A CURVE OF GROWTH DETERMINATION OF THE F-VALUES FOR THE FOURTH POSITIVE SYSTEM OF CO AND THE LYMAN-BIRGE-HOPFIELD SYSTEM OF N₂
NATIONAL BUREAU OF STANDARDS

The National Bureau of Standards 1 was established by an act of Congress March 3, 1901. Today, in addition to serving as the Nation's central measurement laboratory, the Bureau is a principal focal point in the Federal Government for assuring maximum application of the physical and engineering sciences to the advancement of technology in industry and commerce. To this end the Bureau conducts research and provides central national services in four broad program areas. These are: (1) basic measurements and standards, (2) materials measurements and standards, (3) technological measurements and standards, and (4) transfer of technology.

The Bureau comprises the Institute for Basic Standards, the Institute for Materials Research, the Institute for Applied Technology, the Center for Radiation Research, the Center for Computer Sciences and Technology, and the Office for Information Programs.

THE INSTITUTE FOR BASIC STANDARDS provides the central basis within the United States of a complete and consistent system of physical measurement; coordinates that system with measurement systems of other nations; and furnishes essential services leading to accurate and uniform physical measurements throughout the Nation's scientific community, industry, and commerce. The Institute consists of an Office of Measurement Services and the following technical divisions:

THE INSTITUTE FOR MATERIALS RESEARCH conducts materials research leading to improved methods of measurement standards, and data on the properties of well-characterized materials needed by industry, commerce, educational institutions, and Government; develops, produces, and distributes standard reference materials; relates the physical and chemical properties of materials to their behavior and their interaction with their environments; and provides advisory and research services to other Government agencies. The Institute consists of an Office of Standard Reference Materials and the following divisions:

THE INSTITUTE FOR APPLIED TECHNOLOGY provides technical services to promote the use of available technology and to facilitate technological innovation in industry and Government; cooperates with public and private organizations in the development of technological standards, and test methodologies; and provides advisory and research services for Federal, state, and local government agencies. The Institute consists of the following technical divisions and offices:

THE CENTER FOR RADIATION RESEARCH engages in research, measurement, and application of radiation to the solution of Bureau mission problems and the problems of other agencies and institutions. The Center consists of the following divisions:

THE CENTER FOR COMPUTER SCIENCES AND TECHNOLOGY conducts research and provides technical services designed to aid Government agencies in the selection, acquisition, and effective use of automatic data processing equipment; and serves as the principal focus for the development of Federal standards for automatic data processing equipment, techniques, and computer languages. The Center consists of the following offices and divisions:

THE OFFICE FOR INFORMATION PROGRAMS promotes optimum dissemination and accessibility of scientific information generated within NBS and other agencies of the Federal government; promotes the development of the National Standard Reference Data System and a system of information analysis centers dealing with the broader aspects of the National Measurement System, and provides appropriate services to ensure that the NBS staff has optimum accessibility to the scientific information of the world. The Office consists of the following organizational units:

1 Headquarters and Laboratories at Gaithersburg, Maryland, unless otherwise noted; mailing address Washington, D.C. 20234.
2 Located at Boulder, Colorado 80302.
3 Located at 8285 Port Royal Road, Springfield, Virginia 22151.
A CURVE OF GROWTH DETERMINATION OF THE F-VALUES FOR THE FOURTH POSITIVE SYSTEM OF CO AND THE LYMAN-BIRGE-HOPFIELD SYSTEM OF N₂

by

M. J. Pilling, A. M. Bass, and W. Braun

Technical Report to National Aeronautics and Space Administration Washington, D.C.

NASA Order No. R-64

IMPORTANT NOTICE

Approved for public release by the Director of the National Institute of Standards and Technology (NIST) on October 9, 2015.

U.S. DEPARTMENT OF COMMERCE
NATIONAL BUREAU OF STANDARDS

M. J. Pilling, A. M. Bass,* and W. Braun
National Bureau of Standards
Washington, D. C. 20234

Abstract

The curve of growth method has been employed to determine f-values for the fourth positive system of CO and the magnetic dipole and electric quadrupole components of the Lyman-Birge-Hopfield system of N₂. The transition moments are, respectively, 0.83 a₀e, 5.9 x 10⁻¹¹ Bohr magnetons and 2.6 a₀²e. No significant dependence on r-centroid was found. The mean value of the ratio of the electric quadrupole to magnetic dipole f-values was 0.076.

