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ABSTRACT

This is the third in a series of reports on weatherability of 20

plastics in 3 climates. A general method is presented for correlation
and prediction of performance. It is based on statistical character-
ization of weathering as a "wear-out" process, and quantitative
description of the wear-out data by a mathematical model.

A Weibull-type model, analogous to that used for fatigue and failure
analysis, is fitted to ultimate tensile elongation data. Parameters
of the model are related to "characteristic life" and other meaningful
measures of the physical deterioration.

A computer-based method of nonlinear regression is used for fitting
data from 3 years exposure. Model parameters, their confidence intervals,
and measures of goodness of fit are tabulated. The observed data and
the calculated curves are illustrated graphically.

An approach is demonstrated for determining the relation between the

model parameters and significant weather variables.
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OUTDOOR PERFORMANCE OF PLASTICS
III. STATISTICAL METHOD FOR PREDICTING WEATHERABILITY

lc OBJECTIVE

This is the third in a series of reports on the outdoor performance
of plastics. Two previous NBS Reports have given results and inter-
pretation of measurements:

I. INTRODUCTION & COLOR-CHANGE (#9912) [1]

II. TENSILE & FLEXURAL PROPERTIES (#10014) [2]

The objective of this cooperative industry -government study is to

develop rapid methods to accurately predict useful outdoor-life of

plastics.

2. BACKGROUND

Appearance, physical and "ear ly-detection" properties of 20 typical
plastics were observed through 3 years exposure in Phoenix, Miami
and Washington, D. C. Eight properties have been measured period-
ically: color, haze, gloss, surface roughness, tensile properties,
flexural properties, electrical properties, and ultraviolet spectra.
Computerized presentation and analysis of data have been, and will
continue to be, emphasized in these reports.

Twenty plastics formulated from 6 base polymers were exposed to out-
door conditions and accelerated weathering in the laboratory to
evaluate their performance and establish a relationship between the
two types of exposures. The base polymers were polyethylene (PE),

polymethyl methacrylate (PMMA), polyvinyl fluoride (PVF), poly-
ethylene terephthalate (PETP), glass -reinforced polyester (RP),

and polyvinyl chloride (PVC). Clear and white sheet and film are
included.

The specimens were subjected to modified ASTM tensile and flexural
tests. Parameters were then obtained from the resulting stress-
strain curves. These included Young's modulus of elasticity, yield
stress, yield strain, failure stress, ultimate elongation at break,

and 5 -percent stress (stress at 5% flexural strain).



2. 1 Significance of Elongation Data

Of the physical properties, ultimate tensile elongation and 5 -percent

flexural stress showed the greatest change with time. Ultimate

elongation decayed rapidly within one year for most of the plastics.

Five percent stress increased substantially in a few months after

which there was little or no change. An increase in 5 percent stress

was usually accompanied by a decrease in ultimate elongation. These

changes indicate a loss of elasticity and flexibility, resulting in

increasing stiffness and probably brittleness.

The following investigation is based on ultimate elongation data as

reported in [2], An additional year's data have been obtained since

publication of that report, and have been incorporated in this study.

The tensile test yielding these data is considered a low strain-rate
test. In general, it can be said that low strain-rate tests are less

sensitive measures of physical deterioration than high strain-rate
tests (such as impact). Thus, it would be expected that not only
ultimate tensile elongation but also impact strength of these plastics
has decreased. This means that such a deteriorated plastic would
show lower performance in an application involving impact.

Ultimate tensile elongation, therefore, is considered a sensitive and
meaningful measure of physical deterioration. The exponential nature
of this property change, proposed in NBS Report #10014, simplifies the
formulation of a model. A relatively simple form was postulated to
describe this weathering behavior quantitatively:

-Rt
n

P = A * e + C

where A, B, C and n are constants to be determined for each plastic in
a given exposure, t is time, and P is the property under study. Great
similarity was noted between this form and those equations common in

chemical kinetics, statistical reliability and several engineering
applications. The especially significant work of Kamal and Saxon [3],
as well as Daiger and Madson [4] was pointed out.

2. 2 Usefulness of Mathematical Models

The weathering of a plastic can be characterized by definite behavior
patterns of its properties over time . Oscillatory seasonal variation
in color change and exponential loss of ultimate elongation have been
described qualitatively in previous reports on color and physical
properties. It Is very desirable, however, to describe this behavior
mathematically, and thus provide an accurate, compact, and precisely
defined description of the property change as a function of exposure
time and ultimately of the weather Itself.
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This effort was undertaken to:

a) construct a mathematical model of the change in a given
property of a weathered plastic,

b) determine which weather factors caused this property change,

and then,

c) mathematically relate these weather factors to the parameters
of the model.

Having successfully accomplished this, it should then be possible
to predict and describe the changes in material properties from
knowledge of the environmental conditions under which a material has

been or will be exposed. Thus, from knowledge of, for example, the

total rainfall, average temperature, and cumulative ultraviolet
radiation to which a sample has been exposed, the present and future
loss of physical strength may be determined.

An immediate use of outdoor mathematical models would be in con-

junction with indoor accelerated weathering devices. Much better
simulators of outdoor weathering could be designed and constructed
by comparing simulator results with mathematical models derived from
outdoor exposures. Once the experimental results of accelerated
weathering devices are correlated with mathematical models of property
changes observed outdoors, models for new materials can be constructed
directly from artificial weathering data collected indoors. Thus, in

a very short time the outdoor behavior of a material could be predicted.

3. RELIABILITY AND FAILURE ANALYSIS

Many of the hypotheses in this study are based on analogies with problems
related to fatigue life and reliability theory, and the behavior pro-
perties of various statistical models and distributions.

In choosing or rejecting a model, it is important to keep in mind the

observed behavior of the property and the physical reality of the

process. A plastic sample left outdoors undergoes many changes as a

result of the weather conditions to which it is exposed. Weather
factors that have been found to be the most significant in degrading
plastics are ultraviolet radiation, humidity, temperature, rainfall,
and to a lesser degree, air pollution and stress. As a result, some
plastics discolor, surface texture changes, gloss decreases, and
physical strength is lost. Weathered plastics tend to become brittler,
stiffer, and less flexible. Degradation of these plastics is a cum-
ulative effect of the time that samples have been exposed to weather
conditions, and happens gradually.

- 3 -



An analogy can be drawn between stresses received by a sample in

fatigue testing and those received in weathering. Fatigue testing

usually implies subjecting a specimen to repeated stress by rotation,

bending, etc., until, after N cycles, the specimen fractures or

breaks. In this investigation of physical failure of plastics, the

length of time exposed to the weather (e.g. the number of months until

failure) is being associated with number of cycles. They are both

measures of the duration of a given stress. In the case of weather,

exposure time is a rough estimate of a complex of stresses to which
a plastic is subjected. The number of months represents the cumulative
effect of n diurnal cycles of weather stress. Whereas each cycle in

fatigue testing often equals the next, each day of weather usually
does not equal the next. Some days there is much ultraviolet stress
and little rain stress while on other days a large amount of cloud
cover greatly reduces the ultraviolet stress and increases the rain
stress. These weather stresses have been measured and will be used
in the final analysis to determine the total accumulated weather
stress each plastic was subjected to. A plastic fails due to the

net effect of n diurnal weather cycles just as a metal fails due to
the net effect of N rotational cycles. In both cases the applied
stress must be defined and its effects on the material analyzed.

W. R. Buckland in his monograph "Statistical Assessment of the Life
Characteristic" [5] sets up three categories of physical failure:
"(a) early failure, (b) random failure, and (c) wear-out failure...
The early failure is generally reckoned to be due to catastrophic
primary material failure or to industrial difficulties associated
with reliability of fabrication and assembly: a quality problem.
The random failure is one which occurs at a time which is Independent
of the life at failure. The wear -out failure Is due to the gradual
exhaustion of physical or other properties which In some way are
directly related to the length of life.

"

Similarly, Kao [6] classifies electron tube failures Into two types:
catastrophic or sudden failures and wear-out or delayed failures.
"A tube which Is operating normally and then suddenly becomes com-
pletely inoperative Is defined here as a catastrophic failure . A
tube whose characteristics gradually fall outside some specifications
is defined as a wear-out failure . " These classifications would seem
to hold for life testing of plastics, too. Materials rarely "wear
out" until a certain time period has elapsed. The probability of
failure Increases the longer the material has been in use. Since
the failure is definitely time -dependent (and thus not random) and
Is a gradual process (i.e. not catastrophic), degradation of weathered
plastics may be characterized as a_ wear -out type of failure.

- 4 -



4. CHOICE OF A MODEL

A search of the literature was made to see what mathematical models
had previously been used in the field of life testing and what
problems were described by those models. The Bibliography lists
the major significant journal articles and texts consulted. From
these a list of mathematical functions that could be associated with
time-to-failure and wearing-out was compiled as follows:

(1) Simple Exponential

(2) Normal or Half Normal

(3) Log-normal

(4) Gamma (Pearson Type III)

(5) Extreme value (smallest)

(6) Weibull

4.1 General Form of the Model

Since the data appeared to vary exponentially with time and the curves
seemed to approach the horizontal time axis asymptotically, a mathemat-
ical expression with these features was constructed as a starting model.

It was also hoped that the data could be fitted by some family of

curves and this too would be Incorporated Into the model. This first
model was

-Kt
n

Y = Ae + C (1)

where A, B, C, and n are constants to be determined for each plastic
for a given exposure, t Is time, and Y is the property under study.

For n = 1, equation (1) is a simple exponential of the form used to

describe radioactive decay processes. For n > 1, it allows for an
Inflection point which is observed in many of the plots. The choice
of this model was totally arbitrary in that no curve fits had been
done (except by eye) and no extensive literature search had yet been
done. This tentative model was mathematically flexible and did
resemble several statistical distribution functions (for example,
equation (1) Is Gaussian for n = 2).

Another desirable feature of an exponential model is a mathematically
defined "time-to-failure". This is the time at which the property
has decreased to 36.8% (l/e) of its original value. Beyond this

failure point the measured property can be considered no longer
acceptable. This concept has been employed in analysis of ball-
bearing fatigue and auto-parts failure, in defining skin depth of

good electrical conductors, and in defining a critical time or time
constant In R-C circuit theory. (See Bibliography )
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Note the following similar uses of exponential equations:

a) Changes in concentration of reacting substances in chemical

kinetics are described by equations such as Y = A(l-e )

where Y is concentration of the reaction-product at time t,

A is initial concentration of reactant and K is the "rate

constant". [7].

b) Kamal and Saxon in a study of accelerated weathering used

Y = AeB ' t_C ' where Y is the value of the property at time t,

and A, B, and C are constants found to be dependent on

exposure parameters. [3].

