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ABSTRACT

The network design problem considered here involves mail which is

sorted progressively to a number of final destinations by traveling

through a network of sorting madiines, each with one input channel and

a fixed (for all machines) number of output channels. Cost for sorting

is taken to be the sum of individual costs for sorting to each destination,

which in turn is the product of mail volume to that destination times

a "disutility" per unit of mail for the particular path in the network to

that destination's "sink." A simple algorithm and a dynamic program

provide complete specification of a network which minimizes cost for

certain types of disutility functions.
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1. PROBLliM formulation""

This paper deals with a class of problems encountered in connection

with a study^^^ of mechanical mail sorting methods. We begin by describing

these problems in quite general form, and then specialize to the particular

cases for which solution methods will be developed below.

The problems deal with the design of a network of devices to sort

material into a given number d of classes, e.g. to perform a "sort by

destination" on pieces of mail each addressed to one of d known cities or

regions. Problem data include nonnegative numbers {v.
,
where

^ 1

v^ = mean volun^ of class i material to be sorted per unit time.

The devices available for use in the network constitute a set
^ 1

( 2 )
of single-input machines^

,
each of which separates material into a given

number m of categories. A sorting network N with parameters (n, m, d) is

defined to be a network of nodes and directed arcs with

(a) a single origin node, with no incaning arc and one outgoing arc,

(b) n sorting nodes, each with one incoming arc and m outgoing arcs,

and each containing one of the machines
,

am grateful to colleagues A.J. Goldman, L.S. Joel, and J. Levy for
helpful discussions.

^^^Computer Symbolics, Inc., Task I Report (6/17/69) on The Operations
Research Analysis and Design of Maximally Advantageous Sorting Configurations

,

under Post Office Department Contract No. RER 28-69.

( 2 )^ ^Here "machine" is used in the abstract or functional sense, without
reference to a specific technology; similarly, the "material" to be
sorted might consist (say) of information rather than physical objects.



(c) d destination nodes, each with one incoming arc and no outgoing

arcs, and a one-to-one association of these nodes with the d classes

of material to be separated, and

(d) the topological restriction^ ^ that there be exactly one directed

path in N from the origin node to each destination node, and hence

to each sorting node as well. (See Figure 1 for an example of a

sorting network.)

In such a sorting neUvork N, let denote the unique path from the

origin node to the destination node associated with the i-th class of

material. Material in this class is to enter the network at the origin

node and (if no errors occur) flow along to the associated destination,

which should thus be reached only bydass i material. The machine at a given

sorting node should receive material only of those classes i such that P^

contains the sorting node; the machine in effect separates this family of

classes into m subfamilies for routing along its m outgoing arcs.

Before proceeding further, we recall (op^. cit . in footnote 1) that the

three parameters (n, m, d) are not independent. To establish this, we count

in two ways the arcs of a sorting network: as "inccming arcs," so that

there is one arc per sorting node and one per destination node, and as

"outgoing arcs ," so that there is one arc for the origin node and m for

each sorting node. Equating tlie two counts, we obtain tlie relation

n + d = 1 + nm,

or equivalently

d = 1 + n (m - 1) . (1.1)

^^^In technical language, the restriction is that N be a "rooted tree."



Figure I. Sorting network with m=2, n=7,d=8
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The design of a sorting netvvork, for given values (n, m) can be

conceptually divided into three parts

:

(a) specification of topology, subject to (d) above,

(b) associating tlie d destination nodes one-to-one with the d classes

of material, and

,n
(c) associating the n sorting nodes one-to-one with the n machines{NL

,

i.e. "assigning the machines to the sorting nodes."

For an optimal design problem, we must specify an "objective function"

to be maximized or minimized. This will first be done in a quite general

way to indicate a class of problems which may be of interest for future work,

IVe then specialize to the type of problems for \diidi the methods of this

paper give a complete solution.

