : The first resource to arrive on the scene of the case for the purpose of serving a particular need or tow NOTIF.

RESA(NOTE): The first resource to arrive on the scene of the case for the purpose of serving a long search NOTE.

NCASE (RES) : The total number of times a resource is assigned to service. It is increased every time a resource is assigned to a need, even if it serves more than one need of the same case.

UTTL(L): This attribute assumes two roles in the simulation. While the simulation is in progress it contains the total time for which $\operatorname{EIAT}(\mathrm{L}) \neq 0$. At the end of the simulation in ENDSIM the value UTIL (L) is divided by TIME. It then represents average utilization for resource L. Let UTIL(L)1 denote the value before the division occurs.
$\operatorname{AUT}(J)$: This is the average utilization of resource type J . It is calculated in ENDSIM as follows:

$$
\operatorname{AUT}(J)=\left[\sum_{\mathrm{L} \varepsilon \mathrm{~J}} \operatorname{UTIL}(\mathrm{~L})^{1}\right] /\left[I M E * \sum_{\mathrm{I}=1}^{\text {NSTA }} \operatorname{REST}(\mathrm{I}, \mathrm{~J})\right]
$$

AVGTW(STA): The average time in hours that cases have to wait. The waiting time is attributed to the station of the first resource to arrive on the scene of the case.

CFTT (STA): The average Failure type C(TWAIT-TOL) at a station expressed in decimal hours. This is calculated in Subroutine ENDSIM. $\operatorname{CFTT}(\mathrm{STA})=\operatorname{TWTOL}(\mathrm{STA}) 1 * 24.0) /$ FAIL3 (STA).

DMRT (STA): During the simulation, DMRT (STA) is an accumulation of the case demerits, DMERT(CASE), and is accounted to the station of the first resource to arrive on the scene of the case. In ENDSIM, to obtain the nomalized demerit at the station in decimal hours, DMRT (STA) is replaced by (DMRT (STA) *24.0*R)/NCAS (STA) where R
is the sum of all positive (TWAIT-TOL) in the district divided by the sum of all case demerits in the district.

FAILI (STA),
FAIL2 (STA),
FAIIS (STA): The total number of Failure type A, type B, and type C respectively at a given station. FAIL1 and FAIL2 are attributed to the primary station of the case. FAIL3 is accounted to the station of the first resource to arrive on the scene of the case.

NCAS(STA): The number of cases for which a resource from this station was the first resource to arrive on the scene of the case.

NEEDS (STA) : The number of times resources from this station were assịgéd to service.

NINTR(STA): The number of times resources from this station were interrupted while serving one case to serve another case.

NMBRQ(STA): The number of times a case, multi-resource need or long search need was queued at this station. The queue is attributed to the primary station of the case.

NSTBY (STA) : The number of times that a standby was called at the station.

TWTOL(STA): During the simulation, TWTOL(STA) is an accumulation of all positive (TWAIT-TOL) and is accounted to
the station of the first resource to arrive on the scene of the case. In ENDSIM, to obtain the average positive (TWAIT-TOL) at the station in decimal hours, TWTOL(STA) is replaced by TWTOL(STA) $1^{*} 24.0$)/NCAS (STA). Let TWTOL(STA) 1 denote the value before the division occurs.

UNPRO(STA): The number of times that a standby was called at the station but not used.