-Bt
2

c) At du Pont, Daiger and Madson used the expression Y = K-Ae

in paint evaluation studies. Y is red-reflectance of paint

at time t, and A, B, and K are constants. [4].

The form of the equations in (a), (b), and (c) above and the assumption

that a plastic's deterioration is a gradual process over time suggested
that one or more of the six distribution functions listed earlier
might represent the change in ultimate elongation as a function of

exposure time as a first approximation. (Property change is actually
a function of the weather which is different in Arizona and Washington,

D. C., whereas exposure time is not different.)

4. 2 Application of Statistical Distributions of Life Testing

In the following discussion, the properties of distribution functions
will be presented but only the functional form of the distribution is

of importance here [8], There are too few data to say that property
loss is described by an exponential, normal, or any other distribution.
The function can be^fitted to the data as would any other function
such as ax + b or xi thus the distinction between an exponential
function and an exponential distribution . The behavior of the function
and its properties are what is significant.

Although the ultimate elongation data are not sufficient to define
their statistical distribution, the data are a measure of some under-
lying mechanism of failure. This unobserved failure process may
actually be represented by a Weibull or Normal distribution. What
is seen is only the gross change in the material. For example, in
the case of physical strength, some kind of weakest-link theory may
apply.

This says that the strength of a system is determined by the weakest
component of that system. For example, if every link (assumed massless)
on a chain is rated to support a 100 kilogram weight but one link can
actually support only 97 kilograms, then the entire chain will only
be able to lift 97 kilograms without breaking. At a weight greater
than 97 kgm. the weakest link will break causing the whole chain to
fail. Similarly, in a plastic certain bonds are weaker than others.
Many times these weaker bonds reflect the presence of impurities such
as polyenes in PVC. If one bond fails, a whole series of other bonds
may fail. A process such as this could lead to total physical failure
of the material. Perhaps the gradual weakening and gross physical
failure of a plastic is indicative of an underlying weak link mechanism.

- 6 -



The exponential function Is the least complex of the six listed. It

is a special case of both the Weibull and Gamma distributions. (Note:

In all the functions written below, Y defines the value of a property-
e.g. ultimate elongation - measured after a sample had been exposed
for t months.) The simple exponential function is

Y = X e
‘ Xt

t >_ 0, X>0 (2)

The t and X must be greater than or equal to zero to insure that the

function be decreasing. A plot of the function shows that there is

no portion of the graph for t # 0 for which the rate of change of Y
is small.

Physically, we usually expect and observe some initial period in which
the property changes slowly with time. This "induction period" re-
quires that the slope of the curve be near zero for some portion of

the curve where t is small. Measurable property loss does not, it

would seem, begin the instant the sample is placed outdoors but only
after the plastic is slowly weakened by the weather. This initial
period could be long or short depending on the composition of the
material. For this reason a simple exponential function would not
be a good model - its behavior does not allow for the physical be-
havior of a weathered plastic.

A frequently used function in failure analysis is the hazard function
which gives the probability of failure during a very small time
interval, assuming that no failure has previously occurred. This

function is

h(t)
1 - F(t)

where f(t) is the probability density function and F(t) is the
distribution function for time-to-failure. h(t) dt represents
the proportion of items that have not failed at time t that fail
in an interval (t, t + dt). When applied to an exponential function,
it can be seen that h(t) = constant = X . X is called the failure
rate. This says that the probability that a sample which has survived
3 months outdoors will fail at some time (3 + At) months is the same
as the probability that a sample which has survived 12 months outdoors
will fail at some time (12 + At) months. This is suitable for random
failures but unsuitable for wear-out failure. A weathered plastic
would be more likely to fail after 12 months than after 3. Again,
the nature of the simple exponential function does not fit the physical
situation which it is meant to describe. Thus it was rejected.

7



A model based on a normal probability density function can be written

as

Y = Ae
“(x - y )

2
/b

(3)

This function approaches the time axis asymptotically as does the

exponential function and thus satisfies that requirement. In
addition the "normal" function has a failure rate that is an in-

creasing function of time. This is more appropriate for wear-out
failure. One problem still exists, though: the basic symmetry of

equation (3). In discussing the use of "the normal distribution"
for the representation of fatigue life and especially fatigue strength,
Gumbel argues [9] that the "distribution cannot be used for a complete
analysis because its basic feature, symmetry, simply does not exist.

In addition, within this theory there is no place for a minimum life
and an endurance limit i.e. the most important characteristics." On
the basis of these objections, a "normal" model was not used. It
didn't seem flexible enough to do the job. The model that was finally
chosen, though, does incorporate equation (3) as will be demonstrated
later.

By replacing X in (3) above with log X (X>D), a log-normal model can
be constructed. The failure rate of a log-normal distribution is 0

at time 0, increases to a maximum, and then decreases back down to 0

with increasing time. The decrease of the failure rate back to 0

after some time does not represent the physical situation. Gumbel
also notes that the log-normal distribution assumes certain symmetries
as does the normal distribution. Consequently, a log-normal model
seemed a poor model for wear-out failure and for the problem in general.

The gamma probability density function is

, s X r-1 - x x
f (x) = X 8 ( 4 >

The functional form of this seemed too complex for a first attempt at
a model. Also, the physical situations described by the gamma distri-
bution were not as analagous to the situation being studied here as
were several of the other distributions functions. Consequently, it
was not used.

Extreme value functions are the most promising of all the functions
considered. These 3 cases are of special interest [8]:

1. Type I Asymptotic distribution for maximum values

2. Type I
ff II IT minimum TT

3. Type III 1! II IT minimum TT

8



The third is also known as the Weibull distribution. These distri-
butions are used to describe largest and smallest observations.
Functions of this kind do not have constant failure rates which
meet the requirements that the longer a plastic is exposed outdoors,
the greater it would seem the probability of failure is in the near
future. Thus the failure rate should be an ever-increasing function.

A look at the hazard functions for the two Type I extreme value
distribution functions shows the failure rate for smallest values
increases exponentially with time while the rate for largest values
increases at a decreasing rate and asymptotically approaches a

constant. A smallest extreme value function fits our physical re-
quirements best. The tensile strength or ultimate elongation of a

sample at any given exposure time should be a measure of the weakening
of certain sub-elements of the plastic. What is sought is the time
required for a minimum number of these components to fail, resulting
in the gross physical failure of the material. Hereafter, when the
extreme value function is referred to, the smallest value function
is actually being discussed.

The Type I extreme value function (minimum) of the form

Y = exp [-exp (x) ] (5)

satisfactorily meets the physical requirements of a model function

—

it is a decreasing exponential function which asymptotically approaches
the x - axisj it has an increasing failure rate with time, and has

successfully described many analagous problems. X in equation (5)

may be replaced by (
x' - b)/a to add flexibility to the model. Besides

this, b can be associated with a characteristic time to failure.
Assigning physical meaning to the parameters of the model is one of

the most sought-after phases of this study. Extreme value models have
been used in the investigation of fatigue life of ball bearings,
tensile testing of rubber, and metal fatigue analysis (see Bibliography )

4.3 Selection of Weibull-Type Model

The Weibull function [10] is the third of Gumbel's three types of ex-
treme value functions. It has the following form:

Y = a exp [~(t/b)
n

] (6)

Like the Type I extreme value function above, the Weibull is taken from
a distribution of minimum values. For n = 1, it reduces to the simple
exponential function with a constant failure rate. For n = 2, it is

similar to a Gaussian or "normal" function. Thus the Weibull incor-
porates features of two of the other models already considered. It is

- 9 -



also more flexible than the extreme value function since it replaces

exp (x) in equation (5) with (t/b)
n

. The Weibull meets all of the

criteria met by the extreme value function i.e. exponentially de-

creasing function, asymptotically approaches the x - axis, and an

increasing failure rate with time. Furthermore, it has described

many apparently unrelated problems including yield strength of steel,

fiber strength of cotton, fatigue life of steel, electron tube

failure, ball-bearing fatigue and automotive part failure, to mention

a few. By adjusting the value of n in equation (6), the Weibull
function can describe either an increasing or a decreasing failure

rate. Thus, the major advantage of the Weibull over the extreme

value function is the large family of curves it can describe. In

addition, b in equation (6) can be associated with the time-to-failure

or "characteristic life" of a material as was the case with the b in

the extreme value function (5).

Of the six mathematical models proposed for this study, only two,

the (smallest) extreme value and the Weibull, possess the desired
behavioral properties and meet the physical requirements of the

problem. The extreme value model is the simpler of the two but the

Weibull is more flexible. Although somewhat more complex than the

extreme value model, the Weibull was chosen as a first model for
describing the physical strength loss of the weathered plastics.
It was hoped that the greater complication of fitting this model
to the data would be compensated by its wider applicability and
that most of the data might be described by some family of Weibull
curves. In addition, a Weibull model could be easily reduced to another
form but the extreme value function could not be.

4.4 Methods of Model Fitting

Now that a tentative mathematical model had been chosen, the

immediate problem was to find a method to determine the unknown
parameters in the model. We were interested in finding the simplest
but most efficient way of fitting the model to the data.

An analog computer was the first method investigated. It was hoped
that an analog circuit could be designed to generate a function of
the form of a Weibull as discussed above. By varying the potentiometers
and viewing the results on an oscilloscope, parameter values could be
obtained for each set of data. This approach was toyed with by the analog
computer group at NBS but was eventually abandoned due to technical
problems, the major one being outmoded equipment. The analog computer
may still be a fruitful method. Not enough work was done here to
either confirm it or rule It out.

Du Pont has developed a special purpose analog computer [11] which
generates a series of component peaks and adds them to produce the
original data. By generating the right function or functions, it

was thought that the wave forms of the ultimate elongation data could

10



be reproduced. The function(s) that fit the data could then be

determined from the electronics and parameter values obtained
similarly. Du Pont's "curve resolver" was, however, unable to

generate skewed curves in all required forms to fit the data due
to a lack of appropriate circuitry. Because of this, the technique
could not be used in this study. New circuits that generate more
complex functions may give the curve resolver the flexibility needed
in analysis of data such as ours.

A method commonly used in fatigue testing and failure analysis is

plotting on probability papers [12]. Depending on the distribution
of the data, the points will plot as either a straight or curved
line on a given probability paper. If a set of data is distributed
linearly (i.e. Y = a x + b) then it will lie in a straight line on

rectangular coordinate paper but not on log-normal paper. If a set
of data is normally distributed, then only on normal probability
paper will it lie on a straight line; on logarithmic or extreme-
value paper, the data would curve. Similarly, data satisfying a

Weibull distribution function will plot as a straight line only on

Weibull probability paper [13]. Thus probability plots provide a

simple way of testing a given functional relationship of the data
and of obtaining the unknown parameters of a known distribution
function.