For any sequence (j(l), j (2) ,

- - - j(L)) of distinct integers from the

set {1, 2,
- - -, n}, let g^[j(l), - - - j(L)]= "score" per unit flav of

class i material through the sequence of machines
(p)

‘

Furthermore, for a sorting network N, let S^(N) = sequence of machines

(specified by their indices) along the path P^. Then the function to be

extremized by a proper dioice of N is tJie mean total score per unit time,

d

f(N) = 2 V g [S (N)]. (1.2)ill 1

In considering how (1.2) might be specialized to tractable forms of

practical interest, it is useful to note three aspects of the generality of

the quantities g^[S^(N)] appearing in (1.2). The first is the subscript

74TT
Given m. and d, the n-value determined from (1.1) might be non-integral;
in tliis case we can think of d as increased bv the adjunction of enough
"dunmy" classes witli no members to raise n to the next higher integer value.
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on g^, which inplies that different classes of material should receive

different scores for passage through a given sequence of machines. The

scores we have in mind refer to the time or cost of such a passage,

or the likelihood of damage or misrouting or of rejection as ''unprocessable";

these are "disutilities" rather than "utilities," so

that we will be concerned with minimizing f(N) rather than maximizing it.

In this context, the subscript-dependence of
g^

might be plausible if we

were classifying objects by size or messages by length or pieces of mail

by the degree of machine -readability of their addresses. But our motivating

interest is the classification of mail by destination, which appears to

be at most coincidentally correlated with classification by score in the

sense indicated above. Thus we replace (1.2) by

d
f(N) = Z V g [S (N)]. (1.3)

1
^ ^

Second
,

at present the score g[S^(N)] in (1.3) depends not only on

what set of machines is encountered in movement along path P^, but also

the order in which they are encountered. Such generality, while perhaps

needed for sane applications, does not seem especially relevant for our

present purposes and will be dropped.

Third
,
no mention has been made of what properties of the machines

influence the scores. It will be assumed that the relevant properties

of M. can be represented by a single positive number

a

.

1

= indicator of disutility of passage through M..

As a consequence of these three steps, the scoring functions g^[j(l),

j(2), . . . j(L)] have been specialized to a function g ^j(2)’ ' ’

aj(L)], which is unchanged under permutations of its nos itive -number arguments.

- 5 -



Before specializing further, three examples will be given to help

indicate the minimum degree of generaliity we v^ant our final mathematical

model to possess. Suppose fi rst that a_. represents the time required for

an object to pass through and on to the next node, and that our objective

is to minimize total time spent in the network by all objects. Then

8[®j(l)’®j(2)>
• • • '

®j(l) ®j(2)

or more compactly

g[S.(N)] = E {a. ; M.e S. (N) (1.4)

is the appropriate scoring function^^^ . Next
,
assume a^ is the probability

that Nh routes an object correctly (or, passes an object undamaged). If

the objective is to maximize the expected number of objects per unit time

which arrive at the correct destination node (or, which surrave passage

through the network undamaged)
,

then the appropriate scoring function is

^j(2) ^j(L)'
“

®j(2)
• •

"“ja)’

or more compactly

g[S.(N)] = -n{a^. : M. e S.(N)}, (1.5)

tlie minus sign arising because our convention calls for a minimization

rather than a maximization. Third
,
the score may depend only on how many

madiine -handlings an object receives in the network. If we define the

length of a path to be the number of sorting nodes it contains, and employ

tlie notation

L^(N) = length of
, (1.6)

( 5 ) Ihe special subcase with,

footnote (1) .

all a. = l is the one solved in tlie cited reference,
1
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f 5a)
then for an appropriate strictly monotone function^ the scoring

function would be given by

g[S. (N)] = h[L.(N)]. (1.7)

In this case the machines M. are in effect assumed identical

.

J

To encompass these three cases while retaining the stipulations given

previously on g, and to give a basis for developing a solution algorithm,

we consider a continuous mathematical operation which converts an

ordered pair (x,y) of numbers from some interval I of real numbers into a

number x*y of I, (Here the interval I can be finite or infinite, open or

half-open or closed.) The operation is assumed to satisfy the associative

law

(x*y) *z = x*(y*z)

(in algebra, the "semi-group" property), and to have the further property

that

x*y = x*2 or y*x = z*x implies y = z.