USE(I): This is the average utilization at station I. It is calculated in ENDSIM as follows:

$$
\operatorname{USE}(I)=\left[\sum_{K=1}^{\operatorname{NWWDS}} \operatorname{USHF}(I, K)^{1}\right] /\left[\operatorname{TIME}^{*} \sum_{J=1}^{\operatorname{NRST}} \operatorname{REST}(I, J)\right] .
$$

USHFI,K): This attribute assumes two roles in the simulation. During the simulation it is an accumulation of TUTIL(L) for "appropriate" values of L. That is, at the end of every shift K, the value of TUTIL(L) is accumulated into $\operatorname{USHF}(\mathrm{I}, \mathrm{K})$ if resource L has $\operatorname{STN}(\mathrm{L})=\mathrm{I}$. At the end of the simulation in ENDSIM, USHF (I, K) is replaced by the following quotient:
$\operatorname{USHF}(I, K) /\left[\operatorname{TOTME}(K) * \sum^{\operatorname{NRST}} \operatorname{REST}(I, J)\right]$. $\mathrm{J}=1$
Thus USHF (I,K) becomes average utilization during shift K at station I. Let $\operatorname{USHF}(I, K)^{1}$ refer to the value of USHF (I,K) described above immediately before the division is executed.
$\operatorname{VCTR}(S T A): \quad \operatorname{VCTR}(S T A)$ is an accumulation of the time-to-vector (TVEC) of the first resource to arrive on the scene of the case and is accounted to the station of that resource. At the end of the simulation in ENDSIM, $\operatorname{VCTR}(S T A)$ is replaced by VCTR(STA) *24.0/NCAS(STA) for the average TVEC in decimal hours.

AVUS(K): This is the average utilization during shift K. It is calculated in ENDSIM as follows: $\operatorname{AVUS}(\mathrm{K}):=\left[\sum_{\mathrm{I}=1}^{\text {NSTA }} \operatorname{USHF}(\mathrm{I}, \mathrm{K})^{1}\right] /[$ TOTME $(\mathrm{K}) * \operatorname{NRES}]$.
AVDRT (GROUP) : AVDRT (GROUP) is an accumulation of case demerits, DMERT (CASE), and is accounted to the group of the station of the first resource to arrive on the scene of the case. To obtain the normalized demerit of the group in decimal hours, AVDRT(GROUP) is replaced by (AVDRT (GROUP) $24.0 * \mathrm{R}$) $/ \mathrm{CS}$ (GROUP) in ENDSIM. R is the sum of all positive (TWAIT-TOL) in the district divided by the sum of all case demerits in the district.

CS (GROUP) The number of cases for which a resource from this group was the first resource to arrive on the scene of the case.

FLI (GROUP),
FL2 (GROUP),
FL3 (GROUP): The total number of failure type A, type B and type C respectively in a given group. FL1 and FL2
are attributed to the group of the primary station of a case. FL3 is attributed to the group of the station of the first resource to arrive on the scene of a case.

INTRP (GROUP): The number of times resources from this group were interrupted.

NDS (GROUP): The number of times resources from this group were assigned to service.

NONPR(GROUP): The number of times that a standby was called at the stations belonging to the group but not used.

NOSB (GROUP): The number of times that a standby was called at the stations belonging to the group.

TMTAV(GROUP): During the simulation, TMTAV(GROUP) is an accumulation of all positive (TWAIT-TOL) and is accounted to the group of the station of the first resource to arrive on the scene of the case. To obtain, the average positive (TWAIT-TOL) of the group in decimal hours, TMTAV (GROUP) is replaced by TMTAV (GROUP) *24.0/CS (GROUP) in ENDSIM.

TVAVG (GROUP): During the simulation, TVAVG(GROUP) is an accumulation of TVEC of the first resource to arrive on the scene of a case and is accounted to the group of the station of that resource. In ENDSIM, to obtain the average

TVEC of the group in decimal hours, TVAVG(GROUP) is replaced by TVAVG(GROUP) *24.0/CS (GROUP).

TWAVG(GROUP): TWAVG(GROUP) is an accumulation of TWAIT (CASE) and is attributed to the group of the station of the first resource to arrive on the scene of the case. To obtain the average TWAIT of the group in decimal hours, TWAVG(GROUP) is replaced by TWAVG(GROUP) *24.0/ CS (GROUP) in ENDSIM.