*Work Supported in part by NASA

Introduction

Current interest in elementary processes involving electronically excited diatomic molecules demands an accurate knowledge of radiative lifetimes and oscillator strengths. Several methods are available for their determination. These include direct measurement of the lifetime by the phase shift technique\(^1\), and measurement of the integrated absorption coefficient by optical absorption spectroscopy.\(^2,3\) The latter method is severely limited by resolution requirements. In some instances this has been overcome by the use of very high pressures to broaden the rotational fine structure.\(^4\) Alternatively, if spectrographs of sufficiently high resolving power are available, the curve of growth method may be employed.\(^2,3\) Recently, Lassettre and coworkers\(^5\) have exploited the technique of electron impact spectroscopy. Here there is no need to resolve the individual rotational lines, but the general applicability of the method has not been thoroughly tested. This can only be achieved comparing \(f\)-numbers derived from electron impact work with those obtained by other methods.

In the present work, the \(f\)-numbers for three electronic transitions, the fourth positive system of CO, and the magnetic dipole and electric quadrupole components of the Lyman-Birge-Hopfield system of \(N_2\), are determined by the curve of growth method. The equations used for the averaging of \(f\)-numbers, \(A\)-values and lifetimes are clearly defined so that the numbers
derived here can be properly compared with independent determinations by other methods where slightly different averaging procedures were employed.

Theory

If a parallel beam of light, intensity I_0, is incident on a cell, l cm long, containing a monatomic gas of density N atoms per cc, then the light transmitted at frequency v (cm$^{-1}$) is given by2,3

$$I_v = I_0 \exp (-\sigma(v)) N$$

where $\sigma(v)$ is the absorption cross section (cm2). The equivalent width, W(cm$^{-1}$), for an isolated spectral line is defined as

$$W = \int_{-\infty}^{\infty} [1 - \exp(-\sigma(v) N l)] dv.$$

The relationship between W and the oscillator strength f is complex, and is dependent on the ratio of the collision broadened plus natural line width to the Doppler line width (a). Curves of growth are plots of $\log_{10}(W/2\delta)$ against $\log_{10} (10.6 \sigma_0 N l)$, where δ is the half width at maximum over e for a Doppler line, and σ_0 is the peak cross-section

$$\delta = \frac{\nu_0}{c} \left(\frac{2RT}{M}\right)^{1/2}$$

and

$$\sigma_0 = \frac{1}{\delta} \int \sigma(v) dv$$

$$= \frac{\sqrt{\Pi e^{-\delta}}}{mc \delta} = (5 \times 10^{-13} f/\delta) \text{ cm}^2$$

for δ in cm$^{-1}$. For $W/2\delta \leq 0.5$, the plots become linear, and the dependence on (a) becomes less marked. Valid extrapolation can
then be made to zero optical path length, and the f-value determined. If the resolving power of the spectrograph is sufficiently large that the observed spectral line width is not much larger than the real width, then accurate measurements can be made in the linear region.

These considerations still apply for all isolated rotational lines in the electronic spectrum of a diatomic molecule. However, the relationships between the f-number for a given line and the overall electronic transition moment, and between the number of molecules in a given lower rotational level and the overall gas density, must be considered.

For electric dipole and magnetic dipole transitions, the oscillator strength for absorption of a rotational line \((J', J'')\) of a vibronic band \((n, v'; m, v'')\) is given by

\[
f_{nv'J',mv''J''} = \frac{8\pi^2 mc_v J' + \delta_{J',J''}}{3 h e^2} \left| \frac{R_{nv',J',mv''J''}}{2J''+1} \right|^2 \frac{1}{(2S''+1)(2-\delta_{O,A''})} (2)
\]

where \(\delta_{O,A''}\) is the Kronecker delta, and all other symbols have their usual meanings.

Assuming no interaction between rotational, vibrational and electronic motions.

\[
|R_{e}^n v' J', m v'' J''|^2 = S_{J',J''} q_{v',v''} |R_{e}^{n m} (\bar{r}_{v',v''})|^2
\]

where \(S_{J',J''}\) is the rotational line strength, \(q_{v',v''}\) is the Franck-Condon factor and \(|R_{e}^{n m} (\bar{r}_{v',v''})|\) is the electronic transition moment, which may be dependent on the r-centroid \(\bar{r}_{v',v''}\).
The following summations apply:

\[\sum_{J'J''} S_{J'J''} = 2J' + 1, \sum_{J'J''} S_{J'J''} = 2J'' + 1 \]

(3)

\[\sum_{v'} q_{v',v''} = \sum_{v''} q_{v',v''} = 1 \]

(4)

Thus, \[f_{nv',mv''} = \sum_{J'} f_{nv',J',mv''} J'' = \frac{8\pi^2 mc v_{v',v''}^3}{3\hbar^2} \frac{|R_{nm}|^2 \cdot q_{v',v''}}{(2-\delta o_{o,A''}(2S''+1)} \]

(5)