Although we had no more than 7 points per case (at this stage of the

investigation), cumulative °L loss of ultimate elongation as a function
of time was plotted for 16 cases on Weibull probability paper and 10

cases on extreme value paper. These plots were intended to give rough
estimates of how well the model fit the data and approximate values
for the parameters. Due to the scarcity of data, no conclusions could
be drawn in the majority of cases. The points did seem to fall on a

straighter line for the Weibull plots than for extreme value plots.
With more data, this method would be a very simple and quick way of

obtaining parameter values for a Weibull or extreme value model. The
greater the number of points the more accurate the line drawn. In
the few instances where data fell in nice straight lines, slopes were
read off the plots. Only a few of these slopes came close to the

values calculated by a Univac 1108 computer using a nonlinear re-
gression program.

Hazard plotting was also considered as a method of analysis [14]. If
the data on the number of specimens lost by embrittlement had been
more detailed so as to establish exactly when embrittlement occurred,
hazard plotting could provide the distribution of time-to-failure by
embrittlement. Note that all the data considered here are multiply
censored i.e. removed from testing periodically whether or not failure
has occurred.
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Since the above techniques proved inadequate, numerical methods had

to be used to fit the model to the data. In most instances this

means some form of linear least squares analysis performed with the

aid of a digital computer. In this case, however, the model is

intrins ically nonlinear

,

i.e. it is impossible to convert it into a

form linear in the parameters. For example, consider a model

Y = exp (a^ + a
2
t^). By taking the logarithm to the base e of both

sides, the model can be transformed intc the form In Y = + a 2t^

which is linear in the parameters. The model used in this study,

however, is of a non -transformable form making it necessary to fit

the data by nonlinear methods, in our case, by nonlinear least

squares analysis [15].

In contrast to linear models, nonlinear models Incorporate theoretical
understanding of the mechanism of the process under investigation.

While a linear model Is used primarily to obtain predicted values of

the dependent variable, the main interest in a nonlinear model Is the

values of the parameters, which many times have specific physical
meaning. b, defined as characteristic life in the smallest extreme
value function, is such a parameter. In addition, parameter estimates
for a nonlinear model are often to be used later In other calculations.
These considerations and the apparent exponential relationship between
retention of elongation and exposure time made it preferable to fit

a nonlinear model rather than an alternative, probably less realistic,
linear model.

Now, for the linear least squares case, the equations used to deter-
mine the unknown parameters of the model are linear equations in the
parameters. But when the model Is nonlinear In the parameters so
will be the equations that determine them. Solutions of these equations
are very complicated making it necessary to employ iterative methods.

Several methods are commonly available for obtaining parameter estimates
in nonlinear models. Algorithms for doing this are centered basically
around two techniques: (1) Linearization - in which the model is

expanded as a Taylor series and corrections to the parameters cal-
culated at each iteration on the assumption of local linearity, and

(2) Steepest descent - which uses an iterative process to minimize
the sum of squares function $ by correcting the trial parameter values
in the direction of the negative gradient of $ . Various modifications
of these are currently in use.

Both methods have drawbacks for some situations. The Taylor series
method many times diverges instead of converging, resulting In an
Increased sum of squares after each iteration. On the other hand,
steepest descent methods converge agonizingly slowly after the first
few iterations. Furthermore, the steepest descent method is not scale
Invariant.
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D. W. Marquardt developed a method that represents a compromise between
linearization and steepest descent techniques [16] and which seems
to combine the good features of both while avoiding their major
difficulties. A Fortran program [17] employing Marquardt's
algorithm was chosen to fit the Weibull-type model in this study.

One thing should be noted in regard to all nonlinear least squares
regression. This is the importance of good starting values for the
parameters. Initial "guesses" estimating the parameter values are

necessary for all iterative procedures but their choice can be

critical in a nonlinear problem. Starting values should be estimated
as accurately as possible. For nonlinear cases, convergence is de-
pendent upon the model, the data, and the initial guesses for the

parameters. The better the initial guesses, the greater the

probability of convergence. Also, good initial values will result
in faster convergence of an iterative procedure. If $ has multiple
minima or several local minima in addition to an absolute minimum,
bad starting values may lead to convergence at unwanted minima.
Final parameter values may then be physically unrealistic or not
represent the true minimum of $ .

5. REGRESSION ANALYSIS OF ELONGATION DATA

Four factors contributed to the formulation of the model fitted to
the ultimate elongation data: (1) apparent exponential loss of

elongation as a function of exposure time, (2) work done in related
fields employing such functions, (3) statistical distributions of life

testing and reliability, and (4) preferability of a nonlinear function
as a more realistic mathematical description of the behavior. Thus,
the following model was developed:

t + b 4

Y = b
l

exp [-( —
) ] + b

5
(7)

Y is the percent retention of the property, t is the number of months
of exposure time, and the b's are constant parameters to be determined
for each curve fitted. When both b

^
and b^ are zero, notice that the

model is identical to the Weibull function (equation 6).

5.1 Mathematical Constraints

In fitting this model, certain mathematical constraints must be placed
on the parameters to meet the physical requirements of the problem.
Two things are essential from the outset. First, Y can only assume
real values 1.0, i.e. percent retention of elongation can go no lower
than 07o. Secondly, since t is defined as the number of months a

sample has been exposed outdoors, t is a real time and must be > 0.

The restrictions on Y require the quantity to the right of the = Sign
in equation (7) to also be real and 0.
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Two kinds of behavior are exhibited by the elongation data --either

a monotonic decrease or an initial increase followed by a monotonic

decrease (see Figure 1). It can be shown that for data that are

strictly decreasing over the entire range, b, > 0. For the data which
increase, then decrease, b^ = ^ > 1 where k is an even integer and m
an odd integer. See Appendix for derivation.

The term [ (t + b 0)/bo ]

b
4 in equation ( 1 ) can be rewritten as

(bg) 4 (t + b
2 ) 4. if bg were permitted to be < 0, (bg) 4 would

be real only for certain values of b^. But this is an undesirable
constraint, so from the start bg is restricted to be positive.

Now, if t becomes very large, the first term in equation (7) approaches
0 and Y approaches b,,. Thus b^ represents the asymptotic value of Y

below which Y will not go. bg must then be real and ^_0, and have the

same dimensions as Y.

When t = -b
2

in equation (7), the property assumes its maximum value

Y = b^ + bg. Thus, b, must be a real positive number and have the same
dimensions as Y. If is negative, the maximum will occur at a positive
value of t. This corresponds to the case in which Y initially increases
to a maximum and then decreases. If b£ is positive, the maximum will
occur at a negative value of t not observable from the data. For t 0,

Y is, then, a strictly decreasing function. If b_ = 0, Y is maximum
at t = 0 and is monotone decreasing. The constraints are summarized
below:

Parameter Constraints Units

b
4

(b
2
< 0)

> 0

none

> 0

= — > 1 (k even integer)
(m odd integer)

7o

Months

Months

(b
2 = 0) >0

(b
2

> 0) >0

b
5

~ 0 1

Notice that b. and b,. have dimensions in %, b
2
and bg have dimensions

in time, and b^ is dimensionless.
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5.2 Estimation of Starting Values

Reasonably good guesses can be made for starting parameter values to
be used in the Marquardt regression program by considering the mathe-
matical behavior of the model, equation (7), and the physical significance
of the parameters (see Figure 1). An estimate of b^ can be obtained
simply from the asymptotic value of the data.

If the percent retention increases and then decreases, b£ must be

negative and have a value equal to the time t corresponding to the

maximum retention. When the data show no apparent increase for t> 0,

b
2
may be zero or close to it.

Since b, + br is the maximum value of Y, b. = Y, N - b c . Thus bilb > 1 (max.) 5 i

can be estimated from the guesses for Y, . and b^. For a curve that
appears to have a maximum at t < 0 (pre-aging), b^ and b£ are more

difficult to estimate. Starting values can be used for a hypothetical
maximum at t = 0 .

Rate of loss of elongation is directly related to the values of b
3

and
b^. For a constant value of b^, the larger the value of b^ the more
the function of equation (7) approaches a step function. An induction
period followed by rapid loss of elongation down to some asymptotic
value would be typical of a higher value of b^. Little or no induction
period may indicate a b^ equal to or less than 1 .

b^ is associated with the characteristic life or time-to-failure of a

material. When t - b
2 = b^ in equation (7), Y = fy.+ b,. =

1_ )“^ 5
^+ ^5

0 0
Thus, estimates of Y, N and b_ can provide an estimate for bo. If

’ (max.) 5 J

b^ = 0 , b^ + b
2

corresponds to the time at which the percent retention
of elongation is 37% ( g- ) of its maximum value. If, in addition, b

2

is taken equal to zero, 37%, of the initial measurement (Y, . for b
^

= 0)

will be a very good estimate of bg. A smaller value for Do represents
a shorter lifetime than a larger value and in cases where ^2 = ^5 = 0

,

b^ is the characteristic life of the material.

5.3 Normalization of Data

The regression was performed once on actual data to determine the best
estimate of the initial value of ultimate elongation, i.e., the original
elongation of a material before weathering. The predicted initial values
were very close to the observed experimental values, within experimental
error. Then the data for each material were normalized with respect to

the material's observed initial value. Thus, the data were all expressed
in terms of percent retention of original elongation before weathering.
This is always 100% at the start and Increases or decreases depending
upon a gain or loss of strength. Performance of different materials
is then comparable in terms of property retention, rate of loss of the

property, etc.
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6. RESULTS AND DISCUSSION

6. 1 General
t + b

2 4
Using the model Y = exp [-(—“—) ] + b,. and the constraints on

the parameters described in Section 5.1, property decay curves were
fitted to the normalized ultimate elongation data. Although there

are theoretically 60 possible sets of data (20 plastics x 3 sites),
all plastics were not exposed in all three locations leaving actually
54 sets of available data. Of these 54, 35 were fitted by the non-
linear least squares method of Marquardt using the National Bureau
of Standards' Univac 1108 computer. Fits were not attempted on cases
where (1) the number of data points was less than the number of

parameters in the model (7 cases: PE-1 (Ariz., Fla.), PVC-C4 (Ariz.,

Fla.), PVC-C60), (2) data were too scattered to be fitted meaningfully
by any mathematical function (6 cases: RP, PVC-A4 (Fla.), PVC-A60
(Wash.), PVC-D10 (Fla.)), or (3) data showed a cyclic pattern not
representable by the model chosen (6 cases: PMMA* PVF) . A minimum of

6 points to a maximum of 9 points was fitted in the 35 cases for which
results were obtained. Table 1 shows the actual number of points
fitted in every case.