USEAV(GROUP) : This is the average utilization of the group. It is calculated in ENDSIM as follows:

MEEN(I): The arithmetic mean of certain attributes output in REPORT DSTRIB. During the simulation, MEEN(I) contains the sum of the values of the observations. In ENDSIM, this sum is divided by the number of observations to obtain the mean.

CNTR(I): The number of observations made.
STDEV(I): The standard deviation of certain attributes output in REPORT DSTRIB. During the simulation, STDEV(I) contains the sum of the squares of the observation values. In ENDSIM, STDEV(I) is replaced by:

$$
[\operatorname{STDEV}(\mathrm{I}) / \operatorname{CNTR}(\mathrm{I})]-[\operatorname{MEEN}(\mathrm{I})]^{2}
$$

2 MEEN(I) is the arithmetic mean as explained \geq after the division in ENDSIM.

CATI(I) -
CATG8(I): Eight separate categories in which to store the distribution of observations for output in REPORT DSTRIB.

AIRU: The average utilization of aircraft excluding C-130's. This is calculated in ENDSIM as follows: $\operatorname{AIRU}=\left[\sum_{I \varepsilon L} \operatorname{UTIL}(I)^{1}\right] /\left[\operatorname{TIME} \underset{J=1}{N S T A} \sum_{K \varepsilon M} \operatorname{REST}(J, K)\right]$ where L is the set of resources having SQTAG(TYPE(I)) $=3$ and M is the set of resource types having SQTAG(K) $=3$ 。

AVUTø: This is average overall utilization. It is calculated in ENDSIM as follows:

$$
\text { AVTO }=\left[\sum_{K=1}^{\text {NWWDS NSTA }} \sum_{I=1} \operatorname{USHF}(I, K)^{1}\right] /[\text { TIME*NRES }] .
$$

BUTIL: The average utilization of small vessels. This is calculated in ENDSIM as follows:

$$
\text { BUTIL }=\left[\sum_{I \varepsilon L} \operatorname{UTIL}(\mathrm{I})^{1}\right] /\left[\text { TIME } \sum_{\mathrm{J}=1}^{* \sum_{K \varepsilon M}} \sum_{K \mathrm{M}} \operatorname{REST}(\mathrm{~J}, \mathrm{~K})\right]
$$

where L is the set of resources having $\operatorname{SQTAG}(\operatorname{TYPE}(I))=0$
and M is the set of resource types having $\operatorname{SQTAG}(K)=0$.
CUTIL: The average utilization of cutters. In ENDSIM, this is calculated as follows:

$$
\text { CUTIL }=\left[\sum_{I \varepsilon L} \operatorname{UTIL}(I)^{1}\right] /\left[\operatorname{TIME} \sum_{J=1}^{*} \sum_{K \varepsilon M}^{N S T A} \operatorname{REST}(J, K)\right]
$$

where L is the set of resources having SQTAG(TYPE $(I))=I$ and M is the set of resource types having $\operatorname{SQTAG}(K)=11$

C130U: The average utilization of C-130's.
KOUNT: During the simulation KOUNT is the number of cases currently residing in core storage. At the end of the simulation KOUNT is set equal to the sum of the values NCAS for all stations.

LIMIT: During the simulation, LIMIT is an estimate of the maximum number of cases which can reside in core storage simultaneously. In ENDSIM, LIMIT is set equal to the sum of the values $\mathbb{N M B R Q}$ for all stations.

MCFTT: The average Failure type C in the district expressed in decimal hours. This is calculated in Subroutine ENDSIM; it is the sum of all the positive values of (TWAIT-TOL) in the district multiplied by 24 and divided by NBRFC.

MEAND: The normalized demerit in the district. It is an accumulation of all the case demerits during the simulation. In ENDSIM, its is replaced with (MEAND*24.0*R)/ NSTA
$\sum_{I=1} \operatorname{NCAS}(I)$ where R is the sum of all positive (TWAIT-
TOL) in the district divided by the sum of all case demerits in the district.