For electric quadrupole transitions

\[f_{nv',J',mv''} J'' = \frac{4\pi^4 mc v_{v',v''}^3}{5\hbar^2} \frac{|R_{nv',J'',mv''} J''|^2}{(2J''+1)(2-\delta o_{o,A''}(2S''+1)} \]

(6)

The Einstein transition probability for spontaneous emission is given by

\[A_{nv',mv''} J'' = \frac{64\pi^4 v_{v',v''}^3}{3\hbar} \frac{|R_{nv',J'',mv''} J''|^2}{(2J''+1)(2-\delta o_{o,A''}(2S''+1)} \]

(7)

for an electric or magnetic dipole transition; and by

\[A_{nv',J',mv''} J'' = \frac{32\pi^6 v_{v',v''}^3}{5\hbar} \frac{|R_{nv',J'',mv''} J''|^2}{(2J''+1)(2-\delta o_{o,A''}(2S''+1)} \]

(8)

for an electric quadrupole transition.

Thus, for CO, the J independent lifetime of a given excited vibronic state is given by

\[T_{nv'}^{-1} = \sum_{v''} A_{nv',mv''} = \frac{64\pi^4}{3\hbar w_n} \sum_{v''} (|R_{nm}|^2 \cdot q_{v',v''} v_{v',v''}^3) \]

(9)

neglecting the small variation in frequency of the rotational lines over a vibronic band. For the fourth positive system of CO, the degeneracy
\[w_n = (2 - \delta_{0,1}^2)(2S' + 1) = 2 \]

For the Lyman-Birge-Hopfield system of \(N_2 \),

\[T^{-1}_{n
v} = \frac{6\pi^4}{3\hbar^2} \sum_{v''} \left(|R_{e}^{nm}|^2 q_{v''v''} q_{v''v} \right) + \frac{32\pi^6}{3\hbar^2} \sum_{v''} \left(|R_{e}^{nm}|^2 q_{v''v''} q_{v''v} \right) \]

(10)

where \(|R_{e}^{nm}|^2 \) and \(|R_{e}^{nm}|^2 \) are the magnetic dipole and electric quadrupole transition moments respectively, and \(w_n = 2 \).

For a heteronuclear molecule with a \(^1\Sigma^+ \) ground state, the number density of molecules in the \(J'' \) level is

\[N_{J''} = \frac{N(2J'' + 1) \exp[-hB''cJ''(J'' + 1)/kT]}{f} \]

(11)

where \(f = kT/\hbar B''c \). \(N \) is the total number of molecules and \(N_{J''} \) is the number in a given rotational level, all other symbols have their usual meanings.

For nitrogen,

\[N_{J''} = \sum_T N \frac{(2T+1)(2J'' + 1) \exp[-hB''cJ''(J'' + 1)/kT]}{f} \]

In eq. (12), \(f = \sum_{T=0}^{2} (2T+1)kT/2hB''c \).

For even \(J'' \), the total nuclear spin quantum number \(T \) can take the values 2 and 0, while for odd \(J'' \) it can take the value 1.

In evaluating \(f \), the summation is taken over all three values of \(T \).

The rotational line strengths for the electric and magnetic dipole transitions were derived by Hönl and London,\(^{10}\) and have been tabulated by Herzberg.\(^{7}\) For the electric quadrupole transition they are given by Chiu.\(^{9}\) Nicholls,\(^{12}\) Morse Franck-Condon factors were used for CO, and Benesch\(^{13}\) et al.'s
RKR Franck-Condon factors for N_2. Nicholls12 (Morse) and Zare et al14 (RKR) have also calculated Franck-Condon factors for N_2. The differences among the three arrays are insignificant ($< 2\%$) over the range of interest.

Experimental

Spectra were photographed on Kodak SWR plates, using a 6m Eagle spectrograph in the fourth order. The background was provided by a krypton discharge lamp, powered by a 2450 Mc/S power supply, with spectrograph slits of 3×10^{-2} and 9×10^{-2} cm. Several background intensities were used, and each plate was calibrated for density vs. intensity. The absorption cell was 2 cm long, and was fitted with LiF windows. Pressures less than 500 Nm-2 were measured with a calibrated capacitance micromanometer, while a precision dial gauge was used for higher pressures. Ultra high purity gases were employed without further purification.

Results

$\log_{10} (W/2\delta)$ was plotted against $\log_{10} N_J^"S_J,J"/(2J"+1)$, and extrapolated to $(W/2\delta) = 0.1$ to give $(N_J^"S_J,J"/(2J"+1))_{0.1}$. At this point, $10.6 \sigma O^N_J = 1.28$;

thus $f_{n'n,nn'}^{n'n,nn'} = \frac{1.28mc\delta}{10.6 e^{2\sqrt{\pi}}} \{ \frac{2J"+1}{N_J^nS_J^nJ^n} \}_{0.1}$.
Figs. 1-3 show plots for CO($\Lambda^1\Pi(v=4)\leftrightarrow X^1\Sigma^+(v=0)$) and for the (0,0) and (5,0) magnetic dipole components and the (2,0) and (3,0) electric quadrupole components of the Lyman-Birge-Hopfield system of N$_2$.