Constraints . in addition to the required mathematical ones, were
placed on any of the 5 parameters when the physical situation seemed
to warrant them. Unless there was significant evidence to the contrary,
it was assumed there should be an induction period, no matter how

small, during which the property value does not decrease. b 2 was thus

constrained to be 0 in all cases but one where it was allowed to be

any negative number. There was no evidence to substantiate any kind
of pre -aging so positive values of b

2
were not allowed in the regression.

b^ was constrained to be 0 in cases where the data approached 0 or the value
of b^ obtained from the regression was approximately 0.

The above constraints on b 2 and b^ simplified the model in many cases
in addition to improving the fit.

Since b^ + b^ = Ym ,
b. and b^ are dependent parameters so this

relation was written into the computer program as a constraint. Because
b^ has physical significance, b-^ was defined as a function of b^ although
theoretically we could have just as well defined b5 as a function of b^.

Thus we used b^ = Ymax -b^ rather than b5 = Yj,^ -b^ in the program.

In practice, it turns out that values of b^ and b^ obtained are slightly
different depending on the way they are defined. Since b^ has some
meaning attached to it and it can be determined independently, it was
more practical to choose b5 as the independent parameter and use it to

define b^. b^ will therefore be omitted from the discussion that
follows due to its total dependence on b^.
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In 34 of 35 cases, bg = 0 gave the best fit. Thus, each of these
curves has its maximum property value at t = 0 when the sample was
originally placed outdoors. This means there is no pre-aging or
post-curing evidenced by these data. For each of the 34 curves
there is some finite induction period, perhaps small compared to
1 month, during which there is no property loss. In some cases
(see, for example, plots of PVC-B60) this induction period is for
all practical purposes negligible, while In other cases it is very
significant (see plots of PVC-B4).

In only one case is b
2
non-zero. That is PVC-A4 in Washington, D. C.

Here b 2 = -7.85 indicating an increase in elongation for t> 0. At
7.85 months the value Is maximum and then the percent retention
begins to decrease. Note that this case is distinguished from the
others by the negative value of b 2 alone. From this one number,
the general form of the decay curve can be predicted.

bo is probably the single most important parameter of the model since
Tt can be associated with the time-to-failure for a given material.
This concept is discussed in Section 6.4. In cases where b„ and bg

are close to zero, b3 is a very good approximation of the time-to-failure.
For b

2
= b5 = 0, bg is exactly the time-to-failure. Thus bg in many

instances is a very good, if not exact, measure of the lifetime and
durability of a material in terms of its ultimate tensile elongation.

The values of bg obtained in the 35 cases range from 0.31 months
for PVC-B60 in Arizona to 167.11 months for PE-60 in Washington, D. C.

Consulting Table 1, we see that b2 = be = 0 for both these cases.

Thus, for these two cases, bo Is exactly the time-to-failure.
Ignoring the error term for bg, it takes 0.31 months in Arizona for

PVC-B60 to lose 63 . 2% of its initial elongation and 167.11 months
(or about 14 years) for PE -60 In Washington.

The vinyls and non-vinyls In this study can be distinguished quite

well on the basis of their bg values. Non-vinyls, PETP and PE -60,

have the highest values - substantially higher than the median (8.70)
and the mean (16.58) of the 35 samples taken as a group. Generally,
values of bg for the two climatic extremes, Arizona and Washington,

D. C., separate themselves into two groups. Samples exposed in

Washington have b3 's above the median (8 of 11) while Arizona samples

have bg
1

s below the median (10 of 13). Florida samples show no

preference. Since b~ is a measure of a material's liftime, this

would indicate that Washington samples last longer than Arizona
samples with Florida samples falling into both categories. Clear
vinyls are evenly distributed above and below the median but white
vinyls show a definite tendency toward lower values - 9 of 14 are

below the median. Thickness of the material has, in general, no

effect on the value of bg j however, for 60-mil vinyls, 8 of 11 have

bg 's below the median. It Is also Interesting to note that 23 out

of the 35 cases have bg values of less than 12 months. In other

words, about two-thirds of the samples probably have lifetimes of

less than one year.
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is largely responsible for the shape of the decay curve. Values

of b^ for the 35 curves ranged from 0.24 to 9.95. Any b^ <_ 1

represents a curve without an induction period. Although physically
there should be an induction period for all of the 34 curves with
b£ = 0, there were no data with which to fit one in the crucial
early portion of the curves. This plus a very low 6 month data
point resulted in a curve fitted with a b^ <L 1. 13 cases were
fitted in this way. They all decrease very rapidly during the

first 6-12 months and reach 36.8% (the failure point) in a short
time. For most, any induction period would have been insignificant.

Two-thirds of the cases have values of b^ less than the mean of 2.35.

Thus for the most part the values are low and in the same small range
making it hard to differentiate between the cases.

Neither exposure site nor type of material seems to be directly
associated with b^. Thickness shows some relation in that all but

one of the 10-mil samples fall above the median (1.38) and 9 of 14

60-mil samples fall below. Thinner samples split evenly about the

median. b^ seems therefore a poor measure of performance.

bg. is the asymptotic value of the elongation - the minimum value
"retained by the material after its usefulness for the property of

elongation has ceased. In 13 cases this is 0. The material is too
brittle to elongate at all. In other cases, the sample continues
to retain some small amount of the original property value, perhaps
1%, or even 15%. PE -60 in Florida has a b^ of 39.60%, the highest
of the 35 cases. The average value of b^ is 5.95% with 24 materials
having values lower than this. Thus in the majority of cases b^

is insignificant.

b^ seems unaffected by exposure site but somewhat dependent on

thickness. The thicker a material the more likely it will have a

higher value of b^. White vinyls PVC-D and PVC-M, both 60-mil
materials, have b^ values significantly higher than the average;
this must be considered when determining the time-to-failure.

6.2 Goodness of Fit

Several combinations of constraints and starting parameter values were
tried in each of the 35 cases to obtain the best possible fit to the
data (Table 1). Four criteria were used to judge which of several
fits for a given case was the most successful:

(1) Reality of the parameter values
(2) Statistical measures of the fit (Phi and S.E.)

(3) Standard error on each of the parameters

(4) Parameter correlations.

Parameter values were the object of the regression analysis and
accordingly, they were the first numbers looked at. Since b b_, and
b,- represent physical reality, we had a good Idea for each case in
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what range the parameter values would lie. Reasonable bounds can also
be estimated for b^ from the form of the data points. If the parameter
values obtained from fit were not realistic, the fit was rejected.
Occasionally the regression converged to a local minimum that gave a

comparatively low sum of squares but had totally unrealistic values for
the b's and was therefore rejected.

The statistical tests of "goodness of fit" which are applicable in the
linear model case are, in general, not appropriate in the nonlinear case.
Significance tests using the F-statistic cannot be used because the
theory and tables are based on linear models. The unexplained variance.
Phi, and Standard Error are the only statistical measures available with
which tjo judge the general goodness of fit. PHI where
Y. - is the difference between the observed Y and the Y predicted by
trie model, for a given time for each of the n data points. The Standard
Error S.E. = [PHl/(n-k)

j

2 for the n data points fitted and k parameters
of the model. It is Phi that is minimized by the Marquardt program in
optimizing the regression. The lower the value of Phi the better the fit.

Phi, however, should not be considered in isolation since a low Phi may
represent a local minimum with correspondingly poor parameter values.
A relatively high value of Phi may actually give the best fit in terms

of the confidence one can place on the parameters.

Phi values for the 35 cases of elongation data are as low as 0.14 for

PVC-D4 in Arizona, and as high 957.53 for the same material in Washington.
Fits with a Phi less than 100.0 are judged to be fairly good to very
good. Except for PE -60 and PVC-B60, Phi is always lower in Arizona
than in Florida or Washington for a particular plastic. This may be

attributed to the smaller variation of the Arizona data compared to

that of the other two sites. Washington, on the other hand, tends to

have the highest values of Phi Indicating greater fluctuation of the

data points about the fitted curve.

Standard error of the fit, S.E., may be a better measure of fit than

Phi. Differences in Phi can be due to different numbers of data points
used in the fits—the more points the higher the Phi. Standard error
takes the number of points Into account, and in addition accounts for

the number of unconstrained parameters in the model. For example, the

value of Phi for PVC-A10 in Florida is 22.46, higher than the Phi for

PVC-D60 in Washington. PVC-A10 would appear to have the worse fit but

It also used one more point than PVC-D60. If this Is allowed for by

calculating the standard error in each case, the difference between
the two fits becomes insignificant.

Standard error of the fit Is also a good comparator for the effect of

site on goodness of fit. S.E. of Arizona cases is usually lower than
the corresponding value for the same plastic in Florida or Washiig ton.

Furthermore, Washington fits generally have the highest S.E. Thus,

except for a few cases, S.E. (Ariz.)<S.E. (Fla.) < S.E. (Wash.).
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Since the primary object of the regression analysis is to obtain values
for the b's, it is important to know how good the values are. Thus,

the standard error for each of the parameters was a major factor in

accepting or rejecting a fit. Two sided 95% confidence intervals are

given in Table 1 for each of the b's.

Correlations were done to check the relation between the magnitude of

a parameter and the magnitude of its standard error. In general, b^

and bj- are virtually uncorrelated with their standard errors. The
correlations between b,

3
and its standard error and b, and its standard

error are both about 0.65. These correlations were further broken down
by exposure site. Only the following were statisfically significant at

a 95% level of confidence: b and its standard error in Florida, b^ and

its S.E. in Arizona and Washington, b, and its S.E. in Florida, and b

and its S.E. in Washington. Though statistically significant, none or

these correlations were higher than 0.68, which may not be significant
in reality.

Interactions among the parameters were eliminated whenever possible so
that the parameters retained in the model would be independent of each
other. High correlations between parameters can adversely affect a

fit and prevent it from reaching an optimum result. Nine cases still
show correlations greater than 0.9 between b^ and b,, and one case has
a similar high correlation for b^ and b^. Further discussion of para-
meter correlations follows in Section 6.3.

In determining the best fit for a given case, convergence was not used
as a criterion. Convergence turned out to be a poor measure of the
quality of the fit and was considered only incidentally after the other
four criteria had been examined. Seven cases listed in Table 1 never
converged. Convergence may occur at any local minima of Phi. The
resulting parameter values may then be totally unrealistic or have high
standard errors.