MEANV: The average TVEC in the district of the first resource to arrive on the scene of a case. It is an accumulation of these times-to-vector during the simulation. In ENDSIM, it is replaced by MEANV *24.0/ $\sum_{I=1}^{\text {NSTA }}$ NCAS (I).

MEANW: The average time that a case must wait prior to the arrival of the first resource. This is the sum of the values of TWAIT for all cases multiplied by 24 and divided by the sum of the values NCAS for all stations.

MNTMT: The average positive (TWAIT-TOL) in the district. This is the sum of all the positive values of (TWAIT-TOL) multiplied by 24 and divided by the sum of the values NCAS for all stations.

NBRCO: The number of cases that were actually completed.
NBRCS: The total number of cases that occurred.
NBRFA,
NBRFB,
NBRFC: Total number of Failures of type A, B, and C, respectively in the district. These are the sums of FAlLI (STA), FAIL2 (STA) and FAIL3(STA) respectively taken over all stations.

SNEED: The total number of needs. This is the sum of NEEDS(STA) over all stations. This may not equal the actual number of needs that occurred since any need served by more than one resource (as would be the case, for example, if an interrupt occurs) is counted more than once.

TOSBY: The total number of times a standby is called. This is the sum of NSTBY(STA) over all stations.

TOTIN: The total number of interrupts. This is the sum of NINTR(STA) over all stations.

TUNPR: The total number of standbys called and not used. This is the sum of UNPRO(STA) over all stations.

The output produced by OPSIM is of two basic types, the 'Report Output" and the "Tape Output" containing the attributes of the individual cases. The two types will be discussed separately below.

The Report Output consists of eight different divisions. A sample of the Report Output received when OPSIM is run with PRTOT $=0$ is given in Figure VI-2. The first division is labeled "Input Conditions". This is the output produced by the FORTRAN Subroutine JUMPER described in part IV. It indicates cahnges from a base condition in the Initialization Deck which were made for the current run.

The second division is labeled "District Statistics". The following entities and attributes are output in this division: NBRCS, NBRCO, NBRFA, NBRFB, NBRFC, TIME, AVUTO, AVUS for all shifts, AUT for all resource types, BUTIL, CUTIL, C130U, AIRU, TOSBY, and TUNPR. All these statistics are labeled by the output with a brief but reasonable definition.

The third division is labeled "Station Response". There is a row of print for every station in the district being simulated. The following list will indicate the correspondence between column labels and attribute names.

[^5]DELETIONS
RIBUTE CHANGE
ATTRIBUTE CHANGES

OPFACS
A. StATION CHANGES
$\dot{\square}$

DITIONS

 운은운$\stackrel{\text { 山 }}{\sim}$
$\dot{\infty}$
 $\stackrel{\sim}{\sim}$

ن

$$
\begin{aligned}
& \text { TOTAL NUMBER OF CASES THAT OCCURRED = } \\
& \text { TOTAL UMBER OF CASES THAT WER COMPLETEJ }= \\
& \text { TOTAL NUMBER OF CASES WITH FAILURE A } \\
& \text { TOTAL NMBER OF CASES WITH FALURE B } \\
& \text { TOTAL NUMBER OF CASES WITH FALLURE C } \\
& \text { TOTAL SIMULATED TIME (DAYS) }
\end{aligned}
$$

resource summary

AVERAGE UTILIZATION OVERALL $=$
AVERAGE UTILIZATION BY SHIFTS:

TOTAL NUMBER OF TIMES A STANOBY WAS CALLED (ALL STATIONS) = 95
TOTAL NUMBER OF TIMES A STANDBY WAS CALLED BUT NOT USED (ALL STATIONS) =
STATION SUMMARY
$\dot{\text { © }}$

 TWATT-TML TWATT-TML
(HVIIRS)

 $\begin{array}{ll}\omega 1 \\ S & 1 \\ H \\ H\end{array}$

AVERAGF
(1tTLTZATION

STANMZYS

CLTMEAON
 701-1IVM1

- sud・ひんV TWAIT-TOL
(HOURS)