Experiments were conducted at three pressures for both gases, and extrapolations made over the linear range by a least squares fit. Over this range, there is little dependence on pressure broadening, and a single composite graph was used for all three pressures.

Wherever possible the data were extended beyond the linear region. Some difficulties were, however, encountered in this respect. With an observed line width of ~ 0.4 cm$^{-1}$, the apparent integrated absorption dropped below the theoretical value as $(\Delta I/I_0)$ at the peak of the absorption line became progressively greater than ~ 0.4 (in the case of CO, the apparent integrated absorptions dropped significantly below the Doppler curve). On increasing the slit width by a factor of 3, and thereby reducing $(I/I_0)_{\text{max}}$, the apparent integrated absorption increased to its theoretical value. Oldenburg and Rieke15 report similar observations. We believe the explanation for this phenomenon lies in the finite grain size of the emulsion. At higher densities and smallest slit settings the grains are of size comparable to the line width. At low density the grains are smaller. Therefore two slit widths were used throughout this investigation, the
narrow slit being used for low intensity lines, and the wide slit for higher intensity lines. The two were found to link satisfactorily with one another.

The CO measurements were made at low pressures (<133 Nm⁻²), and the curves of growth were Doppler. For N₂, however, much higher pressures were used, which enabled an estimate of \((6±3) \times 10^{-15} \text{ cm}^2\) to be made for the pressure broadening cross-section. This is somewhat less than the value derived by Shemansky\(^{16}\) \(((1.6 \pm 0.5) \times 10^{-14} \text{ cm}^2\)). The gas kinetic cross-section is \(1.1 \times 10^{-15} \text{ cm}^2\).

No f-values were obtained for the \(N₂(4,0)\) band because of chance overlap of the rotational lines in the region most suitable for accurate measurements at the optical path lengths used in this work.

Discussion

The absolute values for \(|R_{e}^{nm}|\) for the three transitions studied are shown in Tables 1-3. No significant variation of the electronic transition moment was found. Tables 5, 6 also show the values obtained for \(|R_{e}^{nm}|\) by other methods. For the fourth positive system of CO, the most extensive previous investigations were by Hesser\(^{17}\), Rich\(^{18}\), and Meyer et al.\(^{19}\). Hesser\(^{17}\) measured the radiative lifetimes by the phase-shift technique. Rich\(^{18}\) looked at absorption in shock-heated carbon monoxide, and in addition to the two \((v''=0)\) bands, he measured the f-values for several bands in the \((v''=1-3)\) progressions.
He found a mean value for $|R_{e}^{nm}|$ of 0.76 ± 0.10 au. Meyer et al.19 studied the electron impact spectrum. This involves measuring the generalized oscillator strength as a function of the momentum change of the electrons, and extrapolating to zero momentum change to give the optical oscillator strength. The data shown in Table 5 were obtained several years ago, and show some dependence on upper state vibrational quantum number. Since then the apparatus has been refined, and the resolution increased, and the latest relative values show extremely good agreement with Franck-Condon factors.20 However, the dependence on momentum change has not been investigated. The only other measurements which have been made were by Hexter21 and Brith and Schnepp,22 who calculated the f_{ee} values from Davydov splittings in the solids. They obtained respectively 0.148 for $v'=2$ and 0.16 for $v'=0-3$.

The Lyman-Birge-Hopfield system of nitrogen has been extensively investigated. Lichten23 and Olmsted et al.24 measured the radiative lifetime of $N_2^1\Pi_g$ by means of a molecular beam technique, using excitation by electron bombardment. They found $\tau = 1.7 \times 10^{-4}$ sec and $(1.2 \pm 0.5) \times 10^{-4}$ sec respectively. These are equivalent to f_{ee} values of 5×10^{-6} and 7×10^{-6}. Holland25 looked at the profile of emission following excitation by a beam of electrons, and found that it was consistent with a lifetime $< 8 \times 10^{-5}$ sec ($f_{ee} > 10^{-5}$). Jeunehomme,26 investigating the emission from a pulsed discharge, found a strong pressure dependence in the lifetime of $N_2^1\Pi_g$, and deduced a radiative lifetime of $(5-10) \times 10^{-6}$ sec, corresponding
to $f_{ee} \sim 10^{-5}$.