He then define the scoring function as

where h is continuous and strictly monotone. (With as addition and h(x) =

X we get special case (1.4) or, if all = special case (1.7). With "*" as

multiplication and h(x) = -x, we get (1.5).)

(7)
Nav we note that the above definition of implies that there exists a

continuous, strictly monotonically increasing function (j) defined on a

(5 a)^ '^Function h is called strictly monotone if either h(x)<h(y) whenever x<y,

or h(x)>h(y) whenever x;y.

With h(x)Ex, this again reduces to the case treated in the cited reference,

f 7)
See, for example, Aczel, J., Lectures on Functional Equations aiul their
Application, Academic Press, 1966, pp. 253 ff.
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subset of and with range I, such that
C7a)

x*y =
(p ((p ^(x) +

Thus the scoring function may also be written as
(7b)

(1.9)

-1
= h*[z Ta ,,J]. (1.10)

Since h and (j)are strictly monotone, so is h =h({). Thus by relabeling

machine j with the quantity a^ =
<p

^ (a^), we may assume that the function

g has the form

L

g[a.(i), aj(L)] = h (1.11)

where h is strictly monotone.

Although the problem has not been solved in this generality, a simple

algorithm and a dynamic program give the solution for tu'o special cases

of interest, as detailed in sections 2 and 3 respectively. The first two

examples given (cf. equations (1.4) and (1.5)) are solvable by the algorithm

of Section 2, while the third (1.7) is solvable by the dynamic program.

Section 4 discusses two specific examples of the type problem of Section 3

which are of seeming practical importance.

(x) is the unique number u such that Ku) = x.

('7b')
^Here h({) is defined by hct>(u) = h [<|)(u)].
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2. THE ALGORITHM

We consider in this section the class of functions h given previously,

further restricted so that

h(x*a) - h(y*a) = 0(a) [h(x) - h(y)], (2.1)

where 0 is a positive continuous function, monotone in the direction opposite

to that of h. Applying the transformation described in the previous section,

(2.1) becanes

h({)(()) ^(x)+(j) ^(a)) - h4)((j) ^(y) +(}> ^(a)) =0(f>(4) ^(a)) [h<j)((j) ^(x))- hcj)((j)'^(y))
] ,

or,

h (x + a) - h(y+a) = 0(a) [h(x) - H(y)], (2,2)

where 0 is still monotone in the direction opposite to that of h. We use the

functions h and 0 and the new labels in the discussion that follcws.

First, however, we prove that equation (2.2) implies that h and 0 have

the form

0(x) = e^^ - oo<x<ooj (2.3)

and

k^e^+k^ (c=^0) (2.4)

"^k^ X +k
2

(c=0) (2.5)

which implies that

0(x) = e (2.6)

and

k^e^'^‘^^^+k
2

(c=fO) (2.7)

"^k^ i|^(x) +k
2

(c=0) (2.8)

where These relationships are shown as follows : First, it is clear

that 0(ma) = (6(a) )^ for any positive integer m.

- 9 -



For,

0(ma) [h(x) -h(y) ]
= h(x+ma) - h(y+ma) = a)G(a) [h(x) -h(y) ]

= [0(a)]"'[h(x)-fi(y)]

m 1
if 0((m-l)a) = (0(a)) . Thus a simple inductive argument shows that

0(ma) = [0(a) ]^, provided we take h(x) = h (y) in the above equation.

T /m
Therefore 0(a/m) = [0(a)] '

,
for each positive integer m, so that if

0(1) = e^ then 0(j/m) = Thus 0(x) = e*“^ holds for all positive

rational numbers x = j/m; by continuity, it holds for all x ^ 0.

Similarly, we have

0(-ma) [h(x) -h(y)
]

= h(x-ma) - h(y-ma)

= 0(-(mi+l)a)0(a)[h(x)-h(y)],

or

0(-(m+l)a) = [0(a)] ^ 0(-ma),

whidi leads to 0(x) = e for x ^ 0, as above.