 (HOURS)

TOTAL
I VTERRIJPTED

NOTE: 1. SCALING FACTOR FOR NORMLZD DEMERIT (12TH COLUMN AROVE) $=0.433$

$$
\begin{aligned}
& \begin{array}{llllll}
i & i & i & i & i & i \\
i & i & i & i & i & i \\
i & i & i & i
\end{array} \\
& =\frac{i}{2}= \\
& \begin{array}{l}
i n \\
\therefore i<0
\end{array} \quad=\quad \text { a }
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{r}
- \\
\square \\
= \\
\square \\
\square
\end{array}
\end{aligned}
$$

$$
\begin{align*}
& \text { an onion r }
\end{align*}
$$

$$
\begin{aligned}
& \begin{array}{c}
= \\
\vdots \\
\leq \div \because \\
-\therefore \\
\vdots
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{ccccccc}
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
\vdots
\end{array}
\end{aligned}
$$

	$\begin{aligned} & E \dot{2} \\ & \frac{5}{w}=0 \end{aligned}$	$\begin{aligned} & =x \\ & \frac{1}{n}=0 \end{aligned}$	$\begin{aligned} & E 8 \\ & E=0 \\ & =0 \end{aligned}$	$\begin{aligned} & E= \\ & \frac{E}{n}=0 \end{aligned}$				$\begin{aligned} & E= \\ & E= \\ & \text { 心 } \end{aligned}$	$\begin{aligned} & E= \\ & \vdots=0 \\ & \vdots \end{aligned}$	$\begin{aligned} & E \\ & =0 \\ & \bar{v}= \end{aligned}$

$\begin{aligned} & m e \\ & \frac{2}{n}: 8 \end{aligned}$	$\frac{2}{2}$	$\begin{aligned} & m \\ & \frac{E}{n}=0 \end{aligned}$		$\begin{aligned} & \frac{2}{x} \\ & \frac{2}{5}: ~ \end{aligned}$	$\begin{aligned} & m x \\ & =\frac{x}{2} \\ & =1 \\ & =0 \end{aligned}$	$\begin{aligned} & \text { M } \\ & =1 \\ & =1 \end{aligned}$			$\begin{aligned} & \text { ? } \\ & \text { 总 } \\ & =- \end{aligned}$	

 $\begin{array}{lll}3.98 & 1.30 & 0\end{array}$

$$
31.00 .04
$$

$$
\begin{aligned}
& \begin{array}{llll}
n \\
\underset{\sim}{v} \\
\underset{\sim}{n}
\end{array} \\
& \operatorname{incorl}_{\text {un }} 0 \\
& \sum_{\sum}^{5} \rightarrow N O O \\
& z_{z}^{2} O-\sigma \cdot a
\end{aligned}
$$

$$
\begin{aligned}
& \infty \times N \rightarrow+ \\
& \xrightarrow[\sim]{x} \dot{\sim}
\end{aligned}
$$

LABEL

Number of Cases

Number of Needs
Failure Type A
Failure Type B
Failuxe Type C
Number of $Q^{\prime} \mathrm{s}$
Total Interrupted Needs
Average TVEC (Hours)
Average TWAIT (Hours)
Average CFAIL (TWAIT-TOL) (Hours)
Average Pos. TWAIT-TOL (Hours)
Normalized Demerit (Hours)
Standbys Calls/Unpro.
Average Utilization

NCAS (STA)
NEEDS (STA)
FAIL1 (STA)
FAIL2 (STA)
FAIL3 (STA)
NMBRQ (STA)
NINTR(STA)
VCTR(STA)
AVGTW (STA)
CFTT (STA)
TWTOL (STA)
DMRT (STA)
NSTBY (STA), UNPRO(STA)
USE (STA)

The last row printed in this division is labeled "TOTAL/AVG". Reading from left to right the entries in this row are KOUNT, SNEED, NBRFA, NBRFB, NBRFC, LIMIT, TOTIN, MEANV, MEANW, MCFTT, MNTMT, MEAND , TOSBY, TUNPR, and AVUTO.
"Group Response" labels the fourth division. The correspondence between column labels and attribute names follows.