Occasionally the minimization procedure will not converge but will
oscillate about a value of Phi. After 50 iterations changes in the
value of Phi become so small (less than 10 at each iteration) that
the regression can be stopped. Here there is no convergence but Phi
has reached a minimum and the parameter values have stabilized. This
fit may be the best obtainable with the data.

Sometimes high correlations between parameters cause divergence rather
than convergence. Eliminating or reducing these correlations many times
helps convergence as well as generally improving the fit.

6.3 Parameter Correlations

Linear correlation coefficients were computed for all possible pairs of
parameters, e.g. b^ with b^, b^ with b^, b^ with b,., etc. Linear
correlations are not completely appropriate when a nonlinear model is

involved but in conjunction with plots of one parameter vs the other
they wild be an index of the interaction of the parameters.
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Since and b are linearly dependent parameters, they should be

highly correlated. The sum of the two is 1007o in all cases but one,

PVC-A4 in Washington. The latter case had a significant negative
effect on the correlation resulting in a lower correlation than
expected.

Besides b^ and b5 , none of the other correlations or plots show any
obvious relationships. Although some of tne individual cases have
highly correlated parameters, in general the parameters of the model
seem to be independent (excepting, of course, b^ and b^). Any
possible relation between b2 and bj could not be determined from the

data because in every case but one, b^ equals 0.

The possibility of a relationship between parameter values in one

exposure site and values of the same parameter in another site was
also investigated. Since b^ is a function of b5 and the values for
b 2 are trivial, only b^, b^, and b were used in these correlations.
None of these gave very high correlations - the highest were approxi-
mately 0.5 to 0.6. Arizona and Florida showed a slightly higher
correlation than Arizona and Washington or Florida and Washington
for all three parameters. Thus the values of b^, b^, and b,. do not

appear to be a simple function of the exposure sites.

6.4 Other Measures of Decay

Two extremely useful measures of a material's service life are the

time it takes to decay to 377» of its original value and the rate at

which this decay proceeds. Both of these can be calculated from the

Weibull-type model describing the loss of elongation.

Unlike the exact Weibull or extreme value functions, the character -

istic life or time-to-failure for ultimate elongation is not embodied
in a single parameter of the elongation model except in special cases.

The characteristic life is the time it takes for a material to lose

63.27o of its original elongation. At this time the plastic retains

36 . 87o (or 1/e) of the original value of the property. If we take the

model equation

t + b£ 4

Y = b
l

exp [-(

—

) ] + b
5 ,

substitute 36 . 87> for Y and solve for t, we can define a time-to-failure

•>1 l/b
4

T = b
3 t ln <36. 8 - b

5
)] -b 2*
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For 34 of 35 cases, = 0 so that b 2 may be neglected. PVC-A4 In

Washington has a bg equal to -7.85. This contributes substantially
to the value of T. In the special case when b2 = bg = 0, T = bg.

Thus b3 is the characteristic life in this special case. For any

case where b£ = 0, bg is a very good approximation of T for small bg.

Compare the values for characteristic life in Table 2 with corres-
ponding values of bg in Table 1. Notice that for high values of b^

(for example, PVC-M60-W) bg and T are quite different but for low

values of bg (for example, PVC-C4-W) bg and T are almost identical.

As with b3 , non-vinyls have the highest characteristic lives. 21

cases decay to 36.8% of their original property values within one

year.

Linear correlations between bg, b^, bg and characteristic life were
studied. In general, b^ and bg show negligible correlations.
Characteristic life increases and then decreases as b^ increases
indicating a possible quadratic relationship between the two but this
has not been studied. b3 , however, is correlated 0.76 with character-
istic life. Further correlations were done between parameter values
for one site and the corresponding values of characteristic life for
the same site. b^ and bg again show no relation to time-to-failure,
but b is significantly correlated with it. The correlation between
bg and T is 0.72 in Arizona, 0.99 in Florida, and 0.67 in Washington.

A maximum decay rate can be calculated for each fitted curve by
differentiating the model equation and determining what value of t

corresponds to the maximum slope of the curve. Decay rates are given
in Table 2 for each of the 35 cases. For the 13 cases having b^ £. 1,

the rate is infinite at the beginning of the curve and is not considered
a meaningful measure.

Arizona samples tend to have higher decay rates than Florida or

Washington samples, while Washington samples usually have comparatively
lower rates of decay. This is supported by the shorter times -to-failure
of Arizona samples and the longer lifetimes of Washington samples.
Computed maximum rates are as high as 126%, per month for PVC-M60 in

Arizona and as low as 0.46% per month for PE -60 in Washington.
Property loss occurs very rapidly in the former case and extremely
slowly in the latter. Non-vinyls generally degrade at a slower rate
than the PVC's.

One use of the degradation rate is in comparing the rate of decay of two

samples with different induction periods. Although one sample remains
stable longer than the other before degrading, the time it takes to
reach a point of failure after decay has begun may be equal to that of
the sample which decayed early. For example, PVC-B4 in Florida and
PVC-A10 in Arizona have nearly equal maximum rates of decay, but PVC-B4
has a characteristic life twice as long as PVC-A10 probably Indicating
a longer induction period (see plots).
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Linear correlations between the parameters bg, b^ and bg and maximum

decay rate were insignificant. When the parameters and decay rate
were correlated by site, b^ and bg were moderately correlated (0.60
to 0.75) with the rate for Arizona and Florida cases but not at all
for Washington cases. The correlation between b„ and rate of decay
was about 0.50 to 0.60 at all 3 sites.

Several of the plots of bg and b^ vs. maximum rate of decay seemed to
show an exponential relationship so all the correlations for these
two parameters were repeated using the natural logarithms (In) of b3
and b^. This did not improve the correlations in general but it did
have a noticeable effect when the correlations were broken down by

site. The correlation between In b3 and the decay rate increased to

-0.73 in Arizona and -0.82 in Washington while the correlation between
In b^ and decay rate increased to 0. 82 in Florida. Other logarithmic
correlations remained about the same.

7. RELATION OF PARAMETERS TO WEATHER

As Kamal has shown [3], exposure variables can be related mathematically
to property changes. Our approach differs from Kamal's in that we
have described deterioration as a function of time alone, whereas he

described deterioration as a function of both time and ultraviolet
radiation. The functional form of Kamal's simplified equation (and

Daiger and Madson's [4]) is quite similar to ours. However, they

did not seem to recognize the relation between their empirical equations
and the statistical reliability functions described In this report.

7.1 Linear Approximation Using Exposure Variables

The second stage of Kamal's analysis is quite similar to ours: establish
a mathematical relationship between the fitted parameters (b's) and the

weather variables (W's). He had sufficient data to use a complete
quadratic form; our experiments were not designed to give extensive
data of the type necessary for weather analysis. We have made pre-

liminary attempts to associate each of the b's with a simpler linear

combination of weather variables:

where the C's are coefficients of the fit. For example,

bg = ^31 + Cg
2 ^2 + Cg

3
W3 + Cg^ W^ + Cgg Wg where W^ is

is ultraviolet radiation, W2
is langleys, W

3
is air temperature, W^ is

relative humidity and W
5

is inches of rainfall. In addition, two other
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exposure variables are being examined: thickness of the plastic

and "sol-air-temperature" [18]. Sol-air temperature (SAT) is

analogous to the "wind-chill index" used by the Weather Bureau to

describe the cooling effect of wind blowing over the surface of

the skin.

Effective temperature of an exposed material depends on the material's
thermal conductivity, absorptivity and emissivity and the weather
variables total incident sunlight, ambient temperature and wind.
The three weather variables may be combined into one:

SAT = T +
w

where T is air temperature, L is langleys, a is a constant for the

material (called solar absorptivity [19]), and w is a constant for the
material and local environment (called surface conductance [20]).
Solar absorptivity (a) is closely related to the color of the material;
for example, its value for white PVF film is about 0.2 and its value
for black asphalt is about 0.9 [21]. Surface conductance (w) is

related to heat losses by conduction, convection and radiation and
increases approximately linearly with air velocity. Surface conductance
varies from about 2 for windless conditions to about 8-16 (depending
on material) for 30 m. p.h. air velocity.

Standardizing these weather variables presents a further refinement,
rendering them dimensionless, and significantly simplifying calculations
with them [8, 22] . Thus,

W = SLjJL

where W 1 is the standardized weather variable, W is the observed weather
variable, W is the mean of the weather variable for the time under study,
and s is the standard deviation from the mean. By using dimensionless
weather variables, the solution is unaffected by whether one uses, for
example, temperature in °C, °F or °K.

7.2 Multiple Regression Method

The problem of optimizing the model can be broken down into 2 categories:

1) selection of the exposure factors to be included in the model, and

2) determination of the C's for best fit.

There are 5 basic methods [15] for selecting the exposure factors and
determining the C's: 1) all possible regressions, 2) backward elimination,

3)

forward selection, 4) stagewise regression, and 5) stepwise regression.
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Stepwise regression was selected as best for our case, because it

consists of "forward selection with a backward glance". It uses
forward selection as the basis for variables to enter the model,
that is, the exposure variables accounting for the most explained
variance of the parameter (b) is selected to enter the model first.

The second exposure variable is similarly selected from the remaining
exposure variables, then backward elimination is used to eliminate
statistically insignificant variables. Tae F-test is used to calculate
significance for entering or leaving the model. This procedure con-
tinues until the model contains all the exposure variables considered
statistically significant.

A computer program was available at NBS for carrying out this stepwise
regression: BMD-02R from the UCLA Biomedical Computer Programs [23].

This program computes a sequence of multiple linear regression equations
In a stepwise manner. At each step one variable is added to the re-
gression equation. The variable added Is the one which makes the

greatest reduction in the error sum of squares, $ . Variables are
automatically removed when their F-values become too low. The algorithm

[24] for the program Is analogous to the stepwise regression procedures
of Draper and Smith [15],

7.3 Preliminary Results

Although this stage of the data analysis is in its infancy, limited
sucess has been achieved with stepwise regression procedures. Thickness
was included as a variable In addition to the weather variables in this

first attempt with stepwise regression. This was done to Increase the

limited number of data points available for each plastic, because only

2 years of elongation data were available at the time the runs were done.

The general model used in these trials was:

b
l

- C
iu

U + C
ll

L + C
iT

T + C
1R

R + C
1D

D

where U, L, T and R are weather variables of ultraviolet radiation,
langleys, air temperature and Inches of rainfall, respectively. Monthly
values averaged over the 3 years of exposure were used for each site.

D is thickness of the specimens. Note that sol -air temperature and
humidity were not included In these preliminary runs.