To shav tliat h is of the form (2.4) or (2.5), we note that if seme

h satisfies (2.2), then so does K^h + for any constants and K^.

Let h(x) be any function satisfying (2.2) for 0 = e*"^, c ]= 0. Then, by

the last remark, we may assune that h(0) =0 and h(l) =}= e*" - 1. Now for

any x let k be defined by

h(x) = k(e^^ -1) .

By induction, it may be shorn that

h(mx) = k(e°^^ - 1 )

- 10 -



for any positive integer m, since if this is true for m-1 we have, by

( 2 . 1),

h(mx) -h( (m-l)x) = e^^”^ ^^^[h(x) - h(0)],

or

h(mx) = -1) .e'=("’-«^[k(e“-l)] = k .

Letting x = 1/m, we get k=l so that

h(l/m) = e^^*^ -1,

and by the previous argument,

h(p/m) = e^^ -1

for all positive integers p and m. Thus by the continuity of h,

h(x) = e^^ - 1,

for all X ^ 0. This result is easily extended to negative numbers by

showing that

h (-mx) = e -1

in a fashion similar to the above. Thus (2.4) is proved.

If c = 0, it may be shown that setting h(0) =0 and h(l) = 1 results in

h(x) = X, by an argument analogous to the above.

We nav develop tlie basis for the algorithm,

scoring function will be given by
L

where h satisfies (2.2) and a .

-1

i(i)

Thus (2.5) is also proved.

In what follows, the

For convenience
,

let

- 11 -



the numbering of classes and machines be such that

(2.9)

and

( 2 . 10 )

if h is increasing, while

( 2 . 10 ')

if h is decreasing.

We also introduce the follcwing two definitions. In any sorting net-

work N, a final sorting node is one whose outgoing arcs all tenninate in

destination nodes, and a chain is a path from the origin node to a final

sorting node.

The following lemma is based solely on the numbering (2.9), (2.10)

or (2.10'), and the form of the function f(N) .

LEMMA 1 . There is an optimal network for which some final sorting node^s

labeled n and the final destinations which it sorts to are labeled 1, 2, ...,

m.

PROOF. Let N be any optimal network. Choose a destination node corresponding

to sane class i, such that g[S^(N)] is maximum . Let x be the final sorting

node preceding tliis destination node. If x does not sort to classes 1, 2, ...,

m, then there exist integers p and q, with 1 q ^ m < p, such that x sorts

to class p but not to class q. Consider the new network N' formed by inter-

dianging destination classes p and q in N. We have

- 12 -



f(N) - f(N’) = (Vpg[Sp(N)] + v^g[S^(N)])

- (Vpg[S^(N)] + v^g[Sp(N)])

= (Vp-v^)(g[Sp(N)] - g[S^CN)])

= (Vp-v^)(g[S.(N)] - g[S^(N)])

by (2.9) and the fact that g[S^(N)] is maximal. Thus interchanging classes

p and q in N does not destroy optimality. By an inductive process, we may

move all of the destinations 1, 2, . . . ,
m to final sorting node x without

destroying optimality. Therefore, in the rest of the proof we assume that

X sorts to nodes 1, 2, . . . ,
m.

Suppose that node x contains machine where k =j= n. Let

Q = {i : n e S^(N) }.

Then Q contains at least m members. Let R be any subset of Q of cardinality

m, and let distinct numbers j(i) ^ R be defined so that

V. < V...S, i = 1, 2, . . ., m. (2.11)
1 — j (i)

’ > > »

Clearly tliis is possible, by (2.9).

Consider the network N' formed by interchanging machines k and n in N.

In the network N let

= E{a^ : s e S^(N)
,

s f n >

for r eQ, and let

- 13 -



u = E{a^ : s e S^(N)
,

s =|= k}.

Then we have
m

f(N") - f(N) = [h(u + a^) - h(u+a^)] S

i=l

+ Z v^[h(u^+a^) - h(u^+a^)]

rcQ
( 2 . 12 )

Now suppose that h is increasing and 0 decreasing in what follows

.