Ching, Cook, and Becker27 measured the oscillator strengths for the Lyman-Birge-Hopfield system using pressures of up to 40 atm. to broaden the rotational fine structure, and thus make the system amenable to low resolution absorption study. The $|R_{c}^{nm}|_D$ values deduced from their results are shown in Table 6. The data are corrected for the contribution arising from the electric quadrupole component of the transition, using the values of $(f_{ee})_a/(f_{ee})_D$ shown in Table 4. The values are considerably larger than our own, and correspond to overall radiative lifetimes of $(2.7 - 4.1) \times 10^{-5}$ sec. Ching et al. found a residual weak dependence of the absorption coefficients on pressure, and they extrapolated this to zero pressure to obtain the f-values. Recently, Shemansky16 has shown that this variation in an artifact, but applying his correction leads to even larger values for $|R_{c}^{nm}|_D$.

Shemansky16 evaluated the f-numbers by fitting theoretical and experimental curves of growth and band profiles, obtained with a low resolution spectrograph. The values of $|R_{c}^{nm}|_D$ he obtained are shown in Table 6. They correspond to lifetimes rising from 1.4×10^{-4} sec for $v = 0$ to 1.6×10^{-4} sec for $v = 6$, with a probable error of $\sim 20\%$. He also derived a self-broadening cross section of 1.6×10^{-14} cm2, which is again larger than our own.
The electric quadrupole component of the Lyman-Birge-Hopfield system was first investigated by Wilkinson and Mulliken.28,29 Using James and Coolidge's30 line strengths for a1\Sigmag \rightarrow 1\Sigmag transition, they obtained a value of 0.15 for \((f_{ee})_Q/(f_{ee})_D\). Following Chiu's11 tabulation of line strengths for a 1\Pig \rightarrow 1\Sigmag transition, Vanderslice et al.31 reinvestigated the high resolution spectrum of nitrogen, and derived \((f_{ee})_Q/(f_{ee})_D = 0.33\). Their method was approximate, since they did not use a curve of growth technique. Thus they compared directly two sets of absorption lines, which differed substantially in intensity. Clearly, such a method tends to over-estimate the relative \(f\)-value of the weaker component. Furthermore, they did not apply the normalization procedure used here (see Appendix and equation) with Tables 3,4. This corresponds to \(|R_{e}^{nm}|^2/|R_{e}^{nm}|_D^2 = 1.3 \times 10^{-11}\).

Shemansky16 compared the profiles of the magnetic dipole and electric quadrupole components under Doppler conditions, and found \((f_{ee})_Q/(f_{ee})_D\) values ranging from 0.08-0.10. These correspond to \(|R_{e}^{nm}|^2/|R_{e}^{nm}|_D^2 = 5.6 \times 10^{-12}\), and are in good agreement with our values. Once again, his ratio has been redefined so as to be consistent with the ratio used here.

Garstang32 analysed Lassettre and Krasnow's33 electron energy loss results for the Lyman-Birge-Hopfield system, and derived a radiative lifetime for the quadrupole transition of \(5 \times 10^{-4}\) sec., which is about four times shorter than the lifetimes shown in Table 3. However, this value is based on some
of Lassettre's earlier work in which the vibrational structure was completely unresolved.

The f-values determined here are, with the exception of those for the electric quadrupole transition, based on measurements of the P, Q, and R branches for relatively high J'' values ($J''=8-30$). (For the quadrupole transition, low rotational levels of the S branch were used.) This raises the question of the relevance of Franck-Condon factors calculated for rotationless potential curves in applications of this sort. Learner34 examined the influence of vibration-rotation interaction on absorption intensities for OH. He found some variation, which was most marked for the weaker bands, where cancellation effects are important. He also incorporated an \bar{R} dependence for $|R_{e}^{nm}|$, and in this case found a much larger variation of effective Franck-Condon factor with J. More recently, Villarejo et al.35 found a large effect for the H_{2} Lyman transition, for which there is a large change in r_{e}, but little variation for the Fulcher bands. Several transitions in nitrogen have been examined by Benesch et al.36 and Schumaker.37 Neither investigation revealed any significant variation of $q_{v',v''}$ with J. The Lyman-Birge-Hopfield system, however, was not studied. Any effect is likely to be most noticeable for lighter molecules, in transitions with a large change in r_{e}. It is, therefore, unlikely to be of much importance in the transitions studied here.
In addition, the variations found by Learner34 and by Villarejo et al.35 were erratic, and would lead to a large amount of scatter in the curves of growth, particularly as the pressure is changed. Any large effects can, therefore, be discounted.

Nadler and Kaskan38 found a dependence of the collisional broadening parameter, \((a)\), on \(J\) for \(\text{OH (}A^2Σ^+ - X^2Π\text{)}\). This led them to question the validity of curve of growth procedures for determining \(f\)-values. If such a phenomenon did exist for \(\text{N}_2\) and \(\text{CO}\), then it would not affect the \(f\)-values derived here, since the linear portion of the curve of growth was used exclusively, and there is little dependence of the equivalent width on \((a)\) in this region.