It may be expected that bg, b^ and/or b^ are related to the weather
variables. A complicating factor is that b^ and b^ were occasionally
found to be correlated with each other. Preliminary stepwise regression
procedures considered the significance to b~, b^ and b^ (from Marquardt
analysis of 24-month data) of thickness, total radiation, UV radiation,
temperature and rainfall. Relative humidity was not included because
it was found to be highly correlated (non-linear ly) with rainfall.
Early results indicate that thickness, total and UV radiation, and

- 25



temperature appear to be the most significant of these variables in the

physical degradation of clear PVC's. Thickness, total radiation and
rainfall were found significant for white PVC !

s. Results for poly-
ethylene and polyethylene terephthalate were inconclusive. There
appears to be no logical pattern, as yet, for the dependence of b3 , b^

or b^ on any set of variables. Much investigation remains to be

done on this second stage of the analysis.

Having successfully expressed a set of b's in terms of weather variables,
one could then predict the values of the b's from a knowledge of the

weather at a given location and from the previously determined co-
efficients C-jj. An estimated lifetime of a plastic in terms of some

property may then be calculated from the appropriate model.

g. SUMMARY & CONCLUSIONS

A general method for accurately predicting weatherability of plastics
has been outlined. The method is based on statistical characterization
of outdoor deterioration as a "wear-out" failure process. The proposed
procedure consists of:

a) Measuring significant properties of plastics exposed outdoors and
in accelerated-testing devices,

b) Fitting the exposure data with a mathematical model,
c) For a given class of plastics, relating the accelerated and outdoor

exposure results, then
d) Calculating outdoor life for a new plastic of the same class from

accelerated-testing data.

An additional use of such mathematical models lies in their use to
confidently predict future outdoor performance on the basis of behavior
measured to the present. As with all prediction procedures, the longer

-

range the prediction the less certain it is.

Outdoor performance in different climates can be compared by fitting
the model to exposure data from different sites and/or relating the

parameters of the model to weather variables characteristic of the sites.

The applicability of statistical reliability and failure analysis
techniques to weatherability was demonstrated. Use of these techniques
was illustrated by fitting a mathematical model (Weibull-type) to
physical deterioration data (ultimate tensile elongation) for diverse
types of plastics in 3 climates. Criteria for selecting this type of

model were: a) exponentially decreasing function, b) asymptotically
approaching the time axis, c) describes increasing failure rate with
time, d) flexibility, and e) successful application to fatigue problems.
In addition, one of its parameters can be associated with "characteristic
life" of a material.
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Various methods of fitting the model to the data were described,
nonlinear least squares analysis being chosen for our purposes.
Mathematical aspects of the nonlinear regression were detailed, with
emphasis on the parameter constraints and initial estimates of the
parameters. Results of the fits were tabulated and shown graphically.
Interpretation of the results confirms the less quantitative con-
clusions of NBS Report #10 014:

a) Arizona deterioration is generally fastest, and Washington generally
slowest (confirmed by the calculated maximum degradation rate) -

b) Non-vinyls usually retained elongation longer than PVC (confirmed
by the "characteristic life" estimates).

Criteria for determining "goodness of fit" were standard error of the

fit, standard errors on the parameters and unexplained variance. In
general, fits were best for Arizona data because of their lower scatter.

Because of the statistical nature of the data treatment. It was possible
to calculate 95% confidence Intervals on the parameters of the model.

This is very useful In the practical problem of forecasting performance.

The relation between the parameters of the model and weather variables
was discussed. Preliminary results of a multiple linear regression
study confirmed that significant weather variables for decrease in

elongation may be selected from: ultraviolet and total radiation,
temperature, rainfall and humidity.
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9 . RECOMMENDATIONS

Statistical reliability and failure analysis should be applied to
weatherability. Other performance data should be fitted to similar
models; our color -difference data will next be tried.

The models should be used to establish correlations between geographic
sites, between accelerated testing devices, and between outdoor and
accelerated tests. The latter correlation provides the means for
quickly and accurately predicting outdoor life.

Significance of the parameters, especially b 2 , b3 and b4 , should be

investigated further. Establishing industry-wide "characteristic
life" benchmarks for plastics would be invaluable.

Relations should be defined between the model parameters (b's) and
weather variables.

Improved fits, and better predictive ability should be obtained by
more frequent measurements, especially early in the weathering process.

Relations between these models and those of polymer degradation theory
should be calculated.
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TABLE 1 RESULTS OF NON-LINEAR REGRESSION

b,
t + b ^

Y = b
1
exp [-(—

) ] + b
5

Plast ic

Initial*
Value %

b
l

(7c) b
2

(Mos.) b^ (Mos.) b
4

b
5

(%)

(l)PE-l-W 504.0 100.00 ±5.05 0.00 3.24 ±2 .34 0.66 ±0.26 0.00

(2) PE-60-A 814.0 94.66 ±19.12 0.00 25.01 ±2.68 5.57 ±3.45 5.. 34 ±16.01
-F 814.0 60.40 ±3.76 0.00 16.64 ±0.63 9.95 ±7.61 39.60 ±2.54
-W 814.0 100.00 ±8.55 0.00 167.11 ±867.97 1.62 ±5.50 0.00

(5) PETP-5-A 173.0 100.00 ±5.74 0.00 50.87 ±8.65 1.22 ±0.36 0.00
-F 173.0 100.00 ±12.29 0.00 39.17 ±8.33 1.63 ±0.95 0.00
-W 173.0 100.00 ±9.01 0.00 64.74 ±27.08 1.11 ±0.63 0.00

(7)PVC-B4-A 198.0 97.60 ±7.03 0.00 8.24 ±0.34 6.23 ±1.80 2.40 ±2.88
-F 198.0 95.79 ±7 o 17 0.00 13.19 ±0.66 4.60 ±1.26 4.21 ±3.77
-W 198.0 97.66 ±16.09 0.00 19.02 ±2.54 2.32 ±0.80 2.34 ±11.53

(8)PVC-310-A 203.0 99.21 ±1.94 0.00 9.29 ±0.17 2.24 ±0.13 0.79 ±0.85
-F 203.0 100.00 ±15.11 0.00 17.66 ±2.94 1.73 ±0.69 0.00

(9) PVC-B60-A 155.0 100.00 ±10.69 0.00 0 o31 ±1.60 0.24 ±0.32 0.00
-F 155 .0 100.00 ±13.42 0.00 8.70 ±4.35 0.48 ±0.25 0.00
-W 155 .0 100.00 ±11.23 0.00 13.22 ±2.55 0.97 ±0.29 0.00

( 10)PVC-C4-W 91.0 97.01 ±1.82 0.00 2.59 ±1.39 1.15 ±0.72 2.99 ±0.74

( 11) PVC-C10-A 21.7 100.00 ±4.38 0.00 1.32 ±1.14 0.29 ±0.10 0.00
-F 21.7 86.30 ±8.80 0.00 7.75 ±0.78 2.29 ±0.80 13.70 ±3 o64

(13)PVC-N60-A 85.5 93.46 ±1.90 0.00 0.72 ±1.69 0.56 ±0.62 6.54 ±1.01
-F 85.5 97.29 ±18.11 0.00 4.65 ±2.04 0.65 ±0.58 2.71 ±15.71
-W 85.5 100.00 ±15 .99 0.00 11,06 ±3.99 0.81 ±0.39 0.00

(14)PVC-A4-A 113.0 97.67 ±1.49 0.00 0.77 ±1.26 0.57 ±0.46 2.33 ±0.78
-W 113.0 105 .28 ±9 .87 -7.85 ±0.72 12.30 ±1.08 3.33 ±0.94 15.84 ±6.21

(15)PVC-A10-A 155.0 95.59 ±7.21 0.00 6.34 ±0.61 1.96 ±0.70 4.41 ±2.95
-F 155 .0 82.20 ±9.26 0.00 11.34 ±0.70 5.51 ±2.60 17.80 ±4.43

(17)PVC-D4-A 191.0 98.57 ±0.33 0.00 0.97 ±0.26 1.00 1.43 ±0.12
-F 191.0 100.00 ±8.63 0.00 10.98 ±1 .33 1.31 ±0.33 0.00
-W 191.0 100.00 ±15.84 0.00 14.23 ±1.72 8.01 ±6.67 0.00

( 18) PVC-D10-A 14.20 97.38 ±0.65 0.00 4.53 ±0.12 1.74 ±0.14 2.62 ±0.26

(19)PVC-D60-A 50.7 89.88 ±1.72 0.00 2.77 ±0.51 0.75 ±0.16 10.12 ±1.01
-F 50.7 85 .20 ±10.66 0.00 4.23 ±2.23 0.99 ±0.92 15 .80 ±5.45
-W 50.7 89.08 ±24.84 0.00 6.90 ±4.22 0.71 ±0.64 10.92 ±22.46

(20) PVC-M60-A**178.0 92.41 0.00 1.90 6 .98 7.59
-F 178.0 79.13 ±12.30 0.00 7.78 ±1.74 1.38 ±0.74 20 o87 ±6.36
-w 178.0 82 . 13 ±15.20 0.00 10.59 ±2.44 1.55 ±0.74 17.87 ±8.69

Note : Two sided 957» confidence intervals are given for each of the parameter values.

These are the unnormalized measured values of ultimate elongation for the
original unweathered materials.

** Variance-covariance matrix is singular and no statistical evaluation of the b's
was obtained

.