LABEL
Number of cases
Number of needs

ATTRIBUTE
CS (GROUP)
NDS (GROUP)

Failure Type A	FL1 (GROUP)
Failure Type B	FL2 (GROUP)
Failure Type C	FL3 (GROUP)
Total Interrupted Needs	INTRP (GROUP)
Average TVEC (Hours)	TVAVG(GROUP)
Average TWAIT (Hours)	TWAVG(GROUP)
Average Pos. TWAIT-TOL (Hours)	TMTAV(GROUP)
Normalized Demerit	AVDRT (GROUP)
Times Standby Called	NOSB(GROUP)
Unporductive Standby Calls	NONPR(GROUP)
Average Utilization	USEAV(GROUP)

The fifth division is labeled "Resource Utilization (Percent)". Here again the output is grouped by station. The columns labeled "SHIFT1", "SHIFT2", etc. contain the attribute USHF(I,J) for the station I and shift J. Every resource assigned to the station is listed in a group according to resource type; the average utilization UTIL and the number of needs served by the resource NCASE are printed.

The sixth division is labeled "Exceptional Cases". It prints the major attributes of all cases which were not completely processed because of some umusual circumstances. The value of ITOL(CASE) which is among the attributes printed gives some indication of the reason that the case was termed "exceptional" and was filed in the set EXCS.

The seventh division is broken into two sections. The mean, standard deviation and distribution of both weekday and weekend utilization are
output in the first section. In the second section, the mean, standard deviation and distribution of certain critical attributes are printed.

The eighth and final division prints the status of cases which are in the queue and are not completed and resources which are still busy when the simulation ends. The following attributes are labeled and printed for cases remaining in the queue: NOCAS, OCCUR, STATN, NNN, MMM, S1S, S2S, XC, YC, TINQ, SIGNL and FLG. If there are no remaining cases in the queue, a message only is printed. For the cases being served when the simulation ends the following attributes are labeled and printed: NOCAS, OCCUR, STATN, NNN, MMM, S1S, S2S, XC, YC, and TWAIT. The case attributes here refer to the case stored in ACASE (IFLT(IRS)), that is the case to which the resource is assigned. It should be noted here that TWAIT is zero until the first resource arrives on the scene of the case. If no resources are busy at the end of the simulation a message to this effect is printed.

The second basic type of output has been referred to as the "Tape Output". This output is produced only if the value of STAPE is non-zero. If the value of STAPE corresponds to a tape unit, a tape must be requested by the appropriate letter on an ASG control card as described in part V, User's Guide. Every time that a case terminates via completion and STAPE $\neq 0$, Subroutine TERM outputs the major attributes of the case. Four records are written for each case. The contents of each record will be given, followed by the SIMSCRIPT format as well as a FORTRAN format for reading the records.

Record 1: NBRCO, OPFAC, NOCAS, IDLOC, OCCUR, BOX, FPRI, MMM, NNN, GAMMA, NEED, AIR, OFSHR, VIS, WIND, SWELL, L, POB, S1S, S2S, TSM, OST, DMERT.

SIMSCRIPT Format: $\quad(3 I 5, I 3, D 3.4, I 5, I 1,2 I 2, D 3.2, I 2, I 5, D 4.2,6 I 5$, I2, D5.0, 2D1.4).

FORTRAN Format: ($3 \mathrm{I} 5, \mathrm{I} 3, \mathrm{~F} 8.4, \mathrm{I} 5, \mathrm{I} 1,2 \mathrm{I} 2, \mathrm{~F} 6.2, \mathrm{I} 2, \mathrm{I} 5, \mathrm{~F} 7.2$, 6I5, I2, F6.0, 2F6.4).