(A similar argument applies in the opposite case.) Since a, < a ,
by

(2 . 10) ,
we have

h(Ur+\) - h (u^+a^) ^ 0,

for each reQ-R, so that

m
f(N )

- f(N) < [h(u+a )
- h(u+i)] Z v.

n ^ i=l
^

+ Z v^[h(u^+aj^) - h(u^+a )]
reR

m
> Z {v^[h(u+a^) - h(u+a^)j
i=l

+ V. . . s [h(u. . +a, )
- h (u...., + a )]} .

j(i) ^ j(i) k" j(i) n'-*
(2.15)

If f(N') - f(N) ^ 0, tlien the lemma has been proved since N' is also

optimal. Thus it is sufficient to shav ,
because of (2.13), that

Vj[h(u.J^) - h(u+a^)] ^
V.J.J

[h(u.(.j + a^) - h(u.(.j * a^))

j;^0, i = l,2, ...,m.

- 14 -



Because ^ a^, h(Uj^^+aj^) + a^)
,

as noted above.

Furthermore, v...., > v. , so that
’ j(i) - i’

v.[h(u+a^) - h(u+i^)] * v.(j,[h(u.^.j+a^) - h(u.(.j ^a^)l

<v. [h(u+a^)- h(u+a.)] + v- [h(u.... +a, )
- h(u.... + a )]— 1 n ^ k '

1 ^ 3(1} ^ 3(1) n -*

= v.[h(u*J^) - h(u*i^) *

= v^{e(u)[H (a^) - h (a^)] - e(u^

)

[h(i^) - h(a^)]}

= v.[0(u) - 0(u.^.^)][h(i^) - h(aj^)].

But u+a^^ ^ maximality of g[Sj^(N)]
,
while a^^ ^ a^, implying

U>Uj|,i^,

Thus

e(u) ^ >

while

h(a^) ^h(aj,),

implying the desired inequality. This completes the proof of tlie lemma.

We now state the special solution algorithm which applies when condition

( 2 . 1) is satisfied. It is assumed that we are dealing with the transformed

functions h and 6, together with transformed a^’s, in this first version

- 15 -



of the algorithm. Such transfoimation will be shown to be unnecessary

in the corollary to theorem 1.

The algorithm is described (for fixed m) by recursion on the number

n of sorting nodes, with d given by (1.1). Since the solution for n=l

is obvious, we give the recursion step fron n-1 to n.

SPECIAL ALGORITHM. Number the classes and machines so that (2.9)

and (2.10 - 2.10') hold. Consider a new problem with the d-m original

classes m+1, m+2, . . ., d plus a new class d+1 with

= e(a ) T V.

,

d+1 ^ n'^ 1 i’
(2.14)

and with machine-set’ ^ and associated' {a.},^ By the recursion
1 1 1 1 ^

O

hypothesis, an optimal network N^_^ for this new problem is available. In

this network, "expand” the destination node corresponding to class d+1 to

a sorting node occupied by with outgoing arcs terminating in destination

nodes associated with classes 1, 2, . . . ,
m. This yields a sorting net-

O O

work for the original problem; is an optimal solution to this problem.

Less formally, the algorithm's instructions are as follows. Choose

m classes with the smallest v^'s, and a machine with the largest or

smallest a^ according as h is increasing or decreasing. Destination nodes

corresponding to the chosen classes will terminate arcs from a final sorting

node occupied by the chosen machine. Now apply the same instruction to a

situation involving all the remaining machines, and all the remaining classes

plus an artificial one whose "v^" is ^(^j) times the sum of the m smallest

v^'s; the node occupied by is then identified with the "new" destination

node corresponding to the artificial class. Repeat the process (reducing

the number of classes by m-1 each time) until one class is left.

- 16 -



THEOREM 1 . The special algorithm produces an optimal sorting network

when h satisfies (2.1).

PROOF. The proof is by induction on n, where d is given by (1.1).