ON NORMALIZED ELONGATION DATA (36 MONTHS) TABLE 1

No . of

Pt s . Std.** Constrained*** Correlated****
Plastic Fitted PHI* Error Parameters Convergence Parameters

(l)PE-l-W 6 19.09 2.52 b2,b5 X b3" b4

(2)PE-60~A 9 350.17 8.37 b2

-F 8 18.60 2.16 b2 X

-W 9 175.34 5.41 b2,b5 b
3>

b
4

(5)PETP-5-A 9 57.91 3.11 b2,b5

-F 9 321.95 7.33 b2,b5

-W 8 113.50 4.76 b2,b5

(7)PVC-B4-A 8 41.20 3.21 b2 X

-F 9 70.53 3.76 b2 X

-W 9 127.71 5.05 b2

(8)PVC-B10-A 9 3.68 0.86 b2 X

-F 9 393.46 8.10 b2,b5 X

(9)PVC-B60-A 9 171.47 5 .35 b2,b5 X b
3’

b
4

-F 9 270.51 6.71 b2,b5 X

-W 8 159.50 5.65 b2,b5

(10)PVC-C4-W 9 3.47 0.83 b2 X V=4
( 11) PVC-C10-A 9 28.72 2.19 b2,b5 X b

3
,b

4
-F 9 79.36 3.98 b2 X

(13)PVC-N60-A 9 3.25 0.81 b2 X b
3’

b
4

-F 9 95 .43 4.37 b2 X

-W 8 320.99 8.01 b2,b5 X

(14)PVC-A4-A 9 2.00 0.63 b2 X b
3’

b
4

-W 8 58.89 4.43

(15)PVC~A-10-A 9 53.88 3.28 b2 X

-F 9 121.36 4.93 b2 X

(17)PVC-D4-A 9 0.14 0.16 b2,b4 X

-F 8 94.29 4.34 b2,b5 X

9 957 .53 12.63 b2,b5 X

(18)PVC-D10-A 8 0.35 0.29 b2 X V b
4

(19)PVC-D60-A 9 2.37 0.69 b2 X b
3’

b
4

-F 9 104.15 4.56 b2 X

-W 8 98.90 4.97 b2 X b
l’

b
5

(20)PVC-M60-A 9 12.51 1.58 b2 X

-F 9 134.51 5.19 b2 X

-W 9 180.38 6.01 b2 X

n
, ,

*PHI = $ =. ^ [Y.-Y.]
2
where Y.-Y. is the1= 1 i i j_ i

predicted Dy the model, for a given value
difference between the observed Y and the Y
of x for each of the n data points fitted.

**Std. Error =; [$ / (n-k)

]

2 for the n data points fitted and k parameters of the model.

***Parameters set equal to the indicated values and not allowed to vary during the regression.

****Parameters with correlation coefficients equal to or greater than 0.9.





TABLE 2

CHARACTERISTIC-LIFE & MAXIMUM-DEGRADATION-RATE

Characteristic Maximum
Plastic Site Life* Rate**

(1) PE-1 W 3.24 months ** 70 /month

(2) PE-60 A 25.45 7.89
F kkk 13.36

W 167.10 0.46

(5) PETP-5 A 50.87 1.47

F 39.17 1.96

W 64.74 1.23

(7) PVC-B 4 A 8.30 27.52
F 13.41 12.61

W 19.36 4.89

(8) PVC-B 10 A 9.35 9.91

F 17.66 4.46

(9) PVC-B 60 A 0.31 kk

F 8.70 kk

W 13,22 kk

(10) PVC-C 4 W 2.71 28.99

(ID PVC-C 10 A 1.32 kk

F 8.74 10.51

(13) PVC-N 60 A 0.89 kk

F 5.01 kk

W 11.06 kk

(14) PVC-A 4 A 0.83 kk

W 22.05 11.03

(15) PVC-A 10 A 6 .60 12.77

F 12.15 14.95

(17) PVC-D 4 A 0.99 kk

F 10.98 6.70

W 14.23 20.88

(18) PVC-D 10 A 4.65 16.99

(19) PVC-D 60 A 3.59 kk

F 5 .90 kk

W 9.30 kk

(20) PVC-M 60 A 1.94 126.24

F 10.95 7.47

W 13.57 5 .84

* Time for property to reach 36.87® of original value

.

See Section 6 of text for method of calculation.
kk Maximum slope of fitted curve. For b. <_ 1, rate is infinite

at time = 0, and therefore not considered a meaningful measure
kkk Asymptote, b,_

,
is 39.67. which is greater than 36

.
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16.64
167.11

5.57
9.95
1.62
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OF

INITIAL
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I
NATE

ELONGATION

.00

12.50

25.00

37.50

SO.

00

62.50

75.00

87.50

100.00

112.50

125.00 LOSS OF ULTIMATE TENSILE ELONGATION IN WEATHERED PLASTICS

OBSERVED DATA AND CURVES FITTED BY Y = Bl*EXP(-( (T+B2)/B3) 64
)+ B5

PLASTIC 5 POLYETHYLENE TEREPHTHALATE ( 5 MIL)

FLORIDA
WASHINGTON. 0-C.
ARIZONA CURVE FIT
FLORIDA CURVE FIT
WASHINGTON. D.C. CURVE FIT

^).00
APRIL

3.00 6-00 9 - 00 12.00 15-00 16-00 21 .00 24.00 27-00
EXPOSURE TINE (MONTHS)

30 .00 33.00 ?6.00
APRIL

b_ (months) b,
J 4

50.87 1.22
39.17 1.63
64.74 1.11

Arizona
Florida
Washington, D.C.



PERCENT

RETENTION

OF

INITIAL

ULTIMATE

ELONGATION

.00

12.50

25.00

37.50

50.00

62.50

75.00

87.50

100.00

112.50

125-00 LOSS OF ULTIMATE TENSILE ELONGATION IN WEATHERED PLASTICS

OBSERVED DATA AND CURVES FITTED BY V = B1«EXP(-((T+B2)/B3) B4
)+ B5

PLASTIC 7 : PVC — B (4 MIL)

GRAPH KEY
A - ARIZONA

Y - FLORIDA
Z - WASHINGTON. D.C.
A - ARIZONA CURVE FIT
D - FLORIDA CURVE FIT
* - WASHINGTON. O.C. CURVE FIT

24.00 27-00 30.00 33.00 36.00
APRIL

b„ (months) b,
3 4

_

8.24 6.23
13.19 4.60
19.02 2.32

Arizona
Florida
Washington, D.C.
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ULTIMATE

ELONGATION

.00

12.

SO

2S.00

37.

SO

50.00

62.50

75.00

87.50

100.00

112.50

125.00 LOSS OF ULTIMATE TENSILE ELONGATION IN WEATHERED PLASTICS

OBSERVED DATA AND CURVES FITTED BY Y = B1 *EXP( -( ( T + B2 )/B3 )

B4
)+ B5

PLASTIC 8 : PVC-B (10 MIL)

GRAPH KEY
A - ARIZONA

Y - FL0RIOA
Z - WASHINGTON. D-C.
A - ARIZONA CURVE FIT
Q - FLORIDA CURVE FIT
* - WASHINGTON. 0-C- CURVE FIT

A ft

^.00
APRIL

3'. 00 6.00 9.00 12.00 15-00 18.00 21 -00 24.00
EXPOSURE TIME (MONTHS)

27-00 30-00 33.00 36.00
APRIL

b„ (months) b,
3 4

9.29 2.24
17.66 1.73

Arizona
Florida



PERCENT

RETENTION
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INITIAL

ULTIMATE

ELONGATION

.00

12.

SO

2S.00

37.50

SO.

00

62.50

75.00

87.50

100.00

112.50

125.00 LOSS OF ULTIMATE TENSILE ELONGATION IN WEATHERED PLASTICS

OBSERVED DATA AND CURVES FITTED BY Y : B1*EXP(-((T + B2)/B3) B4
) + B5

PLASTIC 9 : PVC- B (60 MIL)

GRAPH KEY
A - ARIZONA

Y - FLORIDA
Z - WASHINGTON. D.C.
A - ARIZONA CURVE FIT
Q - FLORIDA CURVE FIT
* - WASHINGTON. D-C. CURVE FIT

^.00
APRIL

3'. 00 6.00 9.00 12.00 15-00
EXPOSURE

18.00 21-00
TIME (MONTHS)

24.00 27.00 30.00 33.00 36 .00

APRIL

(months)

0.31 0.24
8.70 0.48

13.22 0.97

Arizona
Florida
Washington, D.C.



PERCENT

RETENTION

OF

INITIAL
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ELONGATION

12.

SO

25-00

37.50

50.00

62.50

75.00

87.50

100.00

112.50

125-00 LOSS OF ULTIMATE TENSILE ELONGATION IN WEATHERED PLASTICS

OBSERVED DATA AND CURVES FITTED BY Y = B1*EXP(-((T + B2)/B3) B4
)+ B5

PLASTIC 10 : PVC-C (4 MIL)

\

l

\

I

\

\

\

\

\

\

\

GRAPH KEY
A - ARIZONA

Y - FLORIDA
Z - WASHINGTON. D-C.
A - ARIZONA CURVE FIT
D - FLORiOA CURVE FIT
* - WASHINGTON. D.C. CURVE FIT

\

\

\

\

\

\

\

\

\

\

\
\

^.OO
APRIL

3.00 6.00 9.00 12.00 15-00

EXPOSURE
18.00 21.00

TIME (MONTHS)
24.00 27.00 30.00 33.00 36-00

APRIL

b. (months) b.
3 4_

Washington, D.C 2.59 1.15



PERCENT

RETENTION

0F

INITIAL

ULTIMATE

ELONGATION

.00

12.50

25.00

37.50

50.00

62.50

75.00

87-50

100.00

112.50

125.00 LOSS OF ULTIMATE TENSILE ELONGATION IN WEATHERED PLASTICS

OBSERVED DATA AND CURVES FITTED BY Y = B1*EXP(-((T + B2)/B3) 84
)+ B5

PLASTIC 11 : PVC-C UO MIL)

GRAPH KEY
A - ARIZONA

Y - FLORIDA
Z - MASH I NGYON . 0 . C

•

A - ARIZONA CURVE FIT
Q - FLORIDA CURVE FIT
* - WASHINGTON. O.C. CURVE FIT

'Tl.OO

APRIL
3'. DO 6 '.00 9 '.00 12.00 15-00 18.00 21-00

EXPOSURE TIME (MONTHS)
24.00 27-00 30.00 33.00 36.00

APRIL

0.29
2.29

Arizona
Florida

(months)



PERCENT

RETENTION

OF

INITIAL

ULTIMATE

ELONGATION

12.