The only other factor which could invalidate the present work is the possible occurrence of perturbations. Both systems have been extensively analysed39,40 and perturbations tabulated, and these rotational lines were avoided. The most prominent example was the \(Q(23)\) line of the \((4,0)\) band of \(\text{CO}\). This line was in fact slightly weaker than the line to the perburbing level \(1^1Σ^- (v=6, J=23)\).

Unless a very large data sample is taken, the curve of growth method is not capable of quite the same accuracy as other techniques, such as electron energy loss and phase shift measurements. However, it is the most direct method, and is
dependent only on the assumption of the separability of rotational and vibrational motions. At present there are large uncertainties and inconsistencies in published f-values. It is, therefore, important that these quantities are constantly reinvestigated by a variety of experimental techniques, until consistency is achieved.

Appendix

Two definitions of the degeneracy factors to be used in equations 1, 5-10, and consequently of the absolute transition moment, have appeared in the literature. While both are internally consistent, in that experimental observables, \(f \) and \(A \), are related via the ratio of such factors, the out-of-context use of a previously determined electronic transition moment can lead to erroneous results if employed with a different definition of degeneracy.

The convention followed here is that adopted by Herzberg. Consider transitions between an initial orbital \(\phi''_k \), which is one of a degenerate set, and a set of final orbitals \(\phi'_i \). The probability of a transition from \(\phi''_k \) to all \(\phi'_i \) is taken as the total probability of transitions from all levels degenerate with \(k \) to all \(i \), divided by the degeneracy of \(k \). Thus,

\[
f_{n'v',m'v''} = \frac{8\pi^2 mc v_{v',v''}}{3he^2} \left| R_{e}^{nm} \right|^2 \frac{q_{v',v''}}{w_m}
\]
where \(|R_{e}^{nm}|^2 = \sum_{i} \sum_{k} |R_{e}^{ik}|^2 \)

and \(w_{m} = (2-\delta_{O,A})(2S'' + 1) \)

\(A_{nv',mv''} \) is defined as in equation 9.

In Mulliken's notation, equation 5 is replaced by

\[
f_{nv',mv''} = \frac{8\pi^2 mcv_{v',v''}}{3he^2} \cdot G_{n} |R_{e}^{nm}|^2 q_{v',v''}
\]

and equation 9 by

\[
\sum_{v''} A_{nv',mv''} = \frac{64\pi^4 GM}{3h} \sum_{v''} (|R_{e}^{nm}|^2 q_{v',v''}v''^3 v',v'')
\]

If the probability of a transition from \(\phi_i'' \) to a single orbital \(\phi_i'' \) is \(|R_{e}^{ik}|^2 \), then the total probability of a transition \(\phi_k'' \) to all \(\phi_i'' \) is \(G_{n} |R_{e}^{ik}|^2 \), where \(G_{n} \) is the total number of degenerate final orbitals with which the initial orbital can combine. \(|R_{e}^{ik}|^2 \) is taken as \(|R_{e}^{nm}|^2 \). Mulliken discusses in detail the definitions of \(G_{n} \) and \(G_{m} \).

In the present cases, \(G_{n} = 2 \), and \(w_{m} = 1 \), and the Mulliken notation therefore leads to values of \(|R_{e}^{nm}|^2 \) which are half those derived in this paper. The Mulliken notation is used by both Hesser and Shemansky.

Further difficulties arise in the sum rule employed for rotational line strengths. In the present work the electronic transition moments have been directly related to the transition probabilities, i.e.

\[
\sum_{v'} \sum_{J'} f_{nv',J',mv''J''} = \frac{8\pi^2 mcv_{v',v''}}{3he^2} \cdot \frac{|R_{e}^{nm}|^2}{w_{m}}
\]
The Franck-Condon factors and rotational line strengths have been interpreted simply as branching ratios, i.e. the sum rules (3) and (4) have been applied.

Frequently, however, line strengths derived in the literature have not been normalised in this way. For example, Shemansky16 and Vanderslice et al.31 directly used Chiu's11 line strengths for the quadrupole $^1\Sigma_g^- - ^1\Sigma_g^+$ transition. On summation, these give $4/3(2J'' + 1)$. In addition, summation of their line strengths for the magnetic dipole transition gives $2(2J'' + 1)$. Essentially, we have absorbed the factors $4/3$ and 2 into the electronic transition moment, and this accounts for the discrepancy in our definitions of $|R_{e,m}^{nm}|_Q^2/|R_{e,m}^{nm}|_D^2$.

USCOMM-NBS-DC
References

References

References

Figure Captions

Figure 1: Curve of growth for the (4,0) band of the CO fourth Positive System.