Let N be any sorting network for the n-node problem, and let x be any

final sorting node with disutility a which sorts to destinations j(l),

j(2), ....j(m). Let N’ be another sorting network with n-1 sorting nodes

derived from N by replacing destinations j(l), j(2), . . ., j(m) with a

destination d+1 having volume 0(a) E
^j(i)

replacing node x with a

destination node labeled d+1. Then it is clear that if N and N' have the

same scoring function h, we have

m _ _ m
f(N) - f(N') = (Z V...J h(u+a) - 0(a) (Z v....) h(u)

i=l i=i JUj

. . . m
= (Z v..-0[h(u+a) - h(a)] - 0(a)(z v...O[h(u) -h(0)]

i=l i=l

+ h(a) E V , ,
- e(a)h(0) E V.,.,

i=l i=l
^

= [h(a) - 0(a) H(0)] Z V...., by (2.2).
i=l

Nav let be any optimal network on the original n sorting nodes. By

lemma 1, we may assume that there is a final sorting node in N labeled n

which sorts to destinations 1 through m. Let be the network on n-1

sorting nodes, with destination m+1, m+2, . . .

,

d, d+1 and sorting

disutilities a^, a^, . . •

» j
derived from by replacing sorting node

n and its destination nodes by a destination node d+1, where

_ _ m
Vi^T = 0(a ) Z V. .

d+1 ^ n . T 1
1=1

- 17 -



By the above remarks
,
we have

m
f(Np - £(Ny = [h(i^) - e(i^) h(0j]_E^ V.. (2.15)

But if
^
and N°^ are, respectively the networks produced by the

algorithm operating on the reduced set of machines and destinations and

on the original set, then it is also clear that

m
f(Np - f(N;_^) = [h(d^) - e(i^) h (0)]_Z V., (2.16)

o

from the construction given in the algorithm. But since is optimal,

by the induction assumption, it follows that
Jl
f(Np

,
and hence

from (2.15) and (2.16) that f(N^) <_ f(N^). Thus is optimal and the

theorem is proven.

Next we show that the conversion function <() of (1.9) is really

unnecessary.

COROLLARY. In the algorithm, let the function 6 be substituted for 6

and the original values of the a^ be substituted for their transformed

values. Then the algorithm still gives the optimal solution .

PROOF. Clearly

e(a^) = 0<l5(<{>'^(a^)) =e(a^), (2.17)

while

a.< a, if and only if a. < a. ,j— k ’
j
— k’

and 0 is monotone increasing (decreasing) if and only if 6 is monotone

increasing (decreasing)
,
by the fact that c() is monotone increasing. Thus

the ordering of subscripts for the a's is not changed, so that is used

18



definedin t±ie recursion step of the algorithm, while by (2.17) the

by either method is the same. Thus each application of the algorithm

gives the same result under the original as under the transformed system,

and so the final network is the same.

19



3. A DYNAMIC PROGRAM

In this section we obtain a dynamic programming formulation for the

problem of minimizing

f(N) = Ev. h[L (N)], (3.1)
1 ^

where as before Lj.(N) is the number of sorting nodes, in N, in the path

from the origin node to the destination node associated with class i.

Note that the quantities appear explicitly in this problem.

The function h is assumed monotone increasing. Two examples will be dis

cussed in Section 4.

As in Section 2, we adopt the numbering convention

V, < < . . . < Vj.
1 — z — — d

(3.2)

,( 8)Using a standard theorem^ ^ on "rearrangements," we find that there must

be an optimal N with

L^(N) > L2(N) > . . . 1 L^(N). (3.3)

Define N to be an M

-

stage network if it satisfies (3.3) and has

Lj^(N) = max^L^(N) = M. (3.4)

This clearly requires M _< n.