Record 2: UTYPE, VALJE, XCX, YCY, XC, YC, STATN, CNRES, RESA, PRI, REA, COSTC, ITOL, NOINT, NQUE, TINT, TQUE, TQUE1, TSVC, TWAIT.

SIMSCRIPT Format: (I5, I10, 4D5.2, I5, I2, I3, 2I1, D7.2, I1, 2I2, 5D3.4).

FORTRAN Format: (I5, I10, 4F8.2, I5, I2, I3, 2I1, F10.2, I1, 2I2, 5F8.4).

Records 3 and 4 apply to NOTIF's and NOTE's respectively. Four attributes of NOTIF and one attribute of NOTE are always output for five NOTIF's and five NOTE's, regardless of the actaul number of NOTIF's and NOTE's associated with the case. If there are less than five of either, the meaningless portion of the record will contain zero's. If there are more than five of either, only the "first" five will be output. "First" refers to the order in which they were filed in their respective sets NSET and SRHS. The actaul variables are first stored in a buffer and then output.

Record 3: NEED, OST, DELTA, RESA, NEED, OST, DELTA, RESA, etc.
SIMSCRIPT Format: (5 (I2, D1.4, D1.2, I3)).
FORTRAN Format: (5 (I2, F6.4, F4.2 I3)).

Record 4: RESA, RESA, RESA, RESA, RESA.
SIMSCRIPT Format: (5I3).
FORTRAN Format: (5I3).
It should be noted that the variable NBRCO output in record 1 simply provides a sequence number for the cases being printed.

At the end of the simulation, if STAPE $\neq 0$, the four records described above are output for all cases filed in EXCS. They are printed in the order in which they were filed in EXCS. It should be noted that all information for NOTE or NOTIF was destroyed when the case was filed in EXCS. Thus the third and fourth records for these cases will always be zero filled. The sequence numbers for these cases begins with the value NBRCO +1 , where NBRCO is the number of cases conpleted at the end of the simulation.

There is one significant warning message which could occur during the execution of a simulation. It is printed in Exogenous Event OPSIM, as an attempted "Failsafe" device to prevent too many cases from entering the simulation system at one time, thereby exceeding core storage and destroying all data of the run because of an abnormal abort. The variable KOUNT is increased by one every time a case is created and decreased by one when a case is destroyed. Thus KOUNT is (during the simulation) the number of cases currently being processed in the system. A variable LIMIT is calculated in Exogenous Event START. It is an estimate of the maximum number of Cases which can reside in core storage at one time. It is an enpirical
relation based on the number of resources NRES, the number of stations NSTA, the number of resource types NRST, the number of groups NGROUP and the number of distributions, NDSTRB; it is given by:
(10500. - 10. * NRES - 19. *NSTA - 6.* NRST - 6.* NGROUP - 5. *NDSTRB) / 50 . For example, with 109 resources, 47 stations, 16 resource types, 8 groups and 12 distributions, there can be approximately 165 cases in the system at one time. It should be emphasized that this is only an estimate which could be revised at any time.

If at any time the value of KOUNT exceeds the value of LIMIT, the warning is printed. From then on, cases will be destroyed as soon as they occur. Those cases already in the system at the time the message is written will be processed until completion.

[^0]: Headquarters and Laboratories at Gaithersourg, Maryland, unless otherwise noted; mailing address Washington, D.C. 20234
 \because Located at Boulder. Colorado 80302.
 ${ }^{3}$ Located at 5285 Port Royal Road, Springfield. Virginia 22151.