- O [CO] = 27 Nm$^{-2}$
- O [CO] = 66 Nm$^{-2}$
- O [CO] = 133 Nm$^{-2}$
- A Q(J' = 23); [CO] = 27 Nm$^{-2}$
- A I'$ \Sigma^-$ (V = 6, J = 23) - $X^1 \Sigma^+$ (V = 0, J = 23); [CO] = 27 Nm$^{-2}$

Least squares fit to points on linear portion of graph.

Doppler curve for (W126) > 0.7

Figure 2: Curves of growth for the (0,0) and (4,0) bands of the magnetic dipole component of the Lyman-Birge-Hopfield system of nitrogen.

- O $[N_2^+] = 2 \times 10^4$ Nm$^{-2}$
- O $[N_2^+] = 4.85 \times 10^2$ Nm$^{-2}$
- O $[N_2^+] = 10^5$ Nm$^{-2}$

Least squares fit to points on linear portion of graph.

Curve of growth for $a = 0.55$. This corresponds to a self broadening cross-section of 4.5×10^{-15} cm2.

Figure 3: Curves of growth for the (2,0) and (3,0) bands of the electric quadrupole component of the Lyman-Birge-Hopfield system of N_2. Key as for figure 3.
Table 1. f-values for the CO Fourth Positive System

| v' | $f_{v',0}$ | $q_{v',0}$ | $f_{ee} = \frac{f_{v',0}}{q_{v',0}}$ | $t_{v'}$(nsec) | $|R_{e}^{nm}|$(a.u.) |
|------|------------|------------|----------------------------------|----------------|------------------|
| 3 | $(2.42 \pm 0.15) \times 10^{-2}$ | 1.81×10^{-1} | 0.134 ± 0.0009 | 7.6 ± 0.5 | 0.80 ± 0.04 |
| 4 | $(1.52 \pm 0.15) \times 10^{-2}$ | 1.19×10^{-1} | 0.128 ± 0.012 | 8.4 ± 0.8 | 0.77 ± 0.05 |
| 5 | $(1.07 \pm 0.14) \times 10^{-2}$ | 6.88×10^{-2} | 0.156 ± 0.014 | 7.2 ± 0.7 | 0.85 ± 0.06 |
| 6 | $(6.0 \pm 0.8) \times 10^{-3}$ | 3.67×10^{-2} | 0.163 ± 0.014 | 7.2 ± 0.6 | 0.86 ± 0.05 |
| 7 | $(3.2 \pm 0.4) \times 10^{-3}$ | 1.84×10^{-2} | 0.175 ± 0.022 | 7.1 ± 0.9 | 0.88 ± 0.08 |
| 8 | $(1.27 \pm 0.13) \times 10^{-3}$| 8.9×10^{-3} | 0.143 ± 0.014 | 9.1 ± 0.9 | 0.79 ± 0.06 |
Table 2. f-values for the Magnetic Dipole Component of the N\textsubscript{2} Lyman-Birge-Hopfield Systema

| \(v'\) | \(10^7 f_{v',o}\) | \(q_{v',o}\) | \(10^6 f_{ee}\) | \(10^5 f_{v',(sec)}\) | \(10^4 |R_{e}^{nm}|_{D}\) |
|-------|----------------|-------------|----------------|-----------------|-----------------|
| 0 | 3.9 ± 0.3 | 4.31 x 10^{-2} | 9.0 ± 0.6 | 9.4 ± 0.6 | 6.0 ± 0.6 |
| 1 | 12.8 ± 1.6 | 1.155 x 10^{-1} | 11.1 ± 1.4 | 7.9 ± 1.0 | 6.6 ± 1.1 |
| 2 | 16.3 ± 1.3 | 1.707 x 10^{-1} | 9.6 ± 0.8 | 9.5 ± 0.8 | 6.0 ± 0.7 |
| 3 | 16.5 ± 1.5 | 1.832 x 10^{-1} | 9.0 ± 0.8 | 10.4 ± 1.0 | 5.8 ± 0.7 |
| 5 | 9.8 ± 0.7 | 1.217 x 10^{-1} | 8.1 ± 0.6 | 12.5 ± 0.9 | 5.4 ± 0.6 |
| 6 | 7.9 ± 1.1 | 8.30 x 10^{-2} | 9.5 ± 1.3 | 10.9 ± 1.5 | 5.8 ± 0.6 |

aThese measurements were made on the P, Q and R branches. The combinations due to the electric quadrupole component was removed using Chin's2 line strengths, and taking a mean value of 0.076 for \((f_{ee})_Q/(f_{ee})_D\).
Table 3. \(f \)-values for the Electric Quadrupole Component of the \(\text{N}_2 \) Lyman-Birge-Hopfield System\(^a\)