SO

25.00

3?.
SO

50.00

62.50

75.00

87.50

100.00

112.50

125.00 LOSS OF ULTIMATE TENSILE ELONGATION IN WEATHERED PLASTICS

OBSERVED DATA AND CURVES FITTED BY Y = B 1 *EXP ( - ( (T+B2)/B3) 64
)+ B5

PLASTIC 13 : PVC — N ( 60 MIL

)

GRAPH KEY

A - ARIZONA

Y - FLORIOA
Z - WASHINGTON. O.C.
A - ARIZONA CURVE FIT
Q - FLORIDA CURVE FIT
* - WASHINGTON. D.C. CURVE FIT

oo

^.00 3-00 6.00 9.00
APRIL

12.00 15-00 18.00 21 .00 24.00
EXPOSURE TIME (MONTHS)

27.00 30.00 33-00 36.00
APRIL

(months)

0.72 0.56

4.65 0.65

11.06 0.81

Arizona
Florida
Washington, D.C.
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•00

12.50

25-00

37.50

50.00

62.50

75.00

87.50

100-00

112.50

125.00 LOSS OF ULTIMATE TENSILE ELONGATION IN WEATHERED PLASTICS

OBSERVED DATA AND CURVES FITTED BY Y = B1*EXP(-((T+B2)/B3) 04
)+ B5

PLASTIC 15 : PVC-A (10 MIL)

GRAPH KEY

A - ARIZONA

Y - FLORIDA
Z - WASHINGTON. D-C.
A - ARIZONA CURVE FIT
Q - FLORIDA CURVE FIT
* - WASHINGTON. D-C. CURVE FIT

Y

Y
-e—

a a

27.00 30.00 33.00 36.00
APRIL

(months)

6.34 1.96
11.34 5.51

Arizona
Florida
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PERCENT
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ULTIMATE

ELONGATION

.00

12.50

25.00

37.50

50.00

62.50

75-00

87.50

100.00

112.50

125.00 LOSS OF ULTIMATE TENSILE ELONGATION IN WEATHERED PLASTICS

OBSERVED DATA AND CURVES FITTED BY Y = B 1 *EXP ( - ( (T+B2)/B3) 64
)+ B5

PLASTIC 17 : PVC - D (4 MIL)

GRAPH KEY
A - ARIZONA

Y - FLORIDA
Z - WASHINGTON, D-C.
& - ARIZONA CURVE FIT
Q - FLORIDA CURVE FIT
* - WASHINGTON, D.C. CURVE FIT

27-00 30.00 33.00 36.00

APRIL

b_ (months) b.
4

0.97 1.00
10.98 1.31
14 . 23 8.01

Arizona
Florida
Washington, D.C.
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LOSS OF ULTIMATE TENSILE ELONGATION IN WEATHERED PLASTICS

OBSERVED DATA AND CURVES FITTED BY Y = B1*EXP(-((T+B2)/B3) 84
) + B5

PLASTIC 18 • PVC — DUO MIL)

GRAPH KEY
A - ARIZONA

Y - FLORIDA
Z - WASHINGTON .0 -C

.

A - ARIZONA CURVE FIT
n - FLORIDA CURVE FIT
* - WASHINGTON. D.C. CURVE FIT

4)

1 1 1

•00 3.00 6.00 9.00
RIL

12.00 15-00 18.00 21.00

EXPOSURE TIME (MONTHS)
24.00 27-00 30.00 33.00 36.00

APRIL

(months) b,
3 4

Arizona 4.53 1.74



PERCENT

RETENTION

OF

INITIAL
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ELONGATION

.00

12.

SO

25-00

37.50

50.00

62.50

75.00

87.50

100.00

112.50

125-00 LOSS OF ULTIMATE TENSILE ELONGATION IN WEATHERED PLASTICS

OBSERVED DATA AND CURVES FITTED BY Y = B1*EXP(-((T+B2)/B3) 84
)+ B5

PLASTIC 19 : PVC — D ( 60 MIL)

GRAPH KEY

-*

Y

C
b'- 00 3

'.00
6
'-00

9
'.00 12.00 15.00 18-00 21 .00 24.00 27 .00 30 .00 33.00 36 .00

APRIL EXPOSURE TIME (MONTHS) APRIL

b_ (months) b,
3 4

2.77 0.75

4.23 0.99
6.90 0.71

Arizona
Florida
Washington, D.C.
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.00

12.50

25.00

37.50

50.00

62.50

75-00

87.50

100.00

112.50

125.00

^D.OO
APRIL

3.00

LOSS OF ULTIMATE TENSILE ELONGATION IN WEATHERED PLASTICS

OBSERVED DATA AND CURVES FITTED BY Y = B1*EXP(-((T+B2)/B3) 04
)+ B5

PLASTIC 20 : PVC - M (60 MIL)

GRAPH KEY
A - ARIZONA

Y - FLORIDA
Z - WASHINGTON. D.C.
A - RR I ZONA CURVE FIT
D - FLORIDA CURVE FIT
* - WASHINGTON. D.C. CURVE FIT

\

Y

T 6

fl

A
Z

T

6.00 9
'.00 12.00 IS. 00

EXPOSURE
18.00 21 -00

TIME (MONTHS)
24.00 27.00 30.00 33.00 36.00

APRIL

(months)

1.90 6.98
7.78 1.38

10.59 1.55

Arizona
Florida
Washington, D.C.



APPENDIX

MATHEMATICAL PROPERTIES OF THE SELECTED FUNCTION

By

A. Craw
Technical Analysis Division
National Bureau of Standards

We shall summarize the types of curves possible from the five (5)

parameter family

R = b-^ exp

by exhibiting a series of graphs

a simpler function

mh]
-I

- b,

+ b r'5
( 1 )

To make life a little easier we consider

P (T) = exp (-T
6
) ( 2 )

where

This function has all the geometric properties of (1)

.

The function P(T) is defined and real for all T>0 and all real positive

6, and over the range 0<T<°° P(T) is a monotone decreasing function.

For T fixed

lim P(T)

6+°°

for 0<T<1
for T=1
for 1<T<°°.

All curves of the family pass through (1 ,
e

X
) and P(T)

For T>0, P(T) assumes the constant value e when 6=0.

-1
e as 8+0

+

These facts are summarized in the Figures 1, 2, and 3.



2

Figure 4: P(T) for B<0, T>0

T
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For T>0 and all real 3<0, P(T) is an increasing function of T and
P(T)-»-l as T-*», 6<0 (see Figure 4).

O

The function P(T) = exp (-T ) is real only for special values of the
parameter 3 when T is negative. To see this, let z be a complex variable.

- £
The function e can be written

- ^ ~x
e = e (cos y - i sin y) = u + i v, z=x+iy

~x -X
= e cos y - i e sin y

“X - \
or u = e cos y, v = -e sin y.

- £ _x
e is real only for v = -e sin y = 0, i.e., only for sin y = 0

i.e., y = 0 h^iiitt, m an integer. Thus, for z = T
,

-T^ 3
e is real for T<0 only if T is real or is a complex number of the
form x + mui, where m is an integer.

For T<0 we can write
T = | T |

[cos (l+2n)iT + i sin ( l+2n) tt

]

n an integer

and T^ = | T |

^ [cos 3(l+ 2n)fr + i sin 3 (l+2n) tt] = U + i V

V = 0 =
|

T
|

6 sin 3(l+2n)ir, which holds for all T<0

p
only for 3 = Y+Jn’

n integers -

The case V a complex number of the form x + mui leads nowhere, for this
would require for all T<0 that

|T|
6 =

sin ' 3(l+2m)Ti
>

311 impossibility, except for m=0.

-p3
Thus P(T) = e is real only for special values of the parameter 3 when T

is negative. The only allowable values for 3 are those for which 3 belongs
to the set of rational numbers with odd integer denominators. Thus, 3 = 1/2

or (1/2) is not permissible for T<0; by the same token, 3 cannot be an

_t 3

irrational number and have P(T) = e real for T<0. To repeat, no graph

_t 3

of the function P(T) = e appears for t<0 except for special values of 3.



4

We will examine the value T = -1 for various allowable 3.

( - 1)
13 = l

3
[cos B(l+ 2n) 7T + i sin 3 (

l

+ 2n) tt

]

= {

+
}’

3 even integer
v J L v J y J J -1, 3 an odd integer

For 3 = 1/3

, ,,1/3 ( l+2n' . . I l+2n^
(-1) ' = cos

y
-j
—

j
tt + i sin

( -y— j

tt

( TT
,

- • TT r,

j’cos
j

+ i sm y ,
n = 0

=< -1
,
n = 1

5tt5 TT
.

- - —* n

cos j— + i sin —
,
n = 2

(non- real)

(real)

(non- real)

For 3 = 2/3

(_ 1)
2 / 3 = (- 1)

1/3

f 2tt . 2tt
r cos — + i sin y-

+1

IOtt • - IOtt
cos — + l sin —

(non-real)

(real)

(non -real)

In general, for 3 = k/m, m odd integer (-l)
k^m = { + | £

_rp3

The graphs of P(T) = e
1

are illustrated for some select 3.



Figure 5: P(T) for 6 = k/m > 0, k, m odd integers

P

Permissible Permissible region

region only for
special values of 3

for all real 6

Prohibited Prohibited

region region

Figure 7: Permissible and prohibited regions for graphs of P(T)
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Application to Empirical Data

For data which show the function P to be decreasing over the entire
range we want 3>0. For data which show P to increase for a while and then
decrease, we will have to choose 3 = (k/m)>l where k is an even and m an

odd integer, or resort to another functional form P*= e 1 1

,
which is

defined and real for all real 3; to avoid cusps at T = 0, select 3>1.

Returning to the function (1) we thus want = 3 to be positive or,

in the case of increasing P followed by decreasing P, b
4

should be greater

than 1 and have the special form b^ = 3 = k/m mentioned above.

Since T = (t+b^/b^, we will want b^>0 to keep the directions of t and

T the same. Alternatively, equation (1) can be written
b.

R = b^ exp [-B
3
(t+b

2
) ]

+ b
5 ( 1 ')

where B 7 = t— 4 = k
3 b^ 3

-b,

and where we want B^ to be real. If one were to

permit b^O, then, as before, b^ = |b^| e
77 * e^

llTT

^and

-b,

= lb.

-b^ "b^(l+2m7T)i

which is in general a complex number that is a real number only if b^ belongs

to a special set of numbers. However, we would like to assume any value in

the continuum. Thus from the outset we restrict b^ to be positive.

b^ and b^ are fitting constants that have the physical dimensions of

the property R. b£ and b^ have the physical dimensions of the variable t

(here time), while b^ is dimensionless. Since R>0, b^>0, b^>0, lim R = b^,

t-*»

we will want b,_>0. Also lim R = b-^+b^. Obviously we want b^>0. b^ is

t->-b
2

the asymptotic value of P for large t>0. b-^+b^ is the maximum value of

the property and occurs at t = -b If b^ is positive, this maximum value

will occur at a negative value of t and one will not be able to get an

estimate of b^+b^ from the observed data. But for the case of decreasing

R, a good guess for the starting value of b-^+b^ can be obtained from the

observation at t = 0

.
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If b
2
>0, say b

2
= 2 and = 1 for convenience, then graphically

- Z -I O l 2. 3

Figure 8: R(t) for b
2

= 2, = 1, > 0

T
^5

Figure 9: R(t) for b
2

= -2, b
3

= 1, b
4

> 0 with {

t

even numerator
odd denominator

1
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If the curve of R against t first increases and then decreases (as in

Figure 9) then we would want to take initially b
?
<0, and b, of special

form.

If we have a nearly constant R for some time followed by a decline of
R then one would probably want b^ = 0, b^ large and positive (Figure 10).