[^1]: TEMPORARY ENTITY CREATED WHEN A RESOURCE WITH
 EIAT $=0.0$ IS ASSIGNED TO A CASE
 CASE THAT RESOURCE IS SERVICING

[^2]: PERMANENT ENTITY WHERE NRST $=$ NUMBER OF RESOURCE TYPES aVERAGE UTILIZATION OF RESOURCE TYPE I IN DISTRICT

 COST/DAY OF OPERATING RESOURCE TYPE I
 DELAY TIME NECESSARY TO READY RESOURCE TYPE I AT
 IT'S HOME STATION
 MAINTAINABILITY/RELIABILIYY OF RESOURCE TYPE I RELATIVE COST RANKING OF RESOURCE TYPE I SNELL LIMIT FOR SOA1(I) OF RESOURCE TYPE I
 SPEED OF ADVANCE (WC 1) OF RESOURCE TYPE I

 SPEED OF ADVANCE (WC1) OF RESOURCE TYPE I
 SPEED OF AOVANCE (WC2) OF RESOURCE TYPE I
 SEARCH SPEED OF ADVANCE OF RESOURCE TYPE I
 TAG TO DISTINGUISH SMALL SURFACE CRAFT, CUTTERS.
 $=0$ IF TYPE IS A SMALL SURFACE CRAFT
 CUTTER
 $C-130$
 OTHER THAN A C-130
 $\forall \forall y J y I$

[^3]: patrolling

[^4]: STATS
 SERVE, SSS,EXQ, STNBY
 SERVE, SSS,EXQ, STNBY
 SRAS, SRCH NOTE, SRISE, SAG, QUEUE SRAS, SRCH, NOTE, SRISE, SAG, QUEUE

[^5]: (SEE INITIALIZATION DATA FOR CHANGES TO CAPABILITY MATRIX(CPIL))
 (SEE INITIALIZATION DATA FOR CHANGES TO CAPABILITY MATRIX(CPZL))
 NEW ADOITIONS
 ATTRIBUTE CHANGES
 CBILITY CHANGE
 APABILITY CHANGES
 RCE INVENTORY CHANGES
 STING OPFACS
 RESOURCE CHANGES TO EXISTING OPFACS
 MANNING LEVEL CHANGES
 MOPFACS
 XISTING OPFACS
 CHANGES IN EXISTING MANNING LEVELS
 INPUT OPTIONS
 CHANGES
 REPROCESSOR
 MGEN TAPE
 PREREN TAPE 0
 CEENERIO INPUT NA
 CE
 OATA BASE JULY 68 HIST
 SEASON PEAK
 NUMBER OF CASES
 NUMBER OF DAYS
 865
 FROM JULY 1 through July 31

 $$
 \begin{aligned}
 & \begin{array}{l}
 \text { TOLS (1) }=0.58 \mathrm{DAYS} \\
 \text { DAYS } \\
 \text { TOLS }(3)=0.25 \text { DAS }
 \end{array}
 \end{aligned}
 $$

 $$
 \begin{aligned}
 & \begin{array}{l}
 \text { TOLS (4) }=0.04 \text { DAYS } \\
 \text { TOLS } 5 \text { (5) }
 \end{array} \\
 & \begin{array}{l}
 \infty 1 n \\
 0 \sim \sim \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0
 \end{array} \\
 & \begin{array}{r}
 a \\
 0 \\
 0 \\
 0 \\
 0
 \end{array}
 \end{aligned}
 $$

 POSTPROCESSOR
 TPROCESSOR
 CIAL OUTPUT VIA QUICK QUERY
 SPECIAL REPORTS

 $\begin{array}{ccc}\sim 1 & 0 & \pm \\ -10 & 0 \\ 0 & 0 & 0\end{array}$
 NOOOOOMNO.
 |1 |1 || |1 |1 |1 |1 || || || ||

 $=4$. NAUTICAL MILES
 N
 n
 0
 0
 $=0.65$
 $=0.10$
 $=4 . \quad$ NA
 $<\frac{a}{2}$
 $\stackrel{\rightharpoonup}{\sim}$ ㅇ
 2.
 $\stackrel{\circ}{-}$
 ய்