In terms of the problem data define an M-stage network N' to

be of type (s,z) if it satisfies (3.3), has s sorting nodes (s^n) and

therefore

f 81
^See Chapter 10 of Inequalities

,

Hardy, Littlewood and Polya, Cambridge
University Press (1952)

.
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D(s) = s(m-l) + 1 = d - (n-s)(m-l)

i

destination nodes, and has D(s) classes with data {v
}D(s)

k=l

sudi that

^ d+l-k = ^d+l-k
for 1 < k < D(s) - z, (3.5)

for D(s) - z < k < D(s)

,

(3.6)

'''dn-k
“ ° implies L^+i_p(N') = M. (3.7)

The original problem is to find an optimal network of type (n,0) . For

this it suffices to find, for each M^n, an M-stage network which is optimal

in the class of M-stage type (n,0) networks. To employ a dynamic programming

approach, we imbed this in the following class of problems: For each

triple (M,s,z) with M^s^n and z<D(s) for which an M-stage type (s,z) network

exists, find an optimal M-stage nehvork of type (s,z). Let

fj^(s,z) = minimum value of f(N’) over all M-stage networks N' of

type (s , z) .

Clearly f^ is defined only for s=l and z^m, and is given by

fyi,z) = (I hci).
K=1

To complete the dynamic programming formulation, we develop a recursion

expressing in terms of fj^^.

21



Let be an optimal (M+1) -stage type (s,z) network. In

consider all final nodes of chains of length M+1, and all destination nodes

which follow them; by (3.6) -(3.7), these include at least the destination

labeled D(s)-z+l through D(s)
,
whose volume is 0 as stated in (3.6).

Suppose these final sorting nodes are q in number so that qm^z. Collapse

each one of these sorting nodes, together with the m destination nodes

which follow it, to a single new destination node associated with a new

class having ”v| = 0". This yields an M-stage network N'j^, of type (s-q,q),

such that

Moreover the construction is reversible, in the following sense:

Given any M-stage type (s-q,q) network Nj^ and a value of z with z^qm and

z^D(s)
,

the destination nodes of Nj^ corresponding to its first q classes

can each be "expanded” to a sorting node folloved by m destination nodes,

in such away that an (M+1) -stage t>q)e (s,z) network results. Fran these

considerations we obtain the desired recursion.

nodes associated with the first z classes of N that is, the classes

- qm

where the range for q can be limited by the conditions z<qm^D(s)

.

(3.8)

22



4. EXAMPLES FOR SECTION 3

Two practical problems which are amenable to the dynamic program

solution of section 3 are as follows. In the first instance, it is desired

to minimize a cost of sorting, which is composed of a cost for each unit of

material sorted by each machine plus a cost for material which is lost (or

misdirected) at a given sorting. If we assume that a fraction cf^l of the

input to a sort remains after sorting, that the cost per unit per sort is

a, and that the cost for a unit lost in the sorting process is L, then the

function h of section 3 is given by

h(M) = a(l+q+. .
.+q^"^) + L(l-q^)

,

and so

h(M+l) - h(M) = aq + L(q - q )

= q^(a+L(l-q))> 0

Thus h is monotonic, and the method of section 3 applies.

The second problem is as follows. Part of the material being sorted

is lost at each sort, but everything lost in the process of sorting is

reinserted at the initial node for anotlier sort, and this process is

repeated until everything has ccme through the sorting network. This

might apply, for instance, to the sorting of mail. The objective is to

minimize tlie total costcf sorting, where the cost per sort per machine is

a and a fraction q of the input to a sorting node comes through without loss.

23



For a single sort, if an amount is inserted at th.e origin bound

for destination i, and if the length of the path is M, then the cost

is

M-1
v^a(l+q+. . .+q ).

M M
However, since q ccmes through the process, an amount pv^, \diere p=l-q

,

2
is lost and must be put through again. On the third time, p is inserted,

and so on. The total cost for an initial amount is therefore

(1+p+p +...) v^a(l+q+,

, , M
(q^) V- a —

)

^1-p 1 ^1-q ^

^ M-1.
• +q )

M
V. a E q ^

.

Thus

M
h(M) = a E q

j
= l

and

-M-l
h(M+l) -h(M) = aq >0,

proving monotonicity of h
,
so that Section 3 applies.

USCOMM-NBS-DC
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