| \(v' \) | \(10^8 f_{v',0} \) | \(10^7 f_{ee} \) | \(t_{v',\text{msec}} \) | \(|R_{nm}^\text{ee}|_Q (\text{a.u}) \) |
|-------|---------------|---------------|----------------|------------------|
| 1 | 6.6 ± 0.5 | 5.7 ± 0.4 | 1.9 ± 0.1 | 2.54 ± 0.13 |
| 2 | 11.1 ± 0.5 | 6.5 ± 0.3 | 1.8 ± 0.1 | 2.59 ± 0.07 |
| 3 | 13.0 ± 3.6 | 7.1 ± 2.0 | 1.7 ± 0.5 | 2.6 ± 0.5 |
| 5 | 10.3 ± 0.8 | 8.5 ± 0.7 | 1.6 ± 0.1 | 2.72 ± 0.15 |
| 6 | 6.0 ± 0.5 | 7.2 ± 0.6 | 2.1 ± 0.2 | 2.42 ± 0.14 |

\(^a\)All these measurements were made on the \(S \) branches of the bands.
Table 4. Overall Radiative Lifetime for $^2\text{Na}^{23}$ and the ratios of the Electric Quadrupole and Magnetic Dipole f-values

| v' | $10^5 f_{v'}$ (sec) | $10^2 \left(\frac{f_{v',0}}{f_{v',0,D}} \right)_Q$ | $10^{12} |R_{e, Q}^{nm}|^2$ (cm2) |
|------|---------------------|---------------------------------|---------------------------------|
| 0 | 7.6 ± 1.0 | 5.2 ± 0.8 | 3.5 ± 0.5 |
| 1 | 9.0 ± 0.8 | 6.8 ± 0.6 | 4.4 ± 0.4 |
| 2 | 9.8 ± 1.0 | 8.1 ± 2.0 | 4.9 ± 1.4 |
| 3 | 11.6 ± 0.9 | 10.5 ± 1.2 | 6.1 ± 0.7 |
| 5 | 10.4 ± 1.5 | 7.6 ± 1.2 | 4.2 ± 0.7 |
Table 5. $|R_{\text{e}}^{\text{nm}}|$ (atomic units) for the CO Fourth Positive System

<table>
<thead>
<tr>
<th>v'</th>
<th>a</th>
<th>b</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.64</td>
<td>-</td>
<td>0.93</td>
</tr>
<tr>
<td>1</td>
<td>0.65</td>
<td>0.78</td>
<td>0.95</td>
</tr>
<tr>
<td>2</td>
<td>0.65</td>
<td>0.83</td>
<td>0.98</td>
</tr>
<tr>
<td>3</td>
<td>0.64</td>
<td>-</td>
<td>1.03</td>
</tr>
<tr>
<td>4</td>
<td>0.67</td>
<td>-</td>
<td>1.09</td>
</tr>
<tr>
<td>5</td>
<td>0.67</td>
<td>-</td>
<td>1.12</td>
</tr>
<tr>
<td>6</td>
<td>-</td>
<td>-</td>
<td>1.19</td>
</tr>
<tr>
<td>7</td>
<td>-</td>
<td>-</td>
<td>1.22</td>
</tr>
<tr>
<td>8</td>
<td>-</td>
<td>-</td>
<td>1.23</td>
</tr>
</tbody>
</table>

a Phase shift measurements. The $|R_{\text{e}}^{\text{nm}}|$ values quoted in reference 15 have been redefined and multiplied by $\sqrt{2}$ (see appendix).

b Shock tube absorption measurements ($J = 30 - 60$).

c Electron impact spectroscopy.
Table 6. $|R_{e}^{nm}| \times 10^{11}$ (Bohr magnetons) for the Magnetic Dipole Component of the N_2 Lyman-Birge-Hopfield System

<table>
<thead>
<tr>
<th>v'</th>
<th>a</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>4.2</td>
<td>10.6</td>
</tr>
<tr>
<td>1</td>
<td>5.5</td>
<td>9.7</td>
</tr>
<tr>
<td>2</td>
<td>4.8</td>
<td>9.2</td>
</tr>
<tr>
<td>3</td>
<td>4.5</td>
<td>9.3</td>
</tr>
<tr>
<td>4</td>
<td>5.1</td>
<td>10.4</td>
</tr>
<tr>
<td>5</td>
<td>4.6</td>
<td>10.3</td>
</tr>
<tr>
<td>6</td>
<td>4.8</td>
<td>11.7</td>
</tr>
</tbody>
</table>

Low resolution, low pressure absorption spectroscopy.

The D^2 values given in reference 14 have been multiplied by 4, and converted to $|R_{e}^{nm}|_D$ (see appendix).

Low resolution, high pressure spectroscopy